Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 19527. Отображено 200.
05-02-2020 дата публикации

УСТРОЙСТВО ДЛЯ МАНИПУЛИРОВАНИЯ МИКРО- И НАНООБЪЕКТАМИ

Номер: RU2713527C2

Изобретение относится к устройству для манипулирования микро- и нанообъектами и способу изготовления микромеханического актюатора и может найти применение в области радиоэлектроники, машиностроения, биотехнологии, электронной микроскопии, медицины. Устройство включает микромеханический актюатор с системой подогрева. Актюатор содержит неподвижный и подвижный плоские элементы, расположенные вдоль его оси. Оба элемента соединены с одного конца актюатора, а с другого конца сформирован захват для удержания микро- или нанообъектов. Актюатор имеет протяженное сквозное отверстие в слоистом композиционном материале с обратимым ЭПФ, полученном воздействием внешних энергетических пучков (лазерного излучения, ионного облучения или электроискрового разряда в потоке жидкости) на поверхность ленты из сплава с ЭПФ и включающем кристаллический и аморфный слои с их сплошным неразрывным соединением на границе между ними и одинаковым химическим составом по обе стороны границы. Отверстие сделано таким образом ...

Подробнее
20-03-2015 дата публикации

КОМПОЗИЦИОННЫЙ МИКРОМЕХАНИЧЕСКИЙ КОМПОНЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2544289C2
Принадлежит: НИВАРОКС-ФАР С.А. (CH)

Использование: для композиционного микромеханического компонента. Сущность изобретения заключается в том, что изготовление композиционного микромеханического компонента включает стадию обеспечения подложкой, стадию вытравливания на верхнем слое по меньшей мере одного рисунка до промежуточного слоя, стадию нанесения на верхнюю часть указанной подложки электроизоляционного покрытия, стадию направленного травления указанного покрытия и указанного промежуточного слоя, стадию выполнения электроосаждения при подсоединении электрода к электропроводному нижнему слою подложки, отделение композиционного компонента от подложки. Технический результат: улучшение трибологических свойств кремния, упрощение способа изготовления, обеспечение возможности использования способа для микромеханических компонентов с высоким коэффициентом гибкости. 14 ил.

Подробнее
27-10-2015 дата публикации

ИСПОЛНИТЕЛЬНЫЙ МЕХАНИЗМ, ОПТИЧЕСКИЙ СКАНЕР И УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ

Номер: RU2566738C2

Изобретение относится к электрофизике. Технический результат состоит в снижении момента инерции во время колебания. Исполнительный механизм включает подвижную часть, которая может колебаться вокруг оси колебания; соединительную часть, которая проходит от подвижной части и торсионно деформируется в соответствии с колебанием подвижной части. Опорная часть поддерживает соединительную часть. Подвижная часть образует крестообразную форму в виде сверху с направления толщины подвижной части. 6 н. и 9 з.п. ф-лы, 15 ил.

Подробнее
27-02-2009 дата публикации

РЕГУЛИРОВАНИЕ ЭЛЕКТРОМЕХАНИЧЕСКОГО ПОВЕДЕНИЯ СТРУКТУР В УСТРОЙСТВЕ МИКРОЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ

Номер: RU2348088C2
Принадлежит: АйДиСи, ЭлЭлСи (US)

Изобретение относится к тонкопленочным структурам в устройствах микроэлектромеханических систем и к электромеханическому и оптическому откликам этих тонкопленочных структур. Устройство микроэлектромеханических систем (МЭМС) содержит: подложку, электростатически смещаемый слой, электрод, размещенный поверх подложки, между электродом и смещаемым слоем расположен воздушный зазор, слой улавливания электрических зарядов, содержащий материал, способный улавливать как положительные, так и отрицательные заряды, прозрачный слой, сформированный между слоем улавливания электрических зарядов и электродом. Также предложены еще два варианта устройства МЭМС и два варианта способа изготовления МЭМС. Изобретение обеспечивает улучшенный характеристический (электромеханический) отклик. 5 н. и 18 з.п. ф-лы, 9 ил.

Подробнее
05-07-2021 дата публикации

Номер: RU2019132616A3
Автор:
Принадлежит:

Подробнее
20-02-2013 дата публикации

МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЕ УСТРОЙСТВО, В КОТОРОМ ОПТИЧЕСКАЯ ФУНКЦИЯ ОТДЕЛЕНА ОТ МЕХАНИЧЕСКОЙ И ЭЛЕКТРИЧЕСКОЙ

Номер: RU2475789C2

Микроэлектромеханическое устройство (800) содержит подложку (20), содержащую верхнюю поверхность (88), подвижный элемент (810), расположенный сверху подложки (20), и активирующий электрод (82). Подвижный элемент (810) содержит деформируемый слой (34) и отражающий элемент (814), механически соединенный с деформируемым слоем (34). Отражающий элемент (814) содержит отражающую поверхность (92). Активирующий электрод (82) расположен сбоку от отражающей поверхности (92). Подвижный элемент (810) выполнен с возможностью проявления в ответ на разность напряжений, созданную между активирующим электродом (82) и подвижным элементом (810), реакции в виде перемещения в направлении, по существу перпендикулярном верхней поверхности (88) подложки (20). 4 н. и 30 з.п. ф-лы, 72 ил.

Подробнее
13-02-2024 дата публикации

Способ изготовления термомеханического актюатора для защиты электронного блока космического аппарата от перегрева и термомеханический актюатор, изготовленный по данному способу

Номер: RU2813613C1

Изобретение относится к микроробототехнике и может быть использовано при создании устройств терморегулирования узлов и блоков бортовой аппаратуры космических аппаратов. Термомеханический актюатор изготовлен в виде пластины из слоистого композиционного материала, представляющей собой подложку из деформируемого алюминиевого сплава, упрочненного закалкой с последующим старением, с черным и белым покрытиями. Способ изготовления включает обработку подложки в двух электролитах методом микродугового оксидирования в анодно-катодном режиме. На одну сторону подложки наносят защитную полиимидную пленку, а на обратной стороне подложки формируют черное покрытие в первом электролите, затем полиимидную пленку с первой стороны подложки удаляют, наносят полиимидную пленку на сформированное черное покрытие, на освобожденной от полиимидной пленки стороне подложки формируют белое покрытие во втором электролите. Технический результат - создание актюатора, функционирующего в широком диапазоне температур, а также ...

Подробнее
20-01-2006 дата публикации

РЕГУЛИРОВАНИЕ ЭЛЕКТРОМЕХАНИЧЕСКОГО ПОВЕДЕНИЯ СТРУКТУР В УСТРОЙСТВЕ МИКРОЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ

Номер: RU2005111765A
Принадлежит:

... 1. Способ изготовления устройства микроэлектромеханических систем, согласно которому изготавливают первый слой, содержащий по меньшей мере одну пленку, имеющую характеристический электромеханический отклик, и характеристический оптический отклик; причем характеристический оптический отклик является желательным, а характеристический электромеханический отклик является нежелательным; и модифицируют характеристический электромеханический отклик первого слоя путем управления образованием на нем электрических зарядов во время приведения устройства микроэлектромеханических систем в действие. 2. Способ по п. 1, отличающийся тем, что этап управления образованием электрических зарядов включает в себя изготовление по меньшей мере одного второго слоя на первом слое или в прилегании к нему; причем упомянутый второй слой является материалом, улавливающим электрические заряды. 3. Способ по п. 2, отличающийся тем, что этап изготовления по меньшей мере одного второго слоя включает в себя изготовление двух ...

Подробнее
10-11-2008 дата публикации

ИНТЕРФЕРЕНЦИОННЫЙ ОПТИЧЕСКИЙ МОДУЛЯТОР, ПРИМЕНЯЮЩИЙ ЗАПОЛНЯЮЩИЙ МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ

Номер: RU2007115891A
Принадлежит:

... 1. Устройство с микроэлектромеханическими системами, содержащее подложку; деформируемый слой; поддерживающую структуру, поддерживающую деформируемый слой; подвижный проводник, расположенный между подложкой и деформируемым слоем; и соединитель, прикрепляющий подвижный проводник к деформируемому слою; в котором по меньшей мере, один из соединителя и поддерживающей структуры содержит первый компонент и второй компонент, по меньшей мере часть первого компонента располагается по периметру, по меньшей мере, одного из соединителя и поддерживающей структуры; и первый компонент содержит электроизолирующий заполняющий материал. 2. Устройство по п.1, в котором поддерживающая структура содержит множество поддерживающих опор, в котором поддерживающие опоры поддерживаются подложкой и поддерживают деформируемый слой. 3. Устройство по п.1, в котором заполняющий материал содержит самовыравнивающий материал. 4. Устройство по п.1, в котором заполняющий материал содержит материал, выбранный из группы, состоящей ...

Подробнее
20-06-2014 дата публикации

УСТРОЙСТВО, УЗЕЛ И ЛИНИЯ СНЯТИЯ НАГРУЗОК ДЛЯ ГЕОФИЗИЧЕСКОГО ОБОРУДОВАНИЯ ИЛИ УЗЛА СЕТИ

Номер: RU2012153917A
Принадлежит:

... 1. Устройство (1) снятия нагрузок для установки на геофизическом оборудовании или узле (20) сети, к которому подсоединены по меньшей мере два кабеля (21, 22), отличающееся тем, что оно содержит:корпус (2), которому придают такую конфигурацию, чтобы он охватывал геофизическое оборудование или узел (20) сети и формировал по меньшей мере один проем (6) для обеспечения возможности соединения между каждым из указанных по меньшей мере двух кабелей и геофизическим оборудованием или узлом (20) сети;кожух (10) для размещения в нем части (21а, 22а) каждого из двух кабелей (21, 22), причем кожуху (10) придают такую конфигурацию, чтобы он предотвращал по существу какое-либо перемещение частей (21а, 22а) двух кабелей (21, 22).2. Устройство (1) снятия нагрузок по п.1, в котором кожуху (10) придают такую конфигурацию, чтобы два кабеля (21, 22) проходили в нем примерно параллельно друг другу.3. Устройство (1) снятия нагрузок по п.1 или 2, в котором проемы (6) в корпусе (2) расположены таким образом, чтобы ...

Подробнее
10-04-2007 дата публикации

СИСТЕМА И СПОСОБ ДЛЯ УСТРОЙСТВА ОТОБРАЖЕНИЯ С АКТИВНЫМ УСИЛИВАЮЩИМ ВЕЩЕСТВОМ

Номер: RU2005129943A
Принадлежит:

... 1. Устройство отображения, содержащее прозрачную подложку, интерференционный модулятор, предназначенный для модуляции света, проходящего через прозрачную подложку, объединительную плату, прикрепленную к прозрачной подложке, активное усиливающее вещество, находящееся в контакте с объединительной платой и предназначенное для обеспечения структурного усиления объединительной платы. 2. Устройство отображения по п.1, отличающееся тем, что активное усиливающее вещество является десикантом. 3. Устройство отображения по п.2, отличающееся тем, что десикант расположен в слабой точке объединительной платы. 4. Устройство отображения по п.3, отличающееся тем, что слабой точкой объединительной платы является угол углубления в объединительной плате. 5. Устройство отображения по п.2, отличающееся тем, что десикант содержит одно вещество, выбранное из группы, состоящей из цеолитов, сульфата кальция, оксида кальция, силикагеля, молекулярных сит, поверхностных абсорбентов, объемных абсорбентов, химических ...

Подробнее
20-03-2016 дата публикации

ЕМКОСТНОЙ ПРЕОБРАЗОВАТЕЛЬ, ПОЛУЧЕННЫЙ МИКРООБРАБОТКОЙ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2014134810A
Принадлежит:

... 1. Способ изготовления емкостного преобразователя (100), полученного микрообработкой, в частности, CMUT, причем способ содержит этапы, на которых:- осаждают первый электродный слой (10) на подложку (1),- осаждают первую диэлектрическую пленку (20) на первый электродный слой (10),- осаждают жертвенный слой (30) на первую диэлектрическую пленку (20), причем жертвенный слой (30) выполнен с возможностью удаления для формирования полости (35) преобразователя,- осаждают вторую диэлектрическую пленку (40) на жертвенный слой (30) и- осаждают второй электродный слой (50) на вторую диэлектрическую пленку (40),причем первая диэлектрическая пленка (20) и/или вторая диэлектрическая пленка (40) содержит первый слой, содержащий оксид, второй слой, содержащий материал с высокой k (диэлектрической проницаемостью), имеющий диэлектрическую проницаемость, равную 8 или более, и третий слой, содержащий оксид, причем второй слой располагается между первым и третьим слоями, и этапы осаждения осуществляются посредством ...

Подробнее
01-09-2011 дата публикации

Mikromechanisches Drucksensorelement und Verfahren zu dessen Herstellung

Номер: DE102010002463A1
Принадлежит:

Mit der vorliegenden Erfindung wird die Realisierung eines sehr robusten, hochtemperaturtauglichen und weitgehend miniaturisierbaren Sensorelements zur Absolutdruckmessung vorgeschlagen. Das mikromechanische Drucksensorelement (100) umfasst eine Sensormembran (1) mit rückseitigem Druckanschluss (5) und mindestens einen dielektrisch isolierten Piezowiderstand (21, 22) zur Signalerfassung. Das Drucksensorelement (100) ist außerdem mit einem vorderseitigen Referenzvolumen (3) ausgestattet, das durch eine die Sensormembran (1) überspannende Kappenstruktur (4) abgeschlossen ist. Die Kappenstruktur (4) ist in einem Dünnschichtaufbau realisiert.

Подробнее
14-11-2019 дата публикации

MIKROMECHANISCHER SENSOR UND VERFAHREN ZUM HERSTELLEN EINES MIKROELEKTROMECHANISCHEN SENSORS

Номер: DE102018111079A1
Принадлежит:

Ein mikroelektromechanischer Sensor umfasst ein erstes Substrat (202), das ein Element (210) aufweist, das im Hinblick auf das erste Substrat (202) beweglich ist, und ein zweites Substrat (204), das eine erste Kontaktanschlussfläche (206; 506) und eine zweite Kontaktanschlussfläche (208; 508) aufweist. Das erste Substrat (202) ist derart an das zweite Substrat (204) gebondet, dass eine Bewegung des Elements (210) eine Kopplung zwischen der ersten Kontaktanschlussfläche (206; 506) und der zweiten Kontaktanschlussfläche (208; 508) verändert.

Подробнее
14-07-2016 дата публикации

MEMS-Vorrichtung mit Ausgasungsabschirmung

Номер: DE112014004867T5
Принадлежит: ANALOG DEVICES INC, Analog Devices, Inc.

Eine verkappte, mikromaschinell gefertigte Vorrichtung hat eine bewegliche, mikromaschinell gefertigte Struktur in einer ersten hermetischen Kammer und eine oder mehrere Zwischenverbindungen in einer zweiten hermetischen Kammer, die hermetisch von der ersten hermetischen Kammer isoliert ist, und eine Barrierenschicht auf ihrer Kappe, wobei die Kappe der ersten hermetischen Kammer zugewandt ist, so dass die erste hermetische Kammer von einem Ausgasen aus der Kappe isoliert ist.

Подробнее
12-10-2017 дата публикации

MEMS-Struktur und Verfahren zum Herstellen derselben

Номер: DE102013209238B4

MEMS-Struktur mit einem Stapel (12) mit einem Substrat (14), einer ersten Ätzstoppschicht (22), einer ersten Halbleiterschicht (24), einer zweiten Ätzstoppschicht (26), einer zweiten Halbleiterschicht (28), die in der genannten Reihenfolge auf einander angeordnet sind; einer den Stapel (12) an einer dem Substrat (14) abgewandten Hauptseite bedeckenden Isolationsschicht (32); einem in dem Stapel (12) gebildeten Feder-Masse-System mit zumindest einer Feder (53a–d; 56a–d) und einem über die Feder (53a–d; 56a–d) aufgehängten Element (49); und piezoelektrischen Aktuatorschichten (36a–b; 38a–b; 42a–b), die an der Isolationsschicht (32) angeordnet sind; wobei das Feder-Masse-System in einer Dicke variiert, indem von einer ersten Ätzstoppschicht (22) abgewandten Rückseite des Substrates (14) aus an lateral unterschiedlichen Stellen a) das Substrat (14) unter Verbleib der ersten Halbleiterschicht (24) im Bereich (34) des aufgehängten Elementes (49); und b) das Substrat (14), die erste Ätzstoppschicht ...

Подробнее
27-04-2017 дата публикации

Halbleiter-Drucksensor

Номер: DE102016203174A1
Принадлежит:

In einem Halbleiter-Drucksensorelement (100G) ist ein erster Wasserstoffpermeationsschutzfilm (11) bereitgestellt an einer ersten Oberflächenseite (1a) eines ersten Siliziumsubstrats (1), und ein zweiter Wasserstoffpermeationsschutzfilm (12) ist bereitgestellt an einer Hauptoberflächenseite (2b) eines zweiten Siliziumsubstrats (2). Die Permeationspfade der Wasserstoffflüsse, die durch Pfeile A und B in 9 gezeigt sind, werden durch die Filme blockiert. Darüber hinaus ist ein Graben (16) bereitgestellt, der eine Referenzdruckkammer (4) umgibt, und der erste Wasserstoffpermeationsschutzfilm (11) und ein dritter Wasserstoffpermeationsschutzfilm (13) werden an dem unteren Abschnitt des Grabens (16) verbunden, wodurch der Permeationspfad des Wasserstoffflusses, der durch den Pfeil 10 in 9 gezeigt ist, blockiert wird. Durch die Bereitstellung einer Wasserstoffspeicherkammer (18) wird darüber hinaus Wasserstoff eingefangen, bevor der Wasserstoff die Referenzdruckkammer (4) erreicht.

Подробнее
15-02-2018 дата публикации

Mikromechanischer Sensorkern für Inertialsensor

Номер: DE102016214962A1
Принадлежит:

Mikromechanischer Sensorkern (100) für einen Inertialsensor (200), aufweisend: – eine bewegliche seismische Masse (10); – eine definierte Anzahl von Ankerelementen (20), mittels der die seismische Masse (10) an einem Substrat befestigt ist; – eine definierte Anzahl von am Substrat befestigten Anschlagseinrichtungen (20) zum Anschlagen der seismischen Masse (10); wobei – an der Anschlagseinrichtung (20) ein erstes federndes Anschlagselement (21), ein zweites federndes Anschlagselement (23) und ein festes Anschlagselement (22) ausgebildet sind; – wobei die Anschlagselemente (21, 22, 23) derart ausgebildet sind, dass die seismische Masse (10) nacheinander an das erste federnde Anschlagselement (21), das zweite federnde Anschlagselement (23) und das feste Anschlagselement (22) anschlagen kann.

Подробнее
02-12-2021 дата публикации

Verfahren zur Herstellung von dreidimensionalen Mikro-Bauelementen und dreidimensionale Mikro-Bauelemente

Номер: DE102017214638B4

Verfahren zur Herstellung von Mikro-Bauelementen, bei dem mindestens ein dreidimensionales Mikro-Bauelement mittels roll-up-Technologie auf einem Substrat hergestellt wird, wobei für die einzelnen dreidimensionalen Mikro-Bauelemente auf einem Substrat mindestens eine Opferschicht und darauf mehrere gleich oder unterschiedlich aufgebaute und strukturierte Schichtsysteme aufgebracht werden und durch die teilweise oder vollständige Entfernung der Opferschicht oder Opferschichten die einzeln aufgebrachten Schichtsysteme zu Multischichtsystemen aufgerollt werden, wobei das mindestens eine dreidimensionale Mikro- Bauelement mit allen funktionellen und strukturellen Bestandteilen innerhalb des Gesamtverfahrens vollständig hergestellt wird und nach der Herstellung vollständig funktionsfähig ist und wobei bei dem dreidimensionalen Mikro-Bauelement mindestens ein teilweise innerhalb eines umhüllenden Bauteils frei bewegliches Bauteil mittels roll-up-Technologie hergestellt wird, wobei mindestens ...

Подробнее
01-07-2021 дата публикации

SCHALLWANDLER MIT EINEN NIEDERDRUCKBEREICH UND MEMBRANEN MIT EINEM DRUCKSENSOR

Номер: DE102020134171A1
Принадлежит:

Schallwandler zum Erzeugen elektrischer Signale in Reaktion auf akustische Signale werden offenbart. In einigen Ausführungsformen enthält ein Schallwandler einen wenigstens teilweise evakuierten, hermetisch abgedichteten Hohlraum, der teilweise durch eine erste Membran gebildet wird. Der Schallwandler enthält darüber hinaus eine Montageplatte, die wenigstens teilweise im Inneren des Hohlraums angeordnet ist. Der Hohlraum hat einen Druck, der niedriger ist als der Atmosphärendruck. Der Schallwandler enthält des Weiteren einen Drucksensor, der mit der Montageplatte gekoppelt und so ausgeführt ist, dass er den Druck in dem Hohlraum erfasst.

