26-07-2018 дата публикации
Номер: US20180208412A1
Принадлежит:
A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip. 1. A sheath flow structure for suspending a particle in a sheath fluid , comprising:a primary sheath flow channel for conveying a sheath fluid;a sample inlet for injecting a particle into the sheath fluid conveyed through the primary sheath flow channel;a primary focusing region for focusing the sheath fluid around the particle in at least a first direction; anda secondary focusing region provided downstream of the primary focusing region for focusing the sheath fluid around the particle in at least a second direction different from the first direction.242-. (canceled) The present invention is a continuation of U.S. patent application Ser. No. 15/269,556, filed Sep. 19, 2016, which is a continuation of U.S. patent application Ser. No. 13/968,962, filed Aug. 16, 2013, now U.S. Pat. No. 9,446,912, which is a continuation of U.S. patent application Ser. No. 13/179,084, filed Jul. 8, 2011 and now U.S. Pat. No. 8,529,161, which is a continuation of U.S. patent application Ser. No. 12/610,753, now U.S. Pat. No. 7,997,831, entitled “Multilayer Hydrodynamic Sheath Flow Structure” and filed Nov. 2, 2009, which is a continuation application of U.S. patent application Ser. No. 11/998,557, now U.S. Pat. No. 7,611,309, entitled “Multilayer Hydrodynamic ...
Подробнее