ELECTROSURGICAL INSTRUMENT
This application is a continuation application of U.S. patent application Ser. No. 14/629,894, filed on Feb. 24, 2015, which is a continuation application of U.S. patent application Ser. No. 13/247,795 (now U.S. Pat. No. 8,961,515), filed on Sep. 28, 2011, the entire contents of which are incorporated by reference herein. 1. Technical Field The present disclosure relates to an electrosurgical instrument and, more particularly, to an electrosurgical instrument including a drive assembly in operable communication with an end effector to effect movement of one or both of a pair of jaw members from a spaced-apart configuration to a closed or clamping position. 2. Description of Related Art Electrosurgical forceps are well known in the medical arts. For example, an electrosurgical endoscopic forceps is utilized in surgical procedures, e.g., laparoscopic surgical procedures, where access to tissue is accomplished through a cannula or other suitable device positioned in an opening on a patient. The endoscopic forceps, typically, includes a housing, a handle assembly including a movable handle, a drive assembly, a shaft and an end effector assembly attached to a distal end of the shaft. The end effector includes jaw members that operably communicate with the drive assembly to manipulate tissue, e.g., grasp and seal tissue. Typically, the endoscopic forceps utilizes both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, seal, cut, desiccate, and/or fulgurate tissue. To effect movement of the jaw members, certain types of endoscopic forceps utilize a cam slot and cam pin configuration located at a distal end of the shaft adjacent the jaw members. In particular, a drive rod of the drive assembly, typically, includes a cam pin extending from a distal end thereof. The cam pin is, typically, integrally formed with the drive rod or, in certain instances, is operably coupled thereto via one or more coupling methods, e.g., soldering, brazing, welding, etc. The cam pin is operably coupled to one or more cam slots that are disposed on the jaw members. For example, in the instance where each of the jaw members is configured to rotate or move, i.e., a bilateral jaw configuration, each of the jaw members may include a respective cam slot that is configured to operably couple to the cam pin on the drive rod. Alternatively, one of the jaw members is movable with respect to the other jaw member, e.g., a unilateral jaw configuration. In this instance, one of the jaw members includes a cam slot that is configured to couple to the cam pin on the drive rod. As can be appreciated, forming a drive rod with a cam pin and, subsequently, positioning the cam pin within the one or more cam slots on the jaw members may increase manufacturing costs of the electrosurgical endoscopic instrument and/or increase production. Moreover, and in the instance where the cam pin is not integrally formed with the drive rod, e.g., soldering is used to join the cam pin to the drive rod, there exists the likelihood of the cam pin uncoupling from the drive rod during use thereof, which, in turn, may result in the electrosurgical endoscopic device not functioning as intended. That is, one or both of the movable jaw members may not move from an open configuration to a clamping configuration or vice versa. In addition to the foregoing, it is sometimes desirable to provide a specific closure force at the jaw members when the jaw members are in the clamping configuration. To achieve this desired closure force, one or more devices, e.g., a resilient member such as, for example, a spring, may be operably coupled to the jaw members, drive rod, handle assembly, or other device associated with the electrosurgical endoscopic instrument. As can be appreciated, having to add the resilient member to the electrosurgical endoscopic instrument may further increase manufacturing costs of the electrosurgical endoscopic instrument and/or increase production time of the electrosurgical endoscopic instrument. An aspect of the present disclosure provides an electrosurgical forceps. The electrosurgical forceps is provided with a shaft that extends from a housing of the electrosurgical forceps. A longitudinal axis is defined through the shaft. An end effector assembly operably coupled to a distal end of the shaft includes a pair of first and second jaw members. Each of the first and second jaw member having a jaw housing and an electrosurgical seal plate. One or both of the first and second jaw members is movable from an open configuration, to a clamping configuration. The moveable jaw member includes an elongated channel defined in its respective jaw housing and extends along a length thereof. A drive assembly operably couples to the moveable jaw member via a drive rod that is engageable with the elongated channel to move the movable jaw member from the open configuration to the clamping configuration and to provide a closure force between the first and second jaw members when the jaw members are in the clamping configuration. According to an aspect of the present disclosure, the drive rod and the elongated channel are in horizontal registration with one another to facilitate moving the at least one movable jaw member from the open configuration to the clamping configuration. The drive rod may include a generally rounded distal end to reduce a drag force thereagainst during distal translation of the drive rod within the elongated channel. The drive rod may be positioned above a pivot pin that couples the first and second jaw members. According to a further aspect of the present disclosure, each of the first and second jaw members may be moveable from the open configuration to the clamping configuration. In this instance, the first and second jaw members may include an elongated channel defined in its respective jaw housing and extending along a length thereof. Moreover, the drive rod may include a bifurcated distal end defined by a top portion and a bottom portion that engage the respective elongated channels of the first and second jaw members during distal translation thereof to close the first and second jaw members about tissue. In certain instances, a cutting element may be operably disposed between the top portion and the bottom portion of the bifurcated distal end of the drive rod. In this instance, the cutting element may include a generally arcuate configuration having a cutting edge extending from the top portion of the bifurcated distal end to the bottom portion of the bifurcated distal end to sever tissue subsequent to the first and second jaw members clamping tissue. In certain instances, the elongated channels of the first and second jaw members may include an open distal end that allows the top and bottom portions of the bifurcated distal end to extend there past during a cutting motion. Another aspect of the present disclosure provides an electrosurgical forceps. The electrosurgical forceps is provided with a shaft that extends from a housing of the electrosurgical forceps. A longitudinal axis is defined through the shaft. An end effector assembly operably coupled to a distal end of the shaft includes a pair of first and second jaw members. One or both of the first and second jaw members is movable from an open configuration, to a clamping configuration. The moveable jaw member including a camming member