Current Monitoring for Plating
The present disclosure relates in general to electroplating and in particular to techniques for monitoring and controlling an electroplating operation. Electroplating is used in a variety of industries for depositing a layer of metal on a substrate. In various approaches, a substrate and an electrode can be immersed in an electrolyte solution. An electric voltage (electric potential) can be applied between the substrate and the electrode. Metal ions in the electrolyte solution are driven by the voltage toward the substrate, where they are reduced and deposited onto the surface of the substrate. The benefits, features, and advantages of the present disclosure will become better understood with regard to the following description and accompanying drawings. Electroplating can be used in the fabrication of utensils, jewelry, decorative metal, coinage, machine parts, and other products. Electroplating is also used in various semiconductor manufacturing processes, such as for depositing a layer of metal onto a silicon substrate. The substrate can be a wafer or other component to be used in an integrated circuit or solar cell, for example. In the example of In this example, substrates 140 are cathodes in an electrochemical reaction. Current flows from power source 180 to electrode 130, through solution 122, into substrates 140, through holders 145, through bus bar 105, and back to power source 180. In passing from solution 122 into substrates 140, the current causes metal ions to be reduced from aqueous phase into solid-phase atoms. The neutral atoms are deposited onto substrates 140. In various implementations, the source of the metal ions is the material of electrode 130, and the electrode is gradually consumed as the electroplating progresses. In other implementations, the source of the metal ions is the electrolyte solution 122, which may need to be replenished after some time to continue an effective electroplating operation. In various examples, plating vessel 120 is large enough to accommodate large numbers of wafers, e.g., 10, 50, 160, 250, 400 wafers, for simultaneous processing in an electroplating operation. A variety of different forms of electroplating are used to obtain a desired layer of material on the substrates. Different approaches can be used depending on the substrate material and shape, the desired type of metal layer (e.g. deposited chromium, copper, tin, nickel, other metallic elements, or alloys), the desired purity of the deposited layer, the desired strength of connection between the layer and the substrate, the operating temperature, and other factors. In various situations, multiple plating processes may be conducted in sequence. For example, a silicon wafer may be plated first with one metal (e.g., 30 microns of copper) and then with a second metal (e.g., 6 microns of tin). In many applications, the final thickness of the deposited layer is a relevant metric in assessing the success of the electroplating process. Similarly, the uniformity of the layer's thickness over the substrate can be a relevant metric in assessing the process. These factors can be of interest in various applications, such as the plating of metal layers onto semiconductor substrates. In various situations, layer thickness (e.g., ones, tens, hundreds, or thousands of microns), layer uniformity (e.g., 1%, 2%, 5%, 8%, 10%, 15%, 20%, 30%, 40%, 60% variations) and other factors can be controlled by monitoring the cleanliness of the substrate, the geometry of the substrate, the purity of the electrolyte solution, the geometry of the current path through the solution between the electrode and the substrates, the total time of the plating process, and other factors. One factor that may be relevant to the quality of a plating process is the magnitude of the current that is transmitted through a substrate. Increases in the current level can increase the deposition rate, and thus the overall thickness of the deposited metal layer. This current level can be controlled by selecting an appropriate electric voltage to be applied between the electrode and the substrate. The current level can be monitored by a current sensor, such as an in-line ammeter. Alternatively, an electromagnetic sensor can be used to monitor the current without introducing an in-line circuit element. In A system operator may move clamp meter 190 to engage around the holders 145 The use of clamp meter 190 involves some manual intervention during the electroplating process. An operator needs to manually engage the clamp meter, hold, observe, record, and disengage the clamp meter for each measurement. The manual effort can be labor-intensive for a long process (e.g., multiple hours, multiple days). Also, the manual operation introduces some risk of mechanical trauma—the operator may inadvertently knock or even dislodge a substrate from bus bar 105. Similarly, clamp meter may inadvertently be dropped into solution 122. Other sensors can be used instead of a hand-held device. One approach is to affix a current sensor to one or more support structures, such as holders 145, that are used to conduct current into the substrates. In this example, sensor 220 is mounted onto conducting element 210. A connector 233 connects components 220 In this example, hangar 410 is configured to be electrically and mechanically connected to a bus bar (not shown). A top portion 412 of hangar 410 has a ridge 418 that can stably rest on the bus bar. A bottom portion 416 of hangar 410 has features to which various jigs can be connected. Jig 430 is configured to connect with the hangar and with the wafer: a top section 432 of jig 430 has features that attach to hangar 410, and a bottom section 434 of jig 430 has features that attach to wafer 440. In various implementations, the holders 145 from In hangar 410, top portion 412 and bottom portion 416 are connected to each other by a neck portion 414. Current flowing from the bus bar to the wafer passes through neck portion 414 of hangar 410. In various implementations, neck portion 414 is relatively narrow so that the current is throttled, concentrated, and/or collected in neck portion 414. For example, the neck portion may be constructed of steel, aluminum, copper, or other conductive material with a cross section of 0.6 in.