OPTICAL SYSTEM WITH LONG FOCAL LENGTH AND OPTICAL APPARATUS HAVING THE SAME
1. Field of the Invention The present invention relates to an image pickup lens with a long focal length, which is suitably used for an image pickup optical system such as a silver-salt film camera, a digital still camera, or a video camera. 2. Description of the Related Art Previously, an image pickup optical system (a telephoto lens) of so-called a telephoto type that is configured by a front lens unit having a positive refractive power and a rear lens unit having a negative refractive power in order from an object side to an image side has been known as an image pickup optical system having a long focal length. Japanese Patent Laid-Open NO. H11-109222 discloses an optical system that is configured by using an inexpensive material with a low specific gravity and a diffraction optical element with a large effect of correcting a chromatic aberration without using a material having an abnormal partial dispersibility in order to reduce a weight and a cost of the optical system. Japanese Patent Laid-Open No. 2009-271354 discloses a small-size and light-weight inner focus type telephoto lens in which various kinds of aberrations such as a chromatic aberration have been appropriately corrected by arranging a diffraction optical element in an optical system and also by using an aspherical surface. However, in Japanese Patent Laid-Open No. H11-109222, it is difficult to reduce the weight since the number of lenses constituting the front lens unit of the telephoto lens is the same as the conventional number. In Japanese Patent Laid-Open No. 2009-271354, a total length of the optical system can be shortened to reduce the weight of a lens barrel, but the sensitivity gets higher. Commonly, the sensitivity for a surface accuracy of the front lens unit arranged at the object side of the telephoto lens and a manufacturing error such as an assembly error is high. There is a tendency that the sensitivity gets higher as the refractive power of the front lens unit is strengthened to shorten the total length compared with the focal length, and that on the other hand the sensitivity gets lower as the refractive power of the front lens unit is weakened to lengthen the total length compared with the focal length. Particularly, in the conventional art disclosed in Japanese Patent Laid-Open No. 2009-271354, an aspherical surface having a large amount of errors is used as a surface closest to the object side in order to appropriately correct aberrations other than the chromatic aberration, such as a spherical aberration and a field curvature, which are deteriorated by shortening the total length. Accordingly, it is difficult to manufacture the optical system which is disclosed in Japanese Patent Laid-Open No. 2009-271354. Furthermore, in order to reduce the deterioration of the aberration caused by shortening the total length, many lenses are disposed in the front lens unit that effectively corrects the aberration. Therefore, the weight of the lenses may increase even when the weight of the lens barrel decreases, and it is difficult to manufacture the light-weight telephoto lens. The present invention provides an optical system that is reduced in weight while an aberration is appropriately corrected and that is not easily influenced by a manufacturing error of an aspherical surface. An optical system as one aspect of the present invention, in order from an object side to an image side, includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive or negative refractive power. The first lens unit is configured by a first partial lens unit and a second partial lens unit each having a positive refractive power. The first partial lens unit is configured by a positive single lens, and has at least one aspherical surface. The second partial lens unit is configured by a positive lens and a negative lens, and has a diffraction optical surface of a diffraction optical element that is rotationally symmetric with reference to an optical axis direction. The second lens unit is a focus lens unit that is movable in the optical axis direction. A paraxial lateral magnification βasph at the image side with reference to a surface disposed closest to the object side of the aspherical surface when the optical system focuses on infinity meets a predetermined condition. An optical apparatus as another aspect of the present invention includes the optical system and a photoelectric conversion element configured to receive light of an image formed by the optical system. Further features and aspects of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings. Exemplary embodiments of the present invention will be described below with reference to the accompanied drawings. In each of the drawings, the same elements will be denoted by the same reference numerals and the duplicate descriptions thereof will be omitted. In the cross-sectional diagrams of In the aberration diagrams of The telephoto lens (an optical system) in the present embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a third lens unit L3 having a positive or negative refractive power. The first lens unit L1 is configured by a first partial lens unit L1 When a paraxial lateral magnification at the image side with reference to a surface which is disposed closest to the object side of aspherical surfaces disposed in the first partial lens unit L1 The paraxial lateral magnification at the image side with reference to a surface which is disposed closest to the object side of aspherical, surfaces means a paraxial lateral magnification from a surface disposed at the image side next to the aspherical surface without including the aspherical surface itself. For example, when the aspherical surface is disposed on a k-th surface counted from the object side in the optical system, the paraxial lateral magnification βasph is a paraxial lateral magnification at the image side from a (k+1)th surface counted from the object side. Conditional expression (1) is a conditional expression which represents an error sensitivity of an aspherical surface of the optical system in the present embodiment. When the paraxial lateral magnification βasph becomes higher in the optical system, the sensitivity for the error becomes higher. Accordingly, when the paraxial lateral magnification βasph is beyond the upper limit of conditional expression (1), it is necessary to perform a fabrication and an assembly with high accuracy in manufacturing and the degree of difficulty gets higher. Therefore, the range of conditional expression (1) is met to be able to manufacture the optical system without heightening the degree of difficulty. It is preferred that conditional expression (1) be set to a range represented by following expression (1a). When the paraxial lateral magnification βasph is below the lower limit of expression (1a), conversely the sensitivity of the aspherical surface is too low and therefore it is difficult to correct an aberration. It is more preferred that expression (1a) be set to a range represented by following expression (1b). Furthermore, it is more preferred that expression (1b) be set to a range represented by following expression (1c). The first lens unit L1 in the optical system of the present embodiment is configured by the first partial lens unit L1 Next, a weight of the telephoto lens will be considered. The weight of the commercial telephoto lens is determined by the addition of a weight of a lens barrel including a focus mechanism and the like and a weight of lenses, and the weight of the lenses occupies a large amount of ratio of the telephoto lens. If the lenses are reduced in weight, the lens barrel is also reduced in weight eventually because the stiffness of the lens barrel can be reduced by the weight. Accordingly, the weight of the lenses is an important factor of determining the total weight including the weight of the lens barrel. In a common telephoto lens, the weight of the lenses of the first lens unit L1 occupies around 70° to 90°, of the total weight of lenses in many cases. This is particularly remarkable when The aperture ratio (Fno) of the optical system is lowered (brightened). For example, when the telephoto lens having the focal length of 600 mm and the aperture ratio Fno of 4.0 is applied, an outside diameter of the largest lens of the first lens unit L1 is around 150 mm. On the other hand, an outside diameter of a lens at the image plane side is around 30 mm to 40 mm. Thus, since a difference around 4 to 5 times exists in the outside diameter, there is a significant difference in mass between the first lens unit L1 and a rear lens unit. Accordingly, when the weight of the telephoto lens is reduced, it is important that the first lens unit L1 is reduced in weight as much as possible. In the telephoto lens (the optical system) in the present embodiment, the number of lenses of the first lens unit L1 is reduced to three from around four to six as a conventional telephoto lens, and therefore the weight of lenses are significantly reduced. However, the chromatic aberration and various kinds of aberrations are deteriorated in this configuration. Accordingly, in the telephoto lens of the present embodiment, the total number of lenses of the first lens unit L1 is set to three and also an aspherical surface is formed in the first partial lens unit L1 It is preferred that the telephoto lens (the optical system) of the present embodiment meet following conditional expression (2). In conditional expression (2), reference symbol f denotes a focal length of a total system of the optical system, reference symbol Fno denotes an aperture ratio (an F-number), reference symbol f1 Hereinafter, conditional expression (2) will be described in detail. The left-hand side of conditional expression (2) is an expression approximately representing a ratio of effective diameters of the first partial lens unit L1 In the embodiment, reducing the weight of lenses of the first lens unit L1 will be considered. Although the weight of the lens has a proportional relation with respect to a thickness direction, it is proportional to the square of the size in a radial direction. Accordingly, considering the weight of the lens, it is important to reduce the size of the diameter of the lens. Commonly, the effective diameter of the lens of the first lens unit L1 in the telephoto lens is substantially determined by an F-number light beam. Accordingly, if the focal length f of the total system and the aperture ratio (Fno) are identified, an effective diameter φ1 As represented by expression (b) described above, the diameter of the first partial lens unit L1 Conditional expression (2) represents a ratio of φ1 It is not preferred that the value be beyond the upper limit of conditional expression (2) since the weight of the first lens unit L1 increases and as a result a weight of whole of the optical system increases. It is preferred that conditional expression (2) be set to a range represented by following expression (2a). Furthermore, it is preferred that conditional expression (2a) be set to a range represented by following expression (2b). It is preferred that the optical system of the present embodiment meet following conditional expression (3) when a difference between a center part of a surface closest to the object side in the second partial lens unit L1 In conditional expression (3), the difference dsag (mm) of the positions in the optical axis direction indicates a positive value in a direction from the object side to the image side (the image plane side) along the optical axis. Hereinafter, conditional expression (3) will be described in detail. Conditional expression (2) described above represents the ratio of the effective diameters of the first partial lens unit L1 Furthermore, it is preferred that conditional expression (3) is set to a range represented by following expression (3a). It is preferred that the focal length f1 Conditional expression (4) represents a ratio of the focal length f1 When a power of the diffraction optical element provided in the second partial lens unit L1 Hereinafter, the power ΦDOEof the diffraction optical element will be described. A phase difference function Φ(r, m) of the diffraction optical element is represented as following expression (d) using an optical path difference function Ψ(r). The optical path difference function Ψ(r) is defined by following expression (e). In expression (e), symbol m denotes a diffractive order, symbol λ0denotes a reference wavelength, and symbol r denotes a distance from the optical axis. Symbol C2i(i=1,2, . . . ,n) denotes a phase coefficient of 2i-th order. In this case, the power ΦDOEof the diffraction optical element for an arbitrary wavelength λ and an arbitrary diffractive order m is represented by following expression (f). Conditional expression (5) is a conditional expression that represents a ratio of the power of the diffraction optical element and the power of the total system, i.e. an inverse of the focal length. It is not preferred that the value is beyond conditional expression (5) since the chromatic aberration cannot be corrected by the diffraction optical element and conversely it contributes to the generation of the chromatic aberration. In addition, it is not preferred that the value is beyond the upper limit of conditional expression (5) since the power of the diffraction optical element is so strong that an unnecessary diffraction flare is generated and it causes the deterioration of an image quality. A surface closest to the object side of the first partial lens unit L1 Next, referring to In the present embodiment, a paraxial lateral magnification βasph of conditional expression (1) that represents a lateral magnification at the image side with reference to the aspherical surface of the first partial lens unit L1 The numerical value corresponding to conditional expression (4) that represents a relationship between focal lengths of the first partial lens unit L1 The numerical value corresponding to conditional expression (5) that represents a ratio of powers of the diffraction optical element and the total system is 0.034 as indicated in Table 1. As a result, the possibility of the generation of an unnecessary diffraction flare that causes the deterioration of an image quality by strengthening the power of the diffraction optical element too much can be suppressed. The first partial lens unit L1 Thus, in the present embodiment, the number of lenses constituting the first lens unit L1 that is heavy in weight is reduced to three and the diameter of the second partial lens unit L1 Next, referring to In the present embodiment, a paraxial lateral magnification βasph of conditional expression (1) that represents a lateral magnification at the image side with reference to the aspherical surface is 0.721 as indicated in Table 1, which is suppressed so as to be small. As a result, the optical system of the present embodiment can be insusceptible to a manufacturing error for a surface accuracy of the aspherical surface or the like. The numerical values corresponding to conditional expressions (2) and (3) described above are, as indicated in Table 1, 0.762 and 0.732 respectively, which are included in an appropriate range. As a result, a diameter of the second partial lens unit L1 The numerical value corresponding to conditional expression (4) that represents a relationship between focal lengths of the first partial lens unit L1 The numerical value corresponding to conditional expression (5) that represents a ratio of powers of the diffraction optical element and the total system is 0.018 as indicated in Table 1. As a result, the possibility of the generation of an unnecessary diffraction flare that causes the deterioration of an image quality by strengthening the power of the diffraction optical element too much can be suppressed. The first partial lens unit L1 Thus, in the present embodiment, the number of lenses constituting the first lens unit L1 that is heavy in weight is reduced to three and the diameter of the second partial lens unit L1 Next, referring to In the present embodiment, a paraxial lateral magnification βasph of conditional expression (1) that represents a lateral magnification at the image side with reference to the aspherical surface is 1.653 as indicated in Table 1, which is suppressed so as to be small. As a result, the optical system of the present embodiment can be insusceptible to a manufacturing error for a surface accuracy of the aspherical surface or the like. The numerical values corresponding to conditional expressions (2) and (3) described above are, as indicated in Table 1, 0.824 and 0.795 respectively, which are included in an appropriate range. As a result, a diameter of the second partial lens unit Lib