having a generally arcuate configuration at a proximal end thereof. A drive assembly is in operative communication with the moveable jaw member via a drive rod engageable with the camming member of the movable jaw member to move the movable jaw member from the open configuration to the clamping configuration and to provide a closure force between the first and second jaw members when the jaw members are in the clamping configuration. According to an aspect of the present disclosure, the one or more drive rods may include a cutting blade that is operably disposed at a distal end thereof. In this particular instance, the distal end of the drive rod may include a tapered configuration having a shoulder portion configured to contact the generally arcuate proximal end of the at least one moveable jaw member to move the at least one moveable jaw member from the open configuration to the clamping configuration. A further aspect of the present disclosure provides method for electrosurgically treating and, subsequently, severing tissue. Tissue is positioned between a pair of first and second jaw members of an electrosurgical device that includes a drive assembly with a drive rod having a bifurcated distal end in operative communication with the first and second jaw members. The drive assembly including the bifurcated distal end is configured to move the first and second jaw members from an open configuration for positioning tissue therebetween, to a clamping configuration for grasping tissue therebetween. The bifurcated distal end is defined by a top and bottom portion that have a cutting element operably disposed therebetween. The bifurcated distal end is moved to position the bifurcated distal end between the first and second jaw members to clamp the tissue. Electrosurgical energy is transmitted to seal plates operably disposed on the first and second jaw members to electrosurgically treat the tissue. And, the bifurcated distal end is moved to position the top and bottom portions thereof at least partially past corresponding open distal ends of the first and second jaw members to sever tissue. According to an aspect of the present disclosure, the type of electrosurgical transmitted may include but is not limited to electrical energy, thermal energy, ultrasonic energy and mechanical energy. Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein: Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user. Turning now to Rotating assembly 70 is rotatable in either direction about longitudinal axis “A-A” to rotate end effector 100 about longitudinal axis “A-A.” Housing 20 houses the internal working components of forceps 10, such as a drive assembly 90 (shown in phantom in With continued reference to End effector assembly 100 is designed as a unilateral assembly, i.e., where jaw member 120 is fixed relative to shaft 12 and jaw member 110 is moveable about pivot 103 relative to shaft 12 and fixed jaw member 120. However, end effector assembly 100 may alternatively be configured as a bilateral assembly, i.e., where both jaw member 110 and jaw member 120 are moveable about a pivot 103 relative to one another and to shaft 12, see Drive assembly 90 includes a drive a drive rod 91 ( In the embodiment illustrated in Drive rod 91 and the elongated channel 114 are in horizontal registration with one another to facilitate movement of jaw member 110 from the open configuration to the clamping configuration ( With reference again to In use, jaw members 110 and 120 are, initially, in an open configuration to position tissue therebetween ( With reference to Unlike the jaw members 110 and 120 that implement a unilateral jaw configuration, each of jaw members 210 and 220 is configured to move from the open configuration to the clamping configuration, i.e., a bilateral jaw configuration. In the embodiment illustrated in Top and bottom portions 292 A cutting element 250 is operably disposed between the top portion 292 In certain embodiments, it may prove advantageous to provide one or more members, e.g., nub, protrusion, detent, indent, etc., in the channels 230 and 240 to indicate to or otherwise inform an end user, e.g., a surgeon, that the top and bottom portions 292 In use, jaw members 210 and 220 are, initially, in an open configuration to position tissue therebetween. Proximal movement of the movable handle 40 drives the drive rod 291, which, in turn, moves the top and bottom portions 292 With reference to In the embodiment illustrated in Distal portion 391 Cutting blade 350 is of suitable configuration to sever or otherwise separate tissue. Cutting blade 350 includes a cutting edge 351 having a generally slanted or oblique configuration to facilitate severing tissue. In the embodiment illustrated in In use, jaw members 310 and 320 are, initially, in an open configuration to position tissue therebetween ( From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, in certain instances, one or more springs (not shown) may be operably associated with either of the aforementioned end effectors 100, 200 and 300. The one or more springs may be configured to provide a specific closure force at the jaw members, 110, 210, 310 and 120, 220, 320. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto. An electrosurgical forceps includes a shaft that extends from a housing of the electrosurgical forceps. An end effector assembly is operably coupled to a distal end of the shaft and includes a pair of first and second jaw members. Each jaw member has a jaw housing and an electrosurgical seal plate. The first jaw member is movable relative to the second jaw member from an open configuration to a clamping configuration. The first jaw member includes an elongated channel defined in its respective jaw housing and extends along a length thereof. A drive assembly operably couples to the first jaw member via a drive rod that is engageable with the elongated channel to move the first jaw member from the open configuration to the clamping configuration and to provide a closure force between the jaw members when the jaw members are in the clamping configuration. 1-13. (canceled) 14. An electrosurgical forceps, comprising:
a housing; a shaft having a proximal end coupled to the housing, and a distal end; a drive rod disposed within the shaft and longitudinally translatable therein; an end effector assembly operably coupled to the distal end of the shaft and including:
a first jaw member; and a second jaw member movable relative to the first jaw member between an open configuration for positioning tissue between the first and second jaw members, and a clamping configuration for grasping tissue between the first and second jaw members; and a camming member coupled to the second jaw member, wherein distal movement of the drive rod engages the camming member and cams the second jaw member from the open configuration to the clamping configuration. 15. The electrosurgical forceps according to 16. The electrosurgical forceps according to 17. The electrosurgical forceps according to 18. The electrosurgical forceps according to 19. The electrosurgical forceps according to 20. The electrosurgical forceps according to 21. The electrosurgical forceps according to 22. The electrosurgical forceps according to CROSS-REFERENCE TO RELATED APPLICATIONS
BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE DRAWING
DETAILED DESCRIPTION



