SEPARATOR AND ELECTROCHEMICAL DEVICE HAVING SAME

22-09-2011 дата публикации
Номер:
WO2011115376A2
Принадлежит: 주식회사 엘지화학
Контакты:
Номер заявки: KR13-00-201193
Дата заявки: 28-02-2011

세퍼레이터 및 이를 구비한 전기화학소자
[1]

본 출원은 2010년 03월 17일에 출원된 한국특허출원 제10-2010-0023891호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.

[2]

[3]

본 발명은 리튬 이차전지와 같은 전기화학소자의 분리막 및 이를 구비한 전기화학소자에 관한 것으로서, 보다 상세하게는 다공성 기재 표면에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 포함하는 세퍼레이터 및 이를 구비한 전기화학소자에 관한 것이다.

[4]

최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 촛점이 되고 있다.

[5]

특히 현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.

[6]

리튬 이자전지와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이고, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.

[7]

이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 대한민국 특허공개공보 제10-2007-231호 등에는 다수의 기공을 갖는 다공성 기재(1)의 적어도 일면에, 무기물 입자(3)와 바인더 고분자(5)의 혼합물을 코팅하여 다공성 코팅층을 형성한 세퍼레이터(10)이 제안되었다(도 1 참조). 세퍼레이터에 있어서, 다공성 기재(1)에 코팅된 다공성 코팅층 내의 무기물 입자들(3)은 다공성 코팅층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 함으로서 전기화학소자 과열시 다공성 기재가 열 수축되는 것을 억제하게 된다. 바인더 고분자(5)는 무기물 입자들(3)을 서로 고정시키면서 다공성 기재(1)와 접촉하는 무기물 입자들(3)을 다공성 기재(1)에 고정시킨다.

[8]

이와 같이, 세퍼레이터에 코팅된 다공성 코팅층이 다공성 기재의 열 수축을 억제하기 위해서는 무기물 입자들이 소정 함량 이상으로 충분히 함유되어야 한다. 그러나, 무기물 입자들의 함량이 높아짐에 따라 바인더 고분자의 함량은 상대적으로 작아지게 되므로, 이에 따라 권취 등 전기화학소자의 조립과정에서 발생하는 응력에 의하여 다공성 코팅층의 무기물 입자들이 탈리될 수 있다. 탈리된 무기물 입자들은 전기화학소자의 국부적인 결점으로 작용하여 전기화학소자의 안전성에 악영향을 미치게 된다. 따라서, 다공성 기재에 대한 다공성 코팅층의 접착력을 강화시킬 수 있는 바인더 고분자의 개발이 필요하다.

[9]

한편, 다공성 코팅층의 패킹 밀도가 낮으면, 다공성 코팅층의 기능이 수행될 수 있도록 보다 두껍게 다공성 코팅층을 형성해야 하므로 전기화학소자의 용량을 증대시키기 위한 세퍼레이터의 박막화가 한계에 부딪히게 된다.

[10]

따라서, 본 발명이 이루고자 하는 기술적 과제는 전술한 문제점을 해결하여, 높은 패킹 밀도를 나타내어 안정성의 저해 없이 전지의 박막화 실현이 용이할 뿐만 아니라, 다공성 기재와의 접착력이 양호하여 전기화학소자의 조립 과정에서 무기물 입자가 탈리되는 문제점이 개선된 다공성 코팅층을 구비한 세퍼레이터 이를 구비한 전기화학소자를 제공하는데 있다.

[11]

상기 과제를 달성하기 위하여, 본 발명의 세퍼레이터는 (A) 기공들을 갖는 다공성 기재; 및 (B) 상기 다공성 기재의 적어도 일면 위에 무기물 입자들과 바인더 고분자의 혼합물을 포함하여 형성된 다공성 코팅층을 구비하고,

[12]

상기 바인더 고분자는 (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유한다.

[13]

본 발명의 세퍼레이터에 있어서, 제1 단량체 유니트의 함량은 공중합체 전체를 기준으로 10 내지 80 몰%이고, 상기 제2 단량체 유니트의 함량은 20 내지 90 몰%인 것이 바람직하다.

[14]

전술한 제1 단량체 유니트로는 2-(((부톡시아미노)카보닐)옥시)에틸(메타)아크릴레이트, 2-(디에틸아미노)에틸(메타)아크릴레이트, 2-(디메틸아미노)에틸(메타)아크릴레이트, 3-(디에틸아미노)프로필(메타)아크릴레이트, 3-(디메틸아미노)프로필(메타)아크릴레이트, 메틸 2-아세토아미도(메타)아크릴레이트, 2-(메타)아크릴아미도글리콜산, 2-(메타)아크릴아미도-2-메틸-1-프로판설폰산, (3-(메타)아크릴아미도프로필)트리메틸 암모늄 클로라이드, N-(메타)아크릴로일아미도-에톡시에탄올, 3-(메타)아크릴로일 아미노-1-프로판올, N-(부톡시메틸)(메타)아크릴로아마이드, N-tert-부틸(메타)아크릴아마이드, 디아세톤(메타)아크릴아마이드, N,N-디메틸(메타)아크릴아마이드, N-(이소부톡시메틸)아크릴아마이드, N-(이소프로필)(메타)아크릴아마이드, (메타)아크릴아마이드, N-페닐(메타)아크릴아마이드, N-(트리스(히드록시메틸)메틸)(메타)아크릴아마이드, N-N'-(1,3-페닐렌)디말레이미드, N-N'-(1,4-페닐렌)디말레이미드, N-N'-(1,2-디하이드록시에틸렌)비스아크릴아마이드, N-N'-에틸렌비스(메타)아크릴아마이드, N-비닐피롤리디논 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있고, 제2 단량체 유니트로는 (메틸)메타 아크릴레이트, 에틸(메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트, 테트라데실 (메타)아크릴레이트 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있다.

[15]

본 발명의 세퍼레이터에 있어서, 상기 공중합체는 (c) 시아노기를 포함하는 제3 단량체 유니트를 더 포함하는 것이 바람직한데, 바람직한 제3 단량체 유니트의 함량은 공중합체 전체를 기준으로 5 내지 50 몰%이다.

[16]

본 발명의 세퍼레이터에 있어서, 상기 공중합체는 가교성 관능기를 갖는 단량체 유니트를 포함함으로서 상기 가교성 관능기에 의해 서로 가교되는 것이 바람직하다.

[17]

본 발명의 세퍼레이터에 있어서, 상기 바인더 고분자의 함량은 상기 무기물 입자 100 중량부를 기준으로 2 내지 30 중량부인 것이 바람직하고, 세퍼레이터에 구비된 다공성 코팅층의 패킹 밀도인 D는 0.40×Dinorg ≤ D ≤ 0.70×Dinorg 의 범위 내인 것이 바람직하다. 여기서, D = (Sg-Fg)/(St-Et)이고, Sg는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 단위면적(m2)의 무게(g)이고, Fg는 다공성 기재의 단위면적(m2)의 무게(g)이고, St는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 두께(㎛)이고, Ft는 다공성 기재의 두께(㎛)이다.

[18]

이와 같은 본 발명의 세퍼레이터는 양극과 음극 사이에 개재되어 리튬 이차전자나 수퍼 캐패시터 소자와 같은 전기화학소자에 이용될 수 있다.

[19]

본 발명의 세퍼레이터는 다공성 코팅층이 높은 패킹 밀도를 보이며, 다공성 기재에 대한 양호한 접착력을 나타낸다. 이에 따라 저항이 감소되고 안정성의 저해 없이 전기화학소자 박막화 실현이 용이하여 전기화학소자의 용량 증대가 가능하다. 또한, 열적, 기계적 충격에 대한 저항성이 커서 다공성 코팅층 내의 무기물 입자가 탈리되는 문제점이 개선된다.

[20]

명세서 내에 통합되어 있고 명세서의 일부를 구성하는 첨부도면은 발명의 현재의 바람직한 실시예를 예시하며, 다음의 바람직한 실시예의 상세한 설명과 함께 본 발명의 원리를 설명하는 역할을 할 것이다.

[21]

도 1은 다공성 코팅층을 구비한 세퍼레이터를 개략적으로 도시한 단면도이다.

[22]

이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.

[23]

본 발명의 세퍼레이터는 (A) 기공들을 갖는 다공성 기재; 및 (B) 상기 다공성 기재의 적어도 일면 위에 무기물 입자들과 바인더 고분자의 혼합물을 포함하여 형성된 다공성 코팅층을 구비하고, 상기 바인더 고분자는 (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유한다. 이와 같은 공중합체는 (제1 단량체 유니트)m-(제2 단량체 유니트)n (0<m<1, 0<n<1)로 표시될 수 있는데, 제1 단량체 유니트와 제2 단량체 유니트를 포함하는 공중합체라면, 랜덤 공중합체, 블록 공중합체 등 모든 공중합체의 형태가 포함된다.

[24]

공중합체에 포함된 제1 단량체 유니트와 제2 단량체 유니트는 무기물 간 또는 무기물과 다공성 기재 사이에 높은 접착력을 부여한다. 또한, 이를 이용하여 형성된 다공성 코팅층은 디펙트가 적고 높은 패킹 밀도를 보인다. 이에 따라 본 발명의 세퍼레이터를 이용하면 전지의 박막화 실현이 용이하며, 외부의 충격에도 안정성이 높으며 무기물 입자의 탈리. 현상이 개선된다.

[25]

측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트로는 2-(((부톡시아미노)카보닐)옥시)에틸(메타)아크릴레이트, 2-(디에틸아미노)에틸(메타)아크릴레이트, 2-(디메틸아미노)에틸(메타)아크릴레이트, 3-(디에틸아미노)프로필(메타)아크릴레이트, 3-(디메틸아미노)프로필(메타)아크릴레이트, 메틸 2-아세토아미도(메타)아크릴레이트, 2-(메타)아크릴아미도글리콜산, 2-(메타)아크릴아미도-2-메틸-1-프로판설폰산, (3-(메타)아크릴아미도프로필)트리메틸 암모늄 클로라이드, N-(메타)아크릴로일아미도-에톡시에탄올, 3-(메타)아크릴로일 아미노-1-프로판올, N-(부톡시메틸)(메타)아크릴로아마이드, N-tert-부틸(메타)아크릴아마이드, 디아세톤(메타)아크릴아마이드, N,N-디메틸(메타)아크릴아마이드, N-(이소부톡시메틸)아크릴아마이드, N-(이소프로필)(메타)아크릴아마이드, (메타)아크릴아마이드, N-페닐(메타)아크릴아마이드, N-(트리스(히드록시메틸)메틸)(메타)아크릴아마이드, N-N'-(1,3-페닐렌)디말레이미드, N-N'-(1,4-페닐렌)디말레이미드, N-N'-(1,2-디하이드록시에틸렌)비스아크릴아마이드, N-N'-에틸렌비스(메타)아크릴아마이드, N-비닐피롤리디논 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있다. 전술한 제1 단량체 유니트는 아크릴계 단량체 유니트인 것이 바람직하다.

[26]

또한, 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트로는 (메틸)메타 아크릴레이트, 에틸(메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트, 테트라데실 (메타)아크릴레이트 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있다. 제2 단량체 유니트의 알킬기에 포함된 탄소수가 14를 초과하면, 알킬기가 지나치게 길어져서 비극성도가 커지게 되므로 다공성 코팅층의 패킹 밀도가 저하될 수 있다.

[27]

본 발명의 세퍼레이터에 있어서, 제1 단량체 유니트의 함량은 공중합체 전체를 기준으로 10 내지 80 몰% 바람직하며, 15 내지 80 몰%인 것이 더욱 바람직하다. 그 함량이 10 몰% 미만이면 다공성 코팅층의 패킹 밀도와 접착력이 저하될 수 있고, 그 함량이 80 몰%를 초과하면 다공성 코팅층의 패킹 밀도가 과대하게 증가함에 따라 전기저항이 지나치게 높아질 수 있다. 한편, 제2 단량체 유니트의 함량은 공중합체 전체를 기준으로 20 내지 90 몰%인 것이 바람직하다. 그 함량이 20 몰% 미만이면 다공성 기재와의 접착력이 저하될 수 있고, 그 함량이 90 몰%를 초과하면 제1 단량체 유니트의 함량이 낮아짐에 따라 다공성 코팅층의 패킹성이 저하될 수 있다.

[28]

본 발명의 세퍼레이터에 있어서, 상기 공중합체는 (c) 시아노기를 포함하는 제3 단량체 유니트를 더 포함하는 것이 바람직한데, 이러한 제3 단량체 유니트로는 에틸 시스-(베타-시아노)(메타)아크릴레이트, (메타)아크릴로니트릴, 2-(비닐옥시)에탄니트릴, 2-(비닐옥시)프로판니트릴, 시아노메틸(메타)아크릴레이트, 시아노에틸(메타)아크릴레이트, 시아노프로필(메타)아크릴레이트 등을 들 수 있다. 바람직한 제3 단량체 유니트의 함량은 공중합체 전체를 기준으로 5 내지 50 몰%이다.

[29]

본 발명의 세퍼레이터에 있어서, 상기 공중합체는 가교성 관능기를 갖는 단량체 유니트를 포함함으로서 상기 가교성 관능기에 의해 서로 가교되는 것이 바람직하다. 가교성 관능기로는 히드록시기, 1차 아민기, 2차 아민기, 에시드기, 에폭시기, 옥세탄기, 이미다졸기, 옥사졸린기 등을 예시할 수 있는데, 이러한 가교성 관능기를 갖는 단량체를 예를 들어 1 내지 20 몰%를 더 공중합시킨 다음, 이소시아네이트 화합물, 에폭시 화합물, 옥세탄 화합물, 아지리딘 화합물, 메탈 킬레이팅제와 같은 경화제를 첨가하여 공중합체를 서로 가교시킬 수 있다.

[30]

이 외에도, 전술한 공중합체는 본 발명의 목적을 저해하지 않는 한도 내에서 다른 단량체 유니트를 더 포함할 수 있다. 예를 들어 세퍼레이터의 이온전도도를 향상시키기 위하여, 탄소수가 1 내지 8인 알콕시 디에틸렌글리콜 (메타)아크릴산 에스테르, 알콕시 트리에틸렌글리콜 (메타)아크릴산 에스테르, 알콕시 테트라에틸렌글리콜 (메타)아크릴산 에스테르, 페녹시 디에틸렌글리콜 (메타)아크릴산 에스테르, 알콕시 디프로필렌글리콜 (메타)아크릴산 에스테르, 알콕시 트리프로필렌글리콜 (메타)아크릴산 에스테르, 페녹시 디프로필렌글리콜 (메타)아크릴산 에스테르와 같은 (메타)아크릴산 알킬렌 옥사이드 부가물 등을 더 공중합시킬 수 있다.

[31]

바인더 고분자로는 본 발명의 목적을 저해하지 않는 한도 내에서 전술한 공중합체 외에 다른 바인더 고분자를 혼용하여 사용할 수 있음은 당업자에게 자명하다 할 것이다.

[32]

본 발명의 세퍼레이터에 있어서, 다공성 코팅층 형성에 사용되는 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우 전기화학소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있다.

[33]

또한, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.

[34]

전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합체를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zrx,Ti1-x)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, TiO2 등을 각각 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다

[35]

특히, 전술한 BaTiO3, Pb(Zrx,Ti1-x)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), 하프니아(HfO2)와 같은 무기물 입자들은 유전율 상수 100 이상인 고유전율 특성을 나타낼 뿐만 아니라, 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 양쪽 면 간에 전위차가 발생하는 압전성(piezoelectricity)을 가짐으로써, 외부 충격에 의한 양(兩) 전극의 내부 단락 발생을 방지하여 전기화학소자의 안전성 향상을 도모할 수 있다. 또한, 전술한 고유전율 무기물 입자와 리튬 이온 전달 능력을 갖는 무기물 입자들을 혼용할 경우 이들의 상승 효과는 배가될 수 있다.

[36]

본 발명에서 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다. 상기 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.

[37]

본 발명의 세퍼레이터에 있어서, 다공성 코팅층의 무기물 입자들의 평균 입경은 제한이 없으나, 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 가능한 한 0.001 내지 10㎛ 범위인 것이 바람직하다. 0.001㎛ 미만인 경우 분산성이 저하되어 세퍼레이터의 물성을 조절하기가 용이하지 않고, 10㎛를 초과하는 경우 다공성 코팅층의 두께가 증가하여 기계적 물성이 저하될 수 있으며, 또한 지나치게 큰 기공 크기로 인해 전지 충방전시 내부 단락이 일어날 확률이 높아진다.

[38]

본 발명에 따라 세퍼레이터에 코팅된 다공성 코팅층의 바인더 고분자의 함량은 무기물 입자 100 중량부를 기준으로 2 내지 30 중량부인 것이 바람직하고, 5 내지 15 중량부인 것이 더욱 바람직하다. 바인더 고분자의 함량이 2 중량부 미만이면 무기물의 탈리와 같은 문제점이 발생할 수 있고, 그 함량이 30 중량부를 초과하면 바인더 고분자가 다공성 기재의 공극을 막아 저항이 상승하며 다공성 코팅층의 다공도도 저하될 수 있다.

[39]

본 발명의 세퍼레이터에 있어서, 다공성 코팅층의 패킹 밀도 D는 다공성 기재의 단위면적((m2)당 1㎛의 높이에 로딩되는 다공성 코팅층의 밀도로 정의될 수 있는데, D는 0.40×Dinorg ≤ D ≤ 0.70×Dinorg 의 범위 내인 것이 바람직하다:

[40]

여기서, D = (Sg-Fg)/(St-Et)이고,

[41]

Sg는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 단위면적(m2)의 무게(g)이고,

[42]

Fg는 다공성 기재의 단위면적(m2)의 무게(g)이고,

[43]

St는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 두께(㎛)이고,

[44]

Ft는 다공성 기재의 두께(㎛)이고,

[45]

Dinorg은 사용된 무기물 입자의 밀도(g/m2×㎛)이다. 만일, 사용된 무기물 입자의 종류가 2종 이상이라면, 사용된 각각의 무기물 입자의 밀도와 사용 분율을 반영하여 Dinorg을 산출한다.

[46]

[47]

D가 전술한 하한치 미만이면 다공성 코팅층의 구조가 느슨해져서 다공성 기재의 열수축율 억제 기능이 저하될 수 있고, 기계적 충격에 대한 저항성도 저하될 우려가 있다. D가 전술한 상한치를 초과하면 패킹 밀도 증가에 의한 물성은 향상되나 다공성 코팅층의 다공도가 저하되어 세퍼레이터의 전기전도도가 저화될 수 있다.

[48]

무기물 입자와 바인더 고분자로 구성되는 다공성 코팅층의 두께는 특별한 제한이 없으나, 0.5 내지 10㎛ 범위가 바람직하다.

[49]

또한, 본 발명의 세퍼레이터에 있어서, 다수의 기공을 갖는 다공성 기재로는 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌 중 적어도 어느 하나로 형성된 다공성 기재와 같이 통상적으로 전기화학소자의 다공성 기재로 사용가능한 것이라면 모두 사용이 가능하다. 다공성 기재로는. 필름 형태나 부직포 형태를 모두 사용할 수 있다. 다공성 기재의 두께는 특별히 제한되지 않으나, 5 내지 50 ㎛가 바람직하고, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95%인 것이 바람직하다.

[50]

본 발명에 따라 다공성 코팅층이 코팅된 세퍼레이터의 바람직한 제조방법을 아래에 예시하나, 이에 한정되는 것은 아니다.

[51]

먼저, 전술한 제1 단량체 유니트 및 제2 단량체 유니트를 포함하는 공중합체 준비하고, 이를 용매에 용해시켜 바인더 고분자 용액을 제조한다.

[52]

이어서, 바인더 고분자의 용액에 무기물 입자들을 첨가하여 분산시킨다. 용매로는 사용하고자 하는 바인더 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합체 등이 있다. 바인더 고분자 용액에 무기물 입자들을 첨가한 후, 무기물 입자의 파쇄를 실시하는 것이 바람직하다. 이때 파쇄 시간은 1 내지 20 시간이 적절하며, 파쇄된 무기물 입자의 평균 입경은 상기에 언급된 바와 같이 0.001 내지 10㎛가 바람직하다. 파쇄 방법으로는 통상적인 방법을 사용할 수 있으며, 특히 볼밀(ball mill)법이 바람직하다.

[53]

그런 다음, 무기물 입자가 분산된 바인더 고분자의 용액을 10 내지 80%의 습도 조건 하에서 다공성 기재에 코팅하고 건조시킨다.

[54]

무기물 입자가 분산된 바인더 고분자의 용액을 다공성 기재상에 코팅하는 방법은 당 업계에 알려진 통상적인 코팅 방법을 사용할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식 등 다양한 방식을 이용할 수 있다. 또한, 다공성 코팅층은 다공성 기재의 양면 모두 또는 일면에만 선택적으로 형성할 수 있다.

[55]

이와 같이 제조된 본 발명의 세퍼레이터는 전기화학소자의 분리막(separator)으로 사용될 수 있다. 즉, 양극과 음극 사이에 개재시킨 분리막으로서 본 발명의 세퍼레이터가 유용하게 사용될 수 있다. 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.

[56]

전기화학소자는 당 기술 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면 양극과 음극 사이에 전술한 세퍼레이터를 개재(介在)시켜 라미네이션한 후 전해액을 주입함으로써 제조될 수 있다.

[57]

본 발명의 세퍼레이터와 함께 적용될 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 상기 전극활물질 중 양극활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물, 리튬철인산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.

[58]

본 발명에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6-, BF4-, Cl-, Br-, I-, ClO4-, AsF6-, CH3CO2-, CF3SO3-, N(CF3SO2)2-, C(CF2SO2)3-와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.

[59]

상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.

[60]

본 발명의 세퍼레이터를 전지로 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다. 본 발명의 세퍼레이터는 내필링성이 우수하므로, 전술한 전지 조립 공정에서 무기물 입자들이 잘 탈리되지 않는다.

[61]

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.

[62]

[63]

공중합체의 준비

[64]

하기 표 1에 기재된 단량체들을 기재된 함량(몰부)에 따라 투입하여 공중합체를 제조하였다.

[65]

표 1

단량체 종류공중합체 1공중합체 2공중합체 3공중합체 4공중합체 5공중합체 6
DMAAm40316020--
DMAEA204--35-
AN4015-101530
EA-4610663030
BA--102820
IBA--16--20
AA-444--
HBA----2-

[66]

[67]

상기 표 1에서, DMAAm은 N-N-디메틸아크릴아마이드(N,N-dimethylacrylamide)이고, DMAEA는 N-N-디메틸아미노에틸 아크릴레이트(N,N-dimethylaminoethyl acrylate)이고, AN은 아크릴로니트릴(acrylonitrlie)이고, EA는 에틸아크릴레이트(ethyl acrylate)이고, BA는 n-부틸 아크릴레이트(n-butyl acrlate)이고, IBA는 이소부틸아크릴레이트(isobutyl acrlate)이고, AA는 아크릴산(acrylic acid)이고, HBA는 하이드록시부틸아크릴레이트(hydroxybutyl acrlate)이다.

[68]

[69]

실시예 및 비교예

[70]

하기 표 2에 기재된 성분에 따라 아래와 같이 세퍼레이터를 제조하였다.

[71]

각각의 공중합체와 경화제를 아세톤에 용해시켜 바인더 고분자 용액을 제조하였다. 제조한 바인더 고분자 용액에 무기물 입자들을 바인더 고분자/경화제/무기물 입자 = 7.15/0.35/92.5의 중량비가 되도록 첨가하여 3시간 이상 볼밀법(ball mill)을 이용하여 무기물 입자를 파쇄 및 분산하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리의 무기물 입자의 입경은 ball mill에 사용되는 비드의 사이즈(입도) 및 ball mill 시간에 따라 제어할 수 있으나, 본 실시예 1에서는 약 400nm로 분쇄하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리를 두께 12㎛의 폴리에틸렌 다공성 막(기공도 45%)의 양면 또는 일면에 코팅하였다.

[72]

제조된 세퍼레이터를 50mm×50mm로 재단한 후 아래 방법에 따라 통기도, 열 수축율, 박리력(Peel strength), 다공성 코팅층의 패킹 밀도 D를 측정하여 하기 표 2에 나타냈다.

[73]

통기도는 세퍼레이터를 공기 100ml가 완전히 통과하는데 걸리는 시간(s)으로 평가하였다.

[74]

열수축율은 150도에서 1시간 동안 세퍼레이터를 보관한 후, 연신 방향의 세퍼레이터 열수출율을 측정하였다.

[75]

박리력은 양면 테이프를 이용하여 세퍼레이터를 유리판 위에 고정시킨 후, 노출된 다공성 코팅층에 테이프(3M 투명 테이프)를 견고히 보착시킨 다음, 이장강도 측정장비를 이용하여 테이프를 떼어내는데 필요한 힘(gf/15mm)으로 평가하였다

[76]

표 2

실시예비교예
12345671234
사용된 공중합체의 번호12234516PVdF-HFPPVdF-HFPPVdF-HFP
무기물 입자Al2O3Al2O3Al2O3Al2O3Al2O3Al2O3Al2O3+BaTiO3Al2O3Al2O3Al2O3Al2O3
경화제-epoxyepoxyepoxyepoxyisocyanate----
다공성 코팅층 형태(한면의 두께, ㎛)양면(3)양면(2)단면(2)양면(3)양면(2)양면(3)양면(2)양면(3)양면(4)양면(2)단면(3)
통기도(s/100ml)380364332420380395374345380323344
열수축율(%)<4<5<8<4<10<5<6>34>20>60>62
박리력(gf/15mm)6242445640436615171517
패킹밀도(D)0.59×Dinorg0.55×Dinorg0.51×Dinorg0.58×Dinorg0.46×Dinorg0.56×Dinorg0.55×Dinorg0.36×Dinorg0.39×Dinorg0.34×Dinorg0.37×Dinorg

[77]

[78]

음극의 제조

[79]

음극 활물질로 탄소 분말, 결합재로 폴리비닐리덴플로라이드(PVdF), 도전재로 카본 블랙 (carbon black)을 각각 96 중량%, 3 중량%, 1 중량%로 하여, 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10 ㎛인 음극 집전체인 구리(Cu) 박막에 도포, 건조를 통하여 음극을 제조한 후 롤 프레스(roll press)를 실시하였다.

[80]

양극의 제조

[81]

양극 활물질로 리튬 코발트 복합산화물 92 중량%, 도전재로 카본 블랙 (carbon black) 4 중량%, 결합제로 PVDF 4 중량%를 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 ㎛인 양극 집전체의 알루미늄(Al) 박막에 도포, 건조를 통하여 양극을 제조한 후 롤 프레스(roll press)를 실시하였다.

[82]

전지의 제조

[83]

이상 제조된 전극 및 하기 표 3의 세퍼레이터들을 stacking(스태킹)방식을 이용하여 조립하였으며, 조립된 전지에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC) = 1 / 2 (부피비), 리튬헥사플로로포스페이트 (LiPF6) 1몰)을 주입하였다.

[84]

제조한 전지에 대하여 핫 박스 테스트와 60℃에서의 사이클 성능을 테스트하였고, 그 결과를 각각 하기 표 3 및 표 4에 나타냈다.

[85]

표 3

실시예비교예
12345671234
150℃, 1시간
150℃, 2시간
160℃, 1시간폭발
160℃, 2시간폭발폭발폭발폭발

[86]

[87]

표 4

실시예비교예
사이클회수12345671234
10097%99%98%99%97%99%99%95%95%93%95%
20095%96%95%97%96%96%96%91%90%89%91%
30093%93%92%94%93%93%92%88%88%85%88%



[0000]

The separator of the present invention comprises: (A) a porous base having pores; and (B) a porous coating layer which is disposed on at least one surface of the porous base and formed to include a mixture of inorganic particles and a binder polymer, wherein the binder polymer comprises a copolymer containing: (a) a first monomer unit including at least one of an amine group or an amide group in a side chain; and (b) a second monomer unit made of (meta) acrylate having an alkyl group of carbon number 1 to 14. Since the porous coating layer included in the separator of the present invention shows high packing density, thinning of a battery can be easily implemented without hindering stability. Additionally, the porous coating layer has a high adhesive strength to the porous base, thereby solving the problem that inorganic particles in the porous coating layer are separated in an assembly process for an electrochemical device.

[1]



(A) 기공들을 갖는 다공성 기재; 및

(B) 상기 다공성 기재의 적어도 일면 위에 무기물 입자들과 바인더 고분자의 혼합물을 포함하여 형성된 다공성 코팅층을 구비하고,

상기 바인더 고분자는 (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유하는 세퍼레이터.

제 1항에 있어서,

상기 제1 단량체 유니트의 함량은 공중합체 전체를 기준으로 10 내지 80 몰%이고, 상기 제2 단량체 유니트의 함량은 20 내지 90 몰%인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 제1 단량체 유니트는 2-(((부톡시아미노)카보닐)옥시)에틸(메타)아크릴레이트, 2-(디에틸아미노)에틸(메타)아크릴레이트, 2-(디메틸아미노)에틸(메타)아크릴레이트, 3-(디에틸아미노)프로필(메타)아크릴레이트, 3-(디메틸아미노)프로필(메타)아크릴레이트, 메틸 2-아세토아미도(메타)아크릴레이트, 2-(메타)아크릴아미도글리콜산, 2-(메타)아크릴아미도-2-메틸-1-프로판설폰산, (3-(메타)아크릴아미도프로필)트리메틸 암모늄 클로라이드, N-(메타)아크릴로일아미도-에톡시에탄올, 3-(메타)아크릴로일 아미노-1-프로판올, N-(부톡시메틸)(메타)아크릴로아마이드, N-tert-부틸(메타)아크릴아마이드, 디아세톤(메타)아크릴아마이드, N,N-디메틸(메타)아크릴아마이드, N-(이소부톡시메틸)아크릴아마이드, N-(이소프로필)(메타)아크릴아마이드, (메타)아크릴아마이드, N-페닐(메타)아크릴아마이드, N-(트리스(히드록시메틸)메틸)(메타)아크릴아마이드, N-N'-(1,3-페닐렌)디말레이미드, N-N'-(1,4-페닐렌)디말레이미드, N-N'-(1,2-디하이드록시에틸렌)비스아크릴아마이드, N-N'-에틸렌비스(메타)아크릴아마이드 및 N-비닐피롤리디논으로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 제2 단량체 유니트는 (메틸)메타 아크릴레이트, 에틸(메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트 및 테트라데실 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 공중합체는 (c) 시아노기를 포함하는 제3 단량체 유니트를 더 포함하는 것을 특징으로 하는 세퍼레이터.

제 5항에 있어서,

상기 제3단량체 유니트의 함량은 공중합체 전체를 기준으로 5 내지 50 몰%인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 공중합체는 가교성 관능기를 갖는 단량체 유니트를 포함하고, 상기 가교성 관능기에 의해 서로 가교된 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 무기물 입자들의 평균 입경은 0.001 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 무기물 입자들은 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 특징으로 하는 세퍼레이터.

제 9항에 있어서,

상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zrx,Ti1-x)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 적어도 어느 어느 하나인 것을 특징으로 하는 세퍼레이터.

제 9항에 있어서,

상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 바인더 고분자의 함량은 상기 무기물 입자 100 중량부를 기준으로 2 내지 30 중량부인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 다공성 코팅층의 패킹 밀도 D는 0.40×Dinorg ≤ D ≤ 0.70×Dinorg의 범위 내인 것을 특징으로 하는 세퍼레이터:

여기서, D = (Sg-Fg)/(St-Et)이고,

Sg는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 단위면적(m2)의 무게(g)이고,

Fg는 다공성 기재의 단위면적(m2)의 무게(g)이고,

St는 다공성 코팅층이 다공성 기재에 형성된 세퍼레이터의 두께(㎛)이고,

Ft는 다공성 기재의 두께(㎛)이고,

Dinorg은 사용된 무기물 입자의 밀도(g/m2×㎛)이다.

제 1항에 있어서,

상기 다공성 코팅층의 두께는 0.5 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터.

제 1항에 있어서,

상기 다공성 기재는 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 적어도 어느 하나로 형성된 것을 특징으로 하는 세퍼레이터.

양극, 음극, 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전기화학소자에 있어서,

상기 분리막이 제 1항 내지 제 15항 중 어느 한 항의 세퍼레이터인 것을 특징으로 하는 전기화학소자.

제 16항에 있어서,

상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.