can be sufficiently reduced. The numerical value corresponding to conditional expression (4) that represents a relationship between focal lengths of the first partial lens unit L1 The numerical value corresponding to conditional expression (5) that represents a ratio of powers of the diffraction optical element and the total system is 0.020 as indicated in Table 1. As a result, the possibility of the generation of an unnecessary diffraction flare that causes the deterioration of an image quality by strengthening the power of the diffraction optical element too much can be suppressed. Thus, in the present embodiment, the number of lenses constituting the first lens unit L1 that is heavy in weight is reduced to three and the diameter of the second partial lens unit L1 Specific numerical data of the optical systems (the telephoto lenses) in Embodiments 1 to 3 are indicated as Numerical embodiments 1 to 3, respectively. The surface number is counted in order from the object side. Symbol R denotes a radius of curvature (mm), Symbol D denotes a surface interval (mm), and Symbols Nd and vd denote a refractive index and Abbe's number for the d-line respectively. Symbol BF denotes a back focus, and a total lens length denotes a distance from a first surface to an image plane. Symbol * is added behind the surface number for an aspherical surface. A shape of the aspherical surface is represented as following expression (6), where X denotes a displacement amount from a surface top in an optical axis direction, h denotes a height from an optical axis in a direction perpendicular to the optical axis, r denotes a paraxial radius of curvature, K denotes a conic constant, and B, C, D, E, . . . denote aspherical coefficients of respective orders. The description of “E±XX” in each aspherical coefficient means “×10±XX”. Additionally, the numerical values corresponding to conditional expressions (1) to (5) described above are indicated in Table 1. Next, referring to In Thus, the optical system of the present embodiment is applied to the image pickup element such as a digital still camera to be able to achieve a small-size image pickup apparatus having a high optical performance. While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions. This application claims the benefit of Japanese Patent Application No. 2010-233470, filed on Oct. 18, 2010, which is hereby incorporated by reference herein in its entirety. An optical system, in order from an object side to an image side, includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive or negative refractive power. The first lens unit is configured by a first partial lens unit and a second partial lens unit each having a positive refractive power. The first partial lens unit is configured by a positive single lens, and has at least one aspherical surface. The second partial lens unit is configured by a positive lens and a negative lens, and has a diffraction optical surface of a diffraction optical element rotationally symmetric with reference to an optical axis direction. The second lens unit is a focus lens unit that is movable in the optical axis direction. And a paraxial lateral magnification asph meets a predetermined condition. 1. An optical system comprising:
a first lens unit having a positive refractive power; a second lens unit having a negative refractive power; and a third lens unit having a positive or negative refractive power, the first, second, and third lens units being disposed in order from an object side to an image side, wherein the first lens unit is configured by a first partial lens unit and a second partial lens unit each having a positive refractive power, the first partial lens unit is configured by a positive single lens, the first partial lens having at least one aspherical surface, the second partial lens unit is configured by a positive lens and a negative lens, the second partial lens unit having a diffraction optical surface of a diffraction optical element that is rotationally symmetric with reference to an optical axis direction, the second lens unit is a focus lens unit that is movable in the optical axis direction, and the following condition is met:
where βasph is a paraxial lateral magnification at the image side with reference to a surface disposed closest to the object side of the aspherical surface when the optical system focuses on infinity. 2. The optical system according to wherein the following condition is met:
where f is a focal length of a total system of the optical system, Fno is an aperture ratio of the optical system, f1 3. The optical system according to wherein the following condition is met:
where dsag is a difference of positions of a center part and an effective diameter of a surface closest to the object side of the second partial lens unit in the optical axis direction, which indicates a positive value in a direction from the object side to the image side along the optical axis. 4. The optical system according to wherein following expression is met:
where f1 5. The optical system according to wherein following expression is met:
where ΦDOEis a power of the diffraction optical element that is disposed in the second partial lens unit of the first lens unit, and f is a focal length of a total system of the optical system. 6. The optical system according to wherein the surface closest to the object side of the first partial lens unit is an aspherical surface, and a surface at the image side is a convex surface facing the image side. 7. The optical system according to wherein the optical system is configured so as to form an image on an photoelectric conversion element. 8. An optical apparatus comprising:
an optical system according to a photoelectric conversion element configured to receive light of an image formed by the optical system. BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DESCRIPTION OF THE PREFERRED EMBODIMENTS
0<βasph<2.0 (1)
0.5<βasph<2.0 (1a)
0.5<βasph<1.5 (1b)
0.5<βasph<1.0 (1c)
0<{
φ1
0.4<
0.4<{
0<
0.4<
0.5<
0<ΦDOE
Φ(r,m)=(2π/mλ0)×Ψ(
Ψ(
ΦDOE=−2Embodiment 1
Embodiment 2
Embodiment 3
Effective Surface diameter number R D Nd νd of ray 1* 456.265 16.36 1.48749 70.2 141.99 2 −306.433 148.39 141.76 3 150.795 4.20 1.72047 34.7 85.77 4 86.085 19.17 1.43875 94.9 82.03 (diffraction) 5 −198.729 19.41 80.48 6 844.357 6.56 1.80809 22.8 63.34 7 −119.505 4.00 1.80000 29.8 62.59 8 112.974 56.47 57.61 9(stop) ∞ 24.58 40.09 10 62.330 1.90 1.83481 42.7 31.52 11 28.464 8.57 1.48749 70.2 30.39 12 180.259 2.00 30.18 13 476.171 2.81 1.84666 23.9 30.21 14 −203.497 1.70 1.77250 49.6 30.17 15 80.921 2.80 30.07 16 −172.136 2.50 1.77250 49.6 30.25 17 390.104 9.64 31.01 18 431.496 10.94 1.80000 29.8 35.44 19 −26.637 2.50 1.80809 22.8 36.18 20 −112.366 5.45 37.92 21 −210.768 8.26 1.74950 35.3 38.66 22 −33.352 2.50 1.59282 68.6 39.08 23 −359.526 15.00 39.27 24 ∞ 2.00 1.51633 64.1 45.00 25 ∞ 90.78 45.00 Image surface ∞ Aspherical surface data Conic 4th order 6th order 8th order 10th order constant coefficient coefficient coefficient coefficient (K) (B) (C) (D) (E) K B C D E First surface −8.65758E+00 −2.49178E−08 −4.46206E−13 1.34417E−17 −4.76772E−22 C2 C4 C6 C8 C10 Fourth surface (diffraction surface) −2.87716E−05 −8.57196E−10 2.38070E−13 2.42391E−16 1.04092E−19 C12 C14 C16 C18 C20 −3.09958E−23 −5.83044E−26 7.22774E−30 2.74484E−32 −9.58676E−36 Various kinds of data Focal length 585.00 Fno 4.12 Image height 21.64 Total lens length 468.50 BF 90.78 Entrance pupil position 918.95 Exit pupil position −121.11 Principal point position at front side −111.15 Principal point position at rear side −494.22 Unit data Principal Principal Lens point point Start Focal configuration position position at Unit surface length length at front side rear side 1 1 208.48 188.12 131.31 −96.98 2 6 −166.22 10.56 6.85 0.96 3 9 −3046.05 103.16 −698.07 −1026.71 Single lens data Lens Start surface Focal length 1 1 378.700 2 3 −290.950 3 4 138.690 4 6 129.950 5 7 −72.040 6 10 −64.400 7 11 68.080 8 13 168.710 9 14 −74.750 10 16 −154.310 11 18 31.700 12 19 −43.780 13 21 51.830 14 22 −62.190 15 24 0.000 Effective Surface diameter number R D Nd νd of ray 1* 265.091 14.97 1.48749 70.2 136.06 2 −685.063 93.73 135.56 3* 113.622 4.80 1.72047 34.7 100.54 4 71.801 24.65 1.43875 94.9 94.22 (diffraction) 5 −436.025 46.22 92.33 6 521.226 4.59 1.80809 22.8 56.57 7 −224.196 3.50 1.83400 37.2 55.66 8 96.560 58.62 51.92 9(stop) ∞ 9.00 34.45 10 141.177 1.40 1.80610 33.3 31.38 11 35.670 7.59 1.74320 49.3 31.34 12 −373.015 3.00 31.43 13 −262.313 3.55 1.84666 23.9 33.38 14 −62.080 1.80 1.60311 60.6 33.39 15 55.796 2.85 33.03 16 −864.562 1.80 1.69680 55.5 33.10 17 64.939 6.26 34.05 18 78.669 4.13 1.61340 44.3 37.31 19 −1963.213 0.15 37.76 20 80.944 5.90 1.65412 39.7 38.80 21 −108.306 1.80 1.80809 22.8 38.86 22 −722.366 15.00 39.07 23 ∞ 2.20 1.51633 64.1 45.00 24 ∞ 50.01 45.00 Image surface ∞ 0.00 0.00 Aspherical surface data Conic 4th order 6th order 8th order 10th order constant coefficient coefficient coefficient coefficient (K) (B) (C) (D) (E) K B C D E First surface −1.69132E+00 −1.62516E−08 −4.69782E−13 −1.15280E−17 9.66984E−22 Third surface 7.57830E−02 9.88754E−09 3.11094E−12 −5.74829E−18 4.92984E−20 C2 C4 C6 C8 C10 Fourth surface (Diffraction surface) −2.30995E−05 −1.65751E−09 3.19712E−13 4.22082E−16 −1.57461E−19 C12 C14 C16 C18 C20 −8.39652E−23 2.04106E−26 3.85013E−29 −1.93466E−32 2.60903E−36 Various kinds of data Focal length 391.86 Fno 2.88 Image height 21.64 Total lens length 367.51 BF 50.01 Entrance pupil position 994.01 Exit pupil position −62.95 Principal position at front side 26.51 Principal position of rear side −341.84 Unit data Principal Principal Lens point point Start Focal configuration position position Unit surface length length at front side at rear side 1 1 196.11 138.15 73.55 −69.18 2 6 −139.97 8.09 5.42 0.93 3 9 472.68 66.42 65.99 13.75 Single lens data Lens Start surface Focal length 1 1 394.110 2 3 −288.150 3 4 141.700 4 6 194.530 5 7 −80.530 6 10 −59.560 7 11 44.160 8 13 95.280 9 14 −48.440 10 16 −86.620 11 18 123.400 12 20 71.700 13 21 −157.870 14 23 0.000 Effective Surface diameter number R D Nd νd of ray 1* 172.485 16.75 1.48749 70.2 141.99 2 1396.706 70.88 141.00 3* 140.134 6.00 1.73800 32.3 111.71 4 88.484 22.66 1.43875 94.9 105.05 (diffraction) 5 −1586.378 59.03 103.21 6 294.962 5.97 1.80809 22.8 64.50 7 −239.829 4.00 1.85026 32.3 63.58 8 120.235 68.30 59.42 9(stop) ∞ 7.00 36.80 10 328.303 1.90 1.80610 33.3 34.34 11 72.846 4.52 1.48749 70.2 33.54 12 −181.741 5.00 33.21 13 112.813 5.16 1.84666 23.9 36.92 14 −210.445 2.20 1.72916 54.7 36.13 15 52.416 3.71 34.32 16 −235.285 1.81 1.77250 49.6 34.31 17 92.861 9.32 34.49 18 74.058 11.62 1.62588 35.7 33.64 19 −30.690 1.80 1.59282 68.6 34.17 20 −819.955 0.15 34.82 21 86.889 7.02 1.65412 39.7 35.09 22 −46.837 2.50 1.80809 22.8 34.92 23 270.732 15.00 34.85 24 ∞ 2.00 1.51633 64.1 45.00 25 ∞ 84.01 39.00 Image plane ∞ Aspherical surface data Conic 4th order 6th order 8th order 10th order constant coefficient coefficient coefficient coefficient (K) (B) (C) (D) (E) K B C D E First surface −1.50652E−01 −6.88242E−09 −5.06956E−13 9.93314E−18 −1.59750E−21 Third surface −9.07249E−02 −3.77743E−09 1.11841E−12 −1.42203E−16 2.80072E−20 C2 C4 C6 C8 C10 Fourth surface (Diffraction surface) −1.71811E−05 −6.42248E−10 2.36386E−13 −1.23325E−16 1.80914E−20 C12 C14 C16 C18 C20 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 Various kinds of data Focal length 585.00 Fno 4.12 Image height 21.64 Total lens length 418.30 BF 84.01 Entrance pupil position 990.34 Exit pupil position −69.11 Principal point position at front side −659.63 Principal point position at rear side −500.99 Unit data Principal Principal Lens point point Start Focal configuration position position Unit surface length length at front side at rear side 1 1 233.68 116.29 40.82 −69.06 2 6 −227.12 9.97 8.91 3.31 3 9 −375.93 80.69 −11.12 −80.57 Single lens data Lens Start surface Focal length 1 1 401.870 2 3 −346.170 3 4 190.560 4 6 164.510 5 7 −93.710 6 10 −116.520 7 11 107.300 8 13 87.380 9 14 −57.350 10 16 −85.980 11 18 36.210 12 19 −53.830 13 21 47.510 14 22 −49.240 15 24 0.000 f 585.00 391.86 585.00 f1a 378.70 394.11 401.87 Lab 148.39 93.73 70.88 Fno 4.12 2.88 4.12 dsag 6.23 11.90 11.56 C2 −2.88E−05 −2.31E−05 −1.72E−05 Φ(DOE) 5.75E−05 4.62E−05 3.44E−05 CONDITIONAL 0.625 0.721 1.653 EXPRESSION (1) βasph CONDITIONAL 0.608 0.762 0.824 EXPRESSION (2) {D/2 − Lab × (D/2/f1a)}/(D/2) CONDITIONAL 0.592 0.732 0.795 EXPRESSION (3) {D/2 − (Lab + dsag) × (D/2/f1a)}/(D/2) CONDITIONAL 0.647 1.006 0.687 EXPRESSION (4) f1a/f CONDITIONAL 0.034 0.018 0.020 EXPRESSION (5) ΦDOE× f
0<βasph<2.0
0<{
0<{
0.5<
0<φDOE