Подробнее
31-03-2016 дата публикации

Sensor

Номер: DE112014003340T5

Eine Konfiguration mit einem ersten Substrat, das eine erste bewegliche Elektrode aufweist; einem zweiten Substrat, das mit dem ersten Substrat verbunden ist und eine erste fixierte Elektrode aufweist, die der ersten beweglichen Elektrode zugewandt ist; und einem dritten Substrat, das mit dem zweiten Substrat verbunden ist. Das erste Substrat, das zweite Substrat und das dritte Substrat sind in dieser Reihenfolge aufeinander geschichtet, und das zweite Substrat und das dritte Substrat sind zumindest in einem Teil zwischen der ersten fixierten Elektrode und dem dritten Substrat nicht miteinander verbunden.

Подробнее
28-11-2019 дата публикации

Lichtmodul

Номер: DE112018001385T5

Ein Lichtmodul weist ein optisches Element und eine Basis auf, auf der das optische Element montiert ist. Das optische Element weist einen optischen Abschnitt mit einer optischen Fläche; einen elastischen Abschnitt, der derart um den optischen Abschnitt herum vorgesehen ist, dass ein ringförmiger Bereich gebildet wird; und ein Paar von Trägerabschnitten auf, die derart vorgesehen sind, dass der optische Abschnitt in einer ersten Richtung entlang der optischen Fläche sandwichartig aufgenommen wird und auf die eine elastische Kraft aufgebracht wird und zwischen denen sich in Abstand gemäß elastischer Verformung des elastischen Abschnitts verändert. Die Basis weist eine Hauptfläche und einen Montagebereich auf, in dem eine mit der Hauptfläche kommunizierende Öffnung vorgesehen ist. Die Trägerabschnitte werden in einem Zustand in die Öffnung eingesetzt, bei dem eine elastische Kraft des elastischen Abschnitts aufgebracht wird. Das optische Element wird in dem Montagebereich von einer Reaktionskraft ...

Подробнее
28-05-2009 дата публикации

VORRICHTUNG ZUM STEUERN EINER FLÜSSIGKEIT IN EINEM MIKROMECHANISCHEN HEIZWASSERSPEICHER

Номер: DE0069940742D1
Принадлежит: SMC KK, SMC K.K.

Подробнее
30-09-2021 дата публикации

MIKROELEKTROMECHANISCHES MIKROFON MIT EINEM ANSCHLAGELEMENT

Номер: DE102021107866A1
Принадлежит:

Es werden Technologien für mikroelektromechanische Mikrofone bereitgestellt, die gegenüber erheblichen Druckänderungen in der Umgebung, in der die mikromechanischen Mikrofone arbeiten, robust sein können. In einigen Ausführungsformen kann eine mikroelektromechanische Mikrofonvorrichtung ein Substrat umfassen, das eine erste Öffnung definiert, um eine Druckwelle zu empfangen. Die mikroelektromechanische Mikrofonvorrichtung kann auch eine flexible Platte umfassen, die mechanisch mit dem Substrat gekoppelt ist, und eine starre Platte, die mechanisch mit der flexiblen Platte gekoppelt ist. Die flexible Platte ist durch die Druckwelle verformbar. Die starre Platte definiert mehrere Öffnungen, die den Durchgang der Druckwelle ermöglichen. Die mikroelektromechanische Mikrofonvorrichtung kann ferner mindestens ein Anschlagelement umfassen, das in einer räumlichen Beziehung mit der flexiblen Platte montiert ist. Das mindestens eine Anschlagelement kann die Bewegung der flexiblen Platte als Reaktion ...

Подробнее
02-05-2013 дата публикации

MEMS-Strukturen mit planarem Hohlraum und verwandte Strukturen, Herstellungsverfahren und Design-Strukturen

Номер: DE112011102135T5
Принадлежит: IBM, INTERNATIONAL BUSINESS MACHINES CORP.

Es werden Strukturen mikroelektromechanischer Systeme (MEMS) mit planarem Hohlraum, Herstellungsverfahren und Design-Strukturen bereitgestellt. Das Verfahren weist das Bilden mindestens eines Hohlraums (60a, 60b) eines mikroelektromechanischen Systems (MEMS), welcher eine planare Fläche aufweist, unter Anwendung eines reversen Damaszener-Verfahrens auf.

Подробнее
05-08-2010 дата публикации

Verfahren zur Herstellung eines Membransensor-Arrays sowie Membransensor-Array

Номер: DE0010046621B4
Принадлежит: BOSCH GMBH ROBERT, ROBERT BOSCH GMBH

Verfahren zur Herstellung eines Membransensor-Arrays (20) mit einem Halbleitermaterialträger (1, 4, 11, 21, 32, 42), auf welchem mehrere flächige Membranbereiche (22, 35, 41) als Trägerschicht für Sensorelemente angeordnet sind, und die flächigen Membranbereiche (22, 35, 41) voneinander durch Stege (23, 40) aus Material mit im Vergleich zu den Membranbereichen (22, 35, 41) und zu der lateralen Umgebung der Stege (23, 40) deutlich besseren Wärmeleiteigenschaften thermisch entkoppelt sind, dadurch gekennzeichnet, dass zunächst der Halbleitermaterialträger (1, 4, 11, 21, 32, 42) an Stellen, an welchen die Stege (23, 40) zur thermischen Entkopplung ausgebildet werden, eine Maskierung für einen nachfolgenden Schritt zur Erzeugung von porösem Halbleitermaterial erhält, dass das nicht durch Maskierung geschützte Halbleitermaterial porösiziert wird, und dass die Membranbereiche daraufhin dadurch erzeugt werden, dass eine Membran (24, 33) flächig auf den porösizierten und den nicht porösizierten ...

Подробнее
02-07-2009 дата публикации

Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements

Номер: DE102007062707A1
Принадлежит:

Es wird ein mikromechanisches Bauelement mit einem Substrat und einer gegenüber dem Substrat beweglichen Struktur vorgeschlagen, wobei die bewegliche Struktur eine Startschicht und eine auf der Startschicht aufgewachsene Schicht aufweist und wobei ferner die bewegliche Struktur wenigstens eine weitere Startschicht und eine auf der weiteren Startschicht aufgewachsene weitere Schicht aufweist.

Подробнее
08-04-2010 дата публикации

Bistable mechanism e.g. relay, for switching actuator between two switching conditions, has snap-in device and actuator that are integrated with each other, where snap-in device is hinged on actuator

Номер: DE102008050630A1
Принадлежит:

The mechanism (1) has an electro-thermo-mechanical drive (3) for moving an actuator (27) between two switching conditions. A snap-in device (5) is hinged on the actuator and follows the actuation movement of the actuator. The snap-in device has a switch-point resistance between the switching conditions. The actuator is snapped-in at the respective switching condition by overcoming the resistance. The snap-in device and the actuator are integrated with each other. An end of the actuator is fixedly supported on a fixed bearing area (4).

Подробнее
19-07-2007 дата публикации

MEMS-Sensor und Verfahren zur Herstellung

Номер: DE102006001493A1
Принадлежит:

Es wird ein auf einem Basischip aufgebauter MEMS-Sensor mit kapazitiver Arbeitsweise vorgeschlagen, der einen strukturierten auf dem Basischip aufgebrachten Schichtaufbau aufweist. Im Schichtaufbau ist eine Ausnehmung erzeugt, in der die bewegliche Elektrode, beispielsweise eine Membran angeordnet ist. Die Ausnehmung wird von einer Deckschicht überspannt, die um die Ausnehmung herum auf dem Schichtaufbau aufliegt und die Rückelektrode umfasst.

Подробнее
20-06-2013 дата публикации

Elektrostatischer Kapazitätsbeschleunigungssensor

Номер: DE102006025373B4

Elektrostatischer Kapazitätsbeschleunigungssensor mit einem Substrat (1), das einen Beschleunigungsdetektor (3) enthält, der ein bewegliches Teil (6) zum Erfassen einer Beschleunigung aufweist, einem Bondrahmen (7), der aus einer Schichtung besteht, die polykristallines Silizium und eine Isolierschicht enthält, und der auf dem Substrat so befestigt ist, dass er den Beschleunigungsdetektor umgibt, einer Kappe (8), die auf dem Substrat bereitgestellt ist, wobei die Fläche der Kappe, die dem Substrat zugewandt ist, aus einem Randbereich, der an dem Bondrahmen befestigt ist, und zusätzlich zu dem Randbereich aus einem Mittelbereich aufgebaut ist, und einer leitenden Abschirmschicht (9), die zumindest auf der gesamten Oberfläche des Mittelbereichs der Kappe ausgebildet ist, wobei die Abschirmschicht elektrisch mit dem beweglichen Teil verbunden ist, wobei ein Teil der Abschirmschicht (9) so ausgebildet ist, dass er sich auf die Oberfläche des Randbereichs erstreckt, und der Teil der Abschirmschicht ...

Подробнее
04-01-2018 дата публикации

DÄMPFUNG EINES SENSORS

Номер: DE102016112041A1
Принадлежит:

Eine Vorrichtung (100) umfasst ein Substrat (105), eine Federstruktur (130) und einen ersten Sensor (110). Der erste Sensor (110) ist über die Federstruktur (130) federnd mit dem Substrat (105) gekoppelt. Die Federstruktur (130) ist dazu konfiguriert, Dämpfung des ersten Sensors (110) bezüglich des Substrats (105) bereitzustellen. Des Weiteren umfasst die Vorrichtung (100) einen zweiten Sensor (120), der dazu konfiguriert ist, eine Durchbiegung der Federstruktur (130) zu erfassen.

Подробнее
12-07-2018 дата публикации

Mikromechanisches Bauteil, Herstellungsverfahren für ein mikromechanisches Bauteil und Verfahren zum Anregen einer Bewegung eines verstellbaren Teils um eine Rotationsachse

Номер: DE102017200352A1
Принадлежит:

Die Erfindung betrifft ein mikromechanisches Bauteil mit einer Halterung (10), einem verstellbaren Teil (12), welches zumindest über mindestens eine Feder (14a, 14b, 14c) mit der Halterung (10) verbunden ist, und einer Aktoreinrichtung (18), wobei eine erste Schwingbewegung (Φ1) des verstellbaren Teils (12) um eine erste Drehachse (20) und gleichzeitig eine zweite Schwingbewegung (Φ2) des in die erste Schwingbewegung (Φ1) versetzten verstellbaren Teils (12) um eine zweite Drehachse (22) mittels der Aktoreinrichtung (18) anregbar sind, und wobei das verstellbare Teil (12) mittels zumindest der mindestens einen Feder (14a, 14b, 14c) derart verstellbar an der Halterung (10) angeordnet ist, dass das verstellbare Teil (12) mittels eines resultierenden Drehmoments (M2) um eine senkrecht zu der ersten Drehachse (20) und senkrecht zu der zweiten Drehachse (22) ausgerichtete Rotationsachse (24) verstellbar ist. Ebenso betrifft die Erfindung ein Herstellungsverfahren für ein mikromechanisches Bauteil ...

