ENDOSCOPE
This application is a Continuation Application of PCT Application No. PCT/JP2012/053697, filed Feb. 16, 2012 and based upon and claiming the benefit of priority from prior Japanese Patent Application No. 2011-123656, filed Jun. 1, 2011, the entire contents of all of which are incorporated herein by reference. 1. Field of the Invention The present invention relates to an endoscope in which an insertion unit rotates in relation to an operation unit. 2. Description of the Related Art An endoscope comprises an elongated insertion unit which is inserted into a body cavity of a patient, and an operation unit connected to a proximal end part of the insertion unit by which the endoscope including the insertion unit is operated. A different type of endoscope from that described above comprises an elongated insertion unit inserted into a body cavity of a patient, and an operation unit by which the endoscope including the insertion unit is operated, wherein the operation unit is connected to a proximal end part of the insertion unit with the insertion unit maintained rotatable axially about a lengthwise direction of the insertion unit. For example, Jpn. Pat. Appln. KOKAI Publication No. 2004-305413 discloses an endoscope as described above. In the Publication No. 2004-305413, a mouthpiece of an insertion unit is provided at a proximal end part of the insertion unit, and a mouthpiece of an operation unit provided at a distal end part of the operation unit. In order to connect the insertion unit and the operation unit to each other, the mouthpiece of the insertion unit is engaged in the mouthpiece of the operation unit. Therefore, the mouthpiece of the insertion unit and the mouthpiece of the operation unit function as a connection unit which connects the insertion unit and the operation unit together. This endoscope comprises a first O-ring that ensures water-tightness of the operation unit, and a second O-ring which seals the insertion unit and the operation unit to be water-tight with respect to each other. The first O-ring is provided between the distal end part of the operation unit and the mouthpiece of the operation unit. The second O-ring is provided at a connection unit, more specifically between the mouthpiece of the insertion unit and the mouthpiece of the operation unit. When the insertion unit rotates in relation to the operation unit, the second O-ring applies frictional resistance to the insertion unit and thereby controls resistive torque during the rotation. Thus, the second O-ring serves as a sealing member by which the insertion unit and operation unit are sealed water-tight, and also as a frictional resistance member which applies frictional resistance. According to an embodiment of the invention, there is provided an endoscope comprising: an insertion unit inserted into a body cavity; an operation unit that comprises a distal end part connected to a proximal end part of the insertion unit, with the insertion unit being allowed to rotate axially about a lengthwise direction of the insertion unit as an axis, and operates the insertion unit; an operation-unit engagement part engaged in the distal end part of the operation unit; an insertion-unit engagement part engaged in the proximal end part of the insertion unit and connected, axially roatably about the axis, to the operation-unit engagement part in a manner that the insertion unit is axially rotatable in relation to the operation unit; a water-tight sealing member that ensures water-tightness between the insertion unit and the operation unit; and a torque control member that is provided at a different position from the water-tight sealing member, is provided between the operation-unit engagement part and the insertion-unit engagement part in radial directions of the insertion unit, so as to make tight contact with the operation-unit engagement part and the insertion-unit engagement part which are connected to each other, and controls resistive torque of the insertion unit during rotation of the insertion unit by applying frictional resistance of a direction about the axis to the insertion unit when the insertion unit rotates in relation to the operation unit. Advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. Advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention. Hereinafter, an embodiment of the invention will be described in details with reference to the drawings. The first embodiment of the invention will now be described with reference to Endoscope 1 As shown in The insertion unit 2 can be rotated axially about the lengthwise direction of the insertion unit 2 in relation to the operation unit 3 as the axis. The operation unit 3 performs an operation of changing a direction of a bendable part 7 of the insertion unit 2 described later. The connector unit 5 is connected to a light source device and a camera control unit both of which are unillustrated. Insertion Unit 2 The insertion unit 2 comprises: a long flexible tube part 6 which has a distal end part and a proximal end part 6 The rigid tip 8 comprises a non-illustrated observation optical system, a non-illustrated illumination optical system, a distal end opening part of a non-illustrated surgical instrument insertion channel, and a non-illustrated gas/water feed nozzle. The proximal end part 6 Operation Unit 3 The operation unit 3 comprises a bend control lever 9 to operate the bendable part 7. Further, the operation unit 3 comprises a bend operation mechanism which is provided inside the operation unit 3 and pulls a non-illustrated bend operation wire, interlocked with operation of the bend control lever 9. A proximal end part of the bend operation wire was connected to the bend operation mechanism, and a distal end part of the bend operation wire is inserted through the insertion unit 2 and connected to the rigid tip 8. The bend operation mechanism is driven, interlocked with the operation of the bend control lever 9. In this manner, the unillustrated bend operation wire is pulled and bends the bendable part 7 in two directions. Further, the insertion unit 2 bends toward a target portion. The operation unit 3 comprises the surgical instrument insertion part 10 connected to a non-illustrated surgical instrument insertion channel, and various operation switches 11. In addition, the operation unit 3 has a mark 13 which serves as an index when the