×2.6 in. In various other implementations, a neck portion can have other dimensions, such as thicknesses of 0.125 in., 0.1875 in., 0.250 in., 0.3750 in. Sensor 420 is mounted onto one face of neck portion 414. In various implementations, a corresponding sensor (not shown) is mounted in a differential configuration on an opposing face of neck portion 414. In various implementations, a channel or groove can be formed or cut into neck portion 414 to accommodate sensor 420. In various implementations, sensor 420 is mounted in a location where it can measure all of the current passing into a substrate, or in a location where it can measure a substantial fraction of the current passing into the substrate. Additionally, the location of the sensor can be chosen so that it is not subject to jostling or other undesired mechanical contact during regular use and storage of a hangar. In various situations, wafer 440 is fully immersed into an electrolyte solution during a plating process. (For example, the illustration in In act 550, an electric voltage is applied between the bus bar and an electrode in the electrolyte solution. The electric voltage causes an electric current to follow a path from the electrolyte solution through the wafer, the jig, and the hangar. In act 560, the current is measured. The measurement can be made, for example, at a constricted portion of the hangar that carries all or most of the current which passes through the wafer. The measurement is transmitted in act 570 to a control unit. The control unit analyzes the measurement in act 580 and determines, at decision block 585, what adjustment (if any) needs to be made to raise or lower the current. If no adjustment is needed, the present voltage level (from act 550) is maintained in act 592 and the procedure returns to act 550. Otherwise, the voltage level is adjusted in act 590 and the procedure returns to act 550. Acts 550-560-570-580-585-590/592 form a feedback loop that holds the current level at (or near) a desired value. The desired value can be target constant value or can vary according to a target profile (e.g., based on a plating rate, a desired plating thickness, considerations of the geometry of the substrate, etc.). The loop can terminate at any point (act 550, 560, 570, 580, 585, 590, or 592), at a time when the electroplating procedure is complete. In this example, power source 680 is a signal-controllable DC supply. The positive terminal of power source 680 is coupled via a lead 684 to electrode 630. The negative terminal of power source 680 is coupled via a lead 682 to a bus bar 605. Bus bar 605 serves as an electrical power rail and as a mechanical support for substrates 640. In this example, substrates 640 Power source 680 is controlled by a control unit 690. Control unit 690 includes an input 692, an output 698, a processor 694, and a memory 696. Input 692 receives one or more signals that provide information about current flowing into one or more of the substrates 640. In the depicted example, input 692 is a wireless receiver and is shown as receiving a wireless signal 691 that represents a current measurement through holder 645 In various implementations, signals 691 and 697 carry information based on Hall measurements from sensors 612 and 614. In various implementations, these measurements are indicated as total currents (detected amperes); in other implementations, these measurements are indicated in other physical units (e.g., detected amperes per cm̂2); in yet other implementations, these measurements are indicated in other scalar units (e.g., a unitless 8-bit or 20-bit number that is a linear or nonlinear representation of detected current). These indications are computed, in some implementations, based on device calibrations stored internally in sensors 612 and 614. For example, sensor 612 may include an analog detector that uses a generates an output signal in the range of −4000 mV to +4000 mV, with the output being proportional to a detected current and a conversion constant of 4 to 4.5 mV output per Ampere of detected current. Processor 694 uses the received current measurements to determine whether to change the voltage provided between bus bar 605 and electrode 630. Based on this determination, output 698 provides an output signal that increases, decreases, or maintains the electric voltage generated by power source 680. In various implementations, processor 694 may be configured to execute instructions stored in memory 696 to regulate power source 680. By executing the instructions, processor 694 may operate, for example, to maintain a predetermined DC current level supplied to wafer 640 In the example of The determinations made by processor 694 can be based on various factors in addition to the current measurement(s). These additional factors can be encoded as comparison parameters or other information stored, for example, in memory 696. For example, processor 694 may be configured (using hardware, software, firmware, or combinations thereof) to hold a current level constant, within a fixed target range of values. For example, historical data from past experience may indicate that a particular process yields suitable platings if the current is held to 50 amperes through each wafer throughout a four-hour plating period. The historical data may further show that variations of up to +/−10 amperes also yield suitable platings. Based on these observations, processor 694 and/or the instructions that it executes may be configured to adjust power source 680 on an ongoing basis to ensure that the current measured at one of the sensors (e.g. sensor 614) stays in the range of 40 to 60 amperes during the plating period. This operation forms a feedback control loop: the adjustments made by processor 694 lead to changes in the voltage provided by power source 680, which affects the total current driven into bus bar 605, which affects the current that enters into wafer 640 Processor 694 and/or the instructions that it executes can use other approaches for determining how to control power source 680. For example, instead of maintaining a current level to be close to a fixed value (e.g., 20, 35, 50, 65, 70 amperes) throughout a plating procedure, a control system may be configured with a changing temporal profile. For example, the target value of a measured current may be 25+/−5 amperes during a first 1-hour phase of