Подробнее
17-09-2015 дата публикации

Drucksensor und Verfahren zum Herstellen des Drucksensors

Номер: DE102014204664A1
Принадлежит:

Die Erfindung betrifft einen Drucksensor (100) mit einem Substrat (102) und einer Transistorstruktur (104). Das Substrat (102) weist eine in das Substrat (102) eingebrachte Kavität (106) auf. Die Transistorstruktur (104) ist über der Kavität (106) angeordnet. Die Transistorstruktur (104) weist eine biegsame Heterostruktur (108) und je zumindest einen elektrisch leitend mit der Heterostruktur (108) verbundenen Sourcekontakt (110) und Drainkontakt (112) sowie einen Gatekontakt (114) auf. Die Heterostruktur (108) ist dazu ausgebildet, eine Position entsprechend einem Druckverhältnis zwischen einem ersten Druck in der Kavität (106) und einem zweiten Druck auf einer der Kavität gegenüberliegenden Seite der Heterostruktur (108) einzunehmen. Die Transistorstruktur (104) ist dazu ausgebildet, ein elektrisches Signal entsprechend der Position bereitzustellen.

Подробнее
21-01-2021 дата публикации

Sensoreinrichtung und Verfahren zum Herstellen einer Sensoreinrichtung

Номер: DE102018222715B4
Принадлежит: BOSCH GMBH ROBERT, Robert Bosch GmbH

Verfahren zum Herstellen einer Sensoreinrichtung (1) mit einer Membran (7), die eine Kaverne (K) überspannt, umfassend die Schritte:- Bereitstellen (S1) eines Substrats (2);- Anordnen (S2) mindestens einer ersten Opferschicht (O1) auf dem Substrat;- Anordnen (S3) einer Hilfsschicht (5) auf der mindestens ersten Opferschicht (O1) und Strukturieren der Hilfsschicht (5) derart, dass in der Hilfsschicht (5) zumindest ein Graben (G) bis zur mindestens ersten Opferschicht (O1) eingebracht wird, wobei sich der Graben (G) lateral innerhalb des Randbereichs (RB) befindet, wobei der Randbereich (RB) zumindest teilweise eine laterale Umrandung auf dem Substrat (2) darstellt;- Anordnen (S4) einer dritten Opferschicht (03) zumindest in dem Graben (G), wobei ein Hohlraum (H) in den Gräben (G) verbleibt;- Aufbringen (S5) einer Membran (7) auf der Hilfsschicht (5) und Einbringen von mindestens einem Ätzzugang (A) in der Membran im Randbereich (RB);- zumindest teilweises Entfernen (S6) der mindestens ersten ...

Подробнее
04-06-2020 дата публикации

Mikromechanische Struktur und Verfahren zum Bereitstellen derselben

Номер: DE102019202658B3

Eine mikromechanische Struktur umfasst ein erstes mikromechanisches Element und ein zweites mikromechanisches Element sowie eine Torsionsfederanordnung umfassend ein erstes, eine erste Mittellinie aufweisende Torsionsfederelemente, das an einem ersten Kontaktbereich mit dem ersten mikromechanischen Element und an einem zweiten Kontaktbereich mit dem zweiten mikromechanischen Element mechanisch verbunden ist, und umfassend ein zweites, eine zweite Mittellinie aufweisendes Torsionsfederelement, das an einem dritten Kontaktbereich mit dem ersten mikromechanischen Element und an einem vierten Kontaktbereich mit dem zweiten mikromechanischen Element mechanisch verbunden ist, um das erste mikromechanische Element und das zweite mikromechanische Element relativ zueinander beweglich zu verbinden. Ein Abstand zwischen der ersten Mittellinie und der zweiten Mittellinie ist ausgehend von dem ersten und dritten Kontaktbereich hin zu dem zweiten und vierten Kontaktbereich in einem ersten Abschnitt abnehmend ...

Подробнее
29-07-2021 дата публикации

Mikromechanisches Bauteil für eine kapazitive Sensorvorrichtung und Herstellungsverfahren für ein mikromechanisches Bauteil für eine kapazitive Sensorvorrichtung

Номер: DE102013217726B4
Принадлежит: BOSCH GMBH ROBERT, Robert Bosch GmbH

Herstellungsverfahren für ein mikromechanisches Bauteil für eine kapazitive Sensorvorrichtung mit den Schritten:Bilden einer ersten Elektrode (10) zumindest teilweise aus einer ersten Halbleiter- und/oder Metallschicht (13); undAbscheiden zumindest einer Isolierschicht (18) über der ersten Elektrode (10);Bilden zumindest einer zu der ersten Elektrode (10) ausgerichteten Innenseite einer Schicht (20) einer zweiten Elektrode (36) aus einer zweiten Halbleiter- und/oder Metallschicht (21) auf der Isolierschicht (18), wobei durch die die Innenseite bildende Schicht (20) der zweiten Elektrode (36) durchgehende Aussparungen (22) strukturiert werden;Bilden eines Hohlraums (26) zwischen der ersten Elektrode (10) und der die Innenseite bildende Schicht (20) der zweiten Elektrode (36) durch Wegätzen eines Teilbereichs zumindest der Isolierschicht (18) durch die durchgehenden Aussparungen (22) in der die Innenseite bildende Schicht (20) der zweiten Elektrode (36) hindurch; undAbdichten der durchgehenden ...

Подробнее
20-11-2014 дата публикации

Beschleunigungssensor

Номер: DE102013208824A1
Принадлежит:

Die Erfindung schlägt einen Beschleunigungssensor mit einem Substrat und einer seismischen Masse vor, wobei der Beschleunigungssensor eine Haupterstreckungsebene aufweist und eine Federeinrichtung umfasst, über die das Substrat und die seismische Masse derart verbunden sind, dass die seismische Masse bei einer Beschleunigung in eine senkrecht zur Haupterstreckungsebene verlaufende Detektionsrichtung um eine parallel zur Haupterstreckungsebene verlaufende Drehachse im Sinne einer Kippbewegung auslenkbar ist, wobei die seismische Masse darüber hinaus über mindestens eine erste Feder mit dem Substrat verbunden ist, wobei die Steifigkeit der ersten Feder bei einer Auslenkung der seismische Masse im Sinne der Kippbewegung in Detektionsrichtung kleiner ist als die Steifigkeit der ersten Feder bei einer Auslenkung in einer parallel zur Haupterstreckungsebene verlaufenden Primärrichtung.

Подробнее
19-12-2019 дата публикации

Mikromechanisches System

Номер: DE102018209512A1
Принадлежит:

Mikromechanisches System (100), aufweisend:- wenigstens eine in eine Auslenkrichtung bewegliche seismische Masse (10); und- wenigstens ein rahmenförmiges Federelement (20), das aufgrund einer Auslenkung der seismischen Masse (10) in eine von der Auslenkrichtung der seismischen Masse (10) unterschiedliche Richtung auslenkbar ist; und- eine Anschlagseinrichtung (30) zum Anschlagen des Federelements (20) im Falle eines Einwirkens einer mechanischen Überlast auf das mikromechanische System (100).

Подробнее
25-06-2020 дата публикации

Mikromechanisches Bauteil für eine kapazitive Drucksensorvorrichtung

Номер: DE102018222712A1
Принадлежит:

Die Erfindung betrifft ein mikromechanisches Bauteil für eine kapazitive Drucksensorvorrichtung mit einem Substrat (10), einer Rahmenstruktur (12), welche eine Teiloberfläche (16) umrahmt, einer Membran (18), welche mittels der Rahmenstruktur (12) derart aufgespannt ist, dass ein freitragender Bereich (20) der Membran (18) die umrahmte Teiloberfläche (16) überspannt und ein Innenvolumen (22) mit einem darin vorliegenden Referenzdruck (p) luftdicht abgedichtet ist, und wobei der freitragende Bereich (20) der Membran (18) mittels eines physikalischen Drucks (p) auf einer Außenseite (20a) des freitragenden Bereichs (20) ungleich dem Referenzdruck (p) verformbar ist, und einer Messelektrode (24), welche auf der umrahmten Teiloberfläche (16) angeordnet ist, wobei eine Referenzmesselektrode (26) zusätzlich zu der Messelektrode (24) auf der umrahmten Teiloberfläche (16) angeordnet ist, jedoch von der Messelektrode (24) elektrisch isoliert ist. Ebenso betrifft die Erfindung ein Herstellungsverfahren ...

Подробнее
08-07-2021 дата публикации

Verfahren zur Herstellung eines Membran-Bauelements und ein Membran-Bauelement

Номер: DE102020100244A1
Принадлежит:

Die Erfindung betrifft ein Verfahren zur Herstellung eines Membran-Bauelements mit einer Membran aus einer dünnen Schicht (< 1 um, Dünnschichtmembran). Das Membran-Bauelement kann bei mikroelektromechanischen Systemen (MEMS) eingesetzt werden. Die Erfindung soll ein Verfahren zur Herstellung eines Membran-Bauelements bereitstellen, wobei die Membran mit hochpräzisen Membranabmessungen und frei wählbarer Membrangeometrie herstellbar ist. Erreicht wird das mit einem Verfahren, umfassend ... Bereitstellen einer Halbleiterscheibe (100) mit einer ersten Schicht (116), einer zweiten Schicht (118) und einer dritten Schicht (126). Aufbringen (12) einer ersten Maskierungsschicht (112) auf die erste Schicht (116), wobei die erste Maskierungsschicht (112) eine erste selektiv bearbeitbare Fläche (114) zur Festlegung einer Geometrie der Membran (M1) definiert. Bilden (13) einer ersten Vertiefung (120) durch anisotropes Ätzen (13) der ersten Schicht (116) und Entfernen der ersten Maskierungsschicht ( ...

Подробнее
01-12-2011 дата публикации

Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil

Номер: DE102010029539A1
Принадлежит:

Die Erfindung betrifft ein mikromechanisches Bauteil mit einer Halterung und einer in Bezug zu der Hne zweite Stellung verstellbaren Komponente welche über mindestens eine Feder (20) mit der Halterung verbunden ist, wobei das mikromechanische Bauteil mindestens einen an der mindestens einen Feder (20) angeordneten Silizid-umfassenden Leitungsabschnitt (30, 32) umfasst. Des Weiteren betrifft die Erfindung ein Herstellungsverfahren für ein mikromechanisches Bauteil.

Подробнее
28-03-2013 дата публикации

Mikromechanische Sensorvorrichtung mit beweglichem Gate und entsprechendes Herstellungsverfahren

Номер: DE102011083644A1
Автор: FEYH ANDO, FEYH, ANDO
Принадлежит:

Die Erfindung schafft eine eine mikromechanische Sensorvorrichtung mit beweglichem Gate und ein entsprechendes Herstellungsverfahren. Die Sensorvorrichtung mit beweglichem Gate umfasst einen Feldeffekt-Transistor (2) mit einem beweglichen Gate (7), welches durch einen Hohlraum (11) von einem Kanalbereich (K) getrennt ist, wobei der Kanalbereich (K) von einer Gateisolationsschicht (3) bedeckt ist.

Подробнее
24-11-2011 дата публикации

Mikromechanisches Element und Verfahren zum Betreiben eines mikromechanischen Elements

Номер: DE102008049647B4

Mikromechanisches Element (100) mit folgenden Merkmalen: einem beweglichen Funktionselement (110); einem ersten Halteelement (120), wobei das erste Halteelement (120) und das Funktionselement (110) an einer ersten Verbindungsstelle (122) verbunden sind; einem zweiten Halteelement (130), wobei das zweite Halteelement (130) und das Funktionselement (110) an einer zweiten Verbindungsstelle (132) verbunden sind; einem dritten Halteelement (140), wobei das dritte Halteelement (140) und das Funktionselement (110) an einer dritten Verbindungsstelle (142) verbunden sind; einem vierten Halteelement (150), wobei das vierte Halteelement (150) und das Funktionselement (110) an einer vierten Verbindungsstelle (152) verbunden sind, wobei das erste Halteelement (120) und das zweite Halteelement (130) je ein piezoelektrisches Antriebselement aufweisen, wobei das piezoelektrische Antriebselement (124) des ersten Halteelements (120) und das piezoelektrische Antriebselement (134) des zweiten Halteelements ...

Подробнее
28-01-2010 дата публикации

Aktive Abschirmung von Leitern in MEMS-Vorrichtungen

Номер: DE102009030281A1
Принадлежит:

Eine Vorrichtung, die parasitäre Kapazität in einem MEMS-Element reduziert, enthält eine dielektrische Schicht an der Oberfläche eines Silicon-on-Insulator(SOI)-Substrats, einen Leiter, der in dem Substrat eingebettet und zwischen der dielektrischen Schicht und einer vergrabenen Oxidschicht angeordnet ist, und Oberflächenleiter an der dielektrischen Schicht, die mit Enden des eingebetteten Leiters gekoppelt sind. Ein Grenzschichtbereich umgibt den eingebetteten Leiter und trennt einen inneren Beschafft einen p-n-Übergang zwischen dem Grenzschichtbereich und dem äußeren Bereich des SOI-Substrats, der in Sperrrichtung vorgespannt wird, um den inneren Bereich elektrisch gegenüber dem äußeren Bereich des SOI-Substrats zu isolieren. Ein Verstärker hat einen Eingang, der mit einem Ende des eingebetteten Leiters verbunden ist, und einen Ausgang, der mit dem inneren Bereich des Substrats verbunden ist. Der Verstärker misst eine Spannung an dem Ausgang und erzeugt eine Spannung, die eine Näherung ...

Подробнее
05-04-2017 дата публикации

Microphone biasing circuitry and method thereof

Номер: GB0002542965A
Принадлежит:

The host device has a device connector for forming a mating connection with a respective peripheral connector. A source of bias 102 is arranged to supply an electrical bias to a device microphone contact 117 of the device connector via a biasing path. A capacitor 225 is connected between a reference voltage (ground) node and a capacitor node 304 of the biasing path. A first switch 301 is located between the capacitor node 304 and the device microphone contact 117. Detection circuitry (602, fig 6a) detects disconnection of the peripheral connector and device connector; and control circuitry (601, fig 6a) controls the switch to disable the biasing path within 100µs. This removal of the bias voltage from the connector is said to reduce the occurrence of undesirable clicks or pops. Several embodiments of the invention are discussed.

Подробнее
11-06-2008 дата публикации

Mems transducers

Номер: GB0000808294D0
Автор:
Принадлежит:

Подробнее
27-08-2008 дата публикации

Method for making a planar cantilever MEMS switch

Номер: GB0000813328D0
Автор:
Принадлежит:

Подробнее
27-08-2008 дата публикации

Method for making a planar cantilever mems switch

Номер: GB0000813330D0
Автор:
Принадлежит:

Подробнее
27-08-2008 дата публикации

Method for making a planar cantilever mems switch

Номер: GB0000813331D0
Автор:
Принадлежит:

Подробнее
11-05-2011 дата публикации

A stress relief interlayer for functional coatings on micromechanical devices

Номер: GB0201105100D0
Автор:
Принадлежит:

Подробнее
17-09-2014 дата публикации

Integrated mems transducer and circuitry

Номер: GB0201413631D0
Автор:
Принадлежит:

Подробнее
14-03-2018 дата публикации

Stress decoupling in mems transducers

Номер: GB0201801391D0
Автор:
Принадлежит:

Подробнее
14-01-2015 дата публикации

No Title

Номер: GB0201421073D0
Автор:
Принадлежит:

Подробнее
14-12-2016 дата публикации

MEMS device and process

Номер: GB0201618354D0
Автор:
Принадлежит:

Подробнее
10-08-1994 дата публикации

Capacitive micromachined differential pressure sensor

Номер: GB0002274945A
Принадлежит:

PURPOSE: To provide a capacitive surface differential pressure sensor and a method for manufacturing it by a microstructure which is manufactured by a dry-removing method, without harmful effects from a capillary force. CONSTITUTION: Doping materials are selectively injected into a substrate for deciding a first etching stop layer, a surface layer of semiconductor materials is deposited on this, and a diaphragm region is decided. A passive state conductive layer is deposited on this, and a diaphragm electrode is prepared. A sacrificial layer is selectively deposited on the diaphragm region. The conductive structural layer is fixed on a surface layer, and a second electrode is prepared. A backside opening which terminates in the first etching stop layer is prepared by selective etching. The first etching stop layer is removed. At least one temporary post is extended from the structural layer to the surface layer. The sacrificial layer is removed, and then a temporary post is removed.

Подробнее
25-03-2009 дата публикации

A method for pseudo-planarization of an electromechanical device

Номер: GB0002448445B

Подробнее
28-05-2008 дата публикации

Stress free MEMS transducer

Номер: GB0002444123A
Принадлежит:

A micro-electrical-mechanical (MEMS) device 227 comprises a transducer arrangement having a membrane 216 mounted with respect to a substrate 110 and electrical interface means for relating electrical signals to movement of the membrane 216. The transducer arrangement is provided with stress alleviating formations 223 which at least partially decouple the membrane 216 from expansion or contraction of the substrate 110. The stress alleviating formations 223 comprise holes provided inside the perimeter of the membrane 216 which damp air flow through the membrane 216. The transducer arrangement may further comprise a back-plate 118 which includes another electrical interface. The back-plate 118 is separated from the membrane by a cavity 121. In another embodiment, the thermal expansion coefficient of the membrane 216 is matched to that of the substrate 110 which is made of silicon. The MEMS device may be a pressure sensor, an acceleration sensor or a microphone and may also comprise an array ...

Подробнее
14-12-2011 дата публикации

Mems device

Номер: GB0002444123B
Принадлежит: WOLFSON MICROELECTRONICS PLC

Подробнее
28-06-2006 дата публикации

Method for closing perforated membranes

Номер: GB0002415828B
Принадлежит: BOSCH GMBH ROBERT, ROBERT BOSCH GMBH

Подробнее
10-09-2014 дата публикации

Method, apparatus and system for providing metering of acceleration

Номер: GB0002511704A
Принадлежит:

Techniques and mechanisms to provide for metering acceleration. In an embodiment, a microelectromechanical accelerometer includes a magnet, a mass, and a first support beam portion and second support beam portion for suspension of the mass. Resonance frequency characteristics of the first support beam portion and second support beam portion, based on the magnet and a current conducted by the first support beam portion and second support beam portion, are indicative of acceleration of the mass. In another embodiment, the accelerometer further includes a first wire portion and a second wire portion which are each coupled to the mass and further coupled to a respective anchor for exchanging a signal with the first wire portion and the second wire portion. The first wire portion and the second wire portion provide for biasing of the mass.

Подробнее
01-04-2009 дата публикации

Mems device and process

Номер: GB0000902480D0
Автор:
Принадлежит:

Подробнее
12-03-2014 дата публикации

Micro-electro-mechanical system (MEMS) and related actuator bumps, methods of manufacture and design structures

Номер: GB0002505825A
Принадлежит:

Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming a wiring layer (14) on a substrate (10) comprising actuator electrodes (115) and a contact electrode (110). The method further includes forming a MEMS beam (100) above the wiring layer (14). The method further includes forming at least one spring (200) attached to at least one end of the MEMS beam (100). The method further includes forming an array of mini -bumps (105') between the wiring layer (14) and the MEMS beam (100).

Подробнее
31-07-2002 дата публикации

A micro-electromechanical variable capacitor

Номер: GB0000214206D0
Автор:
Принадлежит:

Подробнее
13-07-2016 дата публикации

Microfluidic surface processing device and method

Номер: GB0002518075B

Подробнее
30-11-2016 дата публикации

MEMS devices and processes

Номер: GB0002538828A
Принадлежит:

A MEMS transducer comprising a membrane 301 and at least one mount structure 305 for supporting the membrane relative to a substrate provides a flexible membrane and further comprises one or more stress diffusing structures 701 for example a slit, is/are provided in the membrane so as to diffuse stress in the region of the mount. The membrane may have a first/active region 301 and a second/inactive region 302. The slits may be C- or U shaped. The transducer may also comprise a variable vent structure (307 see Figure 5) in the inactive region 302.

Подробнее
13-10-2010 дата публикации

MEMS ultrasonic transducer array

Номер: GB0002469410A
Принадлежит:

A MEMS device 60 comprises a substrate having at least a first transducer 62 optimized for transmitting pressure waves, and at least a second transducer 64 optimized for detecting pressure waves. The transducer array is formed using a sacrificial layer release method. The transducers can be optimised for transmitting or receiving by varying the thickness of the membrane T1,T2 and the diameter or mass of the electrode and/or the mass of the membrane of each respective transducer. The transmitting transducer is provided with a higher Q factor than the receiving transducer. Also disclosed is an array of transmitting transducers and an array of receiving transducers, wherein elements in the array of transmitting and /or receiving transducers are arranged to have different resonant frequencies. The array is useful in medical ultrasound imagers and sonar systems, and also for gesture recognition in PDAs, MP3 players and laptops.

Подробнее
23-07-2014 дата публикации

Nonvolatile nano-electromechanical system device

Номер: GB0002487316B

Подробнее
27-06-2018 дата публикации

MEMS device and process

Номер: GB0002557755A
Принадлежит:

A MEMS transducer with a flexible membrane 501 and a vent structure comprising at least one moveable portion 502 which in response to differential pressure across the vent structure tilts such that one edge of the moveable portion 502 deflects below the plane of a membrane 501, whilst an opposite edge of the moveable portion 502 deflects above the plane of the membrane 501. In response to differential pressure across the vent, the moveable portion 502 may rotate about two axes (R1, Fig. 5a) & R2 to allow a variable acoustic impedance. The vent bleed holes may allow for pressure equalisation between cavities and may thus prevent damage or overload of the diaphragm 501. Rotation may expose an aperture which provides a flow path for pressure change. The moveable portion 502 may be connected to the membrane 501 by a joint structure. The microelectromechanical transducer may use capacitive sensing with electrodes and may be utilised as a microphone in mobile telephones, computing devices or ...

Подробнее
09-04-2014 дата публикации

Hermetically sealed MEMS Switch

Номер: GB0002506770A
Принадлежит:

A MEMS structure, comprising a lower forcing electrode and a lower contact electrode, remote from the lower forcing electrode; a cantilever beam 34 is positioned above the lower forcing electrode and the lower contact electrode; a capping layer 42 hermetically seals the lower forcing electrode, the lower contact electrode and the cantilever beam 34, the capping layer 42 having a sealed portion 40 positioned on a side of the lower contact electrode, remote from the lower forcing electrode and an end portion of the cantilever beam 34. Wherein the cantilever beam 34 may be devoid of stresses from material variability of a sealing material used to seal the capping layer 42.

Подробнее
18-06-2008 дата публикации

Mens device and process

Номер: GB0000808746D0
Автор:
Принадлежит:

Подробнее
17-10-2018 дата публикации

MEMS Device

Номер: GB0002561405A
Автор: JAMES DEAS, James Deas
Принадлежит:

The device comprises a first membrane transducer 414 adjoining a sound port 408, a second membrane transducer 422 within a housing 410 and not adjoining any sound port. The housing defining a shared volume 420 for the first and second transducers and a back volume 426 for the second transducer. Integrated MEMS circuitry 404 is arranged to combine signals from both transducers to produce a noise corrected audio output signal.

Подробнее
19-12-2018 дата публикации

Transducer packaging

Номер: GB0002563461A
Принадлежит:

The application describes a package for a MEMS transducer. The package has a package substrate 201 having an acoustic port 208 formed in the package substrate 201. The acoustic port comprises a first acoustic port volume portion (211, figure 3) and a second acoustic port volume portion (213), the first acoustic port volume portion being separated from the second acoustic port volume potion by a discontinuity in a sidewall of the substrate. The discontinuity may be a right angled step or a slope, thereby changing the width of the acoustic port. The cross sectional area of the first acoustic port volume portion is greater than the cross sectional area of the second acoustic port volume portion. A barrier 538 may be attached to the upper surface of the package substrate so as to seal or cover the acoustic port, thereby providing environmental protection.

Подробнее
06-03-2019 дата публикации

MEMS devices and processes

Номер: GB0002566100A
Принадлежит:

A micro-electro-mechanical (MEMS) transducer comprising first 10 and second 20 conductive elements, the second conductive element 20 may overly the first conductive element 10, wherein a mutually overlapping region of the first 10 and second 20 conductive elements defines a first capacitor of the transducer, the transducer further comprising a third conductive element 30, which overlies the first conductive element 10 and be at a potential different to the second conductive element 20. The third conductive element 30 may be provided in a fringing field region of the first capacitor. The second electrode 20 may have a hexagonal lattice structure. The MEMS transducer may have: a flexible membrane 101 and backplate 104; a field modifier in a fringing field; a capacitor between the third conductive element and a backplate electrode; a conductive flexible membrane 101 which flexes due to a pressure differential across the membrane 101; conductive tracks 40a, 40b and vias 50. The microelectromechanical ...

Подробнее
04-02-2009 дата публикации

Apparatus and method for biasing a transducer

Номер: GB0000823674D0
Автор:
Принадлежит:

Подробнее
22-01-2014 дата публикации

Micro-electro-mechanical system (MEMS) and related actuator bumps method of manufacture and design structures

Номер: GB0201321798D0
Автор:
Принадлежит:

Подробнее
27-04-2016 дата публикации

Electromechanical relay device

Номер: GB0201604254D0
Автор:
Принадлежит:

Подробнее
01-03-2017 дата публикации

Mems device

Номер: GB0201700804D0
Автор:
Принадлежит:

Подробнее
26-08-1987 дата публикации

PRESSURE TRANSDUCER

Номер: GB0008717059D0
Автор:
Принадлежит:

Подробнее
26-02-2014 дата публикации

A Piezoelectric actuator and applications thereof

Номер: GB0002505316A
Принадлежит:

A piezoelectric bending actuator 1 comprises a plurality of actors 2 with a composite Structure. Each actor 2 has at least a first planar outer layer 10 of piezoelectric material bonded to a planar reinforcement layer 14, an electrically conductive outer coating 18 on an external surface of the first planar outer layer defining a tongue portion in the plane of the coating and wherein each of the actors are connected to and extend from a support element 8. The actors 2 can be individually controlled. In addition, there may composite actuators comprising from five to one hundred in number. In some embodiments actors 2 on respective actuators are connected to a linkage arranged to transfer a force or displacement. The disclosed actuators may be used in micro motors and in pneumatic or fluidic valve arrays.

Подробнее
20-07-2016 дата публикации

A Piezo-Electric actuator and applications thereof

Номер: GB0002505316B
Принадлежит: STEPHEN AUSTIN WILSON, Stephen Austin Wilson

Подробнее
30-05-2007 дата публикации

Micro scratch drive actuator

Номер: GB0000707926D0
Автор:
Принадлежит:

Подробнее
17-08-2016 дата публикации

MEMS devices and processes

Номер: GB0201611400D0
Автор:
Принадлежит:

Подробнее
11-10-2017 дата публикации

Surface microstructures

Номер: GB0201713629D0
Автор:
Принадлежит:

Подробнее
05-01-2012 дата публикации

Actuator device and input apparatus

Номер: US20120001520A1
Принадлежит: Alps Electric Co Ltd

An actuator device includes an actuator having one end as a fixed end and the other end as a free end, and bendable when a voltage is applied; and a base member having a fixed section that fixes the fixed end of the actuator. A projecting section is provided at the base member. In a state where the actuator is bent, when a force is applied and the free end is deformed toward a direction that is reverse to the bending direction, the actuator contacts the projecting section. The projecting section is a fulcrum of the displacement and a generating load is capable of being large by the principle of material mechanics without losing the displacement amount.

Подробнее
27-12-2006 дата публикации

ИНТЕГРАЛЬНЫЙ ЭЛЕКТРОСТАТИЧЕСКИЙ МИКРОПРИВОД

Номер: RU0000059556U1

Интегральный электростатический микропривод, содержащий основание, нижний электрод, лежащий на основании, верхний электрод, закрепленный на основании и находящийся над нижним электродом на некотором расстоянии, отличающийся тем, что на нижней поверхности верхнего электрода или на верхней поверхности нижнего электрода размещены диэлектрические области. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 59 556 (13) U1 (51) МПК B81B 3/00 (2006.01) H01H 5/04 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2006111008/22 , 06.04.2006 (24) Дата начала отсчета срока действия патента: 06.04.2006 (45) Опубликовано: 27.12.2006 (73) Патентообладатель(и): Государственное учреждение Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники (RU) U 1 5 9 5 5 6 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Интегральный электростатический микропривод, содержащий основание, нижний электрод, лежащий на основании, верхний электрод, закрепленный на основании и находящийся над нижним электродом на некотором расстоянии, отличающийся тем, что на нижней поверхности верхнего электрода или на верхней поверхности нижнего электрода размещены диэлектрические области. 5 9 5 5 6 (54) ИНТЕГРАЛЬНЫЙ ЭЛЕКТРОСТАТИЧЕСКИЙ МИКРОПРИВОД R U Адрес для переписки: 124498, Москва, Зеленоград, пр-д 4806, 5, к.7237, НПК "Технологический центр" МИЭТ (72) Автор(ы): Годовицын Игорь Валерьевич (RU) RU 5 10 15 20 25 30 35 40 45 50 59 556 U1 Полезная модель относится к коммутационной и радиочастотной технике, а именно к интегральным микромеханическим ключам и интегральным микромеханическим переменным конденсаторам, и может быть использована как в интегральных переключателях, коммутаторах, фазосдвигателях и фильтрах, так и в радиотехнических и коммутационных приборах, изготовленных на основе гибридной и микромодульной технологии. Известна конструкция интегрального ...

Подробнее
10-03-2007 дата публикации

ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ КЛЮЧ

Номер: RU0000061703U1

Интегральный микромеханический ключ, содержащий основание, упругий элемент, прикрепленный к основанию, металлический замыкающий контакт, расположенный на упругом элементе, металлические контакты сигнальных шин, расположенные под замыкающим контактом, микропривод, осуществляющий деформацию упругого элемента до соприкосновения замыкающего контакта и контактов сигнальных шин, отличающийся тем, что на упругом элементе расположен диэлектрический слой, изолирующий упругий элемент от замыкающего контакта, замыкающий контакт частично выходит за края упругого элемента, а сигнальные шины и контакты к сигнальным шинам расположены только под частями замыкающего контакта, выходящими за края упругого элемента. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 61 703 (13) U1 (51) МПК B81B 3/00 (2006.01) H01H 1/14 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2006111007/22 , 06.04.2006 (24) Дата начала отсчета срока действия патента: 06.04.2006 (45) Опубликовано: 10.03.2007 (73) Патентообладатель(и): Государственное учреждение Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники" (RU) U 1 6 1 7 0 3 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Интегральный микромеханический ключ, содержащий основание, упругий элемент, прикрепленный к основанию, металлический замыкающий контакт, расположенный на упругом элементе, металлические контакты сигнальных шин, расположенные под замыкающим контактом, микропривод, осуществляющий деформацию упругого элемента до соприкосновения замыкающего контакта и контактов сигнальных шин, отличающийся тем, что на упругом элементе расположен диэлектрический слой, изолирующий упругий элемент от замыкающего контакта, замыкающий контакт частично выходит за края упругого элемента, а сигнальные шины и контакты к сигнальным шинам расположены только под частями замыкающего контакта, выходящими за края упругого элемента. ...

Подробнее
10-04-2007 дата публикации

ПРИСПОСОБЛЕНИЕ ДЛЯ НАНЕСЕНИЯ МАССИВА МИКРОКАПЕЛЬ РАЗЛИЧНЫХ РАСТВОРОВ НА ПОВЕРХНОСТЬ ПОДЛОЖКИ

Номер: RU0000062391U1

1. Приспособление для нанесения массива микрокапель различных растворов на поверхность подложки, содержащее набор капиллярных стержней и опорное средство с отверстиями для размещения и фиксации в них капиллярных стержней, имеющее возможность крепления к позиционирующему 3-х координатному механизму, отличающееся тем, что оно снабжено многоканальной воронкой, выполненной в виде тела, образованного двумя параллельными основаниями, имеющими форму геометрически подобных плоских фигур, и боковой поверхностью, при этом в теле воронки выполнено множество соединяющих основания каналов, ось каждого из которых имеет вид плавной кривой с точкой перегиба в средней части и пересекает плоскости оснований под прямым углом, при этом многоканальная воронка посредством крепежных средств прижата своим большим основанием к опорному средству, а капиллярные стержни выполнены в виде гибких капиллярных трубок, свободно размещенных в каналах многоканальной воронки. 2. Приспособление по п.1, отличающееся тем, что опорное средство выполнено в виде двух плит, соединенных между собой с возможностью встречного перемещения, причем диаметр отверстий в плите, к которой прижата многоканальная воронка, превышает наружный диаметр капиллярных трубок, при этом плиты дополнительно связаны между собой гармошкой с перемычками, ориентированными параллельно плитам и имеющими отверстия для свободного прохода через них капиллярных трубок. 3. Приспособление по п.1, отличающееся тем, что оно дополнительно снабжено переходником, выполненным в виде жестко соединенных между собой двух параллельных пластин с отверстиями, причем одна из пластин приспособлена для крепления ее на опорном средстве и расположение отверстий в ней совпадает с расположением каналов на большем основании многоканальной воронки, а на другой пластине отверстия расположены так, чтобы они соответствовали расположению лунок микротитровальной плашки, при этом между пластинами размещены трубки, соединяющие отверстия в одной пластине с отверстиями в ...

Подробнее
27-06-2010 дата публикации

ЭЛЕКТРОМЕХАНИЗМ

Номер: RU0000095323U1

Электромеханизм, содержащий гибкий электрод из материала, обладающего электрической проводимостью, отличающийся тем, что в корпусе из полимерного материала, имеющего форму прямоугольного параллелепипеда, размещен гибкий U-образно изогнутый электрод, на дне корпуса закреплена металлическая подложка, на которую нанесен слой диэлектрика с высоким значением относительной диэлектрической проницаемости, при этом наружная поверхность электрода выполнена с возможностью соприкосновения со слоем диэлектрика, а прямоугольные в плане поверхности электрода выполнены с возможностью соприкосновения с внутренней верхней поверхностью корпуса и подключены к системе питания и управления, которая соединена с металлической подложкой. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 95 323 (13) U1 (51) МПК B81B 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2010108272/22, 05.03.2010 (24) Дата начала отсчета срока действия патента: 05.03.2010 (45) Опубликовано: 27.06.2010 (73) Патентообладатель(и): Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" (RU) U 1 9 5 3 2 3 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели Электромеханизм, содержащий гибкий электрод из материала, обладающего электрической проводимостью, отличающийся тем, что в корпусе из полимерного материала, имеющего форму прямоугольного параллелепипеда, размещен гибкий Uобразно изогнутый электрод, на дне корпуса закреплена металлическая подложка, на которую нанесен слой диэлектрика с высоким значением относительной диэлектрической проницаемости, при этом наружная поверхность электрода выполнена с возможностью соприкосновения со слоем диэлектрика, а прямоугольные в плане поверхности электрода выполнены с возможностью соприкосновения с внутренней верхней поверхностью корпуса и подключены к системе питания и управления, которая соединена с металлической подложкой. 9 5 3 ...

Подробнее
27-07-2015 дата публикации

ЭЛЕКТРОХИМИЧЕСКИЙ АКТУАТОР

Номер: RU0000153530U1

Электрохимический актуатор, содержащий металлическую подложку, противоэлектрод, изолирующий лак, отличающийся тем, что металлическая подложка покрыта пленкой политолуидина. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК B81B 3/00 (13) 153 530 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2014153082/28, 26.12.2014 (24) Дата начала отсчета срока действия патента: 26.12.2014 (45) Опубликовано: 27.07.2015 Бюл. № 21 1 5 3 5 3 0 R U Формула полезной модели Электрохимический актуатор, содержащий металлическую подложку, противоэлектрод, изолирующий лак, отличающийся тем, что металлическая подложка покрыта пленкой политолуидина. Электрохимический актуатор предназначен для механического управления объектами. Актуатор, содержит противоэлектрод (3), металлическую подложку (2), изолирующий лак (4). Металлическая подложка покрыта пленкой политолуидина. При подаче напряжения на металлическую подложку (2) и противоэлектрод (3) пленка политолуидина (1) обратимо изменяет степень окисленности, в следствие чего изменяются геометрические параметры, что в итоге приводит к деформации металлической подложки. Величина деформации пропорциональна величине питающего напряжения. За счет замены в конструкции гибкого листового элемента пленки из полиуретановой смолы на пленку из электропроводного материала - политолуидина улучшаются механические характеристики, увеличивается срок службы актуатора до 12 месяцев. 2 ил. Стр.: 1 U 1 U 1 (54) ЭЛЕКТРОХИМИЧЕСКИЙ АКТУАТОР 1 5 3 5 3 0 Адрес для переписки: 170100, г. Тверь, ул. Желябова, 33, Тверской государственный университет, Управление интеллектуальной собственности (73) Патентообладатель(и): Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" (RU) R U Приоритет(ы): (22) Дата подачи заявки: 26.12.2014 (72) Автор(ы): Рясенский Сергей Станиславович (RU), Феофанова Мариана Александровна (RU), Крылов Анатолий ...

Подробнее
10-07-2016 дата публикации

МАНИПУЛЯТОР НА ОСНОВЕ ФЕРРОМАГНИТНЫХ МИКРОПРОВОДОВ

Номер: RU0000163031U1

Манипулятор для управления нано- и микрочастицами, содержащий три сердечника с катушками, намотанными на каждом из них, причем управляющие концы сердечников образуют треугольник, отличающийся тем, что сердечники выполнены в виде микропроводов, состоящих из центральной жилы из аморфного ферромагнетика на основе Со и стеклянной оболочки. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК B81B 3/00 (13) 163 031 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015157114/28, 30.12.2015 (24) Дата начала отсчета срока действия патента: 30.12.2015 (45) Опубликовано: 10.07.2016 U 1 1 6 3 0 3 1 R U Стр.: 1 U 1 (54) МАНИПУЛЯТОР НА ОСНОВЕ ФЕРРОМАГНИТНЫХ МИКРОПРОВОДОВ (57) Реферат: B81B3/00 результатом, на получение которого направлена РЕФЕРАТ ПОЛЕЗНОЙ МОДЕЛИ полезная модель, является разработка устройства, МАНИПУЛЯТОР НА ОСНОВЕ в котором отсутствуют остаточные поля ФЕРРОМАГНИТНЫХ МИКРОПРОВОДОВ намагниченности в сердечниках. Технический Полезная модель относится к области результат достигается в устройстве, содержащем механики, микросистемной техники и три сердечника с катушками, намотанными на наномеханики, в частности к технике каждом из них, причем управляющие концы манипуляторов (пинцетов) для захвата и сердечников образуют треугольник, и перемещения нано- и микрочастиц, и может найти использующем в качестве сердечников аморфные применение в радиоэлектронике, ферромагнитные микропровода на основе Со в машиностроении, нанотехнологии, электронной стеклянном покрытии. 1 НП. микроскопии, медицине. Техническим 1 6 3 0 3 1 Адрес для переписки: 141074, Московская обл., г, Королев-4, а/я 825, Кудакову А.Д. (73) Патентообладатель(и): Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский федеральный университет имени Иммануила Канта" (RU) R U Приоритет(ы): (22) Дата подачи заявки: 30.12.2015 (72) Автор(ы): Родионова Валерия Викторовна (RU), Перов Николай ...

Подробнее
03-02-2017 дата публикации

ТЕПЛОВОЙ МИКРОМЕХАНИЧЕСКИЙ АКТЮАТОР

Номер: RU0000168462U1

Использование: для создания и изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы. Сущность полезной модели заключается в том, что тепловой микромеханический актюатор, содержащий кремниевую монокристаллическую пластину с ориентацией [100] с меза-структурой, состоящей из параллельных трапециевидных вставок, соединенных полипиромеллитимидными прослойками, нагревателя и металлизации нагревателя, с обратной стороны монокристаллической пластины сформированы V-образные канавки напротив параллельных трапециевидных вставок. Технический результат: обеспечение возможности расширения диапазона угла отклонения упругошарнирной консольной балки теплового микромеханического актюатора. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 168 462 U1 (51) МПК B81B 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2016126453, 01.07.2016 (24) Дата начала отсчета срока действия патента: 01.07.2016 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 01.07.2016 (45) Опубликовано: 03.02.2017 Бюл. № 4 (56) Список документов, цитированных в отчете о поиске: RU 2448896 C2, 27.04.2012. DE 1 6 8 4 6 2 R U (54) ТЕПЛОВОЙ МИКРОМЕХАНИЧЕСКИЙ АКТЮАТОР (57) Реферат: Использование: для создания и изготовления прослойками, нагревателя и металлизации микромеханических устройств, содержащих нагревателя, с обратной стороны упругие гибкие деформируемые исполнительные монокристаллической пластины сформированы элементы. Сущность полезной модели V-образные канавки напротив параллельных заключается в том, что тепловой трапециевидных вставок. Технический результат: микромеханический актюатор, содержащий обеспечение возможности расширения диапазона кремниевую монокристаллическую пластину с угла отклонения упругошарнирной консольной ориентацией [100] с меза-структурой, состоящей балки теплового микромеханического актюатора. из параллельных трапециевидных вставок, 1 ил. соединенных ...

Подробнее
21-04-2021 дата публикации

ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МИКРОМЕХАНИЧЕСКОГО ДАТЧИКА

Номер: RU0000203772U1

Полезная модель относится к области электротехники, в частности к измерительной технике, и может быть использована при создании микромеханических датчиков линейного ускорения для систем управления подвижных объектов различного назначения. Технический результат заключается в повышении точности измерения. Достигается тем, что разработан чувствительный элемент микромеханического датчика, содержащий основание, инерционную массу, упругие элементы, закрепленные на основании и инерционной массе, емкостную систему съема сигнала, сформированную из подвижных элементов на инерционной массе и неподвижных элементов на основании, при этом упругие элементы имеют П-образную форму и есть перфорация инерционной массы. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 203 772 U1 (51) МПК G01P 15/135 (2006.01) B81B 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК G01P 15/135 (2021.02); B81B 3/0018 (2021.02) (21)(22) Заявка: 2021101697, 27.01.2021 (24) Дата начала отсчета срока действия патента: Дата регистрации: 21.04.2021 (45) Опубликовано: 21.04.2021 Бюл. № 12 Адрес для переписки: 124498, Москва, г. Зеленоград, пл. Шокина, 1, МИЭТ, патентно-лицензионный отдел U 1 (56) Список документов, цитированных в отчете о поиске: RU 2469336 C2, 10.05.2012. RU 133315 U1, 10.10.2013. US 2019277879 A1, 12.09.2019. US 2018156840 A1, 07.06.2018. R U (54) ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МИКРОМЕХАНИЧЕСКОГО ДАТЧИКА (57) Реферат: Полезная модель относится к области датчика, содержащий основание, инерционную электротехники, в частности к измерительной массу, упругие элементы, закрепленные на технике, и может быть использована при создании основании и инерционной массе, емкостную микромеханических датчиков линейного систему съема сигнала, сформированную из ускорения для систем управления подвижных подвижных элементов на инерционной массе и объектов различного назначения. Технический неподвижных элементов на основании, при этом результат заключается в ...

Подробнее
06-12-2021 дата публикации

Конструкция мембранного элемента преобразователя акустического давления емкостного типа

Номер: RU0000208148U1

Полезная модель относится к микроэлектронике и может быть использована в конструкции микроэлектромеханических преобразователей микрофонов. Конструкция мембранного элемента преобразователя акустического давления емкостного типа содержит подложку из монокристаллического кремния, в которой сформирована рамка из высоколегированного бором кремния в форме квадрата, с внутренним контуром в виде окружности, на которой расположена подвижная мембрана из аморфного кремния, легированного фосфором, над подвижной мембраной с воздушным зазором размещен электрод, который неподвижно закреплен на основании из оксида кремния. Технический результат, получаемый при реализации заявляемой полезной модели, выражается в повышении чувствительности элемента мембранного типа при минимизации встроенных механических напряжений за счет подбора оптимальных материалов для изготовления элементов. 2 з. п. ф-лы, 2 ил.

Подробнее
09-02-2012 дата публикации

Optical reflection element

Номер: US20120033279A1
Принадлежит: Panasonic Corp

An optical reflection element has a frame-shaped supporting body, a first oscillator and a second oscillator each having a meander shape, and a mirror portion. A line segment connecting a joining position between the mirror portion and the first oscillator to a joining position between the supporting body and the first oscillator, and a line segment connecting a joining position of the mirror portion and the second oscillator to a joining position of the supporting body and the second oscillator cross a mirror portion central axis. An outer circumference of at least any one of turn portions of the first oscillator and the second oscillator is deviated from a first end portion axis that is parallel to the mirror portion central axis and extends along a first side of the mirror portion. Alternatively, an outer circumference of at least any one of the turn portions of the first oscillator and the second oscillator is deviated from a second end portion axis T 2 that is parallel to the mirror portion central axis and extends along a second side parallel to the first side of the mirror portion. At least any one of these two conditions is satisfied.

Подробнее
12-04-2012 дата публикации

Mems device and composite substrate for an mems device

Номер: US20120086086A1
Принадлежит: Touch Micro System Technology Inc

An MEMS device and a composite substrate for an MEMS device are provided. The MEMS device comprises a first silicon structure layer and a second silicon structure layer fixedly connecting to the first silicon structure layer. The first silicon structure layer has a twistable rod and a first plane. The first silicon structure layer has a first crystal direction with a miller index of <100> and a second crystal direction with a miller index of <110>. The first crystal direction and the second crystal direction are both parallel to the first plane. The rod has an axis direction, which is parallel to the first plane and intersected by the second crystal direction. In this manner, the torsional stiffness of the rod can be improved.

Подробнее
19-04-2012 дата публикации

Semiconductor component having a micromechanical microphone structure

Номер: US20120091545A1
Принадлежит: ROBERT BOSCH GMBH

A simple and cost-effective form of implementing a semiconductor component having a micromechanical microphone structure, including an acoustically active diaphragm as a deflectable electrode of a microphone capacitor, a stationary, acoustically permeable counterelement as a counter electrode of the microphone capacitor, and means for applying a charging voltage between the deflectable electrode and the counter electrode of the microphone capacitor. In order to not impair the functionality of this semiconductor component, even during overload situations in which contact occurs between the diaphragm and the counter electrode, the deflectable electrode and the counter electrode of the microphone capacitor are counter-doped, at least in places, so that they form a diode in the event of contact. In addition, the polarity of the charging voltage between the deflectable electrode and the counter electrode is such that the diode is switched in the blocking direction.

Подробнее
17-05-2012 дата публикации

Motion controlled actuator

Номер: US20120119612A1
Принадлежит: Tessera MEMS Technologies Inc

A device can have an outer frame and an actuator. The actuator can have a movable frame and a fixed frame. At least one torsional flexure and at least one hinge flexure can cooperate to provide comparatively high lateral stiffness between the outer frame and the movable frame and can cooperate to provide comparatively low rotational stiffness between the outer frame and the movable frame.

Подробнее
28-06-2012 дата публикации

Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method

Номер: US20120162736A1
Принадлежит: Individual

A mirror device includes a mirror ( 153 ) which is supported to be pivotable with respect to a mirror substrate ( 151 ), a driving electrode ( 103 - 1 - 103 - 4 ) which is formed on an electrode substrate ( 101 ) facing the mirror substrate, and an antistatic structure ( 106 ) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.

Подробнее
28-06-2012 дата публикации

Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method

Номер: US20120162737A1
Принадлежит: Individual

A mirror device includes a mirror ( 153 ) which is supported to be pivotable with respect to a mirror substrate ( 151 ), a driving electrode ( 103 - 1 - 103 - 4 ) which is formed on an electrode substrate ( 101 ) facing the mirror substrate, and an antistatic structure ( 106 ) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.

Подробнее
05-07-2012 дата публикации

Micromechanical component and manufacturing method for a micromechanical component

Номер: US20120167681A1
Автор: Jochen Reinmuth
Принадлежит: ROBERT BOSCH GMBH

A micromechanical component having a fixing point and a seismic weight, which is connected to the fixing point by at least one spring and is made at least partially out of a first material, the first material being a semiconductor material, the seismic weight being additionally made out of at least one second material, and the second material having a higher density than the first material. In addition, a manufacturing method for a micromechanical component is provided, having the steps of forming a seismic weight at least partially out of a first material, the first material being a semiconductor material, connecting the seismic weight to a fixing point of the micromechanical component, using at least one spring, and forming the seismic weight from the first material and at least one second material, which has a higher density than the first material.

Подробнее
19-07-2012 дата публикации

Bulk silicon moving member with dimple

Номер: US20120181637A1
Автор: Chia-Hua Chu, Chia-Pao SHU

A method for forming a semiconductor device includes forming a substrate, forming a moveable member of bulk silicon and forming a first dimple structure on a first surface of the moveable member, where the first surface faces the substrate.

Подробнее
19-07-2012 дата публикации

Method for mems device fabrication and device formed

Номер: US20120181638A1
Принадлежит: Cavendish Kinetics Inc

The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.

Подробнее
16-08-2012 дата публикации

Micro-electromechanical system devices and methods of making micro-electromechanical system devices

Номер: US20120205753A1
Принадлежит: Kionix Inc

A micro-electromechanical system (MEMS) device includes a substrate, a first beam, a second beam, and a third beam. The first beam includes first and second portions separated by an isolation joint. The first and second portions each comprise a semiconductor and a first dielectric layer. An electrically conductive trace is mechanically coupled to the first beam and electrically coupled to the second portion's semiconductor but not the first portion's semiconductor. The second beam includes a second dielectric layer. The profile of each of the first, second, and third beams has been formed by a dry etch. A cavity separates a surface of the substrate from the first, second, and third beams. The cavity has been formed by a dry etch. A side wall of each of the first, second, and third beams has substantially no dielectric layer disposed thereon, and the dielectric layer has been removed by a vapor-phase etch.

Подробнее
06-09-2012 дата публикации

MEMS Sensor with Movable Z-Axis Sensing Element

Номер: US20120223726A1
Автор: Michael W. Judy, Xin Zhang
Принадлежит: Analog Devices Inc

A MEMS sensor includes a substrate and a MEMS structure coupled to the substrate. The MEMS structure has a mass movable with respect to the substrate. The MEMS sensor also includes a reference structure electrically coupled to the mass of the MEMS sensor. The reference structure is used to provide a reference to offset any environmental changes that may affect the MEMS sensor in order to increase the accuracy of its measurement.

Подробнее
20-09-2012 дата публикации

Mems sensor

Номер: US20120235039A1
Принадлежит: Pioneer Corp

A MEMS sensor has a frame portion 2 formed in a rectangular frame shape and a convexoconcave shaped membrane 3 that is constructed within the frame portion 2, the convexoconcave shape of the membrane 3 extend to two direction where a concave and a convex are orthogonal to each other, and square concave portions 3 a and square convex portions 3 b are disposed in a web shape within a whole in-plane area of the membrane 3.

Подробнее
20-09-2012 дата публикации

Capillary Force Actuator Device and Related Method of Applications

Номер: US20120235538A1
Автор: Carl R. Knospe

An actuator capable of generates force by leveraging the changes in capillary pressure and surface tension that result from the application of an electrical potential. The device, which