insertion unit 2 rotates in relation to the operation unit 3. Linked Rotation Structure of Insertion Unit 2 and the Operation Unit 3 As shown in As shown also in The flexible tube part mouthpiece 31 is inserted into the operation unit mouthpiece 41 so as to be axially rotatable about the lengthwise direction of the insertion unit 2 in relation to the operation unit mouthpiece 41 as the axis. In this manner, the insertion unit 2 (flexible tube part 6) is axially rotatably connected to the operation unit 3. As shown in The insertion unit 2, rotary dial 15, support member 17 Water-tight Sealing Member 51/Torque Control Member 53 As shown in Specifically, the flexible tube part mouthpiece 31 comprises a plurality of concave parts 33 recessed in the outer circumferential surface of the flexible tube part mouthpiece 31. In the concave parts 33, at least one concave part 33 The torque control member 53 has the same shape as concave part 33 If a plurality of concave parts 33 The torque control member 53 has the same shape as concave part 33 The water-tight sealing members 51 is an O-ring or a rubber member, for example. The torque control member 53 is provided at a position different from positions of the water-tight sealing members 51. Specifically, the torque control member 53 is provided, shifted at a desired interval from the water-tight sealing member 51 along the axial direction. The torque control member 53 is provided at least for the flexible tube part mouthpiece 31 and the operation unit mouthpiece 41 forming a connection unit. For example, the torque control member 53 controls the torque of the insertion unit 2 by a frictional force of the torque control member 53 when the insertion unit 2 rotates. The torque control member 53 controls the torque of the insertion unit 2 in a manner that the torque of the insertion unit 2 is not smaller than approximately 1 Ncm and is not greater than approximately 30 Ncm. The torque control member 53 is in tight contact with the outer circumferential surface of the flexible tube part mouthpiece 31, i.e., the whole concave part 33 The torque control member 53 tightens the flexible tube part mouthpiece 31 from the outer circumferential surface. At this time, the surfaces of the torque control member 53 in tight contact with the whole concave part 33 The torque control member 53 is provided inside of an area where water-tightness is ensured by the water-tight sealing members 51. Concave parts 33 The torque control member 53 which tightens the proximal end part side (flexible tube part mouthpiece 31) of the insertion unit 2 generates greater frictional force than the water-tight sealing member 51. The frictional force of the torque control member 53 includes, for example, tightening force of tightening the flexible tube part mouthpiece 31, frictional force generated by tightening the flexible tube part mouthpiece 31, and frictional force which is generated as the torque control member 53 is crushed. The same description as described applies also to the frictional force of the water-tight sealing member 51. The torque control member 53 and the water-tight sealing member 51 are formed of resin or silicone, for example. Operation Method Next, an operation method of the present embodiment will be described. When the rotary dial 15 is gripped and rotated, the insertion unit 2 rotates axially about the axis of the insertion unit 2 in relation to the operation unit 3. At this time, the torque control member 53 applies frictional resistance to the insertion unit 2, and controls the torque of the insertion unit 2. The torque control member 53 is provided at a position different from the water-tight sealing members 51. Therefore, even if the torque control member 53 controls the torque of the insertion unit 2, the water-tight sealing members 51 ensure water-tightness without influencing the torque control member 53. That is, even if the torque control member 53 is abraded, water-tightness is ensured since the torque control member 53 is a separate member from and is provided at a different position from the water-tight sealing members 51. Thus, water-tightness is ensured and frictional resistance is applied (control of the amount of torque) at the same time. The torque control member 53 is provided between the flexible tube part mouthpiece 31 and the operation unit mouthpiece 41 in the radial directions of the insertion unit 2, and is in tight contact with the flexible tube part mouthpiece 31 and the operation unit mouthpiece 41. Therefore, the torque control member 53 transmits frictional force to the insertion unit 2 without loss and thereby controls the torque of the insertion unit 2. The torque control member 53 is provided at a part where water-tightness is ensured by the water-tight sealing members 51. The torque control member 53 therefore controls the torque of the insertion unit 2, with water-tightness ensured by the water-tight sealing members 51. The torque control member 53 is provided at a position free from external load such as stress from outside. The torque control member 53 therefore controls the torque of the insertion unit 2 without the influence of any load. Further, the surfaces of the torque control member 53 in tight contact with the whole concave part 33 The frictional force of the torque control member 53 is greater than the frictional forces of the water-tight sealing members 51. Accordingly, the water-tightness is ensured while the torque of the insertion unit 2 is controlled, i.e., while the insertion unit 2 rotates in relation to the operation unit 3. The water-tight sealing member 51 is provided between the fixing member 17 Effects Thus, the torque control member 53 is provided at a position different from the positions of the water-tight sealing members 51. Therefore, the water-tightness can be securely ensured by the water-tight sealing members 51 without being influenced by the torque control members 53, and at the same time, frictional resistance can be steadily applied (control of torque) by the torque control member 53. That is, in the present embodiment achieves, water-tightness is ensured and frictional resistance is applied (control of torque) simultaneously with ease. Also in the present embodiment, the torque control member 53 is provided between the flexible tube part mouthpiece 31 and the operation unit mouthpiece 41 in the radial directions of the insertion unit 2, and is in tight contact with the flexible tube part mouthpiece 31 and the operation unit mouthpiece 41. Therefore in the present embodiment, the torque of the insertion unit 2 can be controlled by transmitting frictional force to the insertion unit 2 without loss. Still also in the present embodiment, the torque control member 53 is provided at a part where water-tightness is ensured by the water-tight sealing members 51. In the present embodiment, the torque control members 53 can therefore control the torque of the insertion unit 2, with water-tightness ensured by the water-tight sealing members 51. Still in the present embodiment, the torque control member 53 is provided at a position free from external load such as stress from outside. Accordingly in the present embodiment, the torque of the insertion unit 2 can be controlled without the influence of any load. Further in the present embodiment, the surfaces of the torque control member 53 in tight contact with the whole concave part 33 Also in the present embodiment, the frictional force of the torque control member 53 is greater than the frictional forces of the water-tight sealing members 51. Accordingly in the present embodiment, the water-tightness can be ensured while the torque of the insertion unit 2 is controlled, i.e., while the insertion unit 2 rotates in relation to the operation unit 3. Further in the present embodiment, the water-tight sealing member 51 is provided between the fixing member 17 Still further in the present embodiment, the torque control member 53 controls the torque of the insertion unit 2 in a manner that the torque of the insertion unit 2 is not smaller than approximately 1 Ncm and is not greater than 30 Ncm. In this manner, in the present embodiment, the insertion unit 2 is prevented from freely rotating at timing which is not intended by a user during use of the insertion unit 2, and the torque can be set to a torque value which allows the user to easily rotate the insertion unit 2. Thus, the present embodiment can improve usability of the insertion unit 2. In addition, the torque control member 53 needs only to be capable of controlling the torque of the insertion unit 2. Therefore, torque control members 53 may be provided, for example, between the mark 13 and the rotary dial 15, between the operation unit mouthpiece 41 and the flexible tube part mouthpiece 31, between the support member 17 The shapes of the cross-sections of the torque control members 53 are not particularly limited. The cross-sections of the torque control members 53 may have at least one of a rhombic shape as shown in The surfaces 53 The surface 53 Further, the concave parts 33 may be formed in the inner circumferential surface of the operation unit mouthpiece 41, so as to face the outer circumferential surface of the flexible tube part mouthpiece 31. The torque control members 53 may be, for example, conductive in order to stabilize conduction between the insertion unit 2 and the operation unit 3. The present invention is not limited exactly to the foregoing embodiment but can be practiced without deviating from the subject matters of the invention in practical phases. Various inventions can be derived from appropriate combination of a plurality of components disclosed in the foregoing embodiment. Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. An endoscope includes an insertion unit, an operation unit, an operation-unit engagement part, an insertion-unit engagement part, a water-tight sealing member, and a torque control member. The torque control member is provided between the operation-unit engagement part and the insertion-unit engagement part in radial directions of the insertion unit, so as to make tight contact with the operation-unit engagement part and the insertion-unit engagement part, and controls resistive torque of the insertion unit during rotation of the insertion unit by applying frictional resistance of a direction about the axis to the insertion unit when the insertion unit rotates in relation to the operation unit. 1. An endoscope comprising:
an insertion unit inserted into a body cavity; an operation unit that comprises a distal end part connected to a proximal end part of the insertion unit, with the insertion unit being allowed to rotate axially about a lengthwise direction of the insertion unit as an axis, and operates the insertion unit; an operation-unit engagement part engaged in the distal end part of the operation unit; an insertion-unit engagement part engaged in the proximal end part of the insertion unit and connected, axially roatably about the axis, to the operation-unit engagement part in a manner that the insertion unit is axially rotatable in relation to the operation unit; a water-tight sealing member that ensures water-tightness between the insertion unit and the operation unit; and a torque control member that is provided at a different position from the water-tight sealing member, is provided between the operation-unit engagement part and the insertion-unit engagement part in radial directions of the insertion unit, so as to make tight contact with the operation-unit engagement part and the insertion-unit engagement part which are connected to each other, and controls resistive torque of the insertion unit during rotation of the insertion unit by applying frictional resistance of a direction about the axis to the insertion unit when the insertion unit rotates in relation to the operation unit. 2. The endoscope according to the water-tight sealing member is provided between the proximal end part side of the insertion unit and the distal end part side of the operation unit which are connected to each other in the radial directions of the insertion unit, so as to make tight contact with the proximal end part side of the insertion unit and the distal end part side of the operation unit which are connected to each other. 3. The endoscope according to 4. The endoscope according to 5. The endoscope according to 6. The endoscope according to 7. The endoscope according to 8. The endoscope according to 9. The endoscope according to 10. The endoscope according to CROSS-REFERENCE TO RELATED APPLICATIONS
BACKGROUND OF THE INVENTION
BRIEF SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
DETAILED DESCRIPTION OF THE INVENTION
First Embodiment
Configuration