a plating process, 65+/−15 amperes during the next 1.5-hour phase of the plating process, and 65+/−5 amperes during a final 2-hour phase of the plating process. Other temporal profiles may also be used. For example, various implementations of processor 694 and associated software may be configured to accept linear or nonlinear algebraic expressions for the target value of a current being controlled (e.g., I_target=0.5 amps×time_hours; I_target=40 amps+3 amps×time_hours; I_target=40 amps+3 amps×sin(time_hours/1_hour)). Moreover, the target profile may be adjusted based on the history of a plating process. For example, various implementations of processor 694 and associated software may be configured so that if a plating current has consistently been measured at the upper range of acceptable values through the first half of a plating process, then the current is subsequently maintained in the lower range of acceptable values for the second half of the plating process. Similarly, the duration of a plating process can be shortened (or extended) if the plating current has largely been measured on the high side (or on the low side) of acceptable values. Also, various implementations of processor 694 and the instructions it executes (or both) may be configured or programmed so that the target current is based on other measured factors (e.g., ambient temperature) or input parameters (the target thickness of the plating layer, the desired tolerance of that target thickness, the number of substrates in a plating bath, the locations of the substrates in a plating bath, the arrangement of hangars on a bus bar, the volume or other geometry of an electrolyte bath, the cleanliness of the plating solution, whether the plating solution is fresh or has been used for a previous plating, or other factors). As another example, various implementations of processor 694 and associated software can be configured to monitor the currents supplied to multiple wafers (e.g. wafers 640 In some situations, processor 694 may determine that a compromise is not possible. For example, consider a situation where a target current is 60 amperes, with a tolerance of +/−3 amperes. If processor 694 detects that five wafers in a batch are each receiving 62 amperes of current (just a bit more than the target value) while one anomalous wafer is receiving 47 amperes (substantially less than the target value), the processor may be unable to compensate in a way that keeps all the wafers in range. In such a situation the processor may adjust the power supply in a manner that deliberately sacrifices the anomalous wafer. For example, processor 694 may adjust the power source so that the five wafers receive the optimal 60 amperes, while the one anomalous wafer receives only 44 amperes. Alternatively, or in addition, the processor may trigger an alarm signal, alerting an operator that the anomalous wafer may need attention or adjustment. In various implementations, processor 694 converts the information received in signals 691 and 697 based on system calibrations that are stored in memory 696. For example, after sensor 612 is affixed to holder 645 In the illustrated example, control unit 690 is depicted with a single processor and a single memory. In other implementations, a control unit includes a data collection unit (e.g., having an input, a processor, and a memory) and also includes a feedback control unit (e.g., having an output, a processor, and a memory) that responds to information received by the data collection unit. In various implementations, electroplating system 600 operates so that control unit 690 monitors a current and provides feedback control during an entire time duration of a plating process. In other implementations, a plating process may be performed with the monitoring during only a portion of the plating process. For example, the monitoring may operate substantially continuously during at least 25%, 40%, 50%, 75%, 90%, 98%, or 100% of a full duration of an electroplating activity. Similarly, automated feedback control may be used for all or part of a time duration of a plating process, such as substantially continuously during at least 15%, 25%, 35%, 40%, 50%, 75%, 80%, 90%, 95%, 98%, or 100% of a full duration of an electroplating activity. Sensors 612, 614 may each incorporate a Hall sensor or a differentially-aligned pair of Hall sensors. The signal from the sensor can be conditioned by an amplifier, converted from analog to digital form, and possibly pre-processed by a microcontroller for transmission or local storage. A variety of technologies are contemplated for transmitting wireless links 691 and 697. In various implementations, wired links can be used instead of wireless links. In various implementations of an electroplating system, the data can be logged in a unit on the holder instead of (or in addition to) being transmitted to a control unit. In such implementations, a holder or hangar can be equipped with a memory that stores current measurements for future reading. In various situations, an operator may manually remove the memory during a plating process for analysis and possible adjustment or fine-tuning of the plating process. In yet other implementations, current readings are stored in a memory buffer on a hangar, and are intermittently transmitted to a control unit. Computer system 700 may also include input devices such as a keyboard, mouse, or touch screen 750, a USB interface 752, communications input and output components 754, output devices such as graphics & display 756, a magnetic memory storage such as hard disk 758, an optical memory storage such as CD-ROM 760, and a semiconductor memory storage such as removable flash memory card 770, all of which are coupled to processor 710, e.g., by communications bus 705. It will be apparent to those having ordinary skill in the art that computer system 700 may also include numerous elements not shown in the figure, such as additional storage devices, communications devices, input devices, and output devices. The flow chart of Those having ordinary skill in the art will readily recognize that the techniques and methods discussed below may be implemented in software using a variety of computer languages, including, for example, traditional computer languages such as assembly language, Pascal, and C; object oriented languages such as C++, C#, and Java; and scripting languages such as Perl and Python. Additionally, software 724 may be provided to the computer system via a variety of computer readable media including electronic media (e.g., flash memory), magnetic storage media (e.g., hard disk 758, a floppy disk, etc.), optical storage media (e.g., CD-ROM 760 or DVD-ROM), other tangible storage media, and communications media conveying signals encoding the instructions (e.g., via a wired or wireless network coupled to communications input and output components 754). Although the present disclosure has been described in connection with several embodiments, the disclosure is not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover such alternatives, modifications, and equivalents as can be reasonably included within the scope of the disclosure as defined by the appended claims. Various implementations of a method include receiving a measurement of an electrical current provided to a component undergoing electroplating, analyzing the current measurement, and adjusting the current based at least on the analyzing. The receiving, analyzing, and adjusting may be performed on a substantially continuous ongoing basis throughout the electroplating, and/or without interrupting the electroplating. In various implementations, the method includes measuring a current through a neck portion of a hangar to which the component is affixed. The adjusting may regulate the current based on a variety of conditions and target factors. Various implementations of a system include a connector and a current sensor. The connector electrically and mechanically couples a plating target to a current bus during an electroplating operation. The sensor monitors a current supplied to the plating target throughout a substantial portion of the electroplating operation. 1. A method comprising:
receiving a current measurement, wherein the current measurement represents a current provided to a component, while the component undergoes electroplating; analyzing the current measurement; and adjusting the current based at least on the analyzing the current measurement. 2. The method of 3. The method of coupling the semiconductor substrate to a hanger element; hanging the hanger element on a supply line; immersing at least a portion of the semiconductor substrate into an electrolyte solution; and providing the current from the supply line, via the hanger element, to the semiconductor substrate. 4. The method of mounting the component on a jig; and mounting the jig on the hanger element. 5. The method of wirelessly transmitting the current measurement from the hanger element to a data collection unit, wherein the current measurement is based at least on a Hall-effect measurement of a current flow through a current-throttled region of the hanger element. 6. The method of changing a magnitude of the current to reduce large variations in the magnitude of the current over a time segment of the electroplating. 7. The method of maintaining a magnitude of the current within a predetermined amperage range. 8. The method of maintaining a magnitude of the current within a predetermined profile, wherein the predetermined profile is tailored to promote a substantially uniform plating thickness on the component. 9. The method of 10. The method of a copper plating procedure; or a tin plating procedure. 11. (canceled) 12. The method of substantially simultaneously with the receiving the current measurement,
receiving a second current measurement, wherein the second current measurement represents a second current provided to a second component, while the second component undergoes electroplating; and analyzing the second current measurement, wherein the adjusting the current is further based on the analyzing the second current measurement. 13. A system comprising:
a connector, configured to electrically and mechanically couple a plating target to a current bus during an electroplating operation; and a current sensor mounted on the connector, wherein
the current sensor is configured to make measurements representative of a current supplied to the plating target throughout a substantial portion of the electroplating operation. 14. The system of 15. The system of a transmitter coupled to the current sensor and configured to transmit a value indicative of the current supplied to the plating target. 16. The system of the transmitter is a wireless transmitter; the plating target comprises a semiconductor wafer; the connector comprises a hanger configured to detachably couple to the current bus; the connector comprises a jig configured to detachably couple to the hanger and configured to hold the semiconductor wafer in an electrolyte solution during the electroplating operation; and the current sensor is mounted on a neck portion of the hangar. 17. The system of a feedback control unit configured to
receive the measurements representative of the current supplied to the plating target, and adjust a current provided to the current bus, based at least upon the measurements representative of the current supplied to the plating target. 18. The system of a feedback control unit configured to adjust a current provided to the current bus, based at least upon
the measurements representative of the current supplied to the plating target; and additional measurements representative of currents supplied to additional plating targets. 19. The system of a feedback control unit configured to adjust a current provided to a plurality of plating targets, based at least upon
the measurements representative of the current supplied to the plating target. 20. A control system comprising:
an input configured to receive measurement data indicative of at least one current supplied to an element undergoing an electroplating operation; a memory comprising reference data representing target current ranges for the electroplating operation; and a processor configured to perform a comparison of the measurement data to the reference data and to adjust an electrical supply unit based at least on the comparison. 21. The control system of the processor is further configured to adjust the electrical supply unit based at least on a history of the measurement data during the electroplating operation. TECHNICAL FIELD
BACKGROUND
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION