HYDRAULIC SYSTEM FOR WORKING MACHINE AND CONTROL VALVE
This application is a Divisional of U.S. patent application Ser. No. 16/226,324, filed Dec. 19, 2018, which is a Continuation-in-part application of U.S. patent application Ser. No. 15/978,729, filed May 14, 2018, which claims priority to Japanese Patent Application No. 2017-182585, filed Sep. 22, 2017, and Japanese Patent Application No. 2017-097651, filed May 16, 2017. The disclosure of each of the above identified applications is hereby incorporated by reference in its entirety as if set forth in full herein. The present invention relates to a hydraulic system for a working machine and to a control valve. Japanese Unexamined Patent Application Publication No. 2010-270527 discloses a hydraulic system for a working machine. The working machine disclosed in Japanese Unexamined Patent Application Publication No. 2010-270527 includes a boom, a bucket, a boom cylinder configured to operate the boom, a bucket cylinder configured to operate the bucket, an auxiliary actuator configured to operate an auxiliary attachment, a first control valve configured to control stretching and shortening of the boom cylinder, a second control valve configured to control stretching and shortening of the bucket cylinder, and a third control valve configured to operate the auxiliary actuator. A hydraulic system of a working machine includes a hydraulic pump configured to output an operation fluid, a first hydraulic device configured to be operated by the operation fluid, a second hydraulic device other than the first hydraulic device, the second hydraulic device being configured to be operated by the operation fluid, a first control valve configured to control the first hydraulic device, a second control valve disposed on a downstream side of the first control valve and configured to control the second hydraulic device, a communication tube connecting the first hydraulic device to the first control valve, the communication tube being configured to supply a return fluid that returns from the first hydraulic device to the first control valve, a supply fluid tube connecting the first control valve to the second control valve, the supply fluid tube being configured to supply the return fluid to the second control valve, a connection fluid tube disposed on the first control valve, the connection fluid tube connecting the communication tube to the supply fluid tube, a discharge fluid tube connected to the first control valve, a setting portion disposed on the discharge fluid tube and configured to increase a pressure in the discharge fluid tube, a branching fluid tube branched from the connection fluid tube, the branching fluid tube being connected to the discharge fluid tube, and a throttle disposed on the branching fluid tube. A hydraulic system of a working machine includes a hydraulic pump configured to output an operation fluid, a first hydraulic device configured to be operated by the operation fluid, a second hydraulic device other than the first hydraulic device, the second hydraulic device being configured to be operated by the operation fluid, a first control valve configured to control the first hydraulic device, a second control valve disposed on a downstream side of the first control valve and configured to control the second hydraulic device, a first communication tube connecting the first hydraulic device to the first control valve, the first communication tube being configured to supply a return fluid that returns from the first hydraulic device to the first control valve, a second communication tube other than the first communication tube, the second communication tube connecting the first hydraulic device to the first control valve and being configured to supply the return fluid that returns from the first hydraulic device to the first control valve, a supply fluid tube connecting the first control valve to the second control valve, the supply fluid tube being configured to supply the return fluid to the second control valve, a first connection fluid tube disposed on the first control valve, the first connection fluid tube connecting the first communication tube to the supply fluid tube, a second connection fluid tube other than the first connection fluid tube, the second connection fluid tube being disposed on the first control valve and connecting the second communication tube to the supply fluid tube, a discharge fluid tube connected to the first control valve, a first branching fluid tube branched from the first connection fluid tube, the first branching fluid tube being connected to the discharge fluid tube, a second branching fluid tube branched from the second connection fluid tube, the second branching fluid tube being connected to the discharge fluid tube, a first throttle disposed on the first branching fluid tube, and a second throttle disposed on the second branching fluid tube, the second throttle being smaller than the first throttle. A control valve includes a first port to which a first fluid tube is connected, the first fluid tube being connected to a first hydraulic device, a second port to which a second fluid tube is connected, the second fluid tube being connected to the first hydraulic device, a third port to which a third fluid tube is connected, the third fluid tube being connected to a hydraulic pump configured to output an operation fluid, a fourth port to which a first discharge fluid tube is connected, the first discharge fluid tube being configured to discharge the operation fluid, a fifth port configured to discharge the operation fluid to an outside, the operation fluid having passed through the first port or the second port, a main body including a first inner fluid path, a second inner fluid path, a third inner fluid path, a fourth inner fluid path, and a fifth inner fluid path connected to the first port, the second port, the third port, the fourth port, and the fifth port, and a spool configured to move inside the main body to change communicating destinations of the first inner fluid path, the second inner fluid path, the third inner fluid path, the fourth inner fluid path, and the fifth inner fluid path and to move between a communicating position and a neutral position, the communicating position allowing the second inner fluid path and the fifth inner fluid path to be communicated with each other or the first inner fluid path and the fifth inner fluid path to be communicated with each other, the spool including a first communicating portion configured to allow the second inner fluid path and the fourth inner fluid path to be communicated with each other or the first inner fluid path and the fourth inner fluid path to be communicated with each other when positioned between the communicating position and the neutral position. A hydraulic system of a working machine includes a hydraulic pump configured to output an operation fluid, a first hydraulic actuator, a second hydraulic actuator, a first control valve including an input port into which the operation fluid to be supplied to the first hydraulic actuator is introduced, the first control valve being configured to control the first hydraulic actuator by the operation fluid to be supplied, a second control valve disposed on a downstream side of the first control valve and configured to control the second hydraulic actuator, a first fluid tube configured to connect the first control valve to the second control valve and to supply a return fluid to the second control valve, the return fluid returning from the first hydraulic actuator to the first control valve, a second fluid tube other than the first fluid tube, the second fluid tube being configured to connect the first control valve to the second control valve and to be communicated with the first fluid tube, and a third fluid tube configured to be communicated with the second fluid tube and to return the return fluid of the first fluid tube to the input port. A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein: The embodiments will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various drawings. The drawings are to be viewed in an orientation in which the reference numerals are viewed correctly. The working machine 1 includes a machine body (a vehicle body) 2, a cabin 3, a working device 4, a traveling device 5A, and a traveling device 5B. The cabin 3 is mounted on the machine body 2. An operator seat 8 is disposed at a rear portion of an inside of the cabin 3. In explanations of the embodiments of the present invention, a front side (a left side in The cabin 3 is mounted on the machine body 2. The working device 4 is a device configured to perform a work, and is mounted on the machine body 2. The traveling device 5A is a device configured to allow the machine body 2 to travel, and is disposed on the left side of the machine body 2. The traveling device 5B is a device configured to allow the machine body 2 to travel, and is disposed on the right side of the machine body 2. A prime mover (a motor) 7 is disposed at a rear portion of an inside of the machine body 2. The prime mover 7 is a diesel engine (an engine). Meanwhile, it should be noted that the prime mover 7 is not limited to the engine and may be an electric motor or the like. On the left side of the operator seat 8, a traveling lever 9L is provided. On the right side of the operator seat 8, a traveling lever 9R is provided. The traveling lever 9L disposed on the left is provided for operating the travel device 5A disposed on the let, and the traveling lever 9R disposed on the right is provided for operating the travel device 5B disposed on the right. The working device 4 includes a boom 10, a bucket 11, a lift link 12, a control link 13, a boom cylinder (a hydraulic cylinder) 14 and a bucket cylinder 17. The boom 10 is provided on the side of the machine body 2. The bucket 11 is provided on a tip portion (a front end) of the boom 10. The lift link 12 and the control link 13 support a base portion (a rear portion) of the boom 10. The boom cylinder 14 moves the boom 10 upward and downward. More specifically, the lift link 12, the control link 13, and the boom cylinder 14 are provided on the side of the machine body 2. The upper portion of the lift link 12 is pivotally supported by the upper portion of the base portion of the boom 10. The lower portion of the lift link 12 is pivotally supported on the side portion of the rear portion of the machine body 2. The control link 13 is disposed forward from the lift link 12. One end of the control link 13 is pivotally supported by a lower portion of the base portion of the boom 10, and the other end is pivotally supported by the machine body 2. The boom cylinder 14 is constituted of a hydraulic cylinder configured to move the boom 10 upward and downward. The upper portion of the boom cylinder 14 is pivotally supported by the front portion of the base portion of the boom 10. The lower portion of the boom cylinder 14 is pivotally supported by the side portion of the rear portion of the machine body 2. When the boom cylinder 14 is stretched and shortened, the boom 10 is swung up and down by the lift link 12 and the control link 13. The bucket cylinder 17 is constituted of a hydraulic cylinder configured to swing the bucket 11. The bucket cylinder 17 couples the left portion of the bucket 11 and the boom disposed on the left to each other, and couples the right portion of the bucket 11 and the boom disposed on the right to each other. Meanwhile, it should be noted that, instead of the bucket 11, an auxiliary attachment such as a hydraulic crusher, a hydraulic breaker, an angle bloom, an auger, a pallet fork, a sweeper, a mower, a snow blower may be attached to the tip portion (the front portion) of the boom 10. In the present embodiment, the traveling devices 5A and 5B respectively employ wheeled traveling devices 5A and 5B each having a front wheel 5F and a rear wheel 5R. Meanwhile, traveling devices 5A and 5B of a crawler type (including a semi-crawler type) may be employed as the traveling devices 5A and 5B. Next, a working-system hydraulic circuit (a working-system hydraulic system) disposed in the skid steer loader 1 will be described below. As shown in The first hydraulic pump P1 is a pump configured to be operated by the power of the prime mover 7, and is constituted of a gear pump of constant-displacement type (a constant-displacement type gear pump). The first hydraulic pump P1 is configured to output an operation fluid (a hydraulic oil) stored in a tank (an operation fluid tank) 15. The second hydraulic pump P2 is a pump configured to be operated by the power of the prime mover 7, and is constituted of a gear pump of constant-displacement type (a constant-displacement type gear pump). The second hydraulic pump P2 is configured to output the operation fluid stored in the tank (the operation fluid tank) 15. Meanwhile, in the hydraulic system, the second hydraulic pump P2 is configured to output the hydraulic fluid for signals (a signal hydraulic fluid) and the hydraulic fluid for control (a control hydraulic fluid). Each of the hydraulic fluid for signals (the signal hydraulic fluid) and the hydraulic fluid for control (the control hydraulic fluid) is referred to as a pilot fluid (a pilot oil). The control valve unit 70 includes a plurality of control valves 20. The plurality of control valves 20 are valves configured to control hydraulic actuators (hydraulic devices) of various types, the hydraulic actuators being disposed on the working machine 1. The hydraulic actuator is a device configured to be operated by the hydraulic fluid, for example, a hydraulic cylinder, a hydraulic motor, and the like. In the embodiment, the plurality of control valves 20 include a first control valve 20A, a second control valve 20B, and a third control valve 20C. Firstly, the second control valve 20B and the third control valve 20C will be described below. The second control valve 20B is a valve configured to control a hydraulic cylinder (a bucket cylinder) 17 that is configured to control the bucket 11. In other words, the second control valve 20B is a valve configured to control the bucket cylinder 17 that is a second hydraulic device configured to be operated by the hydraulic fluid. The third control valve 20C is a valve configured to control the hydraulic actuators (the hydraulic cylinder, the hydraulic motor, and the like) 16 mounted on the auxiliary attachment. The second control valve 20B is a three-position switching valve having a spool directly acting with a pilot fluid (referred to as a pilot direct-acting spool type three-position switching valve). The second control valve 20B is configured to be switched to a neutral position 20 Thus, when the second control valve 20B is set to the first position 20 Meanwhile, the switching of the second control valve 20B is performed by directly moving the spool with the operating member. However, the spool may be moved by the pressure of the operation fluid (the pilot fluid). The second control valve 20B is connected to the first control valve 20A by a central fluid tube 68 The third control valve 20C is a three-position switching valve having a spool directly acting with a pilot fluid (referred to as a pilot direct-acting spool type three-position switching valve). The third control valve 20C is configured to be switched to a neutral position 20C3, to a first position 20C1 other than the neutral position 20C3, and to a second position 20C2 other than the neutral position 20C3 and the first position 20C1. In the third control valve 20C, the switching between the neutral position 20C3, the first position 20C1, and the second position 20C2 is performed by a spool moved by a pressure of the pilot fluid. A connecting member 18 is connected to the third control valve 20C through supply/discharge fluid tubes 83 Thus, when the third control valve 20C is set to the first position 20C1, the operation fluid can be supplied from the first fluid supply/discharge fluid tube 83 In this manner, when the operation fluid is supplied to the hydraulic actuator 16 from the supply/discharge fluid tube 83 Next, the first control valve will be described below. As shown in In the present embodiment, the first control valve 20A is connected by to a fluid tube a hydraulic cylinder (a boom cylinder) 14 that is one of the hydraulic actuators. In other words, the first control valve 20A is a valve configured to control the boom cylinder 14 that is the first hydraulic device configured to be activated by the hydraulic fluid. In addition, the first control valve 20A discharges the hydraulic fluid to a fourth fluid tube (a discharge fluid tube) 24 described later, the operation fluid returning from the boom cylinder 14. The boom cylinder 14 includes a cylindrical body 14 In other words, the first fluid tube (the first communication tube) 21 is a fluid tube in which the return fluid from the boom cylinder 14 flows, the return fluid being outputted at the time of shortening of the boom cylinder 14 that is the first hydraulic device. In addition, the second fluid tube (the second communication tube) 22 is a fluid tube in which the return fluid from the boom cylinder 14 flows, the return fluid being outputted at the time of stretching of the boom cylinder 14 that is the first hydraulic device. Each of the first fluid tube 21 and the second fluid tube 22 is configured to supply the operation fluid and is constituted of a tubular member such as a hydraulic hose, a pipe, a coupler, and a joint. A first supply/discharge port 14 One end of the first fluid tube 21 is connected to the first supply/discharge port 14 As shown in The first control valve 20A has a plurality of ports. As shown in The first port 31 is a port configured to be connected to the other end of the first fluid tube 21 that is connected to the boom cylinder 14. Thus, the operation fluid flowing from the first port 31 toward the boom cylinder 14 passes through the first fluid tube 21, and then enters the first supply/discharge port 14 The second port 32 is a port configured to be connected to the other end of the second fluid tube 22 that is connected to the boom cylinder 14. Thus, the operation fluid flowing from the second port 32 toward the boom cylinder 14 passes through the second fluid tube 22, and then enters the second supply/discharge port 14 The third port 33 is a port configured to be connected to a third fluid tube (a main fluid tube) 23 that is connected to the first hydraulic pump P configured to discharge the operation fluid. In particular, the third fluid tube 23 is branched into three tubes at the middle portion of the third fluid tube 23. And, a first branched fluid tube 23 That is, the third port 33 includes a port 33 The fourth port 34 is a port configured to be connected to a fourth fluid tube (a discharge fluid tube) 24 that is connected to the operation fluid tank 15. In particular, the fourth fluid tube 24 includes a fluid tube 24 The discharge fluid tube 24 Here, the fluid tube including the third discharge portion 24 A relief valve 27 is connected to the first discharge portion 24 The fourth discharge portion 24 That is, the fourth port 34 includes a port 34 The fifth port 35 is a port configured to discharge, to the outside, the operation fluid having passed through the first port 31 or the second port 32. That is, the fifth port 35 is a port configured to discharge, to a control valve on the downstream side (the second control valve 20B), the hydraulic fluid (the return fluid) returning from the boom cylinder 14 to the first port 31 or the hydraulic fluid (the returned fluid) returning from the boom cylinder 14 to the second port 32. Now, the working-system hydraulic system is provided with a fifth fluid tube 25. The fifth fluid tube 25 is a fluid tube configured to supply the return fluid to the second control valve 20B when the first control valve 20A is in operation (when the spool 50 of the first control valve 20A moves). In particular, when the first control valve 20A is in the first position 20 One end of the fifth fluid tube 25 is branched into two portions, and the first supply fluid tube 25 In the present embodiment, the fifth port 35 is a port including two ports 35 In addition, when the first control valve 20A is in the second position 20 In particular, the first connection fluid tube 61 The working-system hydraulic system includes a branched fluid tube (a first branched fluid tube) 65 The first throttle portion 67 On the other hand, when the first control valve 20A is in the first position 20 Meanwhile, the working-system hydraulic system has a branched fluid tube (a second branched fluid tube) 65 The second throttle portion 67 In addition, the working-system hydraulic system has a setting portion configured to increase a pressure of the discharge fluid tube 24 connected to the first branched fluid tube 65 As shown in The setting member 19 The discharge port 28 Thus, in the section between the check valve 19 For example, in the case where the boom cylinder 14 is stretched (the boom 10 is moved upward), the operation fluid (the return fluid) is supplied to the fifth fluid tube 25 through the second communication tube 22, the second port 32, and the second connection fluid tube 61 Here, in the case where the bucket cylinder 17 is stretched (the bucket 11 is dumped) under the state where the boom 10 is moved upward, a relatively large amount of operation fluid is required. However, the operation fluid in the second discharge fluid tube 24 The hydraulic system of the working machine described above has the setting portions (a throttle 67 In this manner, the pressure in the section between the ports 34 In the embodiment described above, the branched fluid tubes 65 In addition, it is preferred that the setting portion is configured to increase a pressure in the discharge fluid tube 24, and the setting portion may be a relief valve provided in the fourth discharge portion 24 In addition, in the present embodiment, the discharge fluid tube 24 has two fluid tubes, that is, the second discharge fluid tube 24 Meanwhile, the setting portion may be the oil cooler 28, the check valve 19 Meanwhile, a portion where the operation fluid flows of the second throttle portion 67 That is, the second throttle portion 67 Orthogonal cross sections (the cross sections in a direction orthogonal to the rod 14) of the rod 14 That is, when the boom cylinder 14 is shortened, the amount of the operation fluid returning to the first fluid tube 21 and the first port 31 (the amount of the return fluid) will be large. Conventionally, since the return fluid is supplied directly to the second control valve 20B, the operability of the hydraulic actuator (the bucket cylinder 17) operated by the second control valve 20B is lowered when the second control valve 20B is operated simultaneously with the first control valve 20A. That is, the operation feeling is different when the first control valve 20A and the second control valve 20B are simultaneously operated from when the operation is not performed simultaneously. On the other hand, according to the first control valve 20A, since the cross-sectional area of the second throttle portion 67 In particular, when the boom cylinder 14 is stretched (moving the boom 10 upward), the operation fluid (the return fluid) discharged from the second supply/discharge port 4 In addition, when the bucket cylinder 17 is stretched (the bucket 11 is dumped), an external force is applied in a direction to stretch the bucket cylinder 17 due to the loading on the bucket 11 or the like. In this manner, the pressure in the fifth fluid tube 25 will be lower than that in the connection portion 26 and that in the inlet port 28 Note that a configuration similar to the configuration of the first throttle portion 67 As shown in In convenience of the explanation, the left side of the page in The first internal fluid tube 41 is a fluid tube formed inside the main body B1, and is communicated with the first port 31. A first port 31 is provided on a left portion of the main body B1 in the lateral direction, and a first internal fluid tube 41 is formed next to the first port 31. The first internal fluid tube 41 is extended at least in the longitudinal direction. The second internal fluid tube 42 is a fluid tube formed inside the main body B1, and is communicated with the second port 32. The second port 32 is provided on a right portion of the main body B1 in the lateral direction, and a second internal fluid tube 42 is formed next to the second port 32. The second internal fluid tube 42 is extended at least in the longitudinal direction. The third internal fluid tube 43 is a fluid tube formed inside the main body B1, and is communicated with the third port 33. The third internal fluid tube 43 is formed in a central portion of the main body B1 in the lateral direction. In particular, the third internal fluid tube 43 includes a left fluid tube 43 The central fluid tube 43 The fourth internal fluid tube 44 is a fluid tube formed inside the main body B1, and is communicated with the fourth port 34. In particular, the fourth internal fluid tube 44 includes a left fluid tube 44 The left fluid tube 44 The fifth internal fluid tube 45 is a fluid tube formed inside the main body B1, and is communicated with the fifth port 35. In particular, the fifth internal fluid tube 45 includes a left fluid tube 45 The left fluid tube 45 Meanwhile, a wall portion 36 (a through hole 36 The first internal fluid tube 41, the second internal fluid tube 42, the third internal fluid tube 43, the fourth internal fluid tube 44, and the fifth internal fluid tube 45 extend to the annular wall portion 36 constituting the through hole 36 The end portion 44 In addition, each of the end portion 41 As shown in Hereinafter, the spool 50 will be described below in detail. The spool 50 is formed to have a cylindrical shape. The spool 50 having a cylindrical shape is inserted into the through hole 36 The spool 50 has a first communicating portion 51. The first communicating portion 51 is a portion configured to communicate the second internal fluid tube 42, the fourth internal fluid tube 44, and the fifth internal fluid tube 45 with each other. In particular, the first communicating portion 51 includes a first extending fluid tube 51 The first extending fluid tube 51 The plurality of second extending fluid tubes 51 The plurality of third extending fluid tubes 51 The first concave portion 51 Meanwhile, the spool 50 has the second communicating portion 52. The second communicating portion 52 is configured to communicate the first internal fluid tube 41 and the fifth internal fluid tube 45 with each other. In addition, the second communicating portion 52 is configured to communicate the first internal fluid tube 41 and the third internal fluid tube 43 with each other. In particular, the second communicating portion 52 includes the second concave portion 52 As shown in In addition, the third extending fluid tube 51 When the first control valve 20A is in the middle position 20 As shown in The second concave portion 52 When the first control valve 20A is in the first position 20 When the first control valve 20A is in the first position 20 As described above, when the spool 50 is in the middle position 20 For example, when paying attention to the control valve (the first control valve 20A) on the upstream side and the control valve (the second control valve 20B) on the downstream side, the second internal fluid tube 42 and the fourth internal fluid tube 44 can be communicated with each other before the second internal fluid tube 42 and the fifth internal fluid tube 45 are communicated with each other. Thus, the operation fluid having passed through the control valve (the first control valve 20A) on the upstream side can be discharged independently from the control valve (the second control valve 20B) on the downstream side, and thus it is possible to stably operate the first hydraulic equipment 14 disposed on the upstream side. In addition, the spool 50 has a first communicating portion 51 configured to communicate the second internal fluid tube 42, the fourth internal fluid tube 44, and the fifth internal fluid tube 45 with each other. The first communicating portion 51 includes a first extending fluid tube 51 In this manner, the first communicating section 51 can be provided by forming the first extending fluid tube 51 Meanwhile, the configurations similar to the configurations of the first communicating portion 51 can also be applied to the left portion of the spool 50. That is, when the configuration similar to the first position 20 In addition, in the case where the spool 50 is moved from the neutral position 20 In the above description, the embodiment of the present invention has been explained. However, all the features of the embodiments disclosed in this application should be considered just as examples, and the embodiments do not restrict the present invention accordingly. A scope of the present invention is shown not in the above-described embodiments but in claims, and is intended to include all modifications within and equivalent to a scope of the claims. In the above-described embodiment, the first hydraulic device is the boom cylinder 14, and the second hydraulic device is the bucket cylinder 17. However, the first hydraulic device and the second hydraulic device may be other hydraulic cylinders and are not limited to the configurations. In addition, although the discharge fluid tube 24 is connected to the operation fluid tank 15, the discharge destination of the operation fluid is not limited to the operation fluid tank 15, may be a suction portion of the hydraulic pump, and may be another component, and is not limited to the configurations. Referring to the drawings appropriately, preferred embodiments of the hydraulic system of the working machine according to the present invention and preferred embodiments of the working machine provided with the hydraulic system will be described below. Firstly, the working machine will be explained. The working machine 1 includes the machine body (a vehicle body) 2, the cabin 3, the working device 4, and the traveling devices 5A and 5B. The cabin 3 is mounted on the machine body 2. An operator seat 8 is disposed at a rear portion of an inside of the cabin 3. In explanations of the embodiments of the present invention, a front side (a left side in In addition, a horizontal direction corresponding to a direction perpendicular to the front-to-rear direction will be referred to as a machine width direction. A direction extending from the center portion of the machine body 2 to the right portion or the left portion will be referred to as machine outward. In other words, the machine outward is a machine width direction that corresponds to a direction separating away from the machine body 2. In the explanation, a direction opposite to the machine outward is referred to as a machine inward. In other words, the machine inward is a machine width direction that corresponds to a direction approaching the machine body 2. The cabin 3 is mounted on the machine body 2. The working device 4 is a device configured to perform a work, and is mounted on the machine body 2. The traveling device 5A is a device configured to allow the machine body 2 to travel, and is disposed on the left side of the machine body 2. The traveling device 5B is a device configured to allow the machine body 2 to travel, and is disposed on the right side of the machine body 2. A prime mover (a motor) 7 is disposed at a rear portion of an inside of the machine body 2. The prime mover 7 is a diesel engine (an engine). Meanwhile, it should be noted that the prime mover 7 is not limited to the engine and may be an electric motor or the like. On the left side of the operator seat 8, a traveling lever 9L is provided. On the right side of the operator seat 8, a traveling lever 9R is provided. The traveling lever 9L disposed on the left is provided for operating the travel device 5A disposed on the left and the traveling lever 9R disposed on the right is provided for operating the travel device 5B disposed on the right. The working device 4 includes a boom 10, a bucket 11, a lift link 12, a control link 13, a boom cylinder (a hydraulic cylinder) 14 and a bucket cylinder 17. The boom 10 is provided on the side of the machine body 2. The bucket 11 is provided on a tip portion (a front end) of the boom 10. The lift link 12 and the control link 13 support abase portion (a rear portion) of the boom 10. The boom cylinder 14 moves the boom 10 upward and downward. More specifically, the lift link 12, the control link 13, and the boom cylinder 14 are provided on the side of the machine body 2. The upper portion of the lift link 12 is pivotally supported by the upper portion of the base portion of the boom 10. The lower portion of the lift link 12 is pivotally supported on the side portion of the rear portion of the machine body 2. The control link 13 is disposed forward from the lift link 12. One end of the control link 13 is pivotally supported by a lower portion of the base portion of the boom 10, and the other end is pivotally supported by the machine body 2. The boom cylinder 14 is constituted of a hydraulic cylinder configured to move the boom 10 upward and downward. The upper portion of the boom cylinder 14 is pivotally supported by the front portion of the base portion of the boom 10. The lower portion of the boom cylinder 14 is pivotally supported by the side portion of the rear portion of the machine body 2. When the boom cylinder 14 is stretched and shortened, the boom 10 is swung up and down by the lift link 12 and the control link 13. The bucket cylinder 17 is constituted of a hydraulic cylinder configured to swing the bucket 11. The bucket cylinder 17 couples the left portion of the bucket 11 and the boom disposed on the left to each other, and couples the right portion of the bucket 11 and the boom disposed on the right to each other. Meanwhile, it should be noted that, instead of the bucket 11, an auxiliary attachment such as a hydraulic crusher, a hydraulic breaker, an angle bloom, an auger, a pallet fork, a sweeper, a mower, a snow blower may be attached to the tip portion (the front portion) of the boom 10. In the present embodiment, the traveling devices 5A and 5B respectively employ wheeled traveling devices 5A and 5B each having a front wheel 5F and a rear wheel 5R. Meanwhile, traveling devices 5A and 5B of a crawler type (including a semi-crawler type) may be employed as the traveling devices 5A and 5B. Next, a working-system hydraulic circuit (a working-system hydraulic system) disposed in the skid steer loader 1 will be described below. As shown in The first hydraulic pump P1 is a pump configured to be operated by the power of the prime mover 7, and is constituted of a gear pump of constant-displacement type (a constant-displacement type gear pump). The first hydraulic pump P1 is configured to output an operation fluid (a hydraulic oil) stored in a tank (an operation fluid tank) 15. The second hydraulic pump P2 is a pump configured to be operated by the power of the prime mover 7, and is constituted of a gear pump of constant-displacement type (a constant-displacement type gear pump). The second hydraulic pump P2 is configured to output the operation fluid stored in the tank (the operation fluid tank) 15. Meanwhile, in the hydraulic system, the second hydraulic pump P2 is configured to output the hydraulic fluid for signals (a signal hydraulic fluid) and the hydraulic fluid for control (a control hydraulic fluid). Each of the hydraulic fluid for signals (the signal hydraulic fluid) and the hydraulic fluid for control (the control hydraulic fluid) is referred to as a pilot fluid (a pilot oil). The plurality of control valves 20 are valves configured to control various types of the hydraulic actuators disposed on the working machine 1. The hydraulic actuator is a device configured to be operated by the hydraulic fluid, such as a hydraulic cylinder, a hydraulic motor, or the like. In the embodiment, the plurality of control valves 20 include a boom control valve 20A, a bucket control valve 20B, and a auxiliary control valve 20C. The boom control valve 20A is a valve configured to control the hydraulic actuator (the boom cylinder) 14 that is configured to operate the boom 10. The boom control valve 20A is a three-position switching valve having a spool directly acting with a pilot fluid (referred to as a pilot direct-acting spool type three-position switching valve). The boom control valve 20A is configured to be switched to a neutral position 20 The switching of the boom control valve 20A is performed by directly moving the spool with manual operation of the operating member. However, the spool may be moved by the hydraulic operation (by the hydraulic operation using a pilot valve, the hydraulic operation using a proportional valve), the spool may be moved by the electric operation (the electric operation by magnetizing the solenoid), or the spool may be moved by other methods. The boom control valve 20A and the first hydraulic pump P1 are connected to each other by an output fluid tube 27. A discharge fluid tube 24 The hydraulic fluid discharged from the first hydraulic pump P1 passes through the output fluid tube 27 and is supplied to the boom control valve 20A. In addition, the boom control valve 20A and the boom cylinder 14 are connected to each other by a fluid tube 21. In particular, the boom cylinder 14 includes a cylindrical body 14 The fluid tube 21 has a first connection fluid tube 21 Thus, when the boom control valve 20A is set to the first position 20 In this manner, the boom cylinder 14 is stretched, and thereby the boom 10 moves upward. When the boom control valve 20A is set to the second position 20 The bucket control valve 20B is a valve configured to control the hydraulic cylinder (the bucket cylinder) 17 that is configured to control the bucket 11. The bucket control valve 20B is a three-position switching valve having a spool directly acting with a pilot fluid (referred to as a pilot direct-acting spool type three-position switching valve). The bucket control valve 20B is configured to be switched to a neutral position 20 The switching of the bucket control valve 20B is performed by directly moving the spool with manual operation of the operating member. However, the spool may be moved by the hydraulic operation (by the hydraulic operation using a pilot valve, the hydraulic operation using a proportional valve), the spool may be moved by the electric operation (the electric operation by magnetizing the solenoid), or the spool may be moved by other methods. The bucket control valve 20B and the bucket cylinder 17 are connected to each other by a fluid tube 22. In particular, the bucket cylinder 17 includes a cylindrical body 17 The fluid tube 22 has a first connection fluid tube 22 Thus, when the bucket control valve 20B is set to the first position 20B1, the operation fluid can be supplied from the first connection fluid tube 22 In this manner, the bucket cylinder 17 is shortened, and thus the bucket 11 is operated in a shoveling manner. When the bucket control valve 20B is set to the second position 20 Meanwhile, a discharge fluid tube 24 The auxiliary control valve 20C is a three-position switching valve having a spool directly acting with a pilot fluid (referred to as a pilot direct-acting spool type three-position switching valve). The auxiliary control valve 20C is configured to be switched to a neutral position 20 In the auxiliary control valve 20C, the switching between the neutral position 20 Thus, when the auxiliary control valve 20C is set to the first position 20 In this manner, when the operation fluid is supplied from the supply/discharge fluid tube 83 Meanwhile, in the hydraulic system, a series circuit (a series fluid tube) is employed. In the series circuit, the hydraulic fluid having returned from the hydraulic actuator to the control valve on the upstream side can be supplied to the control valve disposed on the downstream side. For example, paying attention to the bucket control valve 20B and the auxiliary control valve 20C, the bucket control valve 20B is the control valve disposed on the upstream side, and the auxiliary control valve 20C is the control valve disposed on the downstream side. Hereinafter, the control valve on the upstream side is referred to as “a first control valve”, and the control valve on the downstream side is referred to as “a second control valve”. A control valve other than the first control valve and the second control valve, the control valve being provided on the upstream side of the second control valve is referred to as “a third control valve”. In addition, the hydraulic actuator corresponding to the first control valve is referred to as “a first hydraulic actuator”, the hydraulic actuator corresponding to the second control valve is referred to as “a second hydraulic actuator”, and the hydraulic actuator corresponding to the third control valve is referred to as “a third hydraulic actuator”. The fluid tube configured to supply the return fluid, which is the operation fluid returning from the first hydraulic actuator to the first control valve, to the second control valve is referred to as “a first fluid tube”. In the embodiment, the bucket control valve 20B is referred to as “the first control valve”, the auxiliary control valve 20C is referred to as “the second control valve”, and the boom control valve 20A is referred to as “the third control valve”. In addition, the bucket cylinder 17 is referred to as “the first hydraulic actuator”, the hydraulic actuator 16 of the auxiliary attachment is referred to as “the second hydraulic actuator”, and the boom cylinder 14 is referred to as “the third hydraulic actuator”. Hereinafter, the first control valve, the second control valve, and the third control valve will be described below in detail. The third control valve 20A and the output portion of the first hydraulic pump P are connected to each other by an output fluid tube 27. The output fluid tube 27 is branched off at a middle portion 47 In this manner, the hydraulic fluid outputted from the first hydraulic pump P1 can be supplied into the third control valve 20A through the output fluid tube 27, the first input port 46 Meanwhile, when the third control valve 20A is set to the neutral position 20 The third control valve 20A and the first control valve 20B are connected to each other by a return fluid tube 61 separately from the central fluid tube 51. The return fluid tube 61 is a fluid tube configured to supply the return fluid to the first control valve 20B through the third control valve 20A, the return fluid returning from the third hydraulic actuator 14 to the third control valve 20A. For convenience of the explanation, the return fluid tube 61 may be referred to as “a fourth fluid tube”. The return fluid tube 61 has a second connection fluid tube 21 The second connection fluid tube 21 The internal fluid tube 61 The external fluid tube 61 In other words, the external fluid tube 61 In addition, in the external fluid tube 61 The first control valve 20B and the second control valve 20C are connected to each other by a central fluid tube (a second fluid tube) 72. The central fluid tube 72 connects the third output port 43 Thus, when the first control valve 20B is set to the neutral position 20 The first control valve 20B and the second control valve 20C are connected to each other by the first fluid tube 81 separately from the central fluid tube 72. The first fluid tube 81 is a fluid tube configured to supply the return fluid to the second control valve 20C through the first control valve 20B, the return fluid returning from the first hydraulic actuator 17 to the first control valve 20B. The first fluid tube 81 has a fluid tube (a first connection fluid tube) 22 Meanwhile, the fluid tube (the second connection fluid tube) 22 The internal fluid tube 81 The external fluid tube 81 In other words, the external fluid tube 81 In addition, in the external fluid tube 81 As described above, when the first control valve 20B is set to the second position 20B2 that is the side position, the supply fluid is supplied to the second input port 42 On the other hand, when the first control valve 20B is set to the second position 20 Meanwhile, the hydraulic system of the working machine is provided with a third fluid tube 90 (which may be referred to as a second internal fluid tube). The third fluid tube 90 is a fluid tube configured to return the return fluid to the first control valve 20B again through the first fluid tube 81, the return fluid flowing from the first control valve 20B to the second control valve 20C. In particular, the third fluid tube 90 is a fluid tube configured to return the return fluid to the input port of the first control valve 20B (the first input port 42 For example, when the first control valve 20B is in the second position 20 In other words, in the case where the first control valve 20B is in the second position 20 As described above, when the first control valve 20B is set to the second position 20 On the other hand, when the first control valve 20B is set to the second position 20 Consider the following case where the return fluid passes through the first fluid tube 81, the auxiliary control valve 20C is switched to the first position 20 In other words, a case will be considered where the return fluid passes through the first fluid tube 81 and no hydraulic fluid is introduced into the first input port 44 Under such states, since the return fluid in the first fluid tube 81 has no way to flow in the case where the third fluid tube 90 is not provided to the first control valve 20B, a pressure on the bottom side of the first hydraulic actuator 17 communicated with the first fluid tube 81 is increased. When the pressure on the bottom side of the first hydraulic actuator 17 is increased, a pressure on the rod side of the first hydraulic actuator 17 is also increased. When the cross sectional areas on the bottom side and on the rod side are compared with each other inside the first hydraulic actuator 17, the sectional area on the bottom side is larger than the cross sectional area on the rod side. As the result, when the first hydraulic actuator 17 is stretched due to the pressure increasing on the bottom side of the first hydraulic actuator 17, the pressure increasing on the rod side will be relatively large. For example, when the above-described situation occurs in the case where the first hydraulic actuator 17 and the third hydraulic actuator 14 are operated in combination, the operation of the first hydraulic actuator 17 may be delayed. On the other hand, when the operation fluid is not introduced into the first input port 44 In this manner, the return fluid in the first fluid tube 81 returns to the first control valve 20B again through the second fluid tube 72 and the third fluid tube 90, and thus the first hydraulic actuator 17 can be operated smoothly. That is, since the return fluid on the rod side of the first hydraulic actuator 17 can be returned to the bottom side of the first hydraulic actuator 17, a speed of the stretching of the first hydraulic actuator 17 can be improved. In particular, in a case where the first hydraulic actuator (the bucket cylinder) 17 and the third hydraulic actuator (the boom cylinder) 14 are operated in combination, for example, in a case where the boom cylinder 17 is stretched and the bucket cylinder 14 is stretched (in the case where the bucket cylinder 14 is operated in the dumping manner with moving the boom 14 upward), the dumping of the bucket 11 can be performed quickly. As shown in The discharge fluid tube 70 is provided with a throttle portion 71 configured to reduce the flow rate of the operation fluid. The throttle portion 71 is constituted, for example, by making a part of the discharge fluid tube 70 narrower than the other portions of the discharge fluid tube 70. In other words, the throttle portion 71 constituted by making the cross-sectional area of a portion through which the operation fluid flows smaller than the other portions in the discharge fluid tube 70. Thus, since a part of the return fluid is discharged by the discharge fluid tube 70, the third hydraulic actuator 14 can be smoothly operated. Meanwhile, the configuration of the throttle portion 71 is not limited to the example described above. In the above description, the embodiment of the present invention has been explained. However, all the features of the embodiments disclosed in this application should be considered just as examples, and the embodiments do not restrict the present invention accordingly. A scope of the present invention is shown not in the above-described embodiments but in claims, and is intended to include all modifications within and equivalent to a scope of the claims. In the embodiment described above, the operation fluid is discharged to the operation fluid tank, but the operation fluid may be discharged to other components. That is, the fluid tube configured to discharge the hydraulic fluid may be connected to a portion other than the operation fluid tank, for example, the fluid tube may be connected to a suction portion of the hydraulic pump (a portion configured to suck the operation fluid), and the fluid tube may be connected to other portions. In the embodiment described above, the control valve is a three-position switch valve. However, the number of switching positions is not limited, and the control valve may be constituted of a two-position switch valve, a four-position switch valve, or other switch valves. In the embodiment described above, the hydraulic pump is constituted of a constant-displacement pump. However, the hydraulic pump may be constituted of a variable displacement pump configured to move a swash plate to change a discharge amount, or may be constituted of another hydraulic pump, for example. In addition, the first hydraulic actuator, the second hydraulic actuator, the third hydraulic actuator, the first control valve, the second control valve, and the third control valve are not limited to the examples of the embodiments described above, and it is only required to be provided in the working machine 1. In addition, a pressure increasing portion 130 may be added to the hydraulic system for the working machine of The pressure increasing portion 130 is a portion configured to increase a pressure of the first fluid tube 81. In other words, the pressure increasing portion 130 increases the pressure of the fluid tube (a center fluid tube 75, the center fluid tube 72, the fluid tube 24 The center fluid tube 75 is an fluid tube connected to the second control valve 20C and communicated with the center fluid tube 72. The center fluid tube 75 and the fluid tube 24 The pressure increasing portion 130 includes the check valve 19 In particular, the check valve 19 The setting member 19 Thus, in the case where the first control valve 20B is set to the second position 20 That is, since the pressure of the first fluid tube 81 through which the return fluid flows can be increased, it is possible to facilitate the return fluid applied to the center fluid tube 72 through the confluent portion 93 to easily flow into the third fluid tube 90. The oil cooler 28 is provided in the middle portion of the discharge fluid tube 24 Thus, in the case where the first control valve 20B is set to the second position 20 As the result, the return fluid applied to the center fluid tube 72 through the confluent portion 93 is facilitated to easily flow into the third fluid tube 90. The return fluid that has passed through the third fluid tube 90 passes through the third input port 42 In addition, in the modified example, the first fluid tube is the return fluid tube 61. That is, in the case of the modified example, the return fluid (a first fluid tube) 61 has a second connection fluid tube 21 The fluid tube (a third fluid tube) 190 is a fluid tube through which the return fluid is returned to the first control valve 20A again, the return fluid passing through the return fluid tube (a first fluid tube) 61 and flowing from the first control valve 20A to the second control valve 20B. In particular, the fluid tube 190 is a fluid tube through which the return fluid is returned to an input port (a first input port 46 For example, in the case where the first control valve 20A is in the first position 20 In other words, in the case where the first control valve 20A is in the first position 20 According to the above description, in the case where the first control valve 20A is set to the first position 20 In addition, in the case where the first control valve 20A is set to the first position 20 After passing through the confluent portion 63, the return fluid flowing into the external fluid tube 61 In this manner, the return fluid in the return fluid tube (a first fluid tube) 61 returns to the first control valve 20A again through the center fluid tube (a second fluid tube) 51 and the fluid tube (a third fluid tube) 190, and thus the first hydraulic actuator 14 can be operated smoothly. In addition, in the hydraulic system the hydraulic circuit) including the pressure increasing portion 130, the third fluid tubes 90 and 190 may be provided to the control valve arranged on the most downstream side of the plurality of control valves 20 as described above. A hydraulic system includes a hydraulic pump to output an operation fluid, first and second hydraulic devices to be operated by the operation fluid, first and second control valves to control the first and second hydraulic device, respectively, first and second communication tubes connecting the first hydraulic device to the first control valve, a supply fluid tube connecting the first control valve to the second control valve, the supply fluid tube being configured to supply the return fluid to the second control valve, first and second connection fluid tubes disposed on the first control valve, a discharge fluid tube connected to the first control valve, first and second branching fluid tubes branched from the first and second connection fluid tubes, respectively, first and second throttles disposed on the first and second branching fluid tubes, respectively, the second throttle being smaller than the first throttle. 1. A hydraulic system of a working machine comprising:
a hydraulic pump to output an operation fluid; a first hydraulic device to be operated by the operation fluid; a second hydraulic device other than the first hydraulic device, the second hydraulic device being configured to be operated by the operation fluid; a first control valve to control the first hydraulic device; a second control valve disposed on a downstream side of the first control valve and configured to control the second hydraulic device; a first communication tube connecting the first hydraulic device to the first control valve, the first communication tube being configured to supply a return fluid that returns from the first hydraulic device to the first control valve; a second communication tube other than the first communication tube, the second communication tube connecting the first hydraulic device to the first control valve and being configured to supply the return fluid that returns from the first hydraulic device to the first control valve; a supply fluid tube connecting the first control valve to the second control valve, the supply fluid tube being configured to supply the return fluid to the second control valve; a first connection fluid tube disposed on the first control valve, the first connection fluid tube connecting the first communication tube to the supply fluid tube; a second connection fluid tube other than the first connection fluid tube, the second connection fluid tube being disposed on the first control valve and connecting the second communication tube to the supply fluid tube; a discharge fluid tube connected to the first control valve; a first branching fluid tube branched from the first connection fluid tube, the first branching fluid tube being connected to the discharge fluid tube; a second branching fluid tube branched from the second connection fluid tube, the second branching fluid tube being connected to the discharge fluid tube; a first throttle disposed on the first branching fluid tube; and a second throttle disposed on the second branching fluid tube, the second throttle being smaller than the first throttle. 2. The hydraulic system according to wherein the first hydraulic device is hydraulic cylinder configured to be stretched and shortened, to discharge the return fluid to the first communication tube in the shortening of the first hydraulic device, and to discharge the return fluid to the second communication tube in the stretching of the first hydraulic device, wherein the first connection fluid tube is connected to the first communication tube and supplies the return fluid that is discharged from the first communication tube, wherein the supply fluid tube is connected to the first connection fluid tube and supplies the return fluid to the second control valve, the return fluid being discharged from the first connection fluid tube, wherein the second connection fluid tube is connected to the second communication tube and supplies the return fluid that is discharged from the second communication tube, and wherein the supply fluid tube is connected to the second connection fluid tube and supplies the return fluid to the second control valve, the return fluid being discharged from the second connection fluid tube. 3. The hydraulic system according to CROSS-REFERENCE TO RELATED APPLICATION
BACKGROUND OF THE INVENTION
Field of the Invention
Discussion of the Background
SUMMARY OF THE INVENTION
DESCRIPTION OF THE DRAWINGS
DESCRIPTION OF THE EMBODIMENTS
First Embodiment
Second Embodiment
Third Embodiment









