Handheld Tool, Handheld Tool Add-On Measuring Device and Handheld Tool Battery
The present invention is based on a handheld tool. It is understood that handheld tools, in particular a handheld machine tool, having a battery interface has been proposed. The exemplary embodiments and/or exemplary methods of the present invention are based on a handheld tool, in particular a handheld machine tool, having a battery interface, as described herein. A provision is made for the handheld tool to have at least one measuring device interface, which is provided to receive at least data containing measuring information of a handheld tool add-on measuring device. A “battery interface” is to be understood in particular as an interface, which in at least one operating state takes up an operating energy for a main action arrangement, for example a measuring sensor and/or in particular a drive motor. The battery interface may contact a battery situated either within and/or advantageously at least partially outside of a handheld tool housing of the handheld tool. Advantageously, a mechanical and/or electrical connection of the battery interface is disconnectable without the use of a tool. In particular, a “measuring device interface” is to be understood as an interface, by which an operator may retrofit a handheld tool with a handheld tool add-on measuring device. The measuring device interface and the battery interface may be functionally separated and/or in particular spatially separated. Alternatively, the measuring device interface and the battery interface, in particular a mechanical mount, may be configured at least partially in one piece. A “handheld tool add-on measuring device” is to be understood in particular as a retrofit measuring device, constructionally separated from the handheld tool and in particular constructionally separated from a handheld tool battery, having a measuring sensor, which detects at least one measuring information in operation and provides the measuring information so that it may be retrieved by the handheld tool. The handheld tool add-on measuring device advantageously measures an inclination, a distance, a temperature, a humidity, a condition of a workpiece and/or it detects another measuring information that appears practical to one skilled in the art. In particular, “provided” is to be understood as specifically equipped, configured and/or programmed. A “handheld tool” is to be understood in particular as a handheld tool that appears practical to one skilled in the art such as in particular a percussion drill, a saw, a plane, a screwdriver, a milling tool, a grinder, and angle grinder, a measuring tool, a multifunction tool and/or in particular a drill. The handheld tool is advantageously configured as a handheld machine tool. The handheld tool may be utilizable also in a manner functionally separated from the handheld tool add-on measuring device. Advantageously, a handheld tool retrofitted with the handheld tool add-on measuring device has at least one further function dependent on the measuring information. The development of the handheld tool in accordance with the present invention makes it possible to retrofit in a constructionally simple manner an existing handheld tool with a function that is based on a measuring information, and thus a particularly versatile, flexible and comfortable handheld tool may be obtained. Another development provides for the handheld tool to have a control unit that is provided to influence a work process as a function of the measuring information. A “control unit” is to be understood in particular also as a unit that performs a closed-loop control function. The control unit may have a processing unit. A “work process” is to be understood in particular as a period of time, in which the main arrangement of action of the handheld tool performs a task, i.e., in particular performs a measurement or advantageously machines a workpiece. The expression “as a function of the measuring information” is to be understood in particular in the sense that the control unit takes up the measuring information, processes it and outputs a controlled and/or regulated variable. A controlled and/or regulated variable of the control unit may influence a state of the main arrangement of action. The control unit's influence on the work process makes it possible to provide particularly advantageous functions in a particularly flexible manner that support an operator while working. Alternatively or additionally, the control unit or a part of the control unit may be situated in the handheld tool add-on measuring device and/or in the handheld tool battery and/or be a component thereof. The exemplary embodiments and/or exemplary methods of the present invention furthermore provide for the control unit to be configured to stop a work process as a function of the measuring information, whereby safety functions and automatic machining end positions may be advantageously achieved. “To stop” is to be understood in particular as stopping an insertion tool, terminating a measuring process and/or terminating a work process in another manner that seems practical to one skilled in the art. Alternatively or additionally, the control unit could prevent the start of a work process and/or start a work process. The exemplary embodiments and/or exemplary methods of the present invention furthermore provide for the measuring device interface to be disconnectable without the use of a tool, whereby an operator may equip the handheld tool particularly comfortably with various handheld tool add-on measuring devices, particularly for brief periods. The phrase “disconnectable without the use of a tool” is to be understood in particular as a user being able manually to disconnect a handheld tool add-on measuring device connected to the measuring device interface mechanically and in particular electrically from the measuring device interface, without requiring an additional tool for this purpose. The handheld tool add-on measuring device and the handheld tool may have two separately configured housings. Advantageously, an operator is able to connect various handheld tool add-on measuring devices, which in particular allow for various functionalities, to the handheld tool. In addition, the exemplary embodiments and/or exemplary methods of the present invention provide for the measuring device interface to have at least one receiving arrangement, which is configured to receive wirelessly transmitted data containing measuring information, which makes it possible to situate the handheld tool add-on measuring device in a particularly flexible manner and requires no conductive contacts on a surface. A “receiving arrangement” is to be understood in particular as an arrangement that, in at least one operating state, receives power, describing data containing measuring information, transmitted capacitively, optically, inductively, in a manner that seems practical to one skilled in the art and/or in particular electromagnetically. The phrase “receive wirelessly” is to be understood in particular in such a way that the receiving arrangement is configured to receive information transmitted via a bodiless information carrier. Alternatively or additionally, the measuring device interface has a receiving arrangement that receives the data in a wire-bound fashion in at least one operating state. “Wire-bound” is to be understood in particular as transmitted via an electrical conductor. One advantageous development of the exemplary embodiments and/or exemplary methods of the present invention provides for the handheld machine tool to have an energy interface, which outputs an operating energy to the handheld tool add-on measuring device in at least one operating state. “An energy interface” is to be understood in particular as an interface able to transmit an electrical energy via in particular a conductive contact arrangement. Alternatively or additionally, the energy interface could also transmit an energy inductively. The energy interface is in particular provided to transmit at least an energy of at least 0.1 watt, advantageously at least 1 watt, particularly advantageously at least 10 watts. The term “operating energy” is to be understood in particular as an energy that is at least provided to supply a measuring sensor and/or transmitting arrangement of the handheld tool add-on measuring device with energy. Alternatively or additionally, the handheld tool add-on measuring device could have an operating energy store. The energy interface advantageously makes it possible to develop the handheld tool add-on measuring device in a particularly inexpensive manner. Furthermore, the exemplary embodiments and/or exemplary methods of the present invention are based on a handheld tool add-on measuring device having at least one handheld tool interface, which is provided to transmit data containing measuring information at least to one handheld tool in accordance with the present invention. A “handheld tool interface” is to be understood in particular as an interface that, in an operation-ready state, is connected indirectly or directly with the handheld tool. In particular, the phrase “transmit data” is to be understood in the sense that the handheld tool interface outputs or provides a power that describes data containing measuring information. The development of the handheld tool add-on measuring device according to the present invention makes it possible to retrofit the handheld tool with various additional functions in a particularly flexible and constructionally simple manner. Another development provides for the handheld tool add-on measuring device to have an energy interface that is provided to take up an operating energy from a handheld tool battery that at the same time supplies the handheld tool. A “handheld tool battery” is to be understood in particular as a battery that supplies at least the main arrangement of action of the handheld tool with operating energy in at least one operating state. The handheld tool battery advantageously supplies the handheld tool and the handheld tool add-on measuring device simultaneously with an operating energy. The energy interface of the handheld tool add-on measuring device may be configured to be connected to a measuring device interface of a handheld tool battery or to the energy interface of the handheld tool. The energy interface makes it possible to develop the handheld tool add-on measuring device in a constructionally simple manner using fewer component parts, in particular in that the handheld tool add-on measuring device is configured without an operating energy store. There is furthermore a provision for the handheld tool interface to have a transmitting arrangement configured to transmit the data wirelessly. “Transmitting arrangement” is to be understood in particular as an arrangement that, in at least one operating state, transmit, via a power output, at least data containing measuring information capacitively, optically, inductively, in a manner that seems practical to one skilled in the art and/or in particular electromagnetically. The wirelessly transmitting transmitting arrangement makes it possible to achieve in a constructionally simple manner a particularly flexible and comfortable data transmission, in particular without surface-mounted conductive contacts. In addition, the exemplary embodiments and/or exemplary methods of the present invention are based on a handheld tool battery having a handheld tool interface configured to transmit at least energy to a handheld tool according to the present invention. The exemplary embodiments and/or exemplary methods of the present invention provide for the handheld tool battery to have at least one measuring device interface, which, in at least one operating state, transmits an energy to a handheld tool add-on measuring device according the present invention, which may be directly. In particular, a “handheld tool interface” is to be understood as an interface that is at least configured to output an energy to a main arrangement of action of the handheld tool, in particular, in at least one operating state, at least 1 watt, advantageously at least 10 watts, particularly advantageously at least 100 watts. In this connection, a “measuring device interface” is to be understood in particular as an interface that is at least configured to output an energy to a main arrangement of action of the handheld tool add-on measuring device, in particular, in at least one operating state, at least 0.1 watt, advantageously at least 1 watt, particularly advantageously at least 10 watts. The handheld tool interface and the measuring device interface may be functionally separated and/or in particular spatially separated. Advantageously, the handheld tool interface and/or the measuring device interface is/are configured to transmit an energy inductively and/or in particular wirelessly. The development of the handheld tool battery according to the present invention makes it possible to supply the handheld tool add-on measuring device with energy in a constructionally simple manner and in particular to situate the handheld tool add-on measuring device advantageously. In addition, in a corresponding development of the handheld tool add-on measuring device, the handheld tool battery and the handheld tool add-on measuring device are advantageously able to perform a measuring task separately from the handheld tool. One advantageous development of the exemplary embodiments and/or exemplary methods of the present invention provides for the measuring device interface to be configured to receive data containing measuring information from the handheld tool add-on device, particularly in a wire-bound manner, which makes it possible in a constructionally simple manner to provide and in particular process measuring data from the handheld tool add-on measuring device in the handheld tool battery. Another development provides for the handheld tool interface to be configured to transmit at least data containing measuring information, in particular in wire-bound fashion, to the handheld tool, which makes it possible to transmit measuring information to the handheld tool in a constructionally particularly simple manner. The exemplary embodiments and/or exemplary methods of the present invention furthermore provide for the handheld tool battery to have at least one switching element, which is configured to switch and/or in particular switch off an energy supply of the handheld tool as a function of the data containing measuring information. A “switching element” is to be understood in particular as a switching element that seems practical to one skilled in the art, using which an electrically transmitted energy may be switched on, controlled and/or in particular interrupted. In particular, the phrase “as a function of the data containing measuring information” is to be understood as a control unit of the handheld tool battery evaluating the measuring information and controlling the switching element based on the evaluation. Because of the switching element, the handheld tool battery is able to perform various functions and in particular protective functions with particularly little effort. Advantageously, a redundancy may thereby be achieved in a constructionally simple manner. The exemplary embodiments and/or exemplary methods of the present invention are furthermore based on a system having a handheld tool add-on measuring device according to the present invention and having a handheld tool according to the present invention and/or a handheld tool battery according to the present invention, whereby the handheld tool add-on measuring device, the handheld tool and/or the handheld tool battery may be advantageously adjusted to one another. Further advantages are derived from the subsequent description of the drawing. The drawing shows two exemplary embodiments of the present invention. The drawing, the description and the claims contain numerous features in combination. One skilled in the art will expediently also consider the features individually, and will combine them into useful further combinations. The main arrangement of action 40 Control unit 18 Furthermore, measuring device interface 14 On the basis of the measuring information of the data, control unit 18 Handheld tool battery 28 Measuring device interface 34 Control unit 52 Handheld tool add-on measuring device 16 Energy interface 26 Distance measuring sensor 60 Measuring device interface 14 In operation, energy interface 22 Handheld tool add-on measuring device 16 Handheld tool add-on measuring device 16 A handheld tool having a battery interface is described, in which a provision is made for the handheld tool to have at least one measuring device interface, which is provided to receive at least data containing measuring information of a handheld tool add-on measuring device. 1-14. (canceled) 15. A handheld tool, comprising:
a battery interface; and at least one measuring device interface, which is configured to receive at least data containing measuring information of a handheld tool add-on measuring device. 16. The handheld tool of a control unit to influence a work process as a function of the measuring information. 17. The handheld tool of 18. The handheld tool of 19. The handheld tool of 20. The handheld tool of an energy interface, which in at least one operating state outputs an operating energy to the handheld tool add-on measuring device. 21. A handheld tool add-on measuring device, comprising:
at least one handheld tool interface configured to transmit data containing measuring information at least to a handheld tool, the handheld tool including a battery interface, and at least one measuring device interface, which is configured to receive at least data containing measuring information of a handheld tool add-on measuring device. 22. The handheld tool add-on measuring device of an energy interface configured to take up an operating energy from a handheld tool battery that at the same time powers the handheld tool. 23. The handheld tool add-on measuring device of 24. A handheld tool battery, comprising:
a handheld tool interface configured to transmit at least energy to a handheld tool, the handheld tool including a battery interface, and at least one measuring device interface, which is configured to receive at least data containing measuring information of a handheld tool add-on measuring device, and which in at least one operating state transmits an energy to a handheld tool add-on measuring device. 25. The handheld tool battery of 26. The handheld tool battery of 27. The handheld tool battery of at least one switching element to switch, as a function of the data containing measuring information, an energy supply of the handheld tool. 28. A system, comprising:
at least one of the following:
a handheld tool add-on measuring device, the handheld tool add-on measuring device including at least one handheld tool interface configured to transmit data containing measuring information at least to a handheld tool, the handheld tool including a battery interface, and at least one measuring device interface, which is configured to receive at least data containing measuring information of a handheld tool add-on measuring device; a handheld tool, the handheld tool including a battery interface, and at least one measuring device interface, which is configured to receive at least data containing measuring information of a handheld tool add-on measuring device; and a handheld tool battery, the handheld tool battery including a handheld tool interface configured to transmit at least energy to a handheld tool, the handheld tool including a battery interface, and at least one measuring device interface, which is configured to receive at least data containing measuring information of a handheld tool add-on measuring device, and which in at least one operating state transmits an energy to a handheld tool add-on measuring device.FIELD OF THE INVENTION
BACKGROUND INFORMATION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION

