Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 11792. Отображено 200.
29-02-2024 дата публикации

РЕАКТИВИРОВАННЫЕ КАТАЛИЗАТОРЫ ГИДРООЧИСТКИ ДЛЯ ПРИМЕНЕНИЯ В СНИЖЕНИИ ВЫБРОСОВ СЕРЫ

Номер: RU2814491C2

Изобретение относится к способу обработки газообразного потока в процессе обработки отходящих газов, при этом способ включает контактирование газообразного потока с катализатором, который был ранее использован в процессе гидроочистки, и который был реактивирован в процессе реактивации перед контактированием газообразного потока в процессе обработки отходящих газов, причем газообразный поток включает одно или более серосодержащих веществ, выбранных из группы, состоящей из элементарной серы (Sx), диоксида серы (SO2), карбонилсульфида (COS) и сероуглерода (CS2), и при этом при контактировании газообразного потока с реактивированным катализатором в присутствии водорода (H2) происходит превращение одного или более серосодержащих веществ в сероводород (H2S), и при этом катализатор включает либо кобальт и молибден, нанесенные на оксид алюминия, либо никель и молибден, нанесенные на оксид алюминия, и при этом процесс реактивации включает регенерацию или восстановление, и причем регенерация включает ...

Подробнее
21-05-2024 дата публикации

ТЕХНОЛОГИЯ ПОВЫШЕНИЯ ТЕПЛОТВОРНОЙ СПОСОБНОСТИ УГЛЕРОДСОДЕРЖАЩЕГО ТОПЛИВА

Номер: RU2819605C2

Изобретение относится к способу увеличения теплотворной способности углеродсодержащего топлива путем каталитической гидрогенизации и трансформации при температуре 400-700°С и нормальном давлении. Способ характеризуется тем, что в качестве катализатора используют оксиды или фториды урана и их смеси с вовлечением в процесс воды в количестве, необходимом для образования моноокиси углерода СО. При сжигании продуктов гидрогенизации теплотворная способность увеличивается на 25% по сравнению с исходным топливом. 2 з.п. ф-лы, 4 табл., 3 пр., 1 ил.

Подробнее
27-05-2016 дата публикации

КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА

Номер: RU2585610C2

Изобретение относится к пористому катализатору для получения водорода путем парового реформинга. Предлагаемый пористый катализатор содержит алюминий и магний, а также дополнительно содержит бор и никель. Бор присутствует в количестве 0,1-20 мас.% в расчете на общую массу катализатора. Данный пористый катализатор содержит поры, имеющие средний размер пор в интервале 0,1-50 нм. Предлагаемый катализатор обладает высокой каталитической активностью и стабильностью. Изобретение относится также к способу получения указанного катализатора и способу получения водорода по реакции парового реформинга в присутствии этого катализатора. 3 н. и 16 з.п. ф-лы, 8 табл., 4 ил., 13 пр.

Подробнее
05-08-2020 дата публикации

ДЕГИДРИРОВАНИЕ ЭТИЛБЕНЗОЛА С ПОЛУЧЕНИЕМ СТИРОЛА

Номер: RU2729274C2
Принадлежит: ХАЛЬДОР ТОПСЕЭ А/С (DK)

Изобретение относится к каталитической смеси для катализа, реакторной системе и способу дегидрирования этилбензола с получением стирола. Реакторная система включает реакторную установку, в которой размещается каталитическая смесь, и индукционную катушку с возможностью генерирования переменного магнитного поля внутри реакторной установки при подключении к источнику питания. Каталитическая смесь включает частицы катализатора, находящиеся в тесном контакте с ферромагнитным материалом, причем смесь содержит либо частицы катализатора и ферромагнитные частицы, смешанные и обработанные для предоставления тел каталитической смеси, либо тела каталитических частиц, смешанных с телами ферромагнитного материала, причем наименьший внешний размер тел находится в порядке около 1-2 мм или более, или ферромагнитный материал включает одну или несколько ферромагнитных макроскопических подложек, чувствительных к индукционному нагреву, которые являются ферромагнетиками при температурах вплоть до верхнего предела ...

Подробнее
27-06-2014 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛ-УГЛЕРОД СОДЕРЖАЩИХ ТЕЛ

Номер: RU2520874C2
Принадлежит: БАСФ КОРПОРЕЙШН (US)

Изобретение относится к производству металл-углерод содержащих тел. Описан способ производства металл-углерод содержащих тел, включающих ферромагнитные металлические частицы, капсулированные слоями графитового углерода, который включает пропитывание целлюлозных, целлюлозоподобных или углеводных тел или тел, полученных из них путем гидротермальной обработки, водным раствором по меньшей мере одного соединения металла, где металл или металлы выбраны из ферромагнитных металлов или сплавов, и последующую термическую карбонизацию пропитанных тел путем нагревания в инертной и практически лишенной кислорода атмосфере при температуре выше примерно 700°С с восстановлением по меньшей мере части по меньшей мере одного соединения металла до соответствующего металла или металлического сплава. Технический результат - получены каталитически активные тела. 2 н. и 13 з.п. ф-лы, 8 ил., 5 пр.

Подробнее
27-05-2014 дата публикации

КАТАЛИЗАТОРЫ

Номер: RU2517700C2

Изобретение относится к области катализа. Описаны способы приготовления предшественника катализатора, включающие на первой стадии приготовления пропитку частиц носителя для катализатора органическим соединением кобальта в пропиточной жидкости с образованием пропитанного промежуточного продукта, прокаливание пропитанного промежуточного продукта при температуре прокаливания не выше 400°C с получением прокаленного промежуточного продукта; и затем на второй стадии приготовления пропитку прокаленного промежуточного продукта первой стадии неорганической солью кобальта в пропиточной жидкости с образованием пропитанного носителя и прокаливание пропитанного носителя с получением предшественника катализатора, причем ни одну из неорганических солей кобальта, использованных на второй стадии приготовления, не используют на первой стадии приготовления. Описаны синтезы углеводородов в присутствии катализаторов, полученных описанным выше способом. Технический результат - увеличение активности катализатора ...

Подробнее
27-10-2014 дата публикации

СПОСОБ ПРОИЗВОДСТВА ВОДОРОДА, ПРЕДНАЗНАЧЕННОГО ДЛЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ

Номер: RU2532196C2
Принадлежит: ТИЙОДА КОРПОРЕЙШН (JP)

Изобретение относится к химической и автомобильной промышленности и может быть использовано при получении топлива для топливных ячеек и транспортных средств. Сначала получают гидрогенизированное ароматическое соединение в присутствии катализатора гидрогенизации; затем отделяют полученное соединение от реакционной смеси и очищают его. Очищенное соединение используют в качестве носителя водорода для его хранения и/или транспортировки. Для производства водорода проводят дегидрогенизацию гидрогенизированного ароматического соединения в присутствии катализатора дегидрогенизации. При гидрогенизации ароматического соединения используют реакционный газ, полученный посредством реакции риформинга и реакции конверсии, содержащий от 30 до 70 об.% водорода. В качестве ароматического соединения может быть использован толуол, а в качестве гидрогенизированного ароматического соединения - метилциклогексан. Одновременно с реакцией гидрогенизации ароматического соединения проводят реакцию метанизации остающегося ...

Подробнее
20-05-2014 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НИТРАТА МЕТАЛЛА НА ПОДЛОЖКЕ

Номер: RU2516467C2
Принадлежит: ДЖОНСОН МЭТТИ ПЛС (GB)

Изобретение относится к области катализаОписанпособ получения оксида металла на подложке и восстановленного оксида металла на подложке, пригодного для использования в качестве предшественника для катализатора или сорбента, включающий стадии: (i) импрегнирования материала подложки раствором нитрата металла в растворителе, (ii) выдерживания импрегнированного материала в газовой смеси, содержащей оксид азота, при температуре в пределах 0-150°C для удаления растворителя из импрегнированного материала с одновременным высушиванием и стабилизацией нитрата металла на подложке, с получением диспергированного на подложке нитрата металла и (iii) кальцинирования диспергированного на подложке нитрата металла для осуществления его разложения и образования оксида металла на подложке, где кальцинирование осуществляют в газовой смеси, которая состоит из одного или нескольких инертных газов и оксида азота и концентрация оксида азота в газовой смеси находится в пределах 0,001-15% об. Технический результат ...

Подробнее
24-03-2022 дата публикации

КАТАЛИЗАТОР НА ОСНОВЕ ФУРАНОВОГО СОЕДИНЕНИЯ И ЕГО ПРИМЕНЕНИЕ В СПОСОБЕ ГИДРООБРАБОТКИ И/ИЛИ ГИДРОКРЕКИНГА

Номер: RU2768503C2
Принадлежит: ИФП ЭНЕРЖИ НУВЕЛЛЬ (FR)

Изобретение относится к катализатору с добавкой фуранового соединения, к способу его получения и его применению в области гидрообработки и/или гидрокрекинга. Описан катализатор гидрообработки и/или гидрокрекинга углеводородных фракций, содержащий подложку на основе оксида алюминия, или оксида кремния, или алюмосиликата, по меньшей мере один элемент группы VIII, выбранный из кобальта и никеля, по меньшей мере один элемент группы VIB, выбранный из вольфрама и молибдена, и фурановое соединение, выбранное из фурфурилового спирта, 5-(гидроксиметил)фурфурола, 2-фуральдегида, 5-метил-2-фуральдегида, 2-ацетилфурана, метил-2-фуроата, фурфурилацетата, где содержание элемента группы VIB, выраженное в оксиде металла группы VIB, составляет от 5 до 40 мас.% от общего веса катализатора, а содержание элемента группы VIII, выраженное в оксиде металла группы VIII, составляет от 1 до 10 мас.% от общего веса катализатора, и где содержание фуранового соединения составляет от 1 до 45 мас.% от общей массы катализатора ...

Подробнее
14-07-2017 дата публикации

НИКЕЛЕВЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ АРЕНОВ

Номер: RU2625452C1

Изобретение относится к области каталитической химии, а именно разработке никелевого катализатора гидрирования аренов в наноразмерных системах, которое может быть использовано в химической промышленности, в частности при производстве циклогексана, циклогексанола, циклогесиламина и других продуктов гидрирования. Изобретение относится к катализатору гидрирования, содержащему соединение никеля(II) и восстановитель, при этом в качестве исходного соединения никеля(II) используют безводный бис(ацетилацетонат)никеля(II), а в качестве восстановителя - диэтилэтоксиалюминий (AlEt(OEt)) при следующем мольном соотношении компонентов: [Ni(acac)]:[AlEt(OEt)]=1:(2÷10). Технический результат заключается в разработке никелевого катализатора, обладающего высокой каталитической активностью. 7 табл., 36 пр.

Подробнее
27-08-2020 дата публикации

Номер: RU2019104306A3
Автор:
Принадлежит:

Подробнее
19-11-2020 дата публикации

Номер: RU2018133859A3
Автор:
Принадлежит:

Подробнее
17-01-2020 дата публикации

Номер: RU2018119337A3
Автор:
Принадлежит:

Подробнее
16-01-2020 дата публикации

Номер: RU2018109758A3
Автор:
Принадлежит:

Подробнее
27-08-2018 дата публикации

Номер: RU2016135789A3
Автор:
Принадлежит:

Подробнее
14-12-2018 дата публикации

Номер: RU2017100933A3
Автор:
Принадлежит:

Подробнее
14-07-2021 дата публикации

Номер: RU2018114650A3
Автор:
Принадлежит:

Подробнее
15-07-2022 дата публикации

СПОСОБ ПОЛУЧЕНИЯ МЕДЬ-НИКЕЛЬ-ОКСИД-УГЛЕРОДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Номер: RU2776277C1

Изобретение относится к способу получения медь-никель-оксид-углеродных композиционных материалов, пригодных в качестве катализаторов в реакциях органического синтеза. В способе получения медь-никель-оксид-углеродного композиционного материала осуществляют карбонизацию древесных отходов лесозаготавливающих производств размером 1-20 мм путем нагрева древесных отходов до температуры от 700 до 800°С в атмосфере инертного газа, выдерживания при конечной температуре нагрева в течение 10-120 мин, охлаждения полученного карбонизата до 500°С в атмосфере инертного газа, осуществления последующего охлаждения карбонизата до комнатной температуры в атмосфере воздуха. Карбонизат импрегнируют раствором нитрата меди (2) и/или никеля (2) в азотной кислоте с получением суспензии. Далее активируют указанную суспензию путем нагрева в реакторе до температуры 500-550°С и выдерживают ее при этой температуре. Осуществляют промывку полученного материала водой до нейтральной среды и сушку композиционного материала ...

Подробнее
07-09-2017 дата публикации

Способ и установка для получения высокооктановой синтетической бензиновой фракции из природного или попутного газов

Номер: RU2630307C1

Изобретение относится к нефте- и газохимии, а именно к способам получения углеводородов путем каталитической конверсии смеси, преимущественно содержащий СО, Н. Получаемые при этом жидкие углеводородные фракции могут быть использованы в качестве топлив, в том числе автомобильных, характеризующихся высокой экологической чистотой. Описан способ получения высокооктановой синтетической бензиновой фракции из природного или попутного газов с использованием бифункционального катализатора, включающий подачу углеводородного газа на установку, его разделение на два потока - технологический и энергетический, направление энергетического потока на сжигание, подогрев дымовыми газами узлов реакторного блока получения синтез-газа, очистку технологического потока углеводородного газа от сернистых соединений, получение синтез-газа высокотемпературным паровым риформингом углеводородного газа водяным паром, получение смеси жидких углеводородов и воды с последующим разделением на высокооктановую синтетическую ...

Подробнее
20-08-2003 дата публикации

КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ И ИХ КИСЛОРОДСОДЕРЖАЩИХ ПРОИЗВОДНЫХ ИЗ СИНТЕЗ-ГАЗА

Номер: RU2210432C1

Изобретение относится к катализаторам и способам получения углеводородов и их кислородсодержащих производных из смеси СО и водорода (синтез-газа). Предложен катализатор получения углеводородов и/или их кислородсодержащих производных из синтез-газа, содержащий не менее 0,4 г/см3 совокупности фаз, представляющей собой фазу каталитически активного металла, закрепленную на фазе подложки оксидной природы, оказывающей активное влияние на дисперсность фазы активного металла или другие ее физико-химические свойства, при этом тело катализатора имеет проницаемость не менее 5•10-15 м2. Предложен способ получения углеводородов и/или их кислородсодержащих производных, включающий пропускание синтез-газа через одно или несколько тел концентрированного проницаемого катализатора. При этом предпочтительно, чтобы один из линейных размеров тела катализатора был сопоставим с наименьшим линейным размером реактора. Технический результат: катализатор позволяет проводить синтез углеводородов и/или их кислородсодержащих ...

Подробнее
27-02-2013 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРА С ИСПОЛЬЗОВАНИЕМ КАТАЛИТИЧЕСКОЙ КОМПОЗИЦИИ И КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИКЕЛЯ

Номер: RU2476451C2

В настоящем изобретении разработан способ получения полимера сопряженного диена. Заявлен также состав используемой каталитической композиции. Способ получения полимера сопряженного диена включает полимеризацию сопряженного диенового мономера в присутствии каталитически эффективного количества каталитической композиции, образовавшейся путем смешения: (a) никельсодержащего соединения; (b) алкилирующего агента; (c) фторсодержащего соединения; (d) карбоновой кислоты; и (e) спирта, выбранного из группы, состоящей из алифатических спиртов, циклических спиртов, ненасыщенных спиртов, ароматических спиртов, гетероциклических спиртов и полициклических спиртов, причем указанную полимеризацию осуществляют в неполярном растворителе, молярное отношение алкилирующего агента к никельсодержащему соединению (алкилирующий агент/Ni) составляет приблизительно от 1:1 до 200:1, молярное отношение фторсодержащего соединения к никельсодержащему соединению (F/Ni) составляет приблизительно от 7:1 до 500:1, молярное ...

Подробнее
27-06-1999 дата публикации

НИКЕЛЕВЫЙ КАТАЛИЗАТОР НА НОСИТЕЛЕ ДЛЯ ПОЛУЧЕНИЯ БОГАТОГО ВОДОРОДОМ И/ИЛИ МОНООКИСЬЮ УГЛЕРОДА ГАЗА И СПОСОБ ПОЛУЧЕНИЯ УКАЗАННОГО ГАЗА

Номер: RU2132228C1
Принадлежит: Хальдор Топсеэ А/С (DK)

Описывается никелевый катализатор на носителе для получения богатого водородом и/или моноокисью углерода газа путем парового риформинга азотсодержащего углеводородного сырья, который дополнительно содержит медь при следующем соотношении компонентов, мас.%: никель - 5-50; медь - 0,03-0,5; носитель - остальное, и способ получения богатого водородом и/или моноокисью углерода газа путем пропускания смеси азотсодержащих углеводородов и пара и/или двуокиси углерода через катализаторный слой, включающий указанный никелево-медный катализатор на носителе, при повышенных температурах и под давлением с последующим выделением целевого продукта. Технический результат состоит в существенном снижении образования аммиака в процессе получения богатого водородом и/или моноокисью углерода газа путем парового рифоминга азотсодержащего углеводородного сырья и тем самым уменьшении общих производственных затрат. 2 с. и 1 з.п.ф-лы.

Подробнее
29-05-2023 дата публикации

СПОСОБ МЕХАНОХИМИЧЕСКОГО СИНТЕЗА НИКЕЛЕВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ

Номер: RU2796743C1

Изобретение относится к химической промышленности, а именно к механохимическому синтезу катализаторов гидрирования. Описан способ механохимического синтеза никелевого катализатора гидрирования, заключающийся в нанесении на 15,956-18,898 г носителя - силикагеля непосредственно в исходном сухом виде 23,402-26,344 г никеля (II) азотнокислого 6-водного, с помощью планетарной мельницы при расходуемой энергии 0,96-1,93 кДж/г.кат., что соответствует 40 Гц на частотном преобразователе и времени работы 60 и 120 с, при этом дополнительно к смеси никеля (II) азотнокислого 6 водного и носителя добавляют 23,402-42,3 г нитрата аммония, выдерживании при 170°С в течение 200 минут, кальцинировании при 470°С в течение не менее двух часов до прекращения изменения массы образца, восстановлении при 470°С, со скоростью нагрева 4°C/мин, в токе водорода со скоростью 30 см3/мин, после процедуры восстановления прекращении подачи водорода и отжиге катализатора в остаточной среде водорода при давлении, сниженном до ...

Подробнее
05-12-2023 дата публикации

Способ получения металл-оксид-углеродного композиционного материала из технической сажи после пиролиза отработанных автопокрышек

Номер: RU2808980C1

Изобретение относится к способу получения металл-оксид-углеродных композиционных материалов, использующихся в качестве катализаторов в реакциях органического синтеза и термолиза. В качестве углеродной основы используют техническую сажу в виде измельченной фракции с размерами частиц менее 1 мм, полученной при пиролизе отработанных автопокрышек и характеризующейся зольностью 10,1-15,8 мас.% и содержанием серы 1,0-2,7 мас.%. Проводят импрегнирование указанной сажи раствором нитрата металла (или смесью растворов нитратов металлов) в азотной кислоте с получением суспензии. Выдерживают суспензию при комнатной температуре в течение 30-180 мин, затем нагревают в реакторе со скоростью 120-600 °С/ч до температуры 650-800°С в инертной неокислительной атмосфере. Выдерживают в инертной неокислительной атмосфере при этой температуре в течение 15-120 мин до получения композиционного материала. Причем в качестве растворов нитрата металла в азотной кислоте используют раствор нитрата меди (II), и/или нитрата ...

Подробнее
10-04-2016 дата публикации

ПРОЦЕСС ПРОИЗВОДСТВА СИНТЕТИЧЕСКОГО МОНОКРИСТАЛЛИЧЕСКОГО АЛМАЗНОГО МАТЕРИАЛА

Номер: RU2580743C1

Изобретение относится к процессу синтеза множества синтетических монокристаллических алмазов. Способ включает формирование множества затравочных подушек, каждая из которых содержит множество затравочных монокристаллов алмаза, прикрепленных к инертному держателю или внедренных в него, загрузку источника углерода, металлического катализатора и множества затравочных подушек в капсулу, при этом, по меньшей мере, часть источника углерода располагается на расстоянии менее 0,1 мм от затравочных монокристаллов алмаза, загрузку капсулы в пресс высокого давления и высокой температуры (ВДВТ) и подвергание капсулы циклу ВДВТ-роста для выращивания монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза, причем цикл ВДВТ-роста включает инициирование ВДВТ-роста монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза путем увеличения давления и температуры, поддержание ВДВТ-роста монокристаллического алмазного материала на множестве затравочных ...

Подробнее
27-11-1996 дата публикации

СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Номер: RU2069774C1

Использование: в двигателе внутреннего сгорания. Сущность изобретения: на поверхности деталей камеры сгорания двигателя наносят катализатор, в качестве которого используют медь или оксид меди, или композицию, содержащую металл или оксид металла, выбранные из группы: марганец, никель, хром или их смесь в количестве 0,001 - 90,9 мас.%. Композиция может дополнительно содержать металл или его оксид, выбранные из группы: платина, палладий в количестве 0,0001 - 0,1 мас.%. Катализатор наносят на поверхности деталей камеры сгорания, контактирующие с топливом и/или топливовоздушный смесью , и/или с продуктами сгорания, толщиной 0,01 - 10 мкн. Предлагаемый способ с данным каталитическим покрытием уменьшает расход топлива на 5,5 - 10%, обеспечивает снижение нагарообразования и задымленность соответственно на 70 - 90% и на 46 - 70%, снижение содержания СО, NOx в продуктах сгорания соответственно на 20 - 29% и 20 - 35%, повышает мощность двигателя на 2,0 - 4,0%. 2 с. и 11 з. п. ф-лы, 1 табл.

Подробнее
22-11-2021 дата публикации

Способ очистки потоков насыщенных углеводородов от примесей

Номер: RU2760126C1

Изобретение относится к области очистки газовых смесей и может использоваться при добыче и переработке газа, на газоочистительных сооружениях и в других отраслях промышленности, которые требуют получения более чистого газового потока. Предложен способ очистки газовых потоков насыщенных углеводородов от оксидов азота, в том числе от N2O, в котором поток очищаемого газа пропускают через емкостный аппарат, заполненный катализатором, перед входом в реактор осуществляется подача водорода в очищаемый поток, при этом аппарат заполнен гетерогенным катализатором на основе оксида алюминия с нанесенными металлами, выбранными из группы: Pt, Pd, Pt/Pd и Ni, содержащим от 0,1 до 3% активного металла по массе, а остальное оксид алюминия в качестве связующего, причем поток пропускают при температуре от 150 до 280°С, давлении от 1,5 до 3,0 МПа, объемной скорости от 500 до 3000 ч-1, при этом перед пуском аппарата в работу проводят восстановление катализатора азотоводородной или метано-водородной смесью.

Подробнее
10-06-2019 дата публикации

КАТАЛИЗАТОР ДЛЯ ГИДРОГЕНИЗАЦИОННОЙ КОНВЕРСИИ ГЛИЦЕРИНА В ПРОСТЫЕ СПИРТЫ, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ГИДРОГЕНИЗАЦИОННОЙ КОНВЕРСИИ ГЛИЦЕРИНА В ПРОСТЫЕ СПИРТЫ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА

Номер: RU2691068C1

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит наночастицы никеля на носителе, в качестве которого взят пористый сульфатированный оксид алюминя с содержанием сульфата 2,0-7,2 мас.%, при следующем соотношении компонентов, мас.%: никель - 5-30, сульфатированный оксид алюминия - остальное. Катализатор готовят путем пропитки сульфатированного оксида алюминия водным раствором соединения никеля формулы Ni(NO)⋅6HO с последующей сушкой при температуре 110°С, прокаливанием при температуре 350°С и восстановлением в токе водорода при температуре 500°С. При этом сульфатированный оксид алюминия получают путем смешения водного раствора изопропилата алюминия азотной кислотой и обработки полученной смеси сульфатом аммония при температуре 90-95°С. Способ гидрогенизационной ...

Подробнее
01-08-2019 дата публикации

КАТАЛИТИЧЕСКИЕ КОМПОЗИЦИИ ФКК, СОДЕРЖАЩИЕ ОКСИД БОРА

Номер: RU2696280C1
Принадлежит: БАСФ КОРПОРЕЙШН (US)

Описаны композиции крекинга с флюидизированным катализатором (ФКК), способы производства и их применение. Каталитическая композиция крекинга с флюидизированным катализатором (ФКК) для крекинга углеводородов включает нецеолитный матричный компонент, оксид бора, пропитывающий матрицу, и крекирующие частицы, где нецеолитный матричный компонент включает алюмосиликат и крекирующие частицы включают цеолит и нецеолитный компонент. Каталитическая композиция ФКК способствует уменьшению выработки кокса и водорода во время крекинга металлсодержащего сырья ФКК, по сравнению с каталитической композицией ФКК без оксида бора, пропитывающего нецеолитную матрицу и крекирующие частицы, которые включают цеолит и нецеолитный компонент. Оксид бора пассивирует сырье ФКК, имеющее высокое содержание металлов во время ФКК. Каталитические композиции ФКК могут быть применены для крегинга углеводородного сырья, особенно сырья остатков вакуумной перегонки, содержащего высокие уровни V и Ni, что приводит к меньшим выходам ...

Подробнее
09-12-2021 дата публикации

Катализатор защитного слоя для реакторов гидрогенизационной переработки нефтяного сырья и способ его получения

Номер: RU2761528C1

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрогенизационной переработки нефтяных фракций и способам их получения. Описан катализатор защитного слоя для реакторов гидрогенизационной переработки нефтяного сырья на высокопористом ячеистом носителе, содержащего активные компоненты, который отличается тем, что включает привитый слой γ-оксида алюминия в количестве до 2,3-9% масс., имеющий мезопоры диаметром 3-7 нм и макропоры диаметром 800-2000 нм, содержащий в качестве активных компонентов молибден или вольфрам в виде фосфорно-молибденовой или фосфорно-вольфрамовой кислот в количестве 1,00-3,00% масс. в пересчете на оксиды, а также никель или кобальт в виде цитратов в количестве 0,35-1,05% масс. в пересчете на оксиды, катализатор имеет форму цилиндров диаметром 20-50 мм, высотой 10-30 мм с размером ячеек 0,8-2,5 мм. Также разработан способ получения катализатора. Технический результат - разработанный катализатор защитного слоя для реакторов гидрогенизационной ...

Подробнее
10-01-2008 дата публикации

ПЕРЕКРЕСТНОЕ СОЧЕТАНИЕ УГЛЕРОД-УГЛЕРОД, КАТАЛИЗИРУЕМОЕ ПЕРЕХОДНЫМИ МЕТАЛЛАМИ НА ТВЕРДЫХ НОСИТЕЛЯХ

Номер: RU2006122522A
Принадлежит:

... 1. Способ сочетания углеродсодержащих соединений, включающий реакцию (i) первого углеродсодержащего соединения со (ii) вторым углеродсодержащим соединением в присутствии (iii) металла палладия или никеля на твердом катализаторе, включающем соль щелочноземельного металла, и (iv) растворителя, включающего спирт. 2. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является арилгалогенид и указанным вторым углеродсодержащим соединением является арилборная кислота. 3. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является арилгалогенид и указанным вторым углеродсодержащим соединением является соединение, включающее винильную группу. 4. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является алкилгалогенид и указанным вторым углеродсодержащим соединением является соединение, включающее винильную группу. 5. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является арилгалогенид ...

Подробнее
24-01-2020 дата публикации

СПОСОБ И УСТРОЙСТВО ГИДРИРОВАНИЯ

Номер: RU2712090C1
Принадлежит: НЕСТЕ ОЙЙ (FI)

Настоящее изобретение относится к реакциям гидрирования различных фракций в переработке нефти. Изобретение раскрывает способ гидрирования углеводородного потока, содержащего олефиновые соединения, ароматические соединения или их комбинацию, включающий этапы: i) подачу углеводородного потока и водорода в первую реакционную зону установки гидрирования, ii) гидрирование в первой реакционной зоне по меньшей мере части ароматических соединений, олефиновых соединений или их комбинации в присутствии катализатора с получением первого промежуточного продукта, iii) охлаждение и разделение первого промежуточного продукта на первый промежуточный жидкий поток и первый промежуточный газовый поток, iv) перемещение первого промежуточного газового потока во вторую реакционную зону установки гидрирования, v) разделение первого промежуточного жидкого потока на первую часть первого промежуточного жидкого потока и вторую часть первого промежуточного жидкого потока и a) перемещение первой части первого промежуточного ...

Подробнее
25-11-2024 дата публикации

Способ гидрирования алкиленароматических соединений

Номер: RU2830734C1

Изобретение относится к способу гидрирования алкиленароматических соединений с получением полностью гидрированных циклических углеводородов. Описан способ гидрирования алкиленароматических соединений, заключающийся в непрерывной подаче смеси алкиленароматического соединения и водорода при нагревании на катализатор, представляющий собой наночастицы никеля, нанесенные на оксид алюминия. Наночастицы никеля наносят путем пропитки оксида алюминия при кипячении до обесцвечивания раствором гексагидрата хлорида никеля и карбамида в 7 масс.% водном растворе аммиака, добавления борной кислоты и кипячения в течение 2 часов при массовом соотношении оксида алюминия : гексагидрата хлорида никеля : карбамида : борной кислоты, равном 1:2:2,4:0,6, и последующего восстановления адсорбированного хлорида никеля при температуре 80-100°С в течение 1 часа смесью 0,025 масс.% водного раствора боргидрида натрия и гидразин моногидрата, взятых в мольном соотношении 4:3, с осушкой катализатора в токе водорода при ...

Подробнее
12-02-2020 дата публикации

Состав и способ приготовления катализатора гидрирования диолефинов

Номер: RU2714138C1

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций, а именно, к катализаторам защитного слоя для гидрирования диолефинов и к способам их приготовления. Предлагается катализатор гидрирования диолефинов для использования в составе защитного слоя в процессе гидрооблагораживания нефтяных дистиллятов, состоящий из модифицированного носителя, приготовленного на основе высокопористого ячеистого материала с ячеистостью 10-30 меш и привитого слоя гамма-оксида алюминия, а также нанесенных на носитель биметаллических комплексных соединений металлов VIII и VI групп. Катализатор отличается тем, что высокопористый ячеистый материал имеет открытую пористость не менее 50%, в качестве биметаллических комплексных соединений металлов VIII и VI групп катализатор включает соединения никеля или кобальта и молибдена, а содержание компонентов в прокаленном при температуре 550°С катализаторе составляет, мас.%: высокопористый ячеистый материал ...

Подробнее
16-05-2018 дата публикации

Способ получения вторичных аминов

Номер: RU2654066C1

Изобретение относится к улучшенному способу получения вторичных аминов. Получаемые амины находят применение в фармацевтической, сельскохозяйственной промышленности и при производстве пластических масс. Способ заключается в том, что проводят гидрирование карбонитрилов молекулярным водородом в присутствии наноразмерного никелевого катализатора, при котором наночастицы никеля иммобилизованы на цеолит, преимущественно марки NaX. Согласно способу реагенты подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 1500-2000 мл/(кг⋅ч), второй - нитрил, подаваемый с расходом 0,9-2,7 мл/(кг⋅ч), и реакцию ведут при температуре 200-220°С. Катализатор получают путем пропитки цеолита водным раствором гексагидрата хлорида никеля, с последующим восстановлением ионов никеля тетрагидроборатом натрия в воде и сушкой полученного катализатора в потоке водорода непосредственно перед реакцией. Способ позволяет получить вторичные амины симметричного строения с высоким ...

Подробнее
27-05-2015 дата публикации

КАТАЛИЗАТОРЫ

Номер: RU2551433C1

Предложен способ получения предшественника катализатора. Способ получения предшественника катализатора включает: получение суспензии, включающей жидкость-носитель, растворимую соль металла, частицы нерастворимой неорганической соли металла и частицы и/или одно или более тел предварительно сформованных носителей катализатора, с осаждением металла из нерастворимой соли металла на частицах носителя за счет хемосорбции, и с осаждением металла из растворимой соли металла внутри и/или на частицах носителя за счет пропитки, при этом хемосорбция и пропитка осуществляются одновременно, и металлы в нерастворимой неорганической соли металла и в растворимой соли металла являются одними и теми же, и представляют собой Со или Ni, и при этом указанный металл является активным компонентом катализатора, с образованием обработанного носителя катализатора, и удаление жидкости-носителя из суспензии с получением высушенного обработанного носителя катализатора, который или непосредственно представляет собой ...

Подробнее
10-07-2018 дата публикации

Никель-графеновый катализатор гидрирования и способ его получения

Номер: RU2660232C1

Изобретение относится к никель-графеновому катализатору гидрирования, содержащему 10-25 мас. % нанокластеров никеля размером 2-5 нм, нанесенных на углеродные наночастицы. Причем в качестве носителя он содержит восстановленный оксид графита, представляющий собой чешуйки восстановленного оксида графита. Также изобретение относится к способу получения никель-графенового катализатора гидрирования, включающему диспергирование водного раствора соли никеля Ni(СНСОО)в водной суспензии оксида графита. При этом водную дисперсию оксид графита - Ni(СНСОО)сушат лиофильно с последующим одновременным восстановлением оксида графита и никеля(II) водородом при 300-500°С. Технический результат – высокая эффективность катализатора с улучшением его функциональных характеристик (равномерно распределены нанометровые частицы никеля на поверхности носителя). 2 н.п. ф-лы, 2 ил., 4 пр.

Подробнее
20-10-2012 дата публикации

ФОРМОВАННЫЕ ГЕТЕРОГЕННЫЕ КАТАЛИЗАТОРЫ

Номер: RU2011114153A
Принадлежит:

... 1. Каталитический элемент в форме цилиндра, имеющего длину С и диаметр D, который имеет 3-10 отверстий, проходящих насквозь, причем указанный цилиндр имеет куполообразные концы отрезков А и В, так что (A+B+C)/D находится в интервале 0,50-2,00, и (А+В)/С находится в интервале 0,40-5,00. ! 2. Каталитический элемент по п.1, в котором А и В являются одинаковыми. ! 3. Каталитический элемент по п.1 или 2, в котором (A+B+C)/D находится в интервале 0,75-1,50. ! 4. Каталитический элемент по п.1, в котором (A+B)/C находится в интервале 0,4-3,00. ! 5. Каталитический элемент по п.1, имеющий 3-6 отверстий, проходящих насквозь. ! 6. Каталитический элемент по п.1, в котором отверстие или отверстия имеют круглое поперечное сечение и независимо имеют диаметр d' в интервале 0,05D-0,5D. ! 7. Каталитический элемент по п.1, в котором наружная поверхность элемента имеет одну или более канавок, проходящих вдоль его длины. ! 8. Каталитический элемент по п.7, в котором поверхность имеет 2-12 канавок. ! 9. Каталитический ...

Подробнее
20-03-2012 дата публикации

КАТАЛИЗАТОР СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2010137113A
Принадлежит:

... 1. Катализатор, включающий никель на носителе-оксиде алюминия, причем вышеуказанный алюминийоксидный носитель имеет в прокаленном состоянии дифрактограмму, полученную дифрактометрией рентгеновских лучей, включающую спектральные линии, которые соответствуют следующим межплоскостным расстояниям d и относительным интенсивностям l/l0: ! Межплоскостные расстояния, d (10-10 м) Относительные интенсивности, I/I0 (%) 5,03-5,22 1-5 4,56-4,60 1-10 4,06-4,10 1-5 2,80-2,85 5-20 2,73 15-35 2,60 5-10 2,43 35-40 2,29 30-40 1,99 60-95 1,95 25-50 1,79 1-10 1,53 5-10 1,51 5-10 1,41 40-60 1,39 100 1,23-1,26 1-5 1,14 5-10 1,11 1-5 1,04 1-5 1 5-10 0,97 1-5 ! 2. Катализатор по п.1, в котором алюминийоксидный носитель имеет в прокаленном состоянии дифрактограмму, включающую только спектральные линии, которые соответствуют следующим межплоскостным расстояниям и относительным интенсивностям: ! Межплоскостные расстояния, d (10-10 м) Относительные интенсивности, I/I0 (%) 5,41-5,47 0-5 5,03-5,22 1-54,56-4,60 1-10 4,06 ...

Подробнее
13-03-2018 дата публикации

КАТАЛИЗАТОР ДЛЯ ПИРОЛИЗА СЫРЬЯ

Номер: RU2016135789A
Принадлежит:

Подробнее
20-07-2015 дата публикации

МОДУЛИ И СПОСОБЫ ПОДГОТОВКИ ТОПЛИВА

Номер: RU2013157321A
Принадлежит:

... 1. Модуль подготовки топлива для обработки сгораемого топлива перед сжиганием, включающий:корпус, имеющий впускной и выпускной концы и определяющий сквозной канал для топлива между ними; ивставной блок подготовки топлива, расположенный в сквозном канале, таким образом, что топливо, протекающее в канале между впускным и выпускным концами корпуса, вступает в контакт с блоком подготовки топлива, причемвставной блок подготовки топлива включает:(i) массу каталитических металлических элементов, которые составляет каталитический металл;(ii) массу твердого полимерного каталитического материала в форме пластинок, диспергированных в массе каталитических металлических материалов, причем пластинки из твердого полимерного каталитического материала составляют полимерный связующий материал и каталитическую смесь твердых частиц цеолита и твердых частиц редкоземельного металла или оксида металла, смешанных в твердом полимерном связующем материале.2. Модуль подготовки топлива по п.1, дополнительно включающий ...

Подробнее
10-04-2013 дата публикации

КАТАЛИЗАТОРЫ

Номер: RU2011135465A
Принадлежит:

... 1. Способ приготовления предшественника катализатора, который включаетна первой стадии приготовления пропитку частиц носителя для катализатора органическим соединением кобальта или никеля в пропиточной жидкости с образованием пропитанного промежуточного продукта, прокаливание пропитанного промежуточного продукта при температуре прокаливания не выше 400°С с получением прокаленного промежуточного продукта; изатем на второй стадии приготовления пропитку прокаленного промежуточного продукта первой стадии неорганической солью кобальта или никеля в пропиточной жидкости с образованием пропитанного носителя и прокаливание пропитанного носителя с получением предшественника катализатора, отличающийся тем, что ни одну из неорганических солей кобальта или никеля, использованных на второй стадии приготовления, не используют на первой стадии пропитки.2. Способ по п.1, в котором ни одно из органических соединений кобальта или никеля первой стадии приготовления не используют на второй стадии приготовления ...

Подробнее
10-05-2013 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НИТРАТА МЕТАЛЛА НА ПОДЛОЖКЕ

Номер: RU2011143141A
Принадлежит:

... 1. Способ получения нитрата металла на подложке, пригодного для использования в качестве предшественника для катализатора или сорбента, включающий стадии:(i) импрегнирования материала подложки нитратом металла и(ii) выдерживания импрегнированного материала в газовой смеси, содержащей оксид азота, при температуре в пределах 0-150°C, с получением диспергированного на подложке нитрата металла и(iii) дополнительно включающий стадию кальцинирования нитрата металла для осуществления его разложения и образования оксида металла на подложке, где кальцинирование осуществляют в газовой смеси, которая содержит оксид азота, закись азота, или их смесь и имеет содержание кислорода ≤5 об.%.2. Способ по п.1, в котором раствор нитрата металла содержит нитрат переходного металла.3. Способ по п.2, в котором диспергированный на подложке нитрат металла содержит нитрат металла формулы M(OH)(NO), в которой x, y и z представляют собой целые числа ≥1 и M представляет собой переходной металл, предпочтительно железо ...

Подробнее
27-04-2013 дата публикации

КОМПОЗИЦИЯ, ПРОПИТАННАЯ МАСЛОМ И ПОЛЯРНОЙ ДОБАВКОЙ, ПРИГОДНАЯ В КАТАЛИТИЧЕСКОЙ ГИДРОПЕРЕРАБОТКЕ УГЛЕВОДОРОДОВ, СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО КАТАЛИЗАТОРА И СПОСОБ ПРИМЕНЕНИЯ ТАКОГО КАТАЛИЗАТОРА

Номер: RU2011142180A
Принадлежит:

... 1. Композиция, содержащая: материал носителя, который содержит предшественник активного металла, углеводородное масло и полярную добавку, имеющую дипольный момент, по меньшей мере, 0,45, где массовое отношение упомянутого углеводородного масла к полярной добавке находится в диапазоне вплоть до 10:1 (верхняя граница), и где упомянутый материал носителя затем обрабатывают газом, содержащим водород.2. Композиция, содержащая: материал носителя, содержащий металлический компонент из раствора соли металла, углеводородное масло и полярную добавку, имеющую дипольный момент, по меньшей мере, 0,45, где массовое отношение упомянутого углеводородного масла к полярной добавке находится в диапазоне вплоть до 10:1 (верхняя граница).3. Композиция по п.1 или 2, где упомянутая полярная добавка имеет точку кипения в интервале от 50°С до 275°С.4. Композиция по п.1 или 2, где упомянутую полярную добавку выбирают из группы гетеросоединений, состоящей из гетеросоединений.5. Композиция по п.4, где упомянутая группа ...

Подробнее
20-07-2018 дата публикации

СПОСОБ АКТИВАЦИИ КАТАЛИЗАТОРОВ ГИДРООБРАБОТКИ

Номер: RU2016152223A
Принадлежит:

Подробнее
27-02-2015 дата публикации

КАТАЛИТИЧЕСКОЕ ГАЗОФАЗНОЕ ФТОРИРОВАНИЕ

Номер: RU2013138734A
Принадлежит:

... 1. Способ фторирования, который содержит:- стадию активации, содержащую контактирование катализатора фторирования с потоком газа, содержащего окислитель, в течение, по меньшей мере, одного часа; и- по меньшей мере, одну реакционную стадию, содержащую взаимодействие хлорированного соединения с фторидом водорода в газовой фазе в присутствии катализатора фторирования с тем, чтобы получить фторированное соединение.2. Способ по п. 1, который содержит множество реакционных стадий, чередующихся с множеством стадий регенерации, в котором реакционные стадии содержат взаимодействие хлорированного соединения с фторидом водорода в газовой фазе в присутствии катализатора фторирования, и стадии регенерации содержат контактирование катализатора фторирования с потоком газа, содержащим окислитель.3. Способ по любому одному из пп. 1 или 2, в котором потоком газа, содержащим окислитель, стадии активации и/или стадий регенерации является кислородсодержащий газовый поток.4. Способ по любому одному из пп. 1 ...

Подробнее
10-11-2008 дата публикации

ПРОМОТИРОВАННЫЙ КАТАЛИЗАТОР СИНТЕЗА ФИШЕРА-ТРОПША, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ СИНТЕЗА УГЛЕВОДОРОДОВ ФИШЕРА-ТРОПША

Номер: RU2007115057A
Принадлежит:

... 1. Нанесенный на носитель катализатор синтеза Фишера-Тропша, который включает каталитический материал, промотор и материал носителя; причем каталитический материал содержит кобальт в количестве, по меньшей мере, 4% от массы катализатора и, по меньшей мере, часть кобальта обладает каталитической активностью в синтезе Фишера-Тропша; промотор содержит никель, причем количество присутствующего никеля меньше, чем количество кобальта; и материал носителя содержит оксид металла, выбранного или из алюминия, или титана, или циркония. 2. Катализатор по п.1, в котором материал носителя состоит из оксида металла, выбранного или из алюминия, или титана, или циркония. 3. Катализатор по п.1 или 2, в котором материал носителя, по существу, состоит из оксида металла, выбранного или из алюминия, или титана, или циркония. 4. Катализатор по п.1, в котором материал носителя представляет собой альфа- или гамма-оксид алюминия, предпочтительно альфа-оксид алюминия. 5. Катализатор по п.1, в котором материал носителя ...

Подробнее
11-03-2025 дата публикации

Способ получения водорода и углеродных нановолокон и установка для осуществления такого способа

Номер: RU2836235C1

Группа изобретений относится к химической промышленности. Для получения водорода и углеродных нановолокон проводят каталитический пиролиз легких углеводородов. Сырье, предварительно очищенное от каталитических ядов и механических примесей и разогретое до 500-750 °С, поступает в реактор кипящего слоя, куда также непрерывно подается катализатор, содержащий переходные металлы подгруппы железа, с размерами гранул от 0,1 до 3 мм. Реакция происходит при температуре 500-750 °С и давлении от 1 до 10 атм. В качестве сырья используют метан, природный газ, попутный нефтяной газ или смесь пропана и бутана технических. Катализатор подается выше перфорированной сетки с размером отверстий не более 0,09 мм, расположенной в нижней части реактора. Сырье подается ниже перфорированной сетки. Катализатор, обрастая в ходе реакции углеродным материалом, опускается под собственным весом на перфорированную сетку, которая является частью системы выгрузки углеродного продукта, где осуществляется выгрузка углеродного ...

Подробнее
18-03-2025 дата публикации

Способ получения оксида никеля

Номер: RU2836558C1

Изобретение относится к химической промышленности, а именно к способам получения оксида никеля. В способе получения оксида никеля используют кристаллогидрат сульфата никеля в виде NiSO4⋅7H2O, получают из него водный раствор. Экстракт надземной части растения и раствор сульфата никеля в соотношении 3:1 с добавлением раствора 2% NaOH непрерывно перемешивают в течение 20-30 минут. Полученную смесь подвергают ультразвуковой обработке в течение 20-30 минут. Образовавшийся осадок промывают от органических остатков в дистиллированной воде. Затем из осадка удаляют максимальное возможное количество супернатанта и сушат в атмосфере воздуха при температуре 80°С. Далее прокаливают в муфельной печи при температуре 400-500°С в течение 30-60 минут и получают оксид никеля. Обеспечивается повышение удельной площади поверхности оксида никеля. 1 ил., 1 табл., 3 пр.

Подробнее
30-05-1993 дата публикации

CATALYST FOR FISCHER-TROPSCH HYDROCARBON SYNTHESIS

Номер: RU1819158C
Автор:
Принадлежит:

Подробнее
25-03-1974 дата публикации

Способ получения третичных аминов

Номер: SU421178A3
Принадлежит:

Подробнее
06-12-2007 дата публикации

Verfahren zur Herstellung eines geträgerten Metallkatalysators

Номер: DE102006025148A1
Принадлежит:

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines geträgerten Metallkatalysators oder eines geträgerten Legierungskatalysators. Um ein Verfahren bereitzustellen, mittels welchem sich Katalysatoren herstellen lassen, die einen verhältnismäßig hohen Anteil an katalytisch aktivem Metall bzw. katalytisch aktiver Legierung aufweisen, wird ein Verfahren vorgeschlagen, das die folgenden Schritte umfasst: a) Inkontaktbringen eines Trägers mit einer nanopartikulären Metallsuspension oder mit einer nanopartikulären Legierungssuspension; b) Entfernen des Suspensionsmittels; d) gegebenenfalls Stabilisieren des geträgerten Metall- bzw. Legierungskatalysators.

Подробнее
11-04-2002 дата публикации

Aminosäurekomplexe und ihre Verwendung zur Herstellung von Olefinpolymerisaten

Номер: DE0010047461A1
Принадлежит:

Aminosäurekomplex der allgemeinen Formel I, DOLLAR F1 wobei M ausgewählt wird aus Fe, Co, Ni, Pd, Pt oder Ir, vorzugsweise Ni, bedeutet; Verfahren zu ihrer Herstellung sowie Verwendung zur Polymerisation von Olefinen.

Подробнее
07-06-1979 дата публикации

HYDRIERUNGSKATALYSATOREN UND HYDRIERUNGSVERFAHREN

Номер: DE0002838488A1
Принадлежит:

Подробнее
08-10-2020 дата публикации

Verfahren zum Vorbereiten eines Mehrkomponenten-Legierungskatalysators

Номер: DE102019214543A1
Принадлежит:

Ein Verfahren zum Vorbereiten eines Mehrkomponenten-Legierungskatalysators, auf dem ein katalytisches Metall getragen wird, enthält das Vorbereiten eines Kohlenstoffverbundstoffes, der einen Kohlenstoffträger aufweist, der mit einem kationischen Polymer beschichtet ist, Tragen eines katalytischen Metalls, das zumindest zwei Metallelemente enthält, auf dem Kohlenstoffverbundstoff, um einen Legierungskatalysator-Vorläufer vorzubereiten, und Waschen des Legierungskatalysator-Vorläufers, um das kationische Polymer zu entfernen.

Подробнее
14-06-2006 дата публикации

Verfahren und Vorrichtung zur Herstellung von H¶2¶ und CO enthaltendem Synthesegas

Номер: DE102004059014A1
Принадлежит:

Bei einem Verfahren zur Herstellung von Synthesegas durch katalytische Konvertierung von in einem entschwefelten Einsatzgasstrom enthaltenen Kohlenwasserstoffen mit Dampf wird das Einsatzgas-Dampf-Gemisch bei einem Druck von 10 bis 45 bar durch Wärmeaustausch auf eine Temperatur von 300 bis 700 DEG C vorgewärmt und anschließend über einem Katalysator bei einem Druck von 10 bis 45 bar durch Wärmeaustausch auf eine Temperatur von 650 bis 950 DEG C aufgeheizt. Um den apparativen Aufwand niedrig zu halten, ist vorgesehen, dass das Einsatzgas-Dampf-Gemisch eine in einem Reaktionsbehälter befindliche Katalysatorschicht durchströmt und die Katalysatorschicht durch thermische Strahlung und Konvektion aufgeheizt wird.

Подробнее
12-08-1976 дата публикации

VERFAHREN ZUR HERSTELLUNG VON NICKELKATALYSATOREN MIT EINEM SILICIUMDIOXYD- TRAEGER

Номер: DE0001965072B2
Автор:
Принадлежит:

Подробнее
16-04-2014 дата публикации

Steam reforming

Номер: GB0201403787D0
Автор:
Принадлежит:

Подробнее
26-03-1969 дата публикации

Preparation of hydrogenation catalysts

Номер: GB0001146876A
Принадлежит:

... 1,146,876. Hydrogenation of hydrocarbons. SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ N.V. 24 Oct., 1967 [26 Oct., 1966], No. 47978/66. Heading C5E. [Also in Division B1] Hydrocarbons are hydrogenated using a catalyst prepared by mixing a Ni and/or Co salt solution with a silica sol, adding a base, separating, washing and drying the coprecipitate and heating it in a stream of H 2 or H 2 -containing gas at 150-600‹ C. Aromatics, e.g. benzene, may be hydrogenated to naphthenic compounds. The catalyst may be sulphided and is then particularly suitable for hydrogenating a diolefin to a mono-olefin, e.g. for improving the gum stability of a steam-cracked gasoline.

Подробнее
24-08-1933 дата публикации

Improvements in and relating to catalysts

Номер: GB0000397295A
Автор:
Принадлежит:

A nickel catalyst is prepared by mixing nickel oxide with a silicon ester, decomposing the ester and subjecting the mixture to the action of heat in a reducing atmosphere. In an example, nickel oxide prepared from the carbonate is mixed with a toluene solution of ethyl orthosilicate and ammonium hydroxide added to effect coagulation. The product is broken up into granules, dried and reduced in a stream of hydrogen. The catalyst may be used for the hydrogenation of cotton seed oil. Since the granules settle rapidly, the hydrogenated oil may be poured off and replaced quickly by a fresh batch. The nickel-silicon oxide catalyst may be attached to supports, e.g. a gauge of suitable mesh, the silicon ester causing the necessary adhesion.

Подробнее
02-08-1972 дата публикации

A CATALYST FOR THE CONVERSION OF HYDROCARBONS AND A METHOD FOR EFFECTING SAME

Номер: GB0001283780A
Принадлежит:

... 1283780 Nickel-containing catalyst B P KORNILOV 4 Oct 1969 48845/69 Heading B1E Catalyst composition comprises either (i) nickel titanate plus nickel magnesium spinel plus barium titanate, or (ii) nickel titanate plus nickel zirconate plus barium titanate, or (iii) nickel titanate plus nickel aluminate. Preferred compositions are (a) 1-3% wt nickel titanate, 15-25% wt nickel magnesium spinel, 2-10% wt barium titanate, the remainder being magesium oxide, (b) 1-3% wt nickel titanate, 25-35% wt nickel zirconate, 2-12% wt barium titanate, the remainder being zirconium dioxide, and (c) 1-3% wt nickel titanate, 27-50% wt nickel aluminate, the remainder being alumina. The composition is formed by adding to a ball mill powdered metallic nickel, titanium dioxide, either magnesium oxide or zirconium oxide or alumina, barium carbonate, (employed only when using MgO or ZrO 2 ) and a thermally decomposable binder such as dextrine, starch, graphite, water, paraffin wax or polyvinyl alcohol, then simultaneously ...

Подробнее
04-07-2012 дата публикации

Water-gas shift catalyst

Номер: GB0201208988D0
Автор:
Принадлежит:

Подробнее
09-04-2008 дата публикации

Process for the preparation and conversion of synthesis gas

Номер: GB2442646A
Принадлежит:

A process (10) for the preparation and conversion of synthesis gas includes reforming a feed gas (34) comprising methane in a reforming stage (18) to produce synthesis gas (46) which includes hydrogen and carbon monoxide. Some of the hydrogen and carbon monoxide is converted to a Fischer-Tropsch product (48) in a Fischer-Tropsch hydrocarbon synthesis stage (24). A tail gas (52), including unreacted hydrogen and carbon monoxide, methane and carbon dioxide, is separated from the Fischer-Tropsch product (48). In a tail gas treatment stage (28,30), the tail gas (52) is treated by reforming the methane in the tail gas (52) with steam (66) and removing carbon dioxide to produce a hydrogen rich gas (56). The tail gas treatment stage (28,30) may be either a combined tail gas treatment stage (28,30) or a composite tail gas treatment stage. The carbon dioxide from the tail gas treatment stage (28,30) is fed to the reforming stage (18).

Подробнее
07-03-2001 дата публикации

Reactor comprising a diffusion bonded heat exchanger that is suitable for use in the steam reforming of hydrocarbons

Номер: GB2353801A
Принадлежит:

A reactor vessel comprises (a) a first region for performing an endothermic reaction, in particular the steam reforming of a hydrocarbon, preferably, methane; (b) a second region for performing an exothermic reaction, in particular the combustion of a hydrocarbon fuel, preferably, methane, in the presence of oxygen or air; and (c) a means to transfer the heat energy released from the second region (b) to promote the endothermic reaction in the first region (a). The heat transfer means is a diffusion bonded heat exchanger comprising two sets of channels with the first set of channels forming at least part of the first region (a) and a second set of channels forming at least part of the second region (b) and arranged so that heat transfer occurs between both sets of channels. The channels may be arranged parallel to each other; perpendicular to each other or they may be interleaved with each other. The diameter of the first set of channels may be smaller than, equivalent to or greater than ...

Подробнее
13-05-1937 дата публикации

Improvements in the manufacture and production of hydrocarbons and their derivatives from mixtures of hydrogen and oxides of carbon

Номер: GB0000465668A
Автор:
Принадлежит:

Hydrocarbons with or without oxygenated derivatives are obtained by reacting carbon monoxide and hydrogen in presence of a catalyst obtained by reacting previously fused ferrosoferric oxide with a reducing gas at a temperature above 300 DEG C. The catalyst may also contain compounds of silicon, titanium, heavy metals, nickel, cobalt, and/or alkali metals. The reaction may be effected at a temperature of 275--425 DEG C., and a pressure above 50 atmospheres. The catalyst may be prepared by fusing iron powder with the activating additions in a current of oxygen and subsequently reducing with hydrogen or gaseous hydrocarbons.ALSO:A catalyst for the production of hydrocarbons from carbon monoxide and hydrogen is obtained by reducing previously fused ferrosoferric oxide. Activating additions such as compounds of silicon, titanium, heavy metals, nickel, cobalt, and/or alkali metals may be present. The catalyst may be prepared by fusing iron powder with the activating substances in a blast of oxygen ...

Подробнее
07-08-1974 дата публикации

PROCESS FOR REDUCING NITROGEN OXIDE CONTENT OF EXHAUST GAS

Номер: GB0001362466A
Автор:
Принадлежит:

... 1362466 Reduction catalyst ESSO RESEARCH & ENG. CO 16 May 1972 22880/72 Heading B1E [Also in Division F1] A catalyst for the reduction of No x in I.C. engine exhaust gas comprises at least 40% by wt. nickel and 5% by wt. copper deposited on 1/8 in. alpha alumnia particles having a surface area not greater than 5 sq. m./gm, preferably 0.1 to 2.0 sq. m./gm., the weight of catalytic material being 5-20% of the total weight. The catalyst is prepared by impregnating the particles with a hot solution of 1228 gms. of nickel nitrate and 438 gms. of copper nitrate in 302 c.c. of water. The pellets are drained, dried at 300‹F and calcined at 800‹F for 3 hrs. then re-impregnated, drained, dried and calcined as before.

Подробнее
28-03-1990 дата публикации

METHANATION CATALYSTS COMPRISING FEITKNECHT COMPOUNDS

Номер: GB0002222963A
Принадлежит:

A catalyst precursor is prepared by intimately mixing a nickel-aluminium Feitknecht compound with a non-calcined alumino-silicate clay mineral and at the same time and/or subsequently with at least one additive comprising an alkaline earth and/or rare earth metal compound. The resulting mixture is then calcined to produce the catalyst precursor which can be reduced to the catalyst form. The catalyst may be used, for example, in the methanation of gases and the presence of the additive reduces silicon species loss from the catalyst during use.

Подробнее
18-09-1991 дата публикации

HYDROGEN SULFIDE TRAP

Номер: GB0002209625B
Автор: KIM GWAN, GWAN * KIM
Принадлежит: GRACE W R & CO, * W.R.GRACE & CO.

Подробнее
06-10-1976 дата публикации

Номер: GB0001451862A
Автор:
Принадлежит:

... 1451862 Steam reforming JAPAN GASOLINE CO Ltd and NIKKI CHEMICAL CO Ltd 15 Jan 1974 [22 March 1973 20 June 1973] 01842/74 Heading C5E Methane-containing gas is produced by contacting a mixture of at least one hydrocarbon having at least 2 carbon atoms and steam preheated to 250-260‹C. and in a H 2 O:C ratio between 0À9 and 5 with a nickel-containing catalyst which has been activated in a stream of hydrogen gas, has a temperature of 300- 600‹ C., comprises metallic nickel and a solid solution of nickel oxide and magnesia and has a Ni/Mg atomic ratio of from 0À05 to 7À0. The steam reforming reaction can be carried out at 0-100 kg./cm.2G. Suitable feeds are refinery off gas, LPG, naphtha and kerosene. The catalyst can comprise up to 70 wt. per cent of -Al 2 O 3 , SiC, -quartz or ZrO 2 as a carrier and copper-chromium oxide or copper-chromiummanganese oxide in an amount of up to 25 wt. per cent, based on the amount of metal relative to the content of nickel in the catalyst.

Подробнее
12-12-2012 дата публикации

A water-gas shift catalyst

Номер: GB0002491698A
Принадлежит:

A catalyst precursor for preparing a catalyst suitable for use in a sour water-gas shift process comprises 5 to 30% by weight of a catalytically active metal oxide selected from tungsten oxide and molybdenum oxide; 1 to 10% by weight of a promoter metal oxide selected from cobalt oxide and nickel oxide; and 1 to 15% by weight of an oxide of an alkali metal selected from sodium, potassium and caesium; supported on a titania catalyst support. The precursor can be sulphided with hydrogen sulphide. The catalyst can be used in a water-gas shift process comprising contacting synthesis gas comprising hydrogen, steam, carbon monoxide and carbon dioxide including one or more sulphur compounds, and wherein the steam to carbon monoxide molar ratio in the synthesis gas is in the range 0.5 to 1.8:1.

Подробнее
05-05-1965 дата публикации

Catalyst electrode insensitive to oxidation for electrochemical processes

Номер: GB0000991231A
Автор:
Принадлежит:

A catalyst electrode for electrochemical fuel cells, electrolysis cells or alkali accumulators is produced by treating an electrode body, as made in a known manner by powdering, mixing, pressing and sintering Ni and Al and subsequently activated with leach such as aqueous alkali, with an aqueous or alcoholic solution of a salt of a platinum group metal, namely Pt, Ru, Rh, Pd, Re, Os or Ir. Preferably a 5% methanolic solution of H2PtCl6 or PdCl2. 2H2O is used. Prior catalyst electrodes are described in which a nickel or carbon structure is coated with a layer of Pt or Pd, or Ag-Pd.

Подробнее
13-09-2000 дата публикации

Compact reactor

Номер: GB0000018671D0
Автор:
Принадлежит:

Подробнее
16-10-2019 дата публикации

Method and apparatus for operating a vacuum interface of a mass spectrometer

Номер: GB0002572819A
Принадлежит:

A mass spectrometer vacuum interface comprising an evacuated expansion chamber 3 downstream of a plasma ion source 6 at atmospheric or relatively high pressure, the expansion chamber having: a first aperture 2 that interfaces with the plasma ion source to form an expanding plasma; and, a second aperture 12 downstream of the first aperture for skimming the expanding plasma, wherein the expansion chamber is pumped to provide an interface pressure in the chamber. The method comprises using a controller 50 to automatically, or according to user input, control the throughput of the interface vacuum pump 40 dependent on one or more operating modes of the spectrometer, such as whether hot or cold plasma is used or to optimise detection sensitivity for a specific element. A pressure gauge 60 may be located in the expansion chamber and a feedback loop provided between the pressure gauge and controller.

Подробнее
06-03-1963 дата публикации

Improvements in or relating to catalysts and the hydrogenation of unsaturated hydrocarbons using said catalysts

Номер: GB0000920269A
Автор:
Принадлежит:

A catalyst which may be used for the hydrogenation of acetylenes is obtained by impregnating a porous catalyst base with a solution of a nickel compound which is decomposable by the action of heat to metallic nickel, and thereafter heating the impregnated porous support whereby metallic nickel is deposited on the support and sweeping out volatile decomposition products of the nickel compound by means of a stream of gas passed over the catalyst at a flow rate greater than 250 vol./vol./hours. The nickel compound is preferably nickel formate and the carrier may be calcium oxide, barium oxide, strontium oxide, magnesium oxide, calcium carbonate, barium carbonate, strontium carbonate, magnesium carbonate, diatomaceous earths, charcoal, graphite, pumice, deactivated alumina or sepiolite. The gas for sweeping out volatiles preferably contains hydrogen or nitrogen but may also be carbon dioxide or methane. The purification of ethylene or propylene containing acelytenes is effected by selective ...

Подробнее
05-12-1962 дата публикации

Selective hydrogenation catalysts and method of hydrogenation

Номер: GB0000912444A
Принадлежит:

A selective hydrogenation catalyst comprises metallic copper activated by at least one of the metals Fe, Ni, Ru, Rh, Pd, Ir and Pt finely dispersed on a high surface area activated alumina and is prepared preferably by incorporating a cupric salt and a salt of at least one of the activating metals into an activated gamma- or kappa-alumina carrier by immersing the latter in a solution of the salts, converting the salts to their oxides and reducing to the metal. It is preferred to use copper of 99,9-99,999% purity.ALSO:Processes for the selective hydrogenation of acetylenes in the presence of di- and monoolefines, of acetylenes and diolefines in the presence of monoolefines, and of diolefines in presence of monoolefines, at elevated temperatures with hydrogen, are effected by use of a catalyst comprising metallic copper activated by at least one of Fe, Ni, Ru, Rh, Pd, Ir and Pt, finely dispersed on a high surface area activated alumina. Suitable feedstocks are 1:3-butadiene containing acetylenic ...

Подробнее
27-04-1983 дата публикации

CATALYST PRECURSORS

Номер: GB0008307518D0
Автор:
Принадлежит:

Подробнее
16-12-1987 дата публикации

MANUFACTURE OF SYNTHETIC SAPONITES

Номер: GB0008726661D0
Автор:
Принадлежит:

Подробнее
26-06-1968 дата публикации

Catalytic compositions

Номер: GB0001117778A
Автор:
Принадлежит:

Steam reforming of hydrocarbons containing 2 or more carbon atoms per molecule is effected in the presence of 1-40% NiO on SiO2, MgO and ZrO2 such that MgO/ZrO2 = 1.6-2.0/1 and MgO/SiO2 = 4.5-5.6/1. Examples describe the treatment of a light petroleum fraction of boiling point 40-140 DEG C., at 450-550 DEG C. using 32% NiO on a support. Effluent gases contained CO2, CO, CH4, C2H6, H2 and N2. Comparative data indicate low carbon lay down on the catalyst and reduced tendency to ethylene formation.ALSO:Reforming catalysts comprise 1-40% NiO on SiO2, MgO and ZrO2 such that MgO/ZrO2 = 1.6-2.0/1 and MgO/SiO2=4.5-5.6/1. Additionally the catalyst may contain K, Na, Ba, Ca as carbonate, oxide, hydroxide or nitrate.

Подробнее
21-11-2018 дата публикации

Catalyst

Номер: GB0002562681A
Принадлежит:

A process for preparing a catalyst material, said catalyst material comprising a support material, a first metal and one or more second metals, wherein the first metal and the second metal(s) are alloyed and wherein the first metal is a platinum group metal and the second metal(s) is selected from the group of transition metals and tin provided the second metal(s) is different to the first metal is disclosed. The process comprises depositing a silicon oxide before or after deposition of the second metal(s), alloying the first and second metals and subsequently removing silicon oxide. A catalyst material prepared by this process is also disclosed.

Подробнее
30-09-2020 дата публикации

Steam reforming

Номер: GB0202012613D0
Автор:
Принадлежит:

Подробнее
19-01-2012 дата публикации

Microencapsulated catalyst

Номер: US20120016139A1
Принадлежит: REAXA Ltd

The present invention relates to a catalyst system. In particular the invention relates to a catalyst in the form of metal or an alloy that is encapsulated within a polymer shell or matrix. More specifically the invention is directed towards reactive catalytic metals that may be pyrophoric or otherwise reactive in air and/or susceptible to oxidation. In particular, the invention is concerned with catalysts based on nickel. Raney or sponge nickel is highly hazardous: a self-igniting solid; produces hazardous fumes when burning; causes irritation of the respiratory tract, nasal cavities; causes pulmonary fibrosis if inhaled; ingestion may lead to convulsions and intestinal disorders; causes eye and skin irritation; and chronic exposure may lead to pneumonitis and sensitization (“nickel itch”). The invention provides metal catalysts that avoid such problems and have a good shelf life and working life.

Подробнее
14-06-2012 дата публикации

Method of manufacturing porous metal oxide

Номер: US20120149560A1

Provided is a method of manufacturing porous metal oxide, the method including: preparing a metal-organic framework (MOF) wherein an ion of a metal to be used as a catalyst is linked to an organic ligand; impregnating the MOF with a precursor solution of metal oxide to be manufactured; and thermally treating the metal oxide precursor solution-impregnated MOF to remove the organic ligand. The inventive method of manufacturing porous metal oxide involves the impregnation of a metal oxide precursor solution in a MOF wherein metal ions are uniformly linked to organic ligands and the thermal treatment (calcination) of the metal oxide precursor solution-impregnated MOF to remove the organic ligands.

Подробнее
21-06-2012 дата публикации

Method of making a catalyst

Номер: US20120157299A1
Принадлежит: ENERGIA TECHNOLOGIES Inc

Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.

Подробнее
21-06-2012 дата публикации

Methods of deoxygenation and systems for fuel production

Номер: US20120157727A1
Принадлежит: ENERGIA TECHNOLOGIES Inc

Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.

Подробнее
05-07-2012 дата публикации

Hydroprocessing catalysts and methods for making thereof

Номер: US20120172199A1
Принадлежит: Chevron USA Inc

An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, at least a metal precursor feedstock is portioned and fed in any of the stages: the promotion stage; the sulfidation stage; or the transformation stage of a water-based catalyst precursor to a slurry catalyst. In one embodiment, the promoter metal precursor feedstock is split into portions, the first portion is for the sulfiding step, the second portion is for the promotion step; and optionally the third portion is to be added to the transformation step in the mixing of the sulfided promoted catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the Primary metal precursor feedstock is split into portions.

Подробнее
05-07-2012 дата публикации

Methods for preparing ethylene glycol from polyhydroxy compounds

Номер: US20120172633A1

This invention provides methods for producing ethylene glycol from polyhydroxy compounds such as cellulose, starch, hemicellulose, glucose, sucrose, fructose, fructan, xylose and soluble xylooligosaccharides. The methods uses polyhydroxy compounds as the reactant, a composite catalyst having active components comprising one or more transition metals of Groups 8, 9, or 10, including iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum, as well as tungsten oxide, tungsten sulfide, tungsten hydroxide, tungsten chloride, tungsten bronze oxide, tungsten acid, tungstate, metatungstate acid, metatungstate, paratungstate acid, paratungstate, peroxotungstic acid, pertungstate, heteropoly acid containing tungsten. Reacting at a temperature of 120-300° C. and a hydrogen pressure of 1-13 MPa under hydrothermal conditions to accomplish one-step catalytic conversion. It realizes efficient, highly selective, high yield preparation of ethylene glycol and propylene glycol from polyhydroxy compounds. The advantage of processes disclosed in this invention include renewable raw material and high atom economy. At the same time, compared with other technologies that converts biomass raw materials into polyols, methods disclosed herein enjoy advantages including simple reaction process, high yield of targeted products, as well as easy preparation and low cost for the catalysts.

Подробнее
18-10-2012 дата публикации

Process for preparing higher hydridosilanes

Номер: US20120263639A1
Принадлежит: EVONIK DEGUSSA GmbH

The invention relates to a method for producing higher hydridosilane wherein at least one lower hydridosilane and at least one heterogeneous catalyst are brought to reaction, wherein the at least one catalyst comprises Cu, Ni, Cr and/or Co applied to a carrier and/or oxide of Cu, Ni, Cr and/or Co applied to a carrier, the hydridosilane that can be produced according to said method and use thereof.

Подробнее
22-11-2012 дата публикации

Oil and polar additive impregnated composition useful in the catalytic hydroprocessing of hydrocarbons, a method of making such catalyst, and a process of using such catalyst

Номер: US20120295786A1
Принадлежит: Shell Oil Co

A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.

Подробнее
28-02-2013 дата публикации

Nickel-based reforming catalyst

Номер: US20130053237A1
Принадлежит: Individual

The present invention relates unique pore structures in nickel supported on alumina with the negligible formation of macropores. Incorporation of additional elements stabilizes the pore structure of the nickel supported on alumina. Additional element(s) were then further added into the nickel-supported materials. These additional element(s) further stabilize the pore structures under heating conditions. The improvements of pore structure stability under heating conditions and negligible presence of macropores limit the sintering of nickel metal to a mechanism of impeded diffusion. The negligible presence of macropores also limits the deposition of alkali metal hydroxide(s)/carbonate(s) to the outer shell of the catalyst pellet. Both of the negligible presence of macropores and improvement in pore structure stability allow for prolonging the catalyst life of these nickel supported on alumina catalysts of the present invention for reforming hydrocarbons.

Подробнее
28-03-2013 дата публикации

CATALYST AND METHOD OF CATALYST MANUFACTURE

Номер: US20130079568A1
Принадлежит: JOHNSON MATTHEY PLC

The catalyst of the invention is a particulate catalyst in the form of particles having a minimum dimension of at least 0.8 mm, including a transition metal or a compound thereof dispersed on a porous support material, characterised in that said catalyst particles comprise at least 35% w/w total transition metal; and the transition metal surface area of said catalyst is at least 110 mper gram of transition metal and the tapped bulk density of a bed of the catalyst particles is at least 0.7 g/ml. The method of making a catalyst includes multiple steps of impregnation of a porous support with a metal ammine solution followed by drying, calcination and reduction of the dried material. The catalyst is useful in hydrogenation reactions. 1. A particulate catalyst in the form of particles having a minimum dimension of at least 0.8 mm , comprising a transition metal or a compound thereof dispersed on a porous support material , wherein said catalyst particles comprise at least 35% w/w total transition metal; and the transition metal surface area of said catalyst is at least 110 mper gram of transition metal and the tapped bulk density of a bed of the catalyst particles is at least 0.7 g/ml.2. A catalyst according to claim 1 , n wherein the porous support comprises a transition alumina.3. A catalyst according to claim 1 , wherein the porous support material has a bimodal pore size distribution.4. A catalyst according to claim 3 , wherein the porous support material has a pore size distribution claim 3 , as measured by mercury porosimetry claim 3 , in which at least 20% of the total pore volume is contained in pores having a diameter of from 100 nm-700 nm and at least 30% of the total pore volume is contained in pores having a diameter of from 5 nm-20 nm5. A catalyst according to claim 1 , wherein the porous support material has a pore volume of at least 1.0 ml/g.6. A catalyst according to claim 1 , wherein the porous support is in the form of extruded cylinders or lobed ...

Подробнее
11-04-2013 дата публикации

Nanostructured metal oxides and mixed metal oxides, methods of making these nanoparticles, and methods of their use

Номер: US20130089739A1

Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, methods of using the nanoparticles, and the like. Nanoparticles of the present disclosure can have a variety of morphologies, which may lead to their use in a variety of technologies and processes. Nanoparticles of the present may be used in sensors, optics, mechanics, circuits, and the like. In addition, nanoparticles of the present disclosure may be used in catalytic reactions, for CO oxidation, as super-capacitors, in hydrogen storage, and the like.

Подробнее
25-04-2013 дата публикации

CATALYST, ELECTRODE, FUEL CELL, GAS DETOXIFICATION APPARATUS, AND METHODS FOR PRODUCING CATALYST AND ELECTRODE

Номер: US20130101920A1
Принадлежит: Sumitomo Electric Industries, Ltd.

Provided are a catalyst, an electrode, a fuel cell, a gas detoxification apparatus, and the like that can promote a general electrochemical reaction causing gas decomposition or the like. A catalyst according to the present invention is used for promoting an electrochemical reaction and is chain particles formed of an alloy particles containing nickel (Ni) and at least one selected from the group consisting of iron (Fe), cobalt (Co), chromium (Cr), tungsten (W), and copper (Cu). 1. A catalyst used for promoting an electrochemical reaction , comprising:an alloy containing nickel (Ni) and at least one selected from the group consisting of iron (Fe), cobalt (Co), chromium (Cr), tungsten (W), and copper (Cu).2. The catalyst according to claim 1 , being chain particles in which particles that have a diameter of 0.5 μm or less and are formed of the alloy are connected to form an elongated shape.3. The catalyst according to claim 2 , wherein the chain particles have branches and form dendritic chain particles in which the branched chain particles are intertwined.4. The catalyst according to claim 1 , wherein the alloy contains 0.5% or less by weight of titanium (Ti).5. The catalyst according to claim 1 , being a woven fabric formed of fibers of the alloy or a metal-fiber woven fabric including a plated layer of the alloy.6. The catalyst according to claim 1 , being a porous plated body formed of the alloy or a porous plated body including a plated layer of the alloy.7. The catalyst according to claim 1 , being particles that are formed of the alloy and have an average diameter of 100 μm or less.8. The catalyst according to claim 1 , being present with a solid electrolyte and disposed in a form of a film of the alloy or a deposit of the alloy so as to cover a surface of the solid electrolyte.9. The catalyst according to claim 1 , wherein oxygen is bonded to a surface of the alloy or the alloy is covered with an oxide layer.10. An electrode formed by sintering the catalyst ...

Подробнее
09-05-2013 дата публикации

Systems, Devices, and/or Methods for Preparation of Graphene and Graphene Hybrid Composite Via the Pyrolysis of Milled Solid Carbon Sources

Номер: US20130116114A1
Автор: Khe C. Nguyen
Принадлежит: K Tube Tech LLC

Certain exemplary embodiments can provide a system comprising a hybrid composite. The hybrid composite can comprise tubular carbon and graphene produced via pyrolysis of a milled solid carbon source under an unoxidizing environment. When analyzed via X-ray diffraction, the hybrid composite can generate peaks at two theta values of approximately 26.5 degrees, approximately 42.5 degrees, and/or approximately 54.5 degrees.

Подробнее
23-05-2013 дата публикации

Method Of Producing Catalytic Material For Fabricating Nanostructures

Номер: US20130130894A1

Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate. 1. A method of fabricating a nano-catalyst comprising:(a) contacting a metal powder with a first solution comprising a complexing agent to produce a complexed metal powder and a residual first solution;(b) separating the complexed metal powder and a substantial portion of the residual first solution from each other;(c) contacting the complexed metal powder with a second solution comprising metal ions to produce (i) a loaded metal powder wherein at least a portion of the metal ions are bound to the complexed metal powder and (ii) a residual second solution;(d) separating the loaded metal powder and substantially all of the residual second solution from each other to produce a dry loaded metal powder; and(e) contacting the metal ions bound to the complexed metal powder with a reducing atmosphere to form the nano-catalyst as metal nanoparticles on the metal powder.2. The method of wherein the complexing agent comprises a chelating agent.3. The method of wherein the complexing agent comprises a coupling ...

Подробнее
06-06-2013 дата публикации

Metal-ligand catalyst formation

Номер: US20130143730A1
Принадлежит: Invista North America LLC

As described herein, nickel treated with sulfur provides a surprisingly effective source of nickel atoms for generating nickel-phosphorus-containing ligand complexes useful as hydrocyanation catalysts.

Подробнее
06-06-2013 дата публикации

Attrition Resistant Supports for Fischer-Tropsch Catalyst and Process for Making Same

Номер: US20130143736A1
Принадлежит: WR Grace and Co Conn

The invention relates to a novel method of preparing attrition resistance spinel supports for Fischer Tropsch catalysts. The process comprises: (a) combining aluminum oxide, metal compound capable of forming spinel phase, and soluble compound of a trivalent aluminum; (b) mixing the combination resulting in (a) in a manner sufficient to form a slurry comprising the aforementioned combination; and (c) processing the mixture of (b) under conditions sufficient to form metal aluminate spinel composition. Metal aluminate spinel, for example, is formed in the last step by calcining the mixture from (b) at a temperature in the range of 700 to 1300° C., but the process is also capable, of producing attrition resistant supports (e.g., having a DI of 5 or less) at a relatively lower temperature in the range of 700 to 1050° C. The invention also produces the attrition resistance with lower metal loadings than that reported for prior attrition resistant spinel supports.

Подробнее
20-06-2013 дата публикации

Method and apparatus for forming nanoparticles

Номер: US20130156679A1
Принадлежит: CAMBRIDGE ENTERPRISE LTD

A first layer of a catalyst material is formed on a substrate and heat treated to form a first plurality of nanoparticles. A second layer of a catalyst material is then formed over the substrate and the first plurality of nanoparticles and heat treated to form a second plurality of nanoparticles. The first layer of nanoparticles is advantageously not affected by the deposition or heat treatment of the second layer of catalyst material, for example being pinned or immobilised, optionally by oxidation, before formation of the second layer.

Подробнее
04-07-2013 дата публикации

SILICA-BASED MATERIAL AND PROCESS FOR PRODUCING THE SAME, NOBLE METAL SUPPORTED MATERIAL AND PROCESS FOR PRODUCING CARBOXYLIC ACIDS BY USING THE SAME AS CATALYST

Номер: US20130172599A1
Принадлежит: ASAHI KASEI CHEMICALS CORPORATION

A silica-based material comprising: 1. A silica-based material comprising:silicon;aluminum;at least one fourth period element selected from the group consisting of iron, cobalt, nickel and zinc; andat least one basic element selected from the group consisting of alkali metal elements, alkali earth metal elements and rare earth elements,wherein the silica-based material comprises 42 to 90 mol % of the silicon, 3 to 38 mol % of the aluminum, 0.5 to 20 mol % of the fourth period element and 2 to 38 mol % of the basic element, based on a total mole of the silicon, the aluminum, the fourth period element and the basic element.2. The silica-based material according to claim 1 ,wherein a composition ratio of the fourth period element to the aluminum is 0.02 to 2.0 on a mole basis.3. The silica-based material according to or claim 1 ,wherein a composition ratio of the fourth period element to the basic element is 0.02 to 2.0 on a mole basis.4. The silica-based material according to or claim 1 ,wherein the fourth period element is nickel, the basic element is magnesium, and the silica-based material comprises 42 to 90 mol % of the silicon, 3 to 38 mol % of the aluminum, 0.5 to 20 mol % of the nickel and 2 to 38 mol % of the magnesium, based on a total mole of the silicon, the aluminum, the nickel and the magnesium.5. A process for producing a silica-based material comprising silicon claim 1 , aluminum claim 1 , at least one fourth period element selected from the group consisting of iron claim 1 , cobalt claim 1 , nickel and zinc and at least one basic element selected from the group consisting of alkali metal elements claim 1 , alkali earth metal elements and rare earth elements claim 1 , and comprising 42 to 90 mol % of the silicon claim 1 , 3 to 38 mol % of the aluminum claim 1 , 0.5 to 20 mol % of the fourth period element and 2 to 38 mol % of the basic element claim 1 , based on a total mole of the silicon claim 1 , the aluminum claim 1 , the fourth period element and ...

Подробнее
18-07-2013 дата публикации

Catalyst treatment

Номер: US20130184360A1
Принадлежит: GTL F1 AG

A method of preparing a Fischer-Tropsch catalyst for handling, storage, transport and deployment, including the steps of impregnating a porous support material with a source of cobalt, calcining the impregnated support material activating the catalyst, and passivating the activated catalyst.

Подробнее
29-08-2013 дата публикации

Process for the Hydrotreatment of Vegetal Materials

Номер: US20130219774A1
Принадлежит: BTG BIOMASS TECHNOLOGY GROUP B.V.

The present invention relates to a process for the hydrotreatment of a vegetal biomass. Specifically, the present invention relates to a process for the hydrotreatment of a vegetal biomass comprising: a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal-metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel. Further, the present invention relates to a metal oxide, mixed metal oxide or metal-metalloid oxide catalyst. Furthermore, the present invention relates to the use of the catalyst. 1. Process for the hydrotreatment of a vegetal biomass comprising:a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal- metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel.2. Process according to claim 1 , wherein the process further comprises:b) subjecting the mixture of step a) to a second hydrotreatment in a second reactor and contacting the hydrotreated vegetal biomass in an ...

Подробнее
19-09-2013 дата публикации

CARBON CATALYST FOR HYDROGEN PRODUCTION, METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING HYDROGEN USING CATALYST

Номер: US20130243687A1
Принадлежит:

Provided are a carbon catalyst for hydrogen production having an excellent catalytic activity, a production method therefor, and a method of producing hydrogen using the catalyst. The carbon catalyst for hydrogen production is a carbon catalyst, which is obtained by carbonizing a raw material including an organic substance and a transition metal, the catalyst being used for hydrogen production by thermal decomposition of a hydrocarbon compound and/or an oxygen-containing organic compound. Further, the carbon catalyst for hydrogen production may be obtained by loading an alkaline earth metal on a carbonized material produced by the carbonization. 1. A carbon catalyst for hydrogen production , which is obtained by carbonizing a raw material including an organic substance containing a nitrogen atom and 1 to 20% by mass of iron , cobalt , nickel or manganese , the catalyst being used for hydrogen production by thermal decomposition of a hydrocarbon compound and/or an oxygen-containing organic compound.2. The carbon catalyst for hydrogen production according to claim 1 , wherein the catalyst for hydrogen production is obtained by loading an alkaline earth metal on a carbonized material produced by the carbonization.3. The carbon catalyst for hydrogen production according to claim 1 , wherein the carbon catalyst for hydrogen production has a hydrogen dissociation activity of 10 mmol/g or more claim 1 , which is calculated claim 1 , in a hydrogen-deuterium exchange reaction using a reaction tube filled with a predetermined weight of the carbon catalyst for hydrogen production claim 1 , by dividing a total decrease in hydrogen gas by the predetermined weight when the reaction tube is heated from 40° C. to 600° C. at a temperature increase rate of 10° C./min in a mixed gas including the hydrogen gas claim 1 , deuterium gas claim 1 , and argon gas at a hydrogen flow rate of 10 mL/min claim 1 , a deuterium flow rate of 10 mL/min claim 1 , and an argon flow rate of 30 mL/min.4. ...

Подробнее
31-10-2013 дата публикации

Methods and systems for generating polyols

Номер: US20130289302A1
Автор: Randy D. Cortright
Принадлежит: Virent Inc

Disclosed are methods for generating propylene glycol, ethylene glycol and other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols from biomass using hydrogen produced from the biomass. The methods involve reacting a portion of an aqueous stream of a biomass feedstock solution over a catalyst under aqueous phase reforming conditions to produce hydrogen, and then reacting the hydrogen and the aqueous feedstock solution over a catalyst to produce propylene glycol, ethylene glycol and the other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols. The disclosed methods can be run at lower temperatures and pressures, and allows for the production of oxygenated hydrocarbons without the need for hydrogen from an external source.

Подробнее
07-11-2013 дата публикации

Method for producing xylylenediamine

Номер: US20130296609A1
Принадлежит: Mitsubishi Gas Chemical Co Inc

Provided is a method for stably and economically producing xylylenediamine with a high yield and long catalyst service life by hydrogenating dicyanobenzene that is obtained by ammoxidating xylene. By bringing an aqueous basic solution into contact with a dicyanobenzene-absorbed liquid, which is obtained by bringing an ammoxidation reaction gas into contact with an organic solvent, under specified temperature conditions, and subjecting a base and a carboxylic acid in the dicyanobenzene-absorbed liquid to a neutralization reaction so as to form an aqueous phase that contains a water-soluble salt, and then subjecting an organic phase and the aqueous phase to liquid-liquid separation so as to remove the aqueous phase, it is possible to remove the carboxylic acid contained in the dicyanobenzene-absorbed liquid with high selectivity while inhibiting loss of the dicyanobenzene. By subjecting the raw material dicyanobenzene, which is obtained by separating low boiling point compounds from the post liquid-liquid separation organic phase by distillation under reduced pressure, to hydrogenation, xylylenediamine is produced with a high yield and the service life of the hydrogenation catalyst is extended.

Подробнее
14-11-2013 дата публикации

Catalyst for the hydrogenation of unsaturated hydrocarbons and process for its preparation

Номер: US20130303812A1
Принадлежит: Shell Oil Co

The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.

Подробнее
21-11-2013 дата публикации

Method of gasifying carbonaceous material and a gasification system

Номер: US20130306913A1
Принадлежит: Curtin University of Technology

A method of gasifying carbonaceous material is described. The method comprises a first step of pyrolysing and partially gasifying the carbonaceous material to produce volatiles and char. The volatiles and the char are then separated and, subsequently, the char is gasified and the volatiles are reformed. The raw product gas is then finally cleaned with char or char-supported catalysts or other catalysts.

Подробнее
21-11-2013 дата публикации

METAL STRUCTURE CATALYST AND PREPARATION METHOD THEREOF

Номер: US20130309165A1
Принадлежит:

Provided are a metal structure catalyst and a method of preparing the same. Particularly, the method includes forming a metal precipitate on a metal support by contact of a mixed solution including a precursor of a metal catalyst and a precipitating agent with the metal support, and forming metal particles by thermally treating and reducing the metal precipitate formed on the metal support. The metal structure catalyst includes a metal support, a metal oxide layer formed on the metal support, and metal nanoparticles formed on the metal oxide layer. In addition, the metal nanoparticles are uniform and have enhanced binding strength. 1. A method of preparing a metal structure catalyst , comprising:forming a metal precipitate on a metal support by contact of a mixed solution including a precursor of a metal catalyst and a precipitating agent with the metal support; andforming metal particles by thermally treating and reducing the metal precipitate formed on the metal support.2. The method according to claim 1 , wherein the metal catalyst includes at least one atom selected from the group consisting of nickel claim 1 , ruthenium claim 1 , platinum claim 1 , rhodium claim 1 , ceria and zirconia.3. The method according to claim 1 , wherein a precursor solution of the metal catalyst is at least one selected from the group consisting of a metal nitrate claim 1 , a metal halide claim 1 , a metal acetate claim 1 , a metal sulfate claim 1 , a metal acetoacetate claim 1 , a metal fluoroacetoacetate claim 1 , a metal perchlorate claim 1 , a metal sulfamate claim 1 , a metal stearate claim 1 , a metal phosphate claim 1 , a metal carbonate claim 1 , a metal oxalate and a metal complex.4. The method according to claim 1 , wherein the precipitating agent is at least one selected from the group consisting of KOH claim 1 , NaOH claim 1 , ammonia claim 1 , urea claim 1 , NaCO claim 1 , and KCO.5. The method according to claim 1 , wherein the precipitating agent controls a pH of the ...

Подробнее
21-11-2013 дата публикации

Processes for preparing amines and catalysts for use therein

Номер: US20130310560A1
Принадлежит: BASF SE

Processes for preparing an amine are described which comprise reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound selected from the group of ammonia, primary and secondary amines, in the presence of a zirconium dioxide-, copper- and nickel-containing catalyst. The catalytically active composition of the catalyst, before its reduction with hydrogen, comprises oxygen compounds of zirconium, of copper, of nickel, in the range from 1.0 to 5.0% by weight of oxygen compounds of cobalt, calculated as CoO, and in the range from 0.2 to 5.0% by weight of oxygen compounds of sulfur, of phosphorus, of gallium, of lead and/or of antimony, calculated in each case as H2SO4, H3PO4, Ga203, PbO and Sb203 respectively.

Подробнее
28-11-2013 дата публикации

Method of Simultaneously Removing Sulfur and Mercury from Hydrocarbon Material Using Catalyst by Means of Hydrotreating Reaction

Номер: US20130313165A1
Принадлежит: SK Innovation Co Ltd

Disclosed herein is a method of simultaneously removing sulfur and mercury from a hydrocarbon material, including: hydrotreating the hydrocarbon material containing sulfur and mercury in the presence of a catalyst including a metal supported with a carrier to convert sulfur into hydrogen sulfide, and adsorb mercury on a metal active site or a carrier of the catalyst in the form of mercury sulfide.

Подробнее
28-11-2013 дата публикации

Method for regenerating and hydrogenation catalyst

Номер: US20130316893A1
Принадлежит: LG Chem Ltd

Disclosed is a method for regenerating a hydrogenation catalyst. More specifically, disclosed is a method for regenerating a hydrogenation catalyst poisoned during hydrogenation of a hydroformylation product for preparation of alcohol by stopping hydrogenation in a hydrogenation stationary phase reactor in which the hydrogenation catalyst is set and flowing hydrogen gas under a high temperature normal pressure. The method has an effect in that the poisoned hydrogenation catalyst can be efficiently recovered through a simple process.

Подробнее
28-11-2013 дата публикации

Nickel-M-Alumina Xerogel Catalyst, Method for Preparing the Same, and Method for Preparing Methane Using the Catalyst

Номер: US20130317127A1
Принадлежит: Posco Co Ltd

A nickel-M-alumina hybrid xerogel catalyst for preparing methane, wherein the metal M is at least one element selected from the group consisting of Fe, Co, Ni, Ce, La, Mo, Cs, Y, and Mg, a method for preparing the catalyst and a method for preparing methane using the catalyst are provided. The catalyst has strong resistance against a high-temperature sintering reaction and deposition of carbon species, and can effectively improve a conversion ratio of carbon monoxide and selectivity to methane.

Подробнее
12-12-2013 дата публикации

HYDROGEN PRODUCTION CATALYST CONTAINING Ni3Si-BASED INTERMETALLIC COMPOUND, METHOD FOR ACTIVATING THE CATALYST, AND HYDROGEN PRODUCTION METHOD AND DEVICE USING THE CATALYST

Номер: US20130330263A1

A catalyst according to the present invention exhibits a catalytic action to a methanol decomposition reaction or a hydrocarbon steam-reforming reaction in a short time. The present invention provides a catalyst for producing hydrogen gas, using an NiSi-based intermetallic compound. 1. A catalyst for producing a hydrogen gas , comprising an NiSi-based intermetallic compound.2. The catalyst according to claim 1 , wherein the NiSi-based intermetallic compound contains 0 to 500 ppm by weight of B with respect to a total weight of a composition containing 10.0 to 28.0% by atom of Si claim 1 , a balance made up of Ni as a major component claim 1 , and inevitable impurities.3. The catalyst according to claim 1 , wherein the NiSi-based intermetallic compound comprises at least a βphase having an L1crystal structure.4. The catalyst according to claim 1 , wherein the NiSi-based intermetallic compound subjected to an activation treatment by bringing into contact with gaseous methanol is used for producing the hydrogen gas from hydrocarbon.5. A reaction device comprising a plurality of disk-like members formed of the catalyst according to claim 1 , whereineach of the disk-like members has a plurality of through-holes, andthe plurality of disk-like members is stacked so that the through-holes in the disk-like members adjacent to each other are shifted.6. A method for producing the hydrogen gas from methanol or hydrocarbon by using the catalyst according to .7. A method for producing the hydrogen gas from hydrocarbon claim 1 , comprising the steps of:{'claim-ref': {'@idref': 'CLM-00004', 'claim 4'}, 'heating the catalyst according to to temperatures of 700° C. or higher, and'}bringing a gas comprising hydrocarbon and steam into contact with the heated catalyst.8. A hydrogen production device comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the catalyst according to ;'}a heating unit for heating the catalyst; anda supply portion for supplying methanol or hydrocarbon ...

Подробнее
19-12-2013 дата публикации

NANOCATALYSTS FOR HYDROCRACKING AND METHODS OF THEIR USE

Номер: US20130334097A1
Принадлежит: Petroraza SAS

Novel catalysts comprising nickel oxide nanoparticles supported on alumina nanoparticles, methods of their manufacture, heavy oil compositions contacted by these nanocatalysts and methods of their use are disclosed. The novel nanocatalysts are useful, inter alia, in the upgrading of heavy oil fractions or as aids in oil recovery from well reservoirs or downstream processing. 1. A catalyst comprising: 'wherein the alumina nanoparticle to nickel oxide nanoparticle weight to weight ratio in the catalyst is in a range of from about 80 to about 500.', 'nickel oxide nanoparticles supported on alumina nanoparticles;'}2. A catalyst according to claim 1 , wherein the ratio is in a range of from about 99 to about 400.3. A catalyst according to claim 1 , wherein the nickel oxide (NiO) nanoparticles are present in an amount of about 0.2% to about 1% by weight of catalyst.4. A catalyst according to claim 1 , wherein the particle size of the nickel oxide nanoparticles or the alumina nanoparticles is less than about 0.1 μm.5. A catalyst according to claim 4 , wherein the particle size of the nickel oxide nanoparticles and the alumina nanoparticles are each less than about 0.1 μm.6. A catalyst according to claim 1 , wherein the alumina nanoparticles are present in an amount of at least 99% by weight of catalyst.7. A catalyst according to claim 1 , further comprising nanoparticles of at least one Group VIIIB metal oxide supported on the alumina nanoparticles; the Group VIIIB metal is other than nickel; and', 'the alumina nanoparticle to Group VIIIB metal oxide nanoparticle weight to weight ratio in the catalyst is in a range of from about 80 to about 500., 'wherein8. A catalyst according to claim 1 , further comprising nanoparticles of at least one Group IB metal supported on the alumina nanoparticles; 'the alumina nanoparticle to Group IB metal nanoparticle weight to weight ratio in the catalyst is in a range of from about 80 to about 500.', 'wherein10. A process according to claim ...

Подробнее
30-01-2014 дата публикации

CO2 REFORMING CATALYST, METHOD OF PREPARING THE SAME, AND METHOD OF REFORMING CO2

Номер: US20140031200A1
Автор: Lee Seung Jae, Son In Hyuk
Принадлежит: SAMSUNG ELECTRONICS CO., LTD.

A COreforming catalyst may include at least one catalyst metal supported in a porous carrier. The at least one catalyst metal may include a transition metal (e.g., Ni, Co, Cr, Mn, Mo, Ag, Cu, Zn, and/or Pd). Each particle of the at least one catalyst metal may be bound with the porous carrier in a form of an alloy. The porous carrier may form a rod-shaped protruding portion around the catalyst metal particle. 1. A COreforming catalyst comprising:a porous carrier including a framework and protruding portions defining a plurality of pores therein; andat least one catalyst metal particle within the plurality of pores of the porous carrier, the at least one catalyst metal particle including a transition metal, the at least one catalyst metal particle being chemically bound to the porous carrier, the at least one catalyst metal particle having a deformed surface that conforms to a receiving surface of the porous carrier.2. The COreforming catalyst of claim 1 , wherein the transition metal is selected from a Group 6-12 element.3. The COreforming catalyst of claim 2 , wherein the Group 6-12 element is selected from at least one of Ni claim 2 , Co claim 2 , Cr claim 2 , Mn claim 2 , Mo claim 2 , Ag claim 2 , Cu claim 2 , Zn claim 2 , and Pd.4. The COreforming catalyst of claim 1 , wherein the porous carrier is an oxide.5. The COreforming catalyst of claim 4 , wherein the oxide is selected from at least one of alumina claim 4 , titanic claim 4 , ceria claim 4 , and silica oxide.6. The COreforming catalyst of claim 1 , wherein a majority of the at least one catalyst metal particle is Ni.7. The COreforming catalyst of claim 6 , wherein the Ni is present at a volume ratio of about 0.4% to about 7.5% based on a total volume of the COreforming catalyst.8. The COreforming catalyst of claim 6 , wherein the at least one catalyst metal particle has a hexagonal shape.9. The COreforming catalyst of claim 1 , wherein the COreforming catalyst is configured to facilitate a COreforming ...

Подробнее
06-02-2014 дата публикации

METHODS FOR PREPARING AND USING METAL AND/OR METAL OXIDE POROUS MATERIALS

Номер: US20140038816A1

Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others. 1. A bicontinuous porous body , comprising: a plurality of macropores defined by a wall , the macropores having a diameter of from greater than about 0.1 μm , wherein the macropores interconnect , forming a continuous network of pores that spans the body , permitting the flow of liquid or gas into and through the body , and wherein the wall of the macropores comprise a continuous layer of metal and/or metal oxide.2. The body of claim 1 , wherein the macropores have a diameter of from about 0.5 μm to about 30 μm.3. The body of claim 1 , wherein the walls of the macropores are not porous.4. The body of claim 1 , wherein the walls of the macropores have a plurality of mesopores having a diameter of from about 2 nm to about 50 nm thereby resulting in a bicontinuous porous material with hierarchical pores.5. The body of claim 1 , wherein the walls of the macropores have a plurality of micropores having a diameter of from less than about 2 nm thereby resulting in a bicontinuous porous material with hierarchical pores.6. The body of claim 1 , wherein the body is a hollow body.7. The body of claim 1 , wherein the body comprises one or more metals claim 1 , metal oxides claim 1 , or a combination thereof claim 1 , wherein the metals are selected from the group consisting of Li claim 1 , Be claim 1 , Na claim 1 , Mg claim 1 , Al claim 1 , K claim ...

Подробнее
13-02-2014 дата публикации

Nickel catalysts for reforming hydrocarbons

Номер: US20140041300A1

A catalyst for reforming hydrocarbons may include a catalytically active amount of nickel or nickel oxide dispersed on a metal oxide support. The metal oxide support may be of a single-metal oxide of a first metal or a complex-metal oxide of the first metal and a second metal. A co-catalyst of magnesium oxide (MgO) may anchor the nickel or nickel oxide onto the metal oxide support.

Подробнее
13-02-2014 дата публикации

METHOD FOR MANUFACTURING METALLIC GLASS NANOWIRE, METALLIC GLASS NANOWIRE MANUFACTURED THEREBY, AND CATALYST CONTAINING METALLIC GLASS NANOWIRE

Номер: US20140045680A1
Принадлежит: TOHOKU UNIVERSITY

Provided is a method for easily manufacturing large volumes of a metallic glass nanowire with an extremely small diameter. This metallic glass nanowire manufacturing method is characterized in that a melted metallic glass or a master alloy thereof is gas-atomized in a supercooled state. 1. A method for manufacturing metallic glass nanowire , characterized in that melted metallic glass or a master alloy thereof is subjected to gas atomization in a supercooled state.2. The metallic glass nanowire manufacturing method according to claim 1 , characterized in that said metallic glass is one selected from the group consisting of a Zr-based claim 1 , a Fe-based claim 1 , a Pd-based claim 1 , a Pt-based claim 1 , and a Ni-based type.3. The metallic glass nanowire manufacturing method according to claim 1 , characterized in that said gas atomization is carried out at gas pressure of 10 kgf/cmor above.4. The metallic glass nanowire manufacturing method according to claim 1 , characterized in that said metallic glass nanowires are in a fibrous state of an entanglement of a plurality of the metallic glass nanowires.5. The metallic glass nanowire manufacturing method according to claim 4 , characterized in that said gas atomization is carried out at gas pressure of 70 kgf/cmor above.6. A metallic glass nanowire manufactured by the manufacturing method according to .7. Metallic glass nanowires in a fibrous state of an entanglement of a plurality of the metallic glass nanowires claim 4 , manufactured by the manufacturing method according to .8. A catalyst containing metallic glass nanowires in a fibrous state of an entanglement of a plurality of the metallic glass nanowires according to .9. The metallic glass nanowire manufacturing method according to claim 2 , characterized in that said gas atomization is carried out at gas pressure of 10 kgf/cmor above.10. The metallic glass nanowire manufacturing method according to claim 2 , characterized in that said metallic glass nanowires ...

Подробнее
13-02-2014 дата публикации

CATALYSTS

Номер: US20140045952A1
Принадлежит:

A process for preparing a catalyst precursor includes forming a slurry of particles of an insoluble metal compound, where the metal of the insoluble metal compound is an active catalyst component, with particles and/or one or more bodies of a pre-shaped catalyst support in a carrier liquid. The particles of the insoluble metal compound are thus contacted with the particles and/or the one or more bodies of the pre-shaped catalyst support. A treated catalyst support is thereby produced. Carrier liquid is removed from the slurry to obtain a dried treated catalyst support, which either directly constitutes the catalyst precursor, or is optionally calcined to obtain the catalyst precursor. 1. A process for preparing a catalyst precursor , which process includesforming a slurry of particles of an insoluble inorganic metal salt, particles and/or one or more bodies of a pre-shaped catalyst support in a carrier liquid, and a soluble metal salt dissolved in the carrier liquid, wherein the metals of the insoluble inorganic metal salt and the soluble metal salt are the same, and where the said metal is an active catalyst component, with the particles of the insoluble inorganic metal salt thus being contacted with the particles and/or the one or more bodies of the pre-shaped catalyst support and with the pre-shaped catalyst support thus being contacted at least once with the soluble metal salt, thereby to produce a treated catalyst support; andremoving carrier liquid from the slurry to obtain a dried treated catalyst support, which either directly constitutes the catalyst precursor, or is optionally calcined to obtain the catalyst precursor.2. A process according to claim 1 , wherein the contacting of the particles of the insoluble inorganic metal salt with the particles and/or the one or more bodies of the pre-shaped catalyst support is carried out for at least one minute.3. A process according to claim 1 , wherein the pre-shaped catalyst support is porous claim 1 , and is ...

Подробнее
27-02-2014 дата публикации

PROCESS FOR TREATING SHAPED CATALYST BODIES AND SHAPED CATALYST BODIES HAVING INCREASED MECHANICAL STRENGTH

Номер: US20140058134A1
Принадлежит: BASF SE

The present invention provides a process for treating shaped catalyst bodies which has the following steps: 116-. (canceled)17. A process for treating shaped catalyst bodies , which comprises the process steps:a) providing finished shaped catalyst bodies,b) impregnating the finished shaped catalyst bodies with a peptizing auxiliary in an amount of liquid which does not exceed the theoretical water absorption of the shaped catalyst bodies,c) thermal treating the impregnated shaped catalyst bodies at from 50° C. to 250° C. andd) calcinating the thermally treated shaped catalyst bodies at from 250° C. to 600° C.18. The process according to claim 17 , wherein an ammonia solution or a nitric acid solution is used as peptizing auxiliary.19. The process according to claim 18 , wherein an aqueous ammonia solution or an aqueous nitric acid solution is used as peptizing auxiliary.20. The process according to claim 17 , which claim 17 , after process step b) claim 17 , further comprises the process stepbb) allowing the peptizing auxiliary to act for up to 10 hours.21. The process according to claim 17 , wherein the thermal treatment in process step c) is carried out under atmospheric pressure or under reduced pressure or in a static or agitated bed of the shaped catalyst bodies.22. The process according to claim 21 , wherein the reduced pressure is from 0.1 to 0.9 bar.23. The process according to claim 17 , wherein the calcination in process step d) is carried out in a static or agitated bed of the shaped catalyst bodies.24. The process according to claim 17 , wherein extrudates or pellets or granules are used as shaped catalyst bodies.25. The process according to claim 17 , wherein heterogeneous catalysts are used as catalyst for the shaped catalyst bodies.26. The process according to claim 17 , wherein the catalyst is zeolite claim 17 , NiO/CoO/CuO/ZrO claim 17 , TiO claim 17 , CuO/AlOor CoO/SiO.27. The process according to claim 26 , wherein the zeolite is a boron-beta- ...

Подробнее
20-03-2014 дата публикации

IMPLANTATION OF NI NANO DOMAINS IN REFRACTORY METAL OXIDE SUPPORT BY MEANS OF SOL-GEL ENCAPSULATION - AN EFFECTIVE SOLUTION TO COKE FORMATION IN THE PARTIAL OXIDATION OF NATURAL GAS

Номер: US20140077134A1
Автор: Hong Liang, YIN Xiong
Принадлежит: NATIONAL UNIVERSITY OF SINGAPORE

A metal oxide-supported nickel catalyst includes a matrix containing a metal oxide and catalytic sites distributed throughout the matrix and having an intricate interface with the matrix, in which the catalytic sites are selected from the group consisting of nano-nickel(0) domains and nano-nickel(0)-A(0) alloy domains. Also disclosed are a method for preparing this catalyst and a method for using it to produce carbon monoxide and hydrogen by partial oxidation of a C-Chydrocarbon. 2. The catalyst of claim 1 , wherein the catalytic sites are nano-nickel(0) domains.3. The catalyst of claim 2 , wherein the metal oxide is AlO claim 2 , SiO claim 2 , CaO claim 2 , or ZrO.4. The catalyst of claim 3 , wherein the catalytic sites constitute 18-22 wt % of the catalyst.5. The catalyst of claim 1 , wherein the catalytic sites are nano-nickel(0)-A(0) alloy domains.6. The catalyst of claim 5 , wherein A is Rh.7. The catalyst of claim 5 , wherein the metal oxide is AlO claim 5 , SiO claim 5 , CaO claim 5 , or ZrO.8. The catalyst of claim 7 , wherein the catalytic sites constitute 18-22 wt % of the catalyst.9. The catalyst of claim 8 , wherein A is Rh.1016-. (canceled)18. The catalyst of claim 17 , wherein in the producing step only (NiO)(OH)particles are produced so as to form a metal oxide-supported nano-nickel(0) domains catalyst.19. The catalyst of claim 18 , wherein the metal oxide is AlO claim 18 , SiO claim 18 , CaO claim 18 , or ZrO.20. The catalyst of claim 19 , wherein the catalytic sites constitute 18-22 wt % of the catalyst.21. The catalyst of claim 17 , wherein in the producing step both (NiO)(OH)particles and another metal-containing particles are produced so as to form a metal oxide-supported nano-nickel(0)-A(0) alloy domains catalyst is formed.22. The catalyst of claim 21 , wherein A is Rh.23. The catalyst of claim 21 , wherein the metal oxide is AlO claim 21 , SiO claim 21 , CaO claim 21 , or ZrO.24. The catalyst of claim 23 , wherein the catalytic sites constitute ...

Подробнее
06-01-2022 дата публикации

Catalyst for hydrogenation reaction and method for producing same

Номер: US20220001360A1
Принадлежит: Hanwha Solutions Corp

The present invention can facilitate the reduction of nickel by using copper as an accelerator when a hydrogenation catalyst including nickel is produced by using a deposition-precipitation (DP) method. According to an embodiment of the present invention, provided is a catalyst for a hydrogenation reaction that includes 40-80 parts by weight of nickel as a catalyst active component, 0.01-5 parts by weight of copper as an accelerator, and 10-30 parts by weight of a silica support based on 100 parts by weight of the entire catalyst. Therefore, although a high content of nickel is supported, the catalyst has a small crystal size of an activated metal and a high degree of dispersion and provides excellent hydrogenation activity. In addition, silica with a controlled particle size distribution is used as a support, so that the produced catalyst also has a uniform particle size distribution and is suppressed from being smashed at a high-speed rotation in the hydrogenation reaction, thereby providing a high filtration rate.

Подробнее
06-01-2022 дата публикации

Trimetallic layered double hydroxide composition

Номер: US20220002887A1
Автор: Chuan Zhao, XIN Bo

A layered double hydroxide (LDH) material, methods for using the LDH material to catalyse the oxygen evolution reaction (OER) in a water-splitting process and methods for preparing the LDH material. The LDH material includes nickel, iron and chromium species and possesses a sheet-like morphology including at least one hole.

Подробнее
07-01-2016 дата публикации

Metal Oxide Mesocrystal, and Method for Producing Same

Номер: US20160001268A1
Принадлежит: OSAKA UNIVERSITY

Various metal oxide mesocrystals can be synthesized in a simple manner by a method for producing a metal oxide mesocrystal, the method comprising the step of annealing an aqueous precursor solution comprising one or more metal oxide precursors, an ammonium salt, a surfactant, and water at 300 to 600° C. Composite mesocrystals consisting of a plurality of metal oxides or an alloy oxide can also be provided. 1. A method for producing a metal oxide mesocrystal , the method comprising the step of maintaining an aqueous precursor solution comprising one or more metal oxide precursors , an ammonium salt , a surfactant , and water at 300 to 600° C.2. The method according to claim 1 , wherein the one or more metal oxide precursors are a metal nitrate and/or a metal fluoride salt.3. The method according to claim 1 , wherein the ammonium salt is NHNO.4. The method according to claim 1 , wherein the surfactant is at least one member selected from the group consisting of anionic surfactants claim 1 , cationic surfactants claim 1 , amphoteric surfactants claim 1 , and nonionic surfactants.5. The method according to claim 1 , wherein claim 1 , in the aqueous precursor solution claim 1 , the ratio of metal oxide precursor to surfactant is 1 to 1000:1 (molar ratio) claim 1 , and the ratio of ammonium salt to surfactant is 1 to 1000:1 (molar ratio).6. (canceled)7. A mesocrystal consisting of at least one member selected from the group consisting of claim 1 , nickel oxide claim 1 , iron oxide claim 1 , cobalt oxide claim 1 , zirconium oxide claim 1 , and cerium oxide claim 1 , the mesocrystal having a specific surface area of 0.5 m/g or more and an average width of 0.01 to 1000 μm.8. (canceled)9. A mesocrystal consisting of nanoparticles of two or more metal oxides.10. The mesocrystal according to claim 9 , which has a specific surface area of 0.5 m/g or more.11. (canceled)12. The mesocrystal according to claim 9 , wherein the metal oxide nanoparticles consist of two or more ...

Подробнее
05-01-2017 дата публикации

Egg-shell type hybrid structure of highly dispersed nanoparticle-metal oxide support, preparation method thereof, and use thereof

Номер: US20170001168A1
Принадлежит: Korea Institute of Energy Research KIER

The present invention relates to an egg-shell type hybrid structure of highly dispersed nanoparticles-metal oxide support, a preparation method thereof, and a use thereof. Specifically, the present invention relates to an egg-shell type hybrid structure of highly dispersed nanoparticles-metal oxide support, providing an excellent platform in a size of nanometers or micrometers which can support nanoparticles selectively in the porous shell portion by employing a metal oxide support with an average diameter of nanometers or micrometers including a core of nonporous metal oxide and a shell of porous metal oxides, a preparation method thereof, and a use thereof.

Подробнее
02-01-2020 дата публикации

PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE WITH STIRRED GAS/LIQUID REACTOR AND PLUG-FLOW REACTOR SEQUENCE

Номер: US20200001266A1
Принадлежит: IFP ENERGIES NOUVELLES

Reaction device which makes possible the oligomerization of olefins to give linear olefins and preferably linear α-olefins, comprising a gas/liquid reactor and a reactor of plug-flow type. The reaction device is also employed in an oligomerization process. 1. Device comprising:{'b': '1', 'a gas/liquid reactor (), of elongated shape along the vertical axis, comprising a liquid phase and a gas phase located above the said liquid phase,'}{'b': '3', 'a means for introduction of the olefin () into the gas/liquid reactor employing a means for injection of the olefin within the said liquid phase of the gas/liquid reactor,'}{'b': '14', 'a means for introduction of the catalytic system () into the gas/liquid reactor,'}{'b': 13', '1, 'a recirculation loop () comprising withdrawal means in the gas/liquid reactor for the withdrawal and the dispatch of a fraction of withdrawn liquid to a heat exchanger capable of cooling the said liquid fraction, and means for introduction of the said cooled liquid, exiting from the heat exchanger, into the upper part of the gas/liquid reactor (),'}{'b': '11', 'a reactor of plug-flow type () comprising withdrawal means in the gas/liquid reactor for the withdrawal and the dispatch of a fraction of withdrawn liquid to the reactor of plug-flow type and means for recovery of a reaction effluent, at the outlet of the reactor of plug-flow type.'}2. Device according to claim 1 , in which the reactor of plug-flow type is located outside the gas/liquid reactor.3. Device according to claim 1 , in which the reactor of plug-flow type comprises a heat exchanger.4. Olefin oligomerization process employing the device according to claim 1 , at a pressure between 1.0 and 10.0 MPa and at a temperature between 0° C. and 200° C. claim 1 , comprising the following stages:{'b': '1', 'a) a catalytic oligomerization system comprising at least one metal precursor and at least one activating agent is introduced into a gas/liquid reactor () comprising a liquid phase and a ...

Подробнее
05-01-2017 дата публикации

SYNTHESIS OF OXYGEN-MOBILITY ENHANCED CEO2 AND USE THEREOF

Номер: US20170001176A1
Принадлежит:

Disclosed are catalysts capable of catalyzing the dry reforming of methane. The catalysts have a core-shell structure with the shell surrounding the core. The shell has a redox-metal oxide phase that includes a metal dopant incorporated into the lattice framework of the redox-metal oxide phase. An active metal(s) is deposited on the surface of the shell. 1. A catalyst capable of catalyzing a dry reformation of methane reaction , the catalyst comprising a core-shell structure having:a metal oxide core, a clay core, or a zeolite core;a shell surrounding the core, wherein the shell has a redox-metal oxide phase that includes a metal dopant incorporated into the lattice framework of the redox-metal oxide phase; andan active metal deposited on the surface of the shell.2. The catalyst of claim 1 , wherein the redox-metal oxide phase is cerium oxide (CeO) and the metal dopant is niobium (Nb) claim 1 , indium (In) claim 1 , or lanthanum (La) claim 1 , or any combination thereof.3. The catalyst of claim 2 , wherein the metal oxide core is an alkaline earth metal aluminate core selected from aluminate claim 2 , magnesium aluminate claim 2 , calcium aluminate claim 2 , strontium aluminate claim 2 , barium aluminate claim 2 , or any combination thereof.4. The catalyst of claim 3 , wherein the alkaline earth metal aluminate core is magnesium aluminate.5. The catalyst of claim 4 , comprising:65 wt. % to 85 wt. % magnesium aluminate;10 wt. % to 20 wt. % cerium oxide; and5 wt. % to 10 wt. % nickel.6. The catalyst of claim 5 , comprising 0.5 wt. % to 2 wt. % of niobium incorporated into the lattice framework of the cerium oxide phase.7. The catalyst of claim 5 , comprising 0.5 wt. % to 2 wt. % of indium incorporated into the lattice framework of the cerium oxide phase.8. The catalyst of claim 5 , comprising 0.5 wt. % to 2 wt. % of lanthanum incorporated into the lattice framework of the cerium oxide phase.9. The catalyst of claim 2 , wherein the metal oxide core is AlO.10. The ...

Подробнее
04-01-2018 дата публикации

STEAM REFORMING CATALYST AND METHOD OF MAKING THEREOF

Номер: US20180001309A1
Принадлежит:

The invention provides a method for the production of a supported nickel catalyst, in which an aqueous mixture comprising an alkali metal salt plus other metal salts is sintered to form a support material. A supported nickel catalyst comprising potassium β-alumina is also provided. 1. A supported nickel catalyst precursor obtained via a method comprising the steps of: i. magnesium mineral or magnesium salt,', 'ii. optionally, a calcium mineral or calcium salt,', 'iii. an aluminium mineral or aluminium salt,', 'iv. an alkali metal salt comprising at least one of Na and K, and', 'v. optionally water;, 'a. providing a mixture comprisingb. extruding said mixture to form an extrudate, said extrudate containing integrated reservoirs of said alkali metal salt, and calcining the extrudate at a temperature from 300-600° C.;c. sintering said calcined extrudate at a temperature in a range of 1100-1400° C. to form a support material;d. impregnating said support material with an aqueous solution comprising a nickel salt to provide the supported nickel catalyst precursor; ande. optionally repeating step d.2. A supported nickel catalyst obtainable via the method recited in claim 1 , wherein claim 1 , after each impregnation step d claim 1 , the supported nickel catalyst precursor is decomposed to form a supported nickel catalyst claim 1 , suitably at temperatures between 350-500° C.3. A supported nickel catalyst comprising nickel supported on a support material claim 1 , characterised in that said support material comprises potassium β-alumina or sodium β-alumina claim 1 , or mixtures thereof.4. The supported nickel catalyst according to claim 3 , wherein said support material comprises 8 wt % or more potassium β-alumina claim 3 , as measured by XRD.5. The supported nickel catalyst according to claim 3 , comprising 0.2-2 wt % potassium.6. Use of a supported nickel catalyst according to as a catalyst in a steam reforming process.7. A steam reforming process comprising the steps of: ...

Подробнее
03-01-2019 дата публикации

Method for the production of new nanomaterials

Номер: US20190001308A1

A method for producing new nanomaterials, 80 to 100 mol % of which are composed of TiO2 and 0 to 20 mol % are composed of another metal or semi-metal oxide that has a specific surface of 100 to 300 m2.g−1and 1 to 3 hydroxyl groups per nm2.

Подробнее
05-01-2017 дата публикации

METHANE STEAM REFORMING, USING NICKEL/ALUMINA NANOCOMPOSITE CATALYST OR NICKEL/SILICA-ALUMINA HYBRID NANOCOMPOSITE CATALYST

Номер: US20170001863A1
Принадлежит: KOREA INSTITUTE OF ENERGY RESEARCH

The present invention relates to a method of methane steam reforming using a nickel/alumina nanocomposite catalyst. More specifically, the present invention relates to a method of carrying out methane steam reforming using a nickel/alumina nanocomposite catalyst wherein nickel metal nanoparticles are uniformly loaded in a high amount on a support via a melt infiltration method with an excellent methane conversion even under a relatively severe reaction condition of a high gas hourly space velocity or low steam supply, and to a catalyst for this method. In addition, the present invention prepares a nickel/silica-alumina hybrid nanocatalyst by mixing the catalyst prepared by the melt infiltration method as the first catalyst and the nickel silica yolk-shell catalyst as the second catalyst, and applies it to the steam reforming of methane to provide a still more excellent catalytic activity even under the higher temperature of ° C. or more with the excellent methane conversion. 150. A method of methane steam reforming with a methane conversion of % or more , which comprisesi) a step of providing a first catalyst for methane steam reforming which is prepared by a first step of grinding and mixing a porous alumina support and a nickel-containing compound having a melting point lower than the porous alumina support, and melt-infiltrating the nickel-containing compound into pores of the surface, inside, or both of the porous alumina support in a closed system at a temperature ranging from the melting point of the nickel-containing compound to ±5° C. higher than the melting point; and a second step of thermally treating the melt-infiltrated composite powder at 400 to 600° C. under reducing gas atmosphere to load nickel particles having the average particle size of 10 nm or less in the porous alumina support; ora nickel silica-alumina hybrid catalyst comprising the first catalyst; and a yolk-shell shaped second catalyst for methane steam reforming which has a nano- or micro- ...

Подробнее
05-01-2017 дата публикации

Catalyst composite and preparation thereof for isomerization of paraffins

Номер: US20170001924A1
Принадлежит: Hindustan Petroleum Corp Ltd

A catalyst composition is provided for isomerization of paraffins comprising of at least one heteropoly acid and reduced graphene oxide. Further provided are a process for preparation of the catalyst composition and a process for isomerization of paraffins using the catalytic composition.

Подробнее
04-01-2018 дата публикации

REDUCTION OF GREENHOUSE GAS EMISSION

Номер: US20180002262A1
Принадлежит:

Herein disclosed is a method of reducing greenhouse gas (GHG) emission comprising introducing one or more feed streams into a reformer to generate synthesis gas; and converting synthesis gas to dimethyl ether (DME). In some cases, the reformer is a fluidized bed dry reforming reactor. In some cases, the reformer comprises a hydrogen membrane. In some cases, the hydrogen membrane removes hydrogen contained in the synthesis gas and shifts reforming reactions toward completion. 1. A method of reducing greenhouse gas (GHG) emission comprisingintroducing one or more feed streams into a reformer to generate synthesis gas; andconverting synthesis gas to dimethyl ether (DME).2. The method of wherein said reformer is a fluidized bed dry reforming reactor.3. The method of wherein the reformer comprises a hydrogen membrane or a hydrogen membrane coated with an erosion resistant layer.4. The method of wherein said hydrogen membrane removes hydrogen contained in the synthesis gas and shifts reforming reactions toward completion.5. The method of wherein reformed gas exits the top of the reformer and is separated from spent catalyst.6. The method of wherein spent catalyst is routed to a regenerator in which the catalyst is regenerated.7. The method of wherein a renewable fuel is used in the regenerator.8. The method of wherein the renewable fuel comprises landfill gas claim 7 , bio-digester gas claim 7 , pyrolysis oils and liquid fuels claim 7 , spent glycerol claim 7 , biomass derived syngas claim 7 , bio-ethanol.9. The method of wherein the regenerator comprises an air pre-heater and the method utilizes full or partial displacement of natural gas or natural gas derived syngas with a bio-genic gaseous or liquid fuel in the air pre-heater.10. The method of comprising using full or partial displacement of natural gas or natural gas derived syngas with a bio-genic gaseous or liquid fuel in the regenerator.11. The method of wherein the renewable fuel used in the regenerator comprises ...

Подробнее
04-01-2018 дата публикации

FLUIDIZED BED MEMBRANE REACTOR

Номер: US20180002263A1
Принадлежит:

Herein disclosed is a dry reforming reactor comprising a gas inlet near the bottom of the reactor; a gas outlet near the top of the reactor; a fluidized bed comprising a catalyst; and one or more hydrogen membranes comprising palladium (Pd). In some cases, the one or more hydrogen membranes comprises Pd alloy membranes, or Pd supported on ceramics or metals. In some cases, the one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor. In some cases, the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system. 1. A dry reforming reactor comprisinga gas inlet near the bottom of the reactor;a gas outlet near the top of the reactor;a fluidized bed comprising a catalyst; andone or more hydrogen membranes comprising palladium (Pd).2. The reactor of wherein said one or more hydrogen membranes comprises Pd alloy membranes claim 1 , or Pd alloys supported on ceramic or metal substrates.3. The reactor of wherein said one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor.4. The reactor of wherein the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system.5. The reactor of wherein the gas inlet is configured to allow one or more feed streams to enter the reactor via a manifold or distributor.6. The reactor of wherein the catalyst comprises nickel and alumina.7. The reactor of wherein the reactor is configured to allow reformed gas to exit the top of the reactor and separate from spent catalyst.8. The reactor of wherein no steam or oxygen injection is needed.9. The reactor of is operated at a temperature range of 600-700° C. and a pressure range of 700-800 kPa.10. A method of producing dimethyl ether (DME) ...

Подробнее
04-01-2018 дата публикации

FLUIDIZED BED MEMBRANE REACTOR

Номер: US20180002264A1
Принадлежит:

Herein disclosed is a dry reforming reactor comprising a gas inlet near the bottom of the reactor; a gas outlet near the top of the reactor; a fluidized bed comprising a catalyst; and one or more hydrogen membranes comprising palladium (Pd). In some cases, the one or more hydrogen membranes comprises Pd alloy membranes, or Pd supported on ceramics or metals. In some cases, the one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor. In some cases, the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system. 1. A dry reforming reactor comprisinga gas inlet near the bottom of the reactor;a gas outlet near the top of the reactor;a fluidized bed comprising a catalyst; andone or more hydrogen membranes comprising palladium (Pd).2. The reactor of wherein said one or more hydrogen membranes comprises Pd alloy membranes claim 1 , or Pd alloys supported on ceramic or metal substrates.3. The reactor of wherein said one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor.4. The reactor of wherein the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system.5. The reactor of wherein the gas inlet is configured to allow one or more feed streams to enter the reactor via a manifold or distributor.6. The reactor of wherein the catalyst comprises nickel and alumina.7. The reactor of wherein the reactor is configured to allow reformed gas to exit the top of the reactor and separate from spent catalyst.8. The reactor of configured to use no process water and no oxygen.9. The reactor of is operated at a temperature range of 600-700° C. and a pressure range of 700-800 kPa.10. The reactor of comprising one or more internal ...

Подробнее
07-01-2021 дата публикации

Hydrogenation reaction catalyst and preparation method therefor

Номер: US20210002403A1
Принадлежит: Hanwha Solutions Corp

Provided are a hydrogenation reaction catalyst and a preparation method therefor, and more particularly, to a hydrogenation reaction catalyst including sulfur as a promoter, thereby selectively hydrogenating an olefin by changing a relative hydrogenation rate of the olefin and an aromatic group during a hydrogenation reaction of an unsaturated hydrocarbon compound containing an aromatic group, and a preparation method therefor.

Подробнее
07-01-2021 дата публикации

3D REDUCED GRAPHENE OXIDE FOAMS EMBEDDED WITH NANOCATALYSTS, SYNTHESIZING METHODS AND APPLICATIONS OF SAME

Номер: US20210002778A1
Автор: Wang Daoyuan, Zhao Wei
Принадлежит:

A method of synthesizing a three-dimensional (3D) reduced graphene oxide (RGO) foam embedded with water-splitting nanocatalysts includes providing at least one solution containing at least one precursor of nanocatalysts, and a graphene oxide (GO) aqueous suspension; mixing the GO aqueous suspension with the at least one solution to form a mixture suspension; and performing hydrothermal reaction in the mixture suspension to form a 3D RGO foam embedded with the nanocatalysts. 1. A method of synthesizing a three-dimensional (3D) reduced graphene oxide (RGO) foam embedded with nanocatalysts , comprising:providing at least one solution containing at least one precursor of nanocatalysts, and a graphene oxide (GO) aqueous suspension;mixing the GO aqueous suspension with the at least one solution to form a mixture suspension; andperforming hydrothermal reaction in the mixture suspension to form a 3D RGO foam embedded with the nanocatalysts.2. The method of claim 1 , wherein the at least one precursor comprises NaMoOand L-cysteine.3. The method of claim 2 , wherein the mixture suspension is characterized with pH=5.8.4. The method of claim 2 , wherein the 3D RGO foam embedded with the nanocatalysts is a 3D RGO-Mo Sfoam.5. The method of claim 1 , wherein the at least one solution comprises a first solution containing nickel (II) nitrate claim 1 , and a second solution containing iron (III) nitrate.6. The method of claim 5 , wherein the first and second solutions are formed by dissolving Ni(NO).6HO and Fe(NO).9HO into deionized water claim 5 , respectfully.7. The method of claim 5 , wherein the mixture suspension is characterized with pH=3.5 and a molar ratio of C:Ni:Fe=14:1:0.33.8. The method of claim 5 , wherein the hydrothermal reaction in the mixture suspension is performed in a sealed autoclave for hydrothermal reaction at a predetermined temperature for a period of time.9. The method of claim 8 , wherein the predetermined temperature is in a ranges of about 160-200° C. ...

Подробнее
03-01-2019 дата публикации

METHOD FOR SYNTHESISING ORGANIC MOLECULES

Номер: US20190002932A1
Принадлежит:

Disclosed is a method for synthesising organic molecules from carbon-containing sources and dihydrogen, as well as a device for implementing the method. The method can make use of carbon-containing sources and/or dihydrogen from renewable resources. 1. A process for synthesising organic molecules comprising contacting , in an aqueous liquid medium under anaerobic conditions , at least one source of anaerobic microorganisms , capable of catalysing the reduction of carbon molecules by dihydrogen , with at least one dihydrogen stream , in the presence of at least one carbon source and at least one solid catalyst.2. The process according to claim 1 , wherein all or part of the dihydrogen stream comes from a microbial electrolysis comprising the oxidation of organic waste claim 1 , and/or an anaerobic digestion of organic waste claim 1 , and/or water electrolysis.3. The process according to claim 1 , wherein the at least one carbon source isa. either in gas form and chosen from carbon monoxide and carbon dioxide,{'sub': 1', '8, 'b. or in solution and chosen from solutions comprising carbonate, C-Ccarboxylates, sugars, lactate, alone or in mixture.'}4. The process according to claim 1 , wherein the at least one solid catalyst is an electrically conducting or semi-conductor catalyst.5. The process according to claim 1 , wherein the at least one solid catalyst is chosen from a hydrogenation catalyst or a catalyst comprising carbon materials claim 1 , or a mixture thereof.6. The process according to claim 1 , wherein the solid catalyst is a bulk or supported metal catalyst.7. The process according to claim 6 , wherein said metal catalyst comprises at least one metal chosen from iron claim 6 , ruthenium claim 6 , cobalt claim 6 , nickel claim 6 , chromium claim 6 , platinum claim 6 , palladium claim 6 , rhodium claim 6 , or a mixture of the same or of their oxides.8. The process according to claim 7 , wherein said metal catalyst comprises iron claim 7 , cobalt claim 7 , ...

Подробнее
20-01-2022 дата публикации

CARBON NANOTUBE COMPOSITE CATALYTIC FILM AND METHOD FOR MAKING THE SAME

Номер: US20220017368A1
Принадлежит:

A method for making a carbon nanotube composite catalytic film includes providing a carbon nanotube film and providing a precursor solution including iron nitrate, nickel chloride, and molybdenum pentachloride. The precursor solution is placed on the carbon nanotube film, to obtain a precursor film. The precursor film defines multiple through holes spaced apart from each other. The precursor film with the multiple through holes is annealed and a sulfur power is applied during annealing the precursor film with the multiple through holes. 1. A method for making a carbon nanotube composite catalytic film , comprising:providing a carbon nanotube film;providing a precursor solution comprising iron nitrate, nickel chloride, and molybdenum pentachloride;placing the precursor solution on the carbon nanotube film and drying, to obtain a precursor film;making the precursor film define a plurality of through holes spaced apart from each other; andannealing the precursor film with the plurality of through holes, and applying a sulfur power during annealing the precursor film with the plurality of through holes.2. The method of claim 1 , wherein the precursor solution consists of the iron nitrate claim 1 , the nickel chloride claim 1 , the molybdenum pentachloride claim 1 , and the solvent.3. The method of claim 1 , wherein making the precursor film define a plurality of through holes comprises drilling the precursor film by a laser.4. The method of claim 1 , wherein annealing the precursor film with the plurality of through holes is performed in a protective gas.5. The method of claim 4 , wherein the protective gas is a mixture of 90% Ar and 10% H.6. The method of claim 1 , wherein annealing the precursor film with the plurality of through holes is performed in a mixture of 90% Ar and 10% Hat 400° C. for 30 minutes.7. The method of claim 1 , wherein a method for making the carbon nanotube film comprising:providing carbon nanotubes;adding the carbon nanotubes into a solvent and ...

Подробнее
14-01-2016 дата публикации

PHOTOCATALYTIC DEGRADATION OF SUGAR

Номер: US20160008783A1
Автор: Roundhill David Max
Принадлежит:

Systems having at least one photonic antenna molecule and at least one catalyst for degrading a sugar to degradation products using light energy are disclosed. Also disclosed are the devices and methods that use the systems for photocatalytically degrading a sugar into degradation products. 1. A system for photocatalytically degrading a sugar , the system comprising:at least one photonic antenna molecule; andat least one catalyst;wherein the photonic antenna molecule is capable of collecting a light energy and transferring the light energy to the catalyst; andwherein the catalyst is capable of degrading the sugar to produce at least one degradation product.2. The system of claim 1 , wherein the photonic antenna molecule is selected from the group consisting of 5-hydroxytryptamine claim 1 , an acridine claim 1 , an Alexa Fluor® dye claim 1 , an ATTO dye claim 1 , a BODIPY® dye claim 1 , Coumarin 6 claim 1 , a CY dye claim 1 , DAPI claim 1 , an ethidium compound claim 1 , a Hoechst dye claim 1 , Oregon Green claim 1 , rhodamine claim 1 , a compound comprising Ru(bpy) claim 1 , a compound comprising (Pt(pop)) claim 1 , a YOYO dye claim 1 , and a SeTau dye.3. The system of claim 1 , wherein the photonic antenna molecule is fluorescein.4. The system of claim 1 , wherein the catalyst is a metal nanoparticle.5. The system of claim 4 , wherein the metal nanoparticle comprises a metal selected from the group consisting of ruthenium claim 4 , palladium claim 4 , gold claim 4 , silver claim 4 , nickel claim 4 , tungsten claim 4 , molybdenum claim 4 , gallium claim 4 , iridium claim 4 , rhodium claim 4 , osmium claim 4 , copper claim 4 , cobalt claim 4 , iron claim 4 , and platinum claim 4 , or a mixture thereof.6. The system of claim 4 , wherein the metal nanoparticle comprises a lanthanide.7. The system of claim 4 , wherein the metal nanoparticle comprises a metal selected from the group consisting of platinum claim 4 , nickel claim 4 , and europium.8. The system of claim 5 , ...

Подробнее
14-01-2016 дата публикации

Nickel hexaaluminate-containing catalyst for reforming hydrocarbons in the presence of carbon dioxide

Номер: US20160008791A1
Принадлежит: BASF SE

The invention relates to a nickel hexaaluminate-comprising catalyst for reforming hydrocarbons, preferably methane, in the presence of carbon dioxide, which comprises hexaaluminate in a proportion in the range from 65 to 95% by weight, preferably from 70 to 90% by weight, and a crystalline, oxidic secondary phase selected from the group consisting of LaAlO 3 , SrAl 2 O 4 and BaAl 2 O 4 in the range from 5 to 35% by weight, preferably from 10 to 30% by weight. The BET surface area of the catalyst is ≧5 m 2 /g, preferably ≧10 m 2 /g. The molar nickel content of the catalyst is ≦3 mol %, preferably ≦2.5 mol % and more preferably ≦2 mol %. The interlayer cations are preferably Ba and/or Sr. The process for producing the catalyst comprises the steps: (i) production of a mixture of metal salts, preferably nitrate salts of Ni and also Sr and/or La, and a nanoparticulate aluminum source, (ii) molding and (iii) calcination. The catalyst of the invention is brought into contact with hydrocarbons, preferably methane, and CO 2 in a reforming process, preferably at a temperature of >800° C. The catalyst is also distinguished by structural and preferred properties of the nickel, namely that the nickel particles mostly have a tetragonal form and the particles have a size of ≦50 nm, preferably ≦40 nm and particularly preferably ≦30 nm, and are present finely dispersed as grown-on hexaaluminate particles. The catalyst has only a very low tendency for carbonaceous deposits to be formed.

Подробнее
09-01-2020 дата публикации

NI-AL2O3@AL2O3-SIO2 CATALYST WITH COATED STRUCTURE, PREPARATION METHOD THEREFOR AND APPLICATION THEREOF

Номер: US20200009538A1
Принадлежит:

A Ni—AlO@AlO—SiOcatalyst with coated structure is provided. The catalyst has a specific surface area of 98 m/g to 245 m/g, and a pore volume of 0.25 cm/g to 1.1 cm/g. A mass ratio of an AlOcarrier to active component Ni in the catalyst is AlO:Ni=100:4˜26, a mass ratio of the AlOcarrier to an AlO—SiOcoating layer is AlO:AlO—SiO=100:0.1˜3, and a molar ratio of Al to Si in the AlO—SiOcoating layer is 0.01 to 1. Ni particles are distributed on a surface of the AlOcarrier in an amorphous or highly dispersed state and have a grain size less than or equal to 8 nm, and the coating layer is filled among the Ni particles. 1. A Ni—AlO@AlO—SiOcatalyst with coated structure , comprising: Ni particles are distributed on a surface of an AlOcarrier in an amorphous or highly dispersed state as an active component for the catalyst and have a grain size less than or equal to 8 nm , a mass ratio of the AlOcarrier to an AlO—SiOcoating layer is AlO:AlO—SiO=100:0.1˜3 , a molar ratio of Al to Si in the AlO—SiOcoating layer is 0.01˜0.1:1 , and the coating layer is filled among the Ni particles.2. The Ni—AlO@AlO—SiOcatalyst with coated structure according to claim 1 , wherein the catalyst has a specific surface area of 98 m/g˜245 m/g claim 1 , and a pore volume of 0.25 cm/g˜1.1 cm/g claim 1 , and a mass ratio of the AlOcarrier to the active component Ni in the catalyst is AlO:Ni=100:4˜26.3. A preparation method of the Ni—AlO@AlO—SiOcatalyst with coated structure according to claim 1 , comprising the steps of:{'sub': 2', '3', '2', '3, 'impregnation step: loading the active component Ni onto the AlOcarrier using an impregnation method, Ni being distributed in tetrahedral and octahedral holes on an AlOsurface and growing into microcrystalline particles by using the tetrahedral and octahedral holes as nuclei;'}{'sub': 2', '3', '2', '2', '3', '2', '3', '2', '2', '3, 'deposition step: loading the AlO—SiOlayer in a depositing manner onto a surface of a Ni/AlOcatalyst obtained in the impregnation ...

Подробнее
14-01-2021 дата публикации

PARTIAL OXIDATION OF HYDROCARBONS

Номер: US20210009413A1
Автор: XU Bang-Cheng
Принадлежит:

A process of catalytic partial oxidation of hydrocarbons, particularly methane and/or natural gas to form a product containing hydrogen and carbon monoxide where the first catalyst comprises Co—Ni—Cr—W alloy. 1. A catalytic partial oxidation process comprising:passing a feed stream comprising a hydrocarbon feedstock and oxygen or an oxygen containing mixture through a reactor having at least a first reaction zone and a subsequent second reaction zone; andproducing an effluent stream comprising carbon monoxide and hydrogen, the first reaction zone comprises a first catalyst having a first surface area and a first thermal conductivity, the first catalyst comprising a Co—Ni—Cr—W alloy;', 'the second reaction zone comprises a second catalyst having a second surface area and a second thermal conductivity, the second catalyst comprising a second metal supported on a carrier;', 'the first surface area of the first catalyst is lower than the second surface area of the second catalyst; and', 'a pressure in said reactor is between about 600 kPa and about 7,500 kPa., 'wherein2. The catalytic partial oxidation process of claim 1 , wherein the Co—Ni—Cr—W alloy comprises 9.0-11.0 wt % Ni claim 1 , 19.0-21.0 wt % Cr claim 1 , 14.0-16.0 wt % W and balance Co.3. The catalytic partial oxidation process of claim 1 , wherein:{'sup': '2', 'the first thermal conductivity of the first catalyst is at least 0.05 cal/cm/cm/second/° C. at operating temperatures; and'}the first thermal conductivity of the first catalyst is higher than the second thermal conductivity of the second catalyst.4. The catalytic partial oxidation process of claim 1 , wherein the first thermal conductivity of the first catalyst is at least 0.10 cal/cm/cm/second/° C.5. The catalytic partial oxidation process of claim 1 , wherein the second metal is selected from the group consisting of iron claim 1 , cobalt claim 1 , nickel claim 1 , ruthenium claim 1 , rhodium claim 1 , palladium claim 1 , osmium claim 1 , iridium ...

Подробнее
14-01-2021 дата публикации

CONTROLLED HEIGHT CARBON NANOTUBE ARRAYS

Номер: US20210009421A1
Принадлежит:

Controlled height carbon nanotube arrays including catalysts and synthesis methods relating thereto are disclosed. Such nanotube arrays can be prepared from catalyst particles having an Fe:Co:Ni molar ratio impregnated in an exfoliated layered mineral to grow carbon nanotube arrays where the Fe:Co:Ni molar ratio of the catalyst is used to control the height of the array. 1. A method for growing a carbon nanotube array , the method comprising:soaking an exfoliated layered mineral in a metal ion aqueous solution comprising an iron salt, a cobalt salt, and a nickel salt to produce an impregnated layered mineral;calcining the impregnated layered mineral to produce a supported catalyst; andgrowing a carbon nanotube array on the supported catalyst.2. The method of claim 1 , wherein a molar ratio of iron to cobalt in the metal ion aqueous solution is about 200:1 to about 1:5 claim 1 , a molar ratio of iron to nickel in the metal ion aqueous solution is about 200:1 to about 1:5 claim 1 , and a molar ratio of cobalt to nickel in the metal ion aqueous solution is about 10:1 to about 1:10.3. The method of claim 1 , wherein the metal ion aqueous solution further comprises salts of one or more of Mo claim 1 , W claim 1 , Al claim 1 , Mg and combinations thereof.4. The method of claim 1 , wherein the metal ion aqueous solution further comprises: (i) a salt of Mo or W or a combination thereof and (ii) a salt of Al or Mg or a combination thereof.5. The method of claim 1 , wherein the iron salt comprises at least one selected from the group consisting of: iron (II) nitrate claim 1 , iron (III) nitrate claim 1 , iron (II) chloride claim 1 , iron (III) chloride claim 1 , iron (II) bromide claim 1 , iron (III) bromide claim 1 , iron (II) fluoride claim 1 , iron (III) fluoride claim 1 , iron (II) sulfate claim 1 , iron (III) sulfate claim 1 , and any combination thereof.6. The method of claim 1 , wherein the cobalt salt comprises at least one selected from the group consisting of: ...

Подробнее
09-01-2020 дата публикации

NICKEL DIATOMACEOUS EARTH CATALYST AND METHOD FOR PRODUCING THE SAME

Номер: US20200010404A1
Принадлежит: MITSUBISHI GAS CHEMICAL COMPANY, INC.

A nickel diatomaceous earth catalyst having a weight loss rate measured by hydrogen-TG at 400 to 600° C. of 0.05 to 2.0%. 1: The method according to claim 5 , wherein the nickel diatomaceous earth catalyst has a weight loss rate measured by hydrogen-TG at 400 to 600° C. of 0.05 to 2.0%.2: The method according to claim 5 , wherein a nickel crystallite diameter of the nickel diatomaceous earth catalyst is 30 to 100 Å.3: The method according to claim 2 , wherein a change Δ in the nickel crystallite diameter between before and after a heat resistance test is 210 Å or less.4: The method according to claim 5 , wherein the nickel diatomaceous earth catalyst has a specific surface area of 60 to 180 m/g.5: A method for producing a nickel diatomaceous earth catalyst by a precipitation method claim 5 , comprising:adding an alkaline solution as a precipitant to a dispersion liquid in which diatomaceous earth and a salt of a nickel catalyst are mixed; andperforming a drying treatment, a calcination treatment, and a reduction treatment, in this order, to obtain the nickel diatomaceous earth catalyst,wherein the reduction treatment is performed at a peak temperature+40° C. or more of a hydrogen-TPR measurement on a calcined powder produced by the calcination treatment.6: The method according to claim 5 , wherein the reduction treatment is performed at the peak temperature+200° C. or less of the hydrogen-TPR measurement on the calcined powder produced by the calcination treatment.7. (canceled)8. (canceled)9: The method according to claim 5 , wherein the salt of a nickel catalyst is selected from nickel sulfate and nickel nitrate.10: The method according to claim 5 , wherein the alkaline solution is poured into the dispersion liquid in which diatomaceous earth and the salt of a nickel catalyst are mixed to produce a precursor having a compound containing nickel hydroxide and nickel carbonate deposited on the surface of the diatomaceous earth. The present invention relates to a ...

Подробнее
03-02-2022 дата публикации

CATALYST FOR PREPARING SYNTHETIC GAS, METHOD FOR PREPARING THE SAME, AND METHOD FOR PREPARING SYNTHETIC GAS USING THE SAME

Номер: US20220032281A1
Принадлежит:

Disclosed are a catalyst for preparing a synthetic gas through dry reforming, a method preparing the catalyst, and a method using the catalyst for preparing the synthetic gas. The catalyst may include: a support including regularly distributed mesopores; metal nanoparticles supported on the support; and a metal oxide coating layer coated on a surface of the support. 1. A catalyst for preparing a synthetic gas through dry reforming , comprising:a support including regularly distributed mesopores;metal nanoparticles supported on the support; anda metal oxide coating layer coated on a surface of the support.2. The catalyst for preparing the synthetic gas of claim 1 , wherein the support comprises one or more selected from the group consisting of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) claim 1 , polyethylene oxide (PEO) claim 1 , polypropylene oxide (PPO) claim 1 , SiO claim 1 , AlO claim 1 , MgO claim 1 , MgAlO claim 1 , LaO claim 1 , CeO claim 1 , ZrO claim 1 , SiC claim 1 , an indium tin oxide (ITO) claim 1 , and a fluorine doped tin oxide (FTO).3. The catalyst for preparing the synthetic gas of claim 1 , wherein the support comprises one or more selected from the group consisting of MCM-41 claim 1 , MCM-48 claim 1 , SBA-1 claim 1 , SBA-15 claim 1 , SBA-16 claim 1 , KIT-1 claim 1 , KIT-6 claim 1 , MSU-1 claim 1 , HMS claim 1 , AMS-8 claim 1 , AMS-10 claim 1 , FDU-1 claim 1 , FDU-2 claim 1 , and FDU-12.4. The catalyst for preparing the synthetic gas of claim 1 , wherein the metal nanoparticles comprises one or more selected from the group consisting of Ni claim 1 , Fe claim 1 , Cu claim 1 , Co claim 1 , Mo claim 1 , Ru claim 1 , Rh claim 1 , Pd claim 1 , Ag claim 1 , Cd claim 1 , Zn claim 1 , Au claim 1 , Pt claim 1 , Ir claim 1 , Os claim 1 , W claim 1 , and an oxide thereof.5. The catalyst for preparing the synthetic gas of claim 1 , wherein a diameter of the metal nanoparticles is about 10 nm or less.6. The catalyst for preparing the ...

Подробнее
19-01-2017 дата публикации

METHOD FOR THE SYNTHESIS OF SUPPORTED GOLD (AU) NANOPARTICLES FOR EPOXIDATION REACTIONS

Номер: US20170014805A1
Автор: Al-Hazmi Mohammed H.
Принадлежит:

Processes for preparing supported gold nanoparticle catalysts are provided. In an exemplary embodiment, the process includes adding a solution of a phosphorus compound to a solution of chloro (dimethyl sulfide) gold (I) to obtain a solution of chloro (phosphorus compound) gold (I) complex, adding the solution of chloro (phosphorus compound) gold (I) complex to a solution of silver nitrate to obtain a solution of nitro (phosphorus compound) gold (I) complex, applying the solution of nitro (phosphorus compound) gold (I) complex to a metal hydroxide support, drying the metal hydroxide support; and calcining the dried metal hydroxide support to form the supported gold nanoparticle catalyst. Supported gold nanoparticle catalysts prepared by the process and processes for oxidizing ethylene to ethylene oxide in the presence of the supported gold nanoparticle catalysts are also provided. 1. A process for preparing a supported gold nanoparticle catalyst , the process comprising: [{'sub': 1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12, 'wherein the phosphorus compound is selected from the group consisting of a phosphine having a formula of PRRR, a phosphinite having a formula of P(OR)RR, a phosphonite having a formula of P(OR)(OR)R, a phosphite having a formula of P(OR)(OR)(OR), or a combination comprising at least one of the foregoing; and'}, {'sub': 1', '12, 'wherein Rto Rare each independently an alkyl, substituted alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, or a combination comprising at least one of the foregoing;'}], 'adding a solution of a phosphorus compound to a solution of chloro (dimethyl sulfide) gold (I) to obtain a solution of chloro (phosphorus compound) gold (I) complex,'}adding the solution of chloro (phosphorus compound) gold (I) complex to a solution of silver nitrate to obtain a solution of nitro (phosphorus compound) gold (I) complex;applying the solution of nitro (phosphorus compound) gold (I) complex to a metal hydroxide ...

Подробнее
03-02-2022 дата публикации

NAPHTHA CATALYTIC CRACKING CATALYST, CATALYTIC CRACKING METHOD AND REACTION DEVICE

Номер: US20220033713A1
Принадлежит:

A method for catalytic cracking of naphtha is provided. Naphtha is catalytically cracked under the action of a catalyst. The catalyst includes aluminosilicate, alkali metal oxide, alkaline earth metal oxide, TiO, iron oxide, vanadium oxide and nickel oxide. On the other hand, a rapid separation component is arranged in a disengager of a catalytic cracking reaction device, so that a transport disengaging height is greatly reduced without changing a gas flow and a diameter of the disengager. In addition, the separation efficiency of oil gas and the catalyst is improved. 1. A method for catalytic cracking of naphtha , comprising:{'b': '1', 'S: delivering a catalyst in a pre-lift pipe through a regenerator sloped pipe and to flow upward under the action of a pre-lift medium to enter a dense phase section of a reactor,'}feeding a feedstock containing naphtha into the reactor tangentially upward through a nozzle located at a bottom of the dense phase section of the reactor;feeding the feedstock, by the nozzle of the reactor, along a tangential direction of a circular cross-sectional of the dense phase section of the reactor at an angle of 10-90° to a vertical direction;{'b': '2', 'S: enabling oil gas and the catalyst from a riser pipe to enter a settler of a reaction device,'}enabling the oil gas from the disengager to enter a separation system, and enabling the catalyst to flow out through a conveying part of a cyclone to fall into a settler stripping section;{'b': '3', 'S: stripping the catalyst, enabling the catalyst stripped to enter a regenerator through a spent sloped pipe, and heating the catalyst in the regenerator; and'}{'b': '4', 'S: enabling the catalyst to enter a disengager section of the regenerator to fall into a stripping section of the disengager section of the regenerator and enter a degassing tank, and'}stripping the catalyst in the degassing tank and enabling the catalyst stripped to return to the reactor through the regenerator sloped pipe.2. The ...

Подробнее
15-01-2015 дата публикации

Metal Oxide Composite and a Method of Forming Thereof

Номер: US20150017084A1
Принадлежит:

A method of forming a metal oxide composite, the method comprising mixing a metal oxide, at least two monomers and a dispersant to produce a slurry; gel casting the slurry to produce a green metal oxide composite; and sintering the green metal oxide composite to produce the metal oxide composite. A metal oxide composite formed according to the method. Use of the metal oxide composite, for catalysing hydrolysis of metal borohydride to produce hydrogen. 1. A method of forming a metal oxide composite , the method comprising:mixing a metal oxide, at least two monomers and a dispersant to produce a slurry;gel casting the slurry to produce a green metal oxide composite; andsintering the green metal oxide composite to produce the metal oxide composite.2. The method according to claim 1 , further comprising degassing the slurry prior to gel casting the slurry.3. The method according to claim 1 , wherein the metal oxide comprises at least one of: a cobalt-based metal oxide claim 1 , a yttria stabilized zirconia-based metal oxide claim 1 , a nickel-based metal oxide claim 1 , and a perovskite-based metal oxide.4. The method according to claim 1 , wherein the at least two monomers comprises an acrylamide (AM) and an N claim 1 ,N′-methylenebisacrylamide (MBAM).5. The method according to claim 1 , further comprising adding at least one of a catalyst and an initiator to the slurry prior to the gel casting.6. The method according to claim 5 , wherein the initiator is an ammonium bisulphate (APS) solution.7. The method according to claim 5 , wherein the catalyst is N claim 5 ,N claim 5 ,N′ claim 5 ,N′-tetramethylethylenediamide (TEMED).8. (canceled)9. The method according to claim 1 , wherein the mixing further comprises adding a pore former in the mixing claim 1 , the pore former configured to form pores in the metal oxide composite.10. The method according to claim 9 , wherein the pore former comprises graphite powder.11. The method according to claim 1 , wherein the mixing ...

Подробнее
18-01-2018 дата публикации

USE OF METAL-ACCUMULATING PLANTS FOR THE PREPARATION OF CATALYSTS THAT CAN BE USED IN CHEMICAL REACTIONS

Номер: US20180015317A1
Принадлежит:

A method of implementing organic synthesis reactions uses a composition containing a metal catalyst originating from a calcined plant. The plants can be from the Brassicaceae, Sapotaceae and Convolvulaceae family, and the metal catalyst contains metal in the M(II) form such as zinc, nickel, manganese, lead, cadmium, calcium, magnesium or copper. Examples of the organic synthesis reactions include halogenations, electrophilic reactions, cycloadditions, transesterification reactions and coupling reactions, among others. 1. A method for the implementation of an organic synthesis reaction , comprising: [{'sup': 2+', '2+', '3+', '+', '+, 'wherein said at least one metal in the M(II) form is selected from the group consisting of zinc (Zn), nickel (Ni), and manganese (Mn), said metal in the M(II) form having been accumulated by the plant during its growth in a soil containing said metal and at least one cationic species selected from the group consisting of MgCa, Fe, Na and K which have not been accumulated by said plant but are physiologically present in said plant and originate from the latter; and'}, 'bringing the composition into contact with at least one chemical compound capable of reacting with said composition., 'providing a composition comprising at least one metal catalyst containing a metal in the M(II) form, said metal originating from a calcined plant or calcined plant part, said composition having been acid treated,'}2. The method according to claim 1 , wherein the organic synthesis reaction is selected from halogenations claim 1 , electrophilic aromatic reactions in series claim 1 , synthesis of 3 claim 1 ,4-dihydropyrimidin-2(1H)-one or 3 claim 1 ,4-dihydropyrimidin-2(1H)-thione claim 1 , cycloaddition reactions claim 1 , transesterification reactions claim 1 , catalyst synthesis reactions for coupling or hydrogenation reactions after reduction of Ni(II) to Ni(0) claim 1 , synthesis of amino acid or oxime developers claim 1 , and hydrolysis of sulphur- ...

Подробнее
19-01-2017 дата публикации

Methods for producing butanol

Номер: US20170015610A1
Принадлежит: UNIVERSITY OF ROCHESTER

Methods and compositions for producing 1-butanol are described herein. In some examples, the methods can comprise, contacting a reactant comprising ethanol with a catalyst system, thereby producing a product comprising 1-butanol. The catalyst system can comprise, for example, an iridium catalyst and a nickel, copper, and/or zinc catalyst. The nickel, copper, and zinc catalysts can comprise nickel, copper, and/or zinc and a sterically bulky ligand.

Подробнее
17-01-2019 дата публикации

Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same

Номер: US20190015818A1
Принадлежит: University of Arkansas

A method of synthesizing a doped carbonaceous material includes mixing a carbon precursor material with at least one dopant to form a homogeneous/heterogeneous mixture; and subjecting the mixture to pyrolysis in an inert atmosphere to obtain the doped carbonaceous material. A method of purifying water includes providing an amount of the doped carbonaceous material in the water as a photocatalyst; and illuminating the water containing the doped carbonaceous material with visible light such that under visible light illumination, the doped carbonaceous material generates excitons (electron-hole pairs) and has high electron affinity, which react with oxygen and water adsorbed on its surface forming reactive oxygen species (ROS), such as hydroxyl radicals and superoxide radicals, singlet oxygen, hydrogen peroxide, that, in turn, decompose pollutants and micropollutants.

Подробнее
17-01-2019 дата публикации

CATALYST CARRIER MODULE FOR LARGE-CAPACITY CATALYTIC REACTOR

Номер: US20190015824A1
Принадлежит:

Provided is a catalyst carrier module for a large-capacity catalyst reactor, which can be assembled in a large-capacity structure by laminating a flat plate and a wave plate to be fixed in a can without brazing the flat plate and the wave plate constituting a cell forming body, for use in a catalytic reactor requiring a large-capacity exhaust gas treatment. The catalyst carrier module (or block) includes: a can of a rectangular tube shape having an inlet and an outlet; at least one cell forming body in which a plurality of hollow cells are formed by alternately laminating a wave plate and a flat plate which are coated with a catalyst on a surface thereof and inserted into the can; and a fixing unit installed at the inlet and the outlet of the can to prevent the at least one cell forming body from detaching from the can. 1. A catalyst carrier module comprising:a can of a rectangular tube shape having an inlet and an outlet;at least one cell forming body in which a plurality of hollow cells are formed by alternately laminating a wave plate and a flat plate which are coated with a catalyst on a surface thereof and inserted into the can; anda fixing unit installed at the inlet and the outlet of the can to prevent the at least one cell forming body from detaching from the can.2. The catalyst carrier module of claim 1 , wherein the fixing unit comprises a plurality of fixing bars installed at the inlet and the outlet of the can to prevent the at least one cell forming body from being detached from the can.3. The catalyst carrier module of claim 2 , wherein each of the plurality of fixing bars is fixed to both sides of the can using a fastening member.4. The catalyst carrier module of claim 2 , wherein each of the plurality of fixing bars is bonded to the can by one of brazing claim 2 , welding claim 2 , soldering claim 2 , and diffusion bonding.5. The catalyst carrier module of claim 1 , wherein the fixing unit comprises first to fourth fixing members both sides of which ...

Подробнее
16-01-2020 дата публикации

GAS CAPTURE SYSTEM

Номер: US20200016537A1
Принадлежит: FJELL BIODRY AS

Disclosed herein is a method of regenerating a sorbent of gas in a capture process of said gas, wherein the capture process comprises recirculating the sorbent between a gas capturing system and regenerating reactor system, the method comprising the regenerating reactor system performing the steps of: receiving a solid sorbent to be regenerated, wherein the sorbent is a sorbent of carbon dioxide gas; generating heat by combusting a fuel with an oxidising agent in the presence of a catalyst; regenerating the sorbent by using the generated heat to indirectly heat the sorbent so that the sorbent releases carbon dioxide gas; outputting the regenerated sorbent; and outputting the released carbon dioxide gas. Advantages of the gas capture system include a higher efficiency than known techniques. 1. A method of regenerating a sorbent of gas in a capture process of said gas , wherein the capture process comprises recirculating the sorbent between a gas capturing system and regenerating reactor system , the method comprising the regenerating reactor system performing the steps of:receiving a solid sorbent to be regenerated, wherein the sorbent is a sorbent of carbon dioxide gas;generating heat by combusting a fuel with an oxidising agent in the presence of a catalyst;regenerating the sorbent by using the generated heat to indirectly heat the sorbent so that the sorbent releases carbon dioxide gas;outputting the regenerated sorbent; andoutputting the released carbon dioxide gas.2. The method according to claim 1 , wherein the regenerating reactor system comprises:a sorbent input that receives the sorbent; anda sorbent output that outputs the regenerated sorbent.3. The method according to claim 2 , wherein said step of regenerating the sorbent by indirectly heating the sorbent comprises indirectly heating the sorbent as it moves from the sorbent input to the sorbent output.4. The method according to any preceding claim claim 2 , wherein the received sorbent comprises a metal ...

Подробнее
16-01-2020 дата публикации

THREE-DIMENSIONALLY STRUCTURED POROUS CATALYST MONOLITH OF STACKED CATALYST FIBERS

Номер: US20200016584A1
Принадлежит:

A three-dimensionally structured porous catalyst monolith of stacked catalyst fibers with a fiber diameter of less than 1 mm made from one or more continuous fibers or stacked individual fibers, wherein the stacked catalyst fibers are arranged in a regular, recurring stacking pattern of fiber layers to form the three-dimensionally structured monolith, and wherein in each of the stacked fiber layers at least 50 wt % of the fibers are arranged parallel to each other and spatially separated from each other, or in a cobweb pattern, and wherein the side crushing strength of the monolith is at least 60 N. 115-. (canceled)17. The catalyst monolith of claim 16 , wherein the side crushing strength of the catalyst monolith is at least twice the side crushing strength of an individual fiber of which the catalyst monolith is composed.18. The catalyst monolith of claim 16 , wherein the side crushing strength is at least 100 N.19. The catalyst monolith of claim 16 , wherein the fiber diameter is in the range of from 0.2 to less than 1.0 mm.20. The catalyst monolith of claim 16 , wherein the catalyst monolith is in the form of a cylinder with circular or ellipsoidal cross section claim 16 , a cuboid claim 16 , a sphere claim 16 , an ellipsoid claim 16 , a tablet or a polygon.21. The catalyst monolith of claim 16 , wherein at least 50 wt % of the fibers are arranged as linear strands parallel to each other and spatially separated from each other claim 16 , or wherein multiple cobweb patterns are stacked claim 16 , wherein the direction of the strands in each layer is different from the direction in neighboring layers claim 16 , so that a porous structure with contact points of strands of neighboring layers results.22. The catalyst monolith of claim 16 , wherein the catalyst monolith has at least 10 stacked fiber layers.23. The catalyst monolith of claim 16 , wherein the catalyst monolith has a volume in the range of from 0.027 cmto 125 m.24. The catalyst monolith of claim 16 , ...

Подробнее
16-01-2020 дата публикации

CATALYST-ADHERED BODY PRODUCTION METHOD AND CATALYST ADHESION DEVICE

Номер: US20200016586A1
Принадлежит:

A catalyst-adhered body production method comprising an adhesion process for arranging a mixed liquid comprising a catalyst raw material and/or a catalyst carrier raw material and target particles in a container having a porous plate and adhering a catalyst and/or a catalyst carrier to the surface of target particles to obtain adherence-treated particles, an excess solution removal process for removing via the porous plate, at least a portion of excess solution comprising excess components which did not adhere to the adherence-treated particles from the container, to form a filled layer of the adherence-treated particles on the porous plate, and a drying process for drying the filled layer in the container. 1. A catalyst-adhered body production method ,comprising an adhesion process for arranging a mixed liquid comprising a catalyst raw material and/or a catalyst carrier raw material and target particles in a container having a porous plate and adhering a catalyst and/or a catalyst carrier to the surface of the target particles to obtain adherence-treated particles, an excess solution removal process for removing via the porous plate, at least a portion of an excess solution comprising excess components which did not adhere to the adherence-treated particles from the container to form a filled layer of the adherence-treated particles on the porous plate, and a drying process for drying the filled layer in the container.2. The catalyst-adhered body production method according to claim 1 , wherein the adhesion process comprises a solution supply step for supplying a solution comprising the catalyst raw material and/or the catalyst carrier raw material to the target particles filled in the container to obtain the mixed liquid.3. The catalyst-adhered body production method according to comprising supplying a mixed solution comprising the catalyst raw material and the catalyst carrier raw material in the solution supply step.4. The catalyst-adhered body production method ...

Подробнее
21-01-2021 дата публикации

EXHAUST TREATMENT SYSTEM INCLUDING NICKEL-CONTAINING CATALYST

Номер: US20210016257A1
Принадлежит:

Methods and systems are provided for emissions control of a vehicle. In one example, a catalyst may include a cerium-based support material and a transition metal catalyst loaded on the support material, the transition metal catalyst including nickel and copper, wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material. In some examples, limiting nickel to the monatomic layer may mitigate extensive transition metal catalyst degradation ascribed to sintering of thicker nickel washcoat layers. Further, by utilizing the cerium-based support material, side reactions involving nickel in the transition metal catalyst with other support materials may be prevented. 1. A catalyst , comprising:a support material comprising one or more of cerium metal, ceria, and high-cerium cerium-zirconium oxide; anda transition metal catalyst loaded on the support material, the transition metal catalyst comprising nickel and copper;wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material.2. The catalyst of claim 1 , wherein a loading of nickel in the transition metal catalyst on the support material is greater than 0.001 g/mand less than 0.002 g/m.3. The catalyst of claim 1 , wherein nickel is present at about 12 wt. %.4. The catalyst of claim 1 , wherein a weight ratio of copper to nickel is about 1:49.5. The catalyst of claim 1 , wherein the high-cerium cerium-zirconium oxide is CeZrO.6. The catalyst of claim 1 , wherein alumina is present at a molar ratio of alumina to nickel of less than 0.20.7. The catalyst of claim 1 , wherein no alumina is present.8. A system for a vehicle claim 1 , comprising:a first emissions treatment device comprising a cerium-based support material and a transition metal catalyst washcoat, the transition metal catalyst washcoat comprising nickel and copper, with nickel in the transition metal catalyst washcoat included in only a monatomic layer loaded on ...

Подробнее
21-01-2021 дата публикации

CATALYTIC TEST PAPER PREPARED BY COMPOSITING METAL PARTICLE-EMBEDDED BACTERIAL CELLULOSE WITH PLANT FIBERS, AND METHOD THEREFOR

Номер: US20210016264A1
Принадлежит: SOUTH CHINA UNIVERSITY OF TECHNOLOGY

Disclosed is a catalytic test paper prepared by compositing metal particle-embedded bacterial cellulose with plant fibers, and a preparation method therefor. Hydroxyl groups of bacterial cellulose are bonded with a nitrogen-containing or phosphorus-containing organic small molecule compound. By means of a chelation between a nitrogen or phosphorus atom with a metal, transition metal ions are adsorbed to a nanoporous surface of bacterial cellulose, and the transition metal ions are reduced in situ to obtain bacterial cellulose embedded with metal nanoparticles. The bacterial cellulose is composited with the plant fiber, and the catalytic test paper is prepared by a papermaking method. The catalytic test paper has the advantages of convenient use and recovery, high reusability, simple design, low manufacturing cost, higher catalytic efficiency, a green degradable support material, etc. 1. A method for preparing a catalytic test paper by compositing metal particle-embedded bacterial cellulose with plant fibers , characterized in that , the method comprises the following steps:(1) chemically bonding a nitrogen-containing or phosphorus-containing organic small molecule compound with hydroxyl groups in a structure of bacterial cellulose to obtain a functionalized bacterial cellulose having a nitrogen or phosphorus-containing group;(2) preparing an aqueous solution of an inorganic salt of a transition metal, adding the aqueous solution into the functionalized bacterial cellulose prepared in the step (1), stirring and reacting according to a solubility of the inorganic salt of the transition metal until the nitrogen-containing or phosphorus-containing group adsorbs transition metal ions onto a nanoporous surface of the bacterial cellulose till saturation, separating and washing with water;(3) reducing the transition metal ions adsorbed on the surface of the bacterial cellulose in the step (2) in situ to obtain bacterial cellulose embedded with transition metal nanoparticles ...

Подробнее
17-01-2019 дата публикации

Multistage Upgrading Hydrocarbon Pyrolysis Tar

Номер: US20190016969A1
Принадлежит:

A multi-stage process for upgrading tars is provided. A predominantly hydrotreating stage can be applied before a cracking stage, which can be a hydrocracking or a thermal cracking stage. Alternatively, a predominantly cracking stage, which can be a hydrocracking or a thermal cracking stage, can be applied before a hydrotreating stage. Apparatus suitable for performing the method is also provided. 1. A hydrocarbon conversion process , comprising: [{'sub': 'N', '≥10.0 wt. % pyrolysis tar hydrocarbon based on the weight of the feedstock, the pyrolysis tar having a I≥100 and viscosity measured at 50° C. of ≥10,000 cSt, and'}, 'a utility fluid comprising aromatic hydrocarbons and having an ASTM D86 10% distillation point >60° C. and a 90% distillation point <425° C.; and, '(a) providing a feedstock comprising(b) hydroprocessing the feedstock in at least two hydroprocessing zones in the presence of a treat gas comprising molecular hydrogen under catalytic hydroprocessing conditions to produce a hydroprocessed product, comprising hydroprocessed tar;wherein the hydroprocessing conditions are such that in a first hydroprocessing zone a catalyst is used that promotes predominantly a hydrotreating reaction and in a second hydroprocessing zone a catalyst is used that promotes predominantly a hydrocracking reaction.2. The process of claim 1 , in which the catalyst in the first hydroprocessing zone comprises one or more of Mo claim 1 , Co and Ni claim 1 , supported on alumina claim 1 , Pt—Pd/AlO—SiO claim 1 , Ni—W/AlO claim 1 , Ni—Mo/AlO claim 1 , Fe claim 1 , or Fe—Mo supported on a non-acidic support such as carbon black or a carbon black composite claim 1 , or Mo supported on a nonacidic support claim 1 , and the catalyst in the second hydroprocessing zone comprises predominantly a zeolite or comprises predominantly Co claim 1 , Mo claim 1 , P claim 1 , Ni or Pd supported on amorphous AlOand/or SiO(ASA) and/or zeolite.3. The process of claim 1 , in which the catalyst in the ...

Подробнее
21-01-2021 дата публикации

HYDROPROCESSING OF HEAVY CRUDES BY CATALYSTS IN HOMOGENOUS PHASE

Номер: US20210017457A1
Принадлежит:

This disclosure relates to a procedure, which through the application of a catalyst in homogeneous phase, allows the transformation of heavy hydrocarbons (vacuum residue, atmospheric residue, heavy and extra-heavy crudes) into hydrocarbons of lower molecular weight, characterized because after its application, the hydrocarbons obtain greater API gravity, lower kinematic viscosity and different composition by hydrocarbon families (SARA) that increases the proportion of saturated and aromatic resins and asphalts. The sulphur and nitrogen content is also reduced, resulting in higher yields to high commercial value distillates and a lighter product as compared to the original crude. 1. A catalyst to transform heavy and extra-heavy crude oils into lighter oils , wherein organic metal salts that includes a metal from one of Groups VIIB , VIB or IB are used for preparation of the catalyst.2. A catalyst in accordance with claim 1 , wherein the metal in the metal salt is one of Fe claim 1 , Co claim 1 , Ni claim 1 , Cu claim 1 , Mo claim 1 , or W.3. A procedure for the preparation of a catalyst claim 1 , comprising:1) mixing a mineral acid and ammonium salts, and shaking the mixture at a temperature of 25° C. until a clear solution is obtained, with a pH variation between 1 and 2;2) incorporating Nickel salts into the clear solution and solubilize at 40-100° C., then dissolving in water, and maintaining agitation of the solution for a time of 3 h at a temperature of 25° C., resulting in a green and translucent solution;3) storing the green and translucent solution in a closed container under ambient conditions; and [{'sub': '2', 'wherein the catalyst has a final molar ratio of 1.0 Ni, 0.084 Mo, 0.295 H+, 14.42 HO, at pH 1 to 3;'}, 'and wherein the catalyst transforms heavy and extra-heavy crude oils into lighter oils., '4) dehydrating the catalyst at 90° C.,'}4. The procedure for the preparation of a catalyst claim 3 , in accordance with claim 3 , wherein during preparation ...

Подробнее
28-01-2016 дата публикации

One-Step Process for Hexafluoro-2-Butene

Номер: US20160023972A1
Принадлежит:

Disclosed is a one step process for making of 1,1,1,4,4,4-hexafluoro-2-butene. More specifically, the present invention provides a process for making hexafluoro-2-butene, continuously, from 2-chloro-3,3,3-trifluoropronene using FeO/NiO impregnated carbon catalyst at 600° to 650° C. 1. A process for making 1 ,1 ,1 ,4 ,4 ,4-hexafluoro-2-butene (HFO-1336) from 2-chloro-3 ,3 ,3-trifluoropropene (HCFC-1233xf) comprising reacting HCFC-1233xf with a selected catalyst , at a reactive temperature , to afford HFO-1336.2. The process of claim 1 , which is conducted in the vapor phase.3. The process of claim 2 , which is conducted in a continuous manner.4. The process of claim 2 , wherein the catalyst comprises FeO/NiO.5. The process of claim 4 , wherein the catalyst comprises a ratio of about 95-99 wt % FeOto about 5-1 wt % NiO.6. The process of claim 4 , wherein the catalyst comprises a ratio of about 98 wt % FeOto 2 wt % NiO.7. The process of claim 2 , wherein the catalyst is selected from the group consisting of RuO claim 2 , RuO claim 2 , and OsOin combination with oxides of Pd or Pt.8. The process of claim 2 , wherein the catalyst is impregnated on carbon.9. The process of claim 8 , wherein the carbon is activated carbon.10. The process of claim 9 , wherein the activated carbon is granular with a mesh size of 4-14.11. The process of claim 9 , wherein the activated carbon is pelletized.12. The process of claim 2 , wherein the reaction temperature ranges from 600° to 650° C.13. The process of claim 1 , wherein both the trans and cis isomers of HFO-1336 are formed.14. The process of claim 13 , wherein the predominant isomer of HFO-1336 formed is the trans isomer.15. The process of claim 14 , wherein the ratio of the trans isomer to the cis isomer of HFO-1336 is about 88:12.16. The process of claim 15 , wherein the trans isomer is converted into the cis isomer by reaction with an isomerization catalyst.17. The process of claim 16 , wherein the isomerization catalyst comprises ...

Подробнее
16-01-2020 дата публикации

DECOMPOSITION OF SILICON-CONTAINING PRECURSORS ON POROUS SCAFFOLD MATERIALS

Номер: US20200020935A1
Принадлежит:

Composites of silicon and various porous scaffold materials, such as carbon material comprising micro-, meso- and/or macropores, and methods for manufacturing the same are provided. The compositions find utility in various applications, including electrical energy storage electrodes and devices comprising the same. 1. A method for producing a composite material comprising a porous carbon scaffold and silicon , comprising the following steps:a. mixing polymer precursors materials and storing the resulting mixture for a period of time at sufficient temperature to allow for polymerization of the precursors;b. carbonizing the resulting polymer material to create a porous carbon material;c. subjecting the porous carbon material to elevated temperature in the presence of a silicon-containing precursor and a hydrocarbon material that decomposes at a higher temperature than the silicon containing precursor;d. elevating the temperature to decompose the silicon containing precursor, resulting in a silicon impregnated carbon materials; ande. further elevating the temperature to decompose the hydrocarbon material, resulting in a carbon-coated, silicon impregnated carbon material.2. A method for producing a composite material comprising a porous carbon scaffold and silicon , comprising the following steps:a. mixing polymer precursors materials and storing the resulting mixture for a period of time at sufficient temperature to allow for polymerization of the precursors;b. carbonizing the resulting polymer material to create a porous carbon material;c. subjecting the porous carbon material to elevated temperature in the presence of a silicon-containing precursor and a hydrocarbon material that decomposes at a similar temperature compared to the silicon containing precursor; andd. elevating the temperature to simultaneously decompose the silicon containing precursor into silicon and decomposethe hydrocarbon material into carbon, resulting in a carbon-coated, silicon impregnated ...

Подробнее
17-04-2014 дата публикации

METAL-SUPPORTED CATALYST STRUCTURES AND PROCESSES FOR MANUFACTURING THE SAME

Номер: US20140106962A1
Принадлежит: Alloys Surfaces Company, Inc.

The present invention relates to methods for producing metal-supported thin layer skeletal catalyst structures, to methods for producing catalyst support structures without separately applying an intermediate washcoat layer, and to novel catalyst compositions produced by these methods. Catalyst precursors may be interdiffused with the underlying metal support then activated to create catalytically active skeletal alloy surfaces. The resulting metal-anchored skeletal layers provide increased conversion per geometric area compared to conversions from other types of supported alloy catalysts of similar bulk compositions, and provide resistance to activity loss when used under severe on-stream conditions. Particular compositions of the metal-supported skeletal catalyst alloy structures can be used for conventional steam methane reforming to produce syngas from natural gas and steam, for hydrodeoxygenation of pyrolysis bio-oils, and for other metal-catalyzed reactions inter alia. 1. A method of producing a structured catalyst comprising:(a) preparing a slurry comprising one or more metal powders, including aluminum;(b) coating a metal substrate, or a mat of metal fiber or a woven metal fiber assembly, with said slurry;(c) subjecting the coated metal substrate, coated metal fiber mat or coated woven metal fiber assembly to heat under an inert or reducing atmosphere whereby at least one of the one or more metal powders melts and interdiffuses into the surface of the metal substrate, or metal fiber mat or woven metal fiber assembly;(d) leaching the coated metal substrate or coated metal fiber mat or coated woven metal fiber assembly obtained in step (c) in a caustic solution;(e) bathing the coated metal substrate, coated metal fiber mat or coated woven metal fiber assembly obtained in step (d) in a chelating acid solution;(f) passivating the coated metal substrate, coated metal fiber mat or coated woven metal fiber assembly obtained in step (e); and(g) optionally abrading ...

Подробнее
10-02-2022 дата публикации

Reactor for the Conversion of Carbon Dioxide

Номер: US20220040664A1
Принадлежит:

The present invention concerns a reactor for the conversion of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol comprising a support made from an electrically and thermally conductive material, forming the wall or walls of at least one longitudinal channel that passes through the support and also acting as the cathode of the reactor, at least one wire electrode forming an anode of the reactor, and extending within each longitudinal channel, and being arranged at a distance from the wall or walls of the longitudinal channel, each wire electrode optionally being covered with an electrically insulating layer along the part of the wire electrode extending within the longitudinal channel, a catalyst capable of catalysing a conversion reaction for the conversion of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol, the catalyst being situated between the wire electrode and the wall or walls of each longitudinal channel. 11. A reactor () for conversion of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol , comprising:{'b': 2', '2', '3', '2', '1, 'a support () made of electrically and thermally conductive material, said support () forming the wall or walls of at least one longitudinal channel () which passes through the support () and also acts as cathode of the reactor ()'}{'b': 4', '1', '4', '3', '3', '3', '4', '5', '4', '3, 'at least one wire electrode () forming an anode of the reactor (), each wire electrode () extending within each longitudinal channel (), along said longitudinal channel (), and being arranged at a distance from the wall or walls of said longitudinal channel (), each wire electrode () being optionally covered by an electrically insulating layer () along the part of the wire electrode () extending within said longitudinal channel (),'}{'b': 6', '6', '4', '3, 'a catalyst () adapted to catalyse a conversion reaction of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol, the catalyst () being ...

Подробнее
10-02-2022 дата публикации

MULTIMETALLIC CATALYSTS FOR METHANATION OF CARBON DIOXIDE AND DRY REFORMING OF METHANE

Номер: US20220040677A1
Принадлежит: UCHICAGO ARGONNE, LLC

Processes for forming multimetallic catalysts by grafting nickel precusors to metal oxide supports. Dry reforming reaction catalysts having nickel and promotors grafted to metal oxides supports. Methanation reaction catalysts having nickel and promotors grafted to metal oxides supports. 1. A method of forming a multimetallic catalyst comprising:{'sub': 2', '3', '2', '2', '2, 'grafting an organometallic promotor comprising a metal selected from the group consisting of B, Cu, Co, Fe, Mn, Sn, Mg, V, and Zn and an organic ligand, onto a metal oxide support selected from the group consisting of AlO, CeO, MgO, SiO, and TiO, forming a promotor-support material;'}calcine the organometallic promotor in air to form a calcined promotor-support material;grafting an organonickel precursor grafted onto the calcined promotor-support material; andreducing the organonickel grafted promotor-support material to form an active multimetallic catalyst.2. The method of claim 1 , wherein reducing comprises reduction with 5-20% hydrogen at 200-600° C. for 2 hours and the active multimetallic catalyst is a methanation reaction catalyst.3. The method of claim 2 , wherein reducing comprises reduction with 10% hydrogen at 500° C. for 2 hours.4. The method of claim 2 , wherein the metal oxide support comprises CeO.5. The method of claim 4 , wherein the metal is selected from the group consisting of B claim 4 , Co claim 4 , Mn claim 4 , Sn claim 4 , and V.6. The method of claim 1 , wherein the wherein the oxide support comprises AlO.7. The method of claim 4 , wherein the metal is selected from the group consisting of Mg and V.8. The method of claim 1 , wherein reducing comprises reduction with 5-20% hydrogen at 700-850° C. for 2 hours and the active multimetallic catalyst is a dry reforming reaction catalyst.9. The method of claim 1 , wherein reducing comprises reduction with 10% hydrogen at 800° C. for 2 hrs.10. The method of claim 8 , wherein the wherein oxide support is selected from the group ...

Подробнее
25-01-2018 дата публикации

Hydrocarbon Dehydrocyclization in the Presence of Carbon Dioxide

Номер: US20180022667A1
Принадлежит: ExxonMobil Chemical Patents Inc

The invention relates to converting non-aromatic hydrocarbon in the presence of CO 2 to produce aromatic hydrocarbon. CO 2 methanation using molecular hydrogen produced during the aromatization increases aromatic hydrocarbon yield. The invention also relates to equipment and materials useful in such upgrading, to processes for carrying out such upgrading, and to the use of such processes for, e.g., natural gas upgrading.

Подробнее
25-01-2018 дата публикации

COS AND CS2 ABATEMENT METHOD

Номер: US20180023012A1

Disclosed is method for removing carbonyl sulphide and/or carbon disulphide from a sour gas stream. The method comprises subjecting the gas stream to simultaneous contact with an absorption liquid, such as an aqueous amine solution, and with a catalyst suitable for hydrolyzing carbonyl sulphide and/or carbon disulphide. To this end, the invention also provides a reactor system wherein both an absorption liquid and a catalyst are present. In a preferred embodiment, the catalyst is a heterogeneous catalyst present on or in an absorption column, either coated on the trays of a column with trays, or contained in the packing of a packed column. 1. A reactor system for removing carbonyl sulphide and/or carbon disulphide from a sour gas stream , wherein the reactor system is filled with an absorption liquid and comprises a catalyst suitable for hydrolyzing carbonyl sulphide and carbonyl disulphide.2. The reactor system of claim 1 , wherein the reactor system comprises an absorption liquid contained in an absorption column claim 1 , and wherein the catalyst is present in or on the absorption column.3. The reactor system of claim 2 , wherein the absorption column comprises trays claim 2 , wherein the catalyst is a heterogeneous catalyst applied as a coating on the trays.4. The reactor system of claim 2 , wherein the absorption column is a packed column with a packing claim 2 , wherein the catalyst is coated on the packing.5. The reactor system of claim 1 , wherein the reactor system further comprises a contacting device and wherein the catalyst is deposited on said contacting device.6. The reactor system of wherein said contacting device is selected from the group consisting of filtering media claim 5 , vane packs claim 5 , corrugated plates claim 5 , coalescing media claim 5 , and flashing devices.7. The reactor system of claim 1 , wherein the catalyst is a transition metal or a salt of a transition metal.8. The reactor system of claim 7 , wherein the catalyst is selected ...

Подробнее
24-01-2019 дата публикации

HYDROCRACKING CATALYST FOR HYDROCARBON OIL, METHOD FOR PRODUCING HYDROCRACKING CATALYST, AND METHOD FOR HYDROCRACKING HYDROCARBON OIL WITH HYDROCRACKING CATALYST

Номер: US20190022630A1
Принадлежит:

The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon. 120-. (canceled)21. A hydrocracking catalyst for the high boiling fraction containing hydrocarbon oil comprising a hydrogenative metal component carried on a support containing an ultra-stable Y-type zeolite ,wherein the ultra-stable Y-type zeolite is a framework-substituted zeolite (hereinafter referred to as a framework-substituted zeolite-1) in which a part of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or hafnium atoms,said zeolite-1 has a crystallinity of 80% or more, and contains from 0.1 to 5 mass % zirconium atoms and/or hafnium atoms as calculated as the oxide basis, anda relative decomposition rate as defined below is 99% or more, and a relative middle distillate yield as defined below is 95% or more:(Relative decomposition rate and relative middle distillate yield){'sup': −1', '3, 'claim-text': [{'br': None, 'Decomposition rate (%)={1−(Content (kg) of a fraction having a boiling point of higher than 375° C. in the produced oil/Content (kg) of a fraction having a boiling point of higher than 375° C. in the raw oil)}×100\u2003\u2003Equation (2), {'br': None, 'Middle distillate yield (%)={Content (kg) of a fraction having a boiling point of 149 to 375° C. in the produced oil/Content (kg) of a fraction having a boiling point ...

Подробнее
10-02-2022 дата публикации

CATALYSTS AND METHOD FOR PRODUCING RECYCLED POLYESTER

Номер: US20220041836A1
Принадлежит:

The present invention describes the preparation of heterogeneous catalysts of mixed oxides based upon niobium and mixed oxides of zinc, manganese, nickel, cobalt and/or aluminum, originating from hydrotalcites (HTs) as precursor phase of heterogeneous catalysts, and application thereof in the chemical recycling of poly(ethylene terephthalate) (PET) for the production of metal free bis(hydroxy)ethylene (BHET) monomers and oligomers having a processing performance similar to that of the homogeneous catalysis system. 2. A catalyst according to claim 1 , comprising the following general formulas:{'sub': 0.2', '4', '0.5', '4', '0.2', '0.5', '0.2', '4', '0.2', '4, 'NiAlNH, NiAlNH, NiAlNa, NiAlNa, NiMn(1:2)AlNHand NiMn(2:1)AlNH, wherein the proportion in brackets refers to the molar ratio between the metals.'}3. A catalyst according to claim 1 , comprising the following general formulas:{'sub': 0.8', '0.2', '2', '3', '0.1', '2, 'sup': '2−', 'CoAl(OH)(CO).mHO, for the CoAl catalysts,'}{'sub': 0.54', '0.26', '0.2', '2', '3', '0.1', '2, 'sup': '2−', 'CoMnAl(OH)(CO).mHO, for the CoMnAl catalysts,'}{'sub': 0.8', '0.2', '2', '3', '0.1', '2, 'sup': '2−', 'CoFe(OH)(CO).mHO, for the CoFe catalysts,'}wherein x=0.20 and m=1−(3/2)x+0.125.4. A catalyst according to claim 1 , wherein the variable pH or the fixed pH is controlled by the rate of addition of the solutions of metals and of (NH)COand NHOH claim 1 , wherein the pH lies in the range between 5 and 11.5. A catalyst according to claim 1 , wherein NH and Na are combined with the anion of compensation (CO)in the form (NH)(CO) and Na(CO) claim 1 , respectively.6. A catalyst for the obtainment of recycled polyester claim 1 , comprising the following general formula:{'br': None, 'sub': x', '(x-y)', 'x, 'NbNaZnO\u2003\u2003(IX),'}wherein x, y and z=x=3 to 5.7. A catalyst according to claim 6 , wherein the quantity of ZnO in the formulation varies between 10 and 70% claim 6 , preferentially between 20 and 60% of ZnO.8. A process of ...

Подробнее
23-01-2020 дата публикации

Shaped porous carbon products

Номер: US20200023340A1
Принадлежит: Archer Daniels Midland Co

Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.

Подробнее
23-01-2020 дата публикации

DECOMPOSITION OF CONDENSATION POLYMERS

Номер: US20200024420A1
Принадлежит:

Particles of a transition metal are used as a catalyst for depolymerisation of condensation polymers in alcohol. In the method of catalysed depolymerisation of a condensation polymer in a solid form into monomers and/or oligomers, transition metal particles; are mixed with the condensation polymer in alcohol to obtain a reaction mixture. This reaction mixture is processed to disperse the condensation polymer into the alcohol and decompose it, wherein the transition metal particles act as a catalyst and the alcohol is a reagent. The catalyst is particularly supplied as a catalyst composition of transition metal particles in an alcoholic liquid. The transition metal particles are typically non-porous and may have an oxide surface. 1. A method of depolymerisation of condensation polymers in alcohol , wherein use is made of particles of a transition metal as a catalyst for said depolymerisation of condensation polymers.2. The method as claimed in claim 1 , wherein use is made of transition metal particles in the range of 0.5-50 μm.3. The method as claimed in claim 1 , wherein the transition metal particles are at least substantially non-porous.4. The method as claimed in claim 1 , wherein the transition metal particles have a surface area of less than 3 m/g.5. The method as claimed in claim 1 , wherein use is made of iron or nickel particles.6. The method as claimed in claim 5 , wherein the iron particles are obtained by thermal decomposition of iron pentacarbonyl claim 5 , and the nickel particles are obtained by thermal decomposition of nickel tetracarbonyl.7. The method as claimed in claim 5 , wherein the iron particles have an iron oxide surface.811.-. (canceled)12. The method as claimed in claim 1 , wherein the condensation polymer is a waste polymer.13. The method as claimed in claim 1 , wherein the condensation polymer is chosen from the group of polyesters claim 1 , polyamides claim 1 , polyimides and polyurethanes.149. The method as claimed in claim claim 1 , ...

Подробнее
04-02-2016 дата публикации

MONOLITH CATALYST FOR CARBON DIOXIDE REFORMING REACTION, PREPARATION METHOD FOR SAME, AND PREPARATION METHOD FOR SYNTHESIS GAS USING SAME

Номер: US20160030927A1
Принадлежит:

The present invention relates to a monolith catalyst for a carbon dioxide reforming reaction and to a preparation method for same, and more specifically the invention provides a preparation method for a monolith catalyst for a methane reforming reaction using carbon dioxide, the method comprising a step of mixing and impregnating a support in a metal precursor solution, coating a monolith substrate with the solution resulting from the mixing and impregnating, drying same and then calcining the monolith substrate coated with the solution resulting from the mixing and impregnating. 1. A monolith catalyst for a carbon dioxide reforming reaction comprising a support impregnating an active material represented by the following Formula 1 and a monolith substrate:{'br': None, 'i': a', 'b, '(X)-(Zr)/Z\u2003\u2003[Formula 1]'}{'sub': 2', '2', '3, 'where X is an active material of Co or Ni, Z is a support of SiOor AlO, a and b each represents parts per weight of X and Zr relative to component Z in order, and a is 5.0 to 30.0, and b is 1.0 to 30.0 relative to 100 parts by weight of the support (Z).'}2. The monolith catalyst for a carbon dioxide reforming reaction as set forth in claim 1 , wherein the shape of the monolith substrate is a honeycomb structure.3. A preparation method for a monolith catalyst for a carbon dioxide reforming reaction comprising a support impregnating an active material represented by the following Formula 1 and a monolith substrate claim 1 , the method comprising the steps of:mixing and impregnating a metal precursor solution with a support Z of the following Formula 1 so as to meet the component ratio of the following Formula 1 (step 1);coating a monolith substrate with the mixed and impregnated solution in step 1 (step 2);drying the monolith substrate coated with the mixed and impregnated solution in step 2 (step 3); and {'br': None, 'i': a', 'b, '(X)-(Zr)/Z\u2003\u2003[Formula 1]'}, 'calcining the dried monolith substrate after being coated with ...

Подробнее
04-02-2016 дата публикации

CARBON OXIDE REDUCTION WITH INTERMETALLIC AND CARBIDE CATALYSTS

Номер: US20160031710A1
Принадлежит: Seerstone LLC

A method of reducing a gaseous carbon oxide includes reacting a carbon oxide with a gaseous reducing agent in the presence of an intermetallic or carbide catalyst. The reaction proceeds under conditions adapted to produce solid carbon of various allotropes and morphologies, the selective formation of which can be controlled by means of controlling reaction gas composition and reaction conditions including temperature and pressure. A method for utilizing an intermetallic or carbide catalyst in a reactor includes placing the catalyst in a suitable reactor and flowing reaction gases comprising a carbon oxide with at least one gaseous reducing agent through the reactor where, in the presence of the catalyst, at least a portion of the carbon in the carbon oxide is converted to solid carbon and a tail gas mixture containing water vapor. 1. A method of reducing a carbon oxide to a lower oxidation state , the method comprising:reacting a carbon oxide with a gaseous reducing agent in the presence of a catalyst under predetermined conditions of temperature and pressure adapted to produce water and a solid carbon product;wherein the catalyst comprises an intermetallic compound.2. The method of claim 1 , wherein the catalyst comprises NiFe.3. The method of claim 1 , wherein the catalyst comprises FePt.4. The method of claim 1 , wherein the catalyst comprises at least two different metals.5. A method of reducing a carbon oxide to a lower oxidation state claim 1 , the method comprising:reacting a carbon oxide with a gaseous reducing agent in the presence of a catalyst under predetermined conditions of temperature and pressure adapted to produce water and a solid carbon product;wherein the catalyst comprises a metal carbide.6. The method of claim 5 , wherein the catalyst comprises cementite (FeC).7. A method of reducing a carbon oxide to a lower oxidation state claim 5 , the method comprising:reacting a carbon oxide with a gaseous reducing agent in the presence of a catalyst under ...

Подробнее
04-02-2016 дата публикации

CO SHIFT CATALYST, CO SHIFT REACTION APPARATUS, AND METHOD FOR PURIFYING GASIFIED GAS

Номер: US20160032202A1
Принадлежит: MITSUBISHI HEAVY INDUSTRIES, LTD.

A CO shift catalyst according to the present invention reforms carbon monoxide (CO) in gas. The CO shift catalyst has one of molybdenum (Mo) or iron (Fe) as a main component and has an active ingredient having one of nickel (Ni) or ruthenium (Ru) as an accessory component and one or two or more kinds of oxides from among titanium (Ti), zirconium (Zr), and cerium (Ce) for supporting the active ingredient as a support. The temperature at the time of manufacturing and firing the catalyst is equal to or higher than 550° C. 1. A CO shift catalyst which reforms carbon monoxide (CO) in gas ,has molybdenum (Mo) or iron (Fe) as a main component,has an active ingredient having nickel (Ni) or ruthenium (Ru) as an accessory component and a complex oxide including two or more kinds from among titanium (Ti), and silica (Si), for supporting the active ingredient as a support, and formed by firing them at a temperature from 550° C. to 800° C.2. The CO shift catalyst according to claim 1 ,wherein a support amount of the main component of the active ingredient is 0.1 to 25 percent by weight, and a support amount of the accessory component is 0.01 to 10 percent by weight.3. A CO shift reaction apparatus comprising the CO shift catalyst according to .4. A method for purifying gasified gas claim 1 , comprising:a step of removing smoke and dust in gasified gas obtained by a gasification furnace by a filter;a step of clarifying the gasified gas after removal of smoke and dust by a wet scrubber apparatus;a step of removing carbon dioxide and hydrogen sulfide in the gasified gas after clarification; and{'sub': '2', 'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'a step of obtaining purified gas by performing the CO shift reaction for converting CO in the gasified gas after removal of carbon dioxide and hydrogen sulfide into COby using the CO shift catalyst according to .'} The present invention relates to a CO shift catalyst for converting CO in gasified gas into CO, a CO shift reaction ...

Подробнее
02-02-2017 дата публикации

PRETREATMENT METHOD, GRAPHENE FORMING METHOD AND GRAPHENE FABRICATION APPARATUS

Номер: US20170029942A1
Автор: MATSUMOTO Takashi
Принадлежит:

A pretreatment method is performed before a graphene grows by performing a CVD method on a catalyst metal layer formed on a workpiece. The method includes a plasma treatment process in which the catalyst metal layer is activated by applying plasma of a treatment gas including a reducing gas and a nitrogen-containing gas on the catalyst metal layer. 119-. (canceled)20. A pretreatment method which is performed before a graphene grows by performing a CVD method on a catalyst metal layer formed on a workpiece , the method comprising:a plasma treatment process in which the catalyst metal layer is activated by applying plasma of a treatment gas including a reducing gas and a nitrogen-containing gas on the catalyst metal layer,wherein the treatment gas is one set of gases selected from a plurality set of gases consisting of: a first set of gases containing a hydrogen gas as the reducing gas and a nitrogen gas as the nitrogen-containing gas, a second set of gases containing a hydrogen gas as the reducing gas and an ammonia gas as the nitrogen-containing gas, and a third set of gases containing an ammonia gas as the reducing gas and a nitrogen gas as the nitrogen-containing gas.21. The method of claim 20 , wherein a volume ratio of the reducing gas to the nitrogen-containing gas is within a range of from 10:1 to 1:10.22. The method of claim 20 , wherein the catalyst metal layer is made of one or more kinds of metals selected from the group consisting of Ni claim 20 , Co claim 20 , Cu claim 20 , Ru claim 20 , Pd and Pt.23. A graphene forming method for growing a graphene on a catalyst metal layer formed on a workpiece claim 20 , the method comprising:a plasma treatment process in which the catalyst metal layer is activated by applying plasma of a treatment gas including a reducing gas and a nitrogen-containing gas on the catalyst metal layer; anda process of growing the graphene by a CVD method on the catalyst metal layer subjected to the plasma treatment,wherein the ...

Подробнее
17-02-2022 дата публикации

A THIN FILM BASED PHOTOCATALYST DEVICE FOR HYDROGEN GENERATION AND ALCOHOLS OXIDATION IN DIRECT SUNLIGHT

Номер: US20220048018A1
Принадлежит:

The present invention relates to a photocatalyst device obtained by thin film making on solid surfaces, wherein the device comprises of titania, optionally in the form of composite with noble or transition metal(s) or metal oxides. This device (FIG. ) is evaluated in direct sunlight for hydrogen generation (FIG. ) and oxidation of alcohols (Table 3) using aqueous alcohol solution through water splitting and simultaneously oxidizing alcohol to oxygenated products. 1. A photocatalyst thin film device obtained by drop casting method on flat surfaces or coating thin film on the inner-surfaces of glass vessels by rota-vapour method for generation of hydrogen and alcohol oxygenated products using water splitting with aqueous alcohol substrate in direct sunlight , wherein said device comprises a titania photocatalyst.2. The photocatalyst thin film device as claimed in claim 1 , wherein said device generate hydrogen corresponding to 25-50% of UV light from sunlight by light to chemical conversion through water splitting.3. The photocatalyst thin film device as claimed in claim 1 , wherein said titania photocatalyst is in the form of a composite with noble metal or transition metal or metal oxide.4. The photocatalyst thin film device claim 3 , as claimed in claim 3 , wherein said noble metal or transition metal or metal oxide is selected from palladium claim 3 , Platinum claim 3 , Gold claim 3 , Silver claim 3 , Nickel claim 3 , Cobalt claim 3 , Ruthenium claim 3 , Cuprous oxide claim 3 , Titania and Iron oxides.5. The photocatalyst thin film device as claimed in claim 1 , wherein ratio of weight of titania (in mg) to area of film (in cm) is in the range of 0.1 to 4 with optimum average weight/area ratio of 0.2-0.25 mg/cm.6. The photocatalyst thin film device as claimed in claim 1 , wherein said thin film is drop casted on the surface of the substrate and comprises of cracks and breaks.7. The photocatalyst device as claimed in claim 1 , wherein said alcohol from aqueous ...

Подробнее
30-01-2020 дата публикации

COMPOSITIONS FOR HIGH TEMPERATURE CATALYSIS

Номер: US20200030778A1
Принадлежит:

Ceramic compositions with catalytic activity are provided, along with methods for using such catalytic ceramic compositions. The ceramic compositions correspond to compositions that can acquire increased catalytic activity by cyclic exposure of the ceramic composition to reducing and oxidizing environments at a sufficiently elevated temperature. The ceramic compositions can be beneficial for use as catalysts in reaction environments involving swings of temperature and/or pressure conditions, such as a reverse flow reaction environment. Based on cyclic exposure to oxidizing and reducing conditions, the surface of the ceramic composition can be converted from a substantially fully oxidized state to various states including at least some dopant metal particles supported on a structural oxide surface. 1. A catalyst composition comprising 0.1 wt % or more of particles of one or more dopant metals and 50 wt % to 99 wt % of one or more structural oxides , the one or more dopant metals corresponding to dopant metal oxides having a Gibbs free energy of formation at 800° C. that is greater than a Gibbs free energy of formation at 800° C. for the one or more structural oxides by 200 kJ/mol or more , the particles of the one or more dopant metals being supported on a surface of the catalyst composition , the particles of the one or more dopant metals having an average characteristic length of 10 μm or less.2. The catalyst composition of claim 1 , wherein the catalyst composition comprises a monolith having a cell density of 50 cells per square inch to 900 cells per square inch claim 1 , or wherein the catalyst composition comprises a monolith having a cell density of more than 900 cells per square inch.3. The catalyst composition of claim 1 , wherein the one or more structural oxides comprise 0.1 wt % to 10 wt % of free silica claim 1 , relative to a weight of the catalyst composition.4. The catalyst composition of claim 1 , wherein the one or more structural oxides comprise at ...

Подробнее
04-02-2021 дата публикации

METHOD FOR THE HYDROGENATION OF AROMATICS USING A NICKEL-BASED CATALYST

Номер: US20210031179A1
Принадлежит: IFP ENERGIES NOUVELLES

Hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point below or equal to 650° C., at a temperature of between 30 and 350° C., at a pressure of between 0.1 and 20 MPa, at a hydrogen/(aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly space velocity HSV of between 0.05 and 50 h, in the presence of a catalyst comprising an alumina support and an active phase comprising nickel, prepared by 1. A process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point below or equal to 650° C. , said process being carried out in the gas phase or in the liquid phase , at a temperature of between 30 and 350° C. , at a pressure of between 0.1 and 20 MPa , at a hydrogen/(aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly space velocity HSV of between 0.05 and 50 h , in the presence of a catalyst comprising an alumina support and an active phase comprising nickel , said active phase not comprising a metal from Group VIB , said catalyst being prepared by a process comprising at least:i) a step of bringing said support into contact with at least one solution containing at least one nickel precursor,ii) a step of bringing said support into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function; 'steps i) and ii) being carried out separately, in any order, or at the same time.', 'iii) a step of drying said impregnated support at a temperature below 250° C.;'}2. The process as claimed in claim 1 , characterized in that it further comprises a step iv) of calcining said dried catalyst obtained in step iii) at a temperature of between 250 and 1000° C.3. The process as claimed in claim 1 , characterized ...

Подробнее
30-01-2020 дата публикации

PROCESS FOR OLIGOMERIZATION OF BUTENE WITH DETERMINATION OF THE PROPORTION OF ACIDIC CATALYSIS

Номер: US20200031732A1
Принадлежит: EVONIK DEGUSSA GmbH

The invention provides a process for oligomerization of n-butenes using a nickel-containing aluminosilicate catalyst to produce a product mixture whose ratio of 4,4-dimethylhexene to 3,4-dimethylhexene is determined and monitored. The invention further relates to a process for determining the ratio of the amount of the formed 4,4-dimethylhexene or of the formed 3-ethyl-2-methylpentene to the amount of the formed 3,4-dimethylhexene. 1. A process for oligomerization of n-butenes using a mesoporous , nickel-containing aluminosilicate catalyst over which a reactant stream containing the n-butenes is passed to form a product mixture , wherein the ratio of the amount of the formed 4 ,4-dimethylhexene to the amount of the formed 3 ,4-dimethylhexene in the product mixture is monitored and the catalyst is replaced upon exceedance of a threshold value for the ratio (amount of 4 ,4-dimethylhexene/amount of 3 ,4-dimethylhexene) ,wherein the threshold value for the ratio (amount of 4,4-dimethylhexene/amount of 3,4-dimethylhexene) is not more than 0.05.2. The process according to claim 1 , wherein the process for oligomerization is performed at a temperature in the range from 50° C. to 200° C.3. The process according to claim 1 , wherein the process for oligomerization is performed at a pressure in the range from 10 bar to 70 bar.4. The process according to claim 1 , wherein the mesoporous nickel-containing aluminosilicate catalyst employed in the process for oligomerization contains nickel claim 1 , calculated as nickel oxide NiO claim 1 , in an amount of 0.1% to 51% by weight based on the total composition of the mesoporous nickel-containing aluminosilicate catalyst.5. The process according to claim 1 , wherein the mesoporous nickel-containing aluminosilicate catalyst employed in the process for oligomerization has an Si/Al ratio of 1 to 100.6. The process according to claim 1 , wherein the mesoporous nickel-containing aluminosilicate catalyst contains no titanium dioxide and/ ...

Подробнее
04-02-2021 дата публикации

A PROCESS FOR PRODUCING HYDROGEN AND CARBON PRODUCTS

Номер: US20210032101A1
Принадлежит:

A method of operating a mass spectrometer vacuum interface, the vacuum interface comprising an evacuated expansion chamber downstream of a plasma ion source at atmospheric or relatively high pressure, the expansion chamber having a first aperture that interfaces with the plasma ion source to form an expanding plasma downstream of the first aperture and a second aperture downstream of the first aperture from the plasma for skimming the expanding plasma to form a skimmed expanding plasma; wherein the expansion chamber is pumped by an interface vacuum pump to provide an interface pressure in the chamber; the method comprising using a controller to automatically, or according to user input, control the throughput of the interface vacuum pump to control the interface pressure dependent on one or more operating modes of the spectrometer. A pressure gauge can be located in the expansion chamber and a feedback loop provided between the pressure gauge and controller. 1. A process comprising:a. converting natural gas in a first reaction zone under first reaction conditions to produce a first gas stream and a first carbon product;b. separating at least a portion of the first carbon product from the first gas stream; andc. converting at least a portion of the first gas stream in a second reaction zone under second reaction conditions to produce a second gas stream and a second carbon product.2. The process of claim 1 , wherein the first reaction zone is a fluidized bed reactor.3. The process of claim 1 , wherein the first reaction zone contains a supported catalyst.4. The process of claim 1 , wherein the first reaction zone contains a catalyst comprising a transition metal or transition metal compound.5. The process of claim 4 , wherein the transition metal compound is iron claim 4 , nickel or cobalt.6. The process of claim 1 , wherein the first reaction conditions comprise a temperature greater than 600° C.7. The process of claim 1 , wherein the first reaction conditions ...

Подробнее
04-02-2021 дата публикации

ELECTROCATALYSTS, THE PREPARATION THEREOF, AND USING THE SAME FOR AMMONIA SYNTHESIS

Номер: US20210032116A1
Принадлежит:

Compositions comprising a first metal component and a second metal component wherein the molar ratio of the first metal component to the second metal component is in the range of 1:9 to 9:1, respectively, and wherein a surface of the second metal component is coated with the first metal component, is disclosed. Uses the compositions as catalysts are further disclosed. Electrochemical cells containing the compositions are further disclosed. A process of synthesizing ammonia using the compositions is further disclosed. 1. A composition comprising a first metal component comprising one or more metals and a second metal component comprising one or more metals , wherein:(i) at least one surface of said second metal component is coated with said first metal component;(ii) the molar ratio of said first metal component to said second metal component are in the range of 1:9 to 9:1, and(iii) said composition is in the form of particles.2. The composition of claim 1 , wherein said particles have a size in the range of 1 nm to 50 μm.3. The composition of claim 1 , wherein said first metal component and/or second metal component comprise two metals.4. The composition of claim 1 , wherein said first metal component comprises Fe claim 1 , Ru claim 1 , Pt claim 1 , Pd claim 1 , Sn claim 1 , Co claim 1 , Mo claim 1 , and any combination thereof.5. The composition of claim 1 , wherein said second metal component comprises Ti claim 1 , Sn claim 1 , Ru claim 1 , Fe claim 1 , Pt claim 1 , Pb claim 1 , Bi claim 1 , Hg claim 1 , Cd claim 1 , and any combination thereof.6. The composition of claim 1 , wherein said first metal component is FeOor FeOor FeOFeO and wherein said second metal component is TiO.7. The composition of claim 1 , wherein said first metal component is Fe and wherein said second metal component is Sn.8. The composition of claim 1 , wherein said first metal component is Ru or Fe and wherein said second metal component is Pt or Pd or Sn.9. The composition of claim 1 , ...

Подробнее
08-02-2018 дата публикации

METHOD FOR PRODUCING COMPOSITE OXIDE AND COMPOSITE OXIDE CATALYST

Номер: US20180036714A1
Принадлежит: SANTOKU CORPORATION

Provided are a method for producing a composite oxide and the composite oxide. The method includes steps of: (a) preparing a Ce aqueous solution not less than 80 mol % of which Ce ions are tetravalent, and a Zr aqueous solution; (b1) mixing the Zr aqueous solution and a portion of the Ce aqueous solution to prepare a mixed aqueous solution (X1); (c1) hydrothermally processing the solution (X1); (b2) adding the remainder of the Ce aqueous solution of step (a) to a colloidal solution (Y1) of a composite salt obtained from step (c1) to prepare a colloidal solution (Y2) of a composite salt; (c2) hydrothermally processing the solution (Y2); (d) mixing a colloidal solution (Y3) of a composite salt obtained from step (c2) with an alkaline solution and a surfactant to prepare a precipitate; and (e) calcining the precipitate. 1. A composite oxide obtained by a method comprising the steps of:(a) preparing at least a cerium aqueous solution 80 to 100 mol % of which cerium ions are tetravalent, and a zirconium aqueous solution containing zirconium ions;(b1) mixing said zirconium aqueous solution and a portion of said cerium aqueous solution prepared in step (a) to prepare a mixed aqueous solution (X1);(c1) hydrothermally processing said mixed aqueous solution (X1);(b2) adding a remainder of said cerium aqueous solution prepared in step (a) to a colloidal solution (Y1) of a composite salt obtained by said hydrothermal processing in step (c1) to prepare a colloidal solution (Y2) of a composite salt;(c2) hydrothermally processing said colloidal solution (Y2) of a composite salt obtained from step (b2) ;(d) mixing a colloidal solution (Y3) of a composite salt obtained by said hydrothermal processing in step (c2) with an alkaline solution and a surfactant to prepare a precipitate; and(e) calcining said precipitate,wherein the composite oxide comprises Ce, Zr, Pr, and oxygen, andwherein the content of Zr is not less than 20 mol% and not more than 50 mol %, and the content of Pr is ...

Подробнее
24-02-2022 дата публикации

CATALYSTS, PROCESSES FOR OBTAINING AND PROCESSES FOR STEAM REFORMING

Номер: US20220055894A1
Принадлежит:

The present invention refers to processes for obtaining steam reforming catalysts containing nickel, cerium, lanthanum and copper oxides, free from potassium or alkali metals, preferably with the oxide layer being located externally with a thickness of less than 0.5 mm on the support particle, preferably the support being based on alumina, magnesium aluminate, hexaaluminates or mixtures thereof. The catalysts according to present invention show high activity, resistance to thermal deactivation and resistance to coke accumulation in the steam reforming reaction of hydrocarbons. 1. A steam reforming catalyst comprising:{'sup': '2', '#text': 'a) an inorganic oxide support selected from theta-alumina, magnesium aluminate, hexaaluminates, or a mixture thereof, having a surface area above 15 m/g; and'}b) a mixture of nickel, copper, lanthanum, and cerium oxides, with the total nickel content, expressed as nickel oxide (NiO) between 5 and 25% w/w; the copper content expressed as copper oxide (CuO) between 0.5 to 5% w/w, a Ni/(La+Ce) atomic ratio between 3 to 5 and a Ce/Al atomic ratio between 1 to 4.2. The steam reforming catalyst according to claim 1 , wherein the inorganic oxide support has a surface area above 60 m/g.3. A process for obtaining the steam reforming catalyst of claim 1 , comprising the following steps:a) preparing a solution in a polar solvent, of a nickel salt, in the form of nickel nitrate, acetate or carbonate together with copper, lanthanum, and cerium salts in the form of nitrates;b) impregnating the solution containing the nickel, copper, cerium, and lanthanum salts in an inorganic oxide support selected from theta-alumina, magnesium aluminate, hexaaluminates, or a mixture thereof, by means of the wet spot technique or by placing the support of inorganic oxide in an excess of solution to form an impregnated material; andc) drying the impregnated material in air, at a temperature ranging between 50° C. and 150° C., and for a time interval in a range ...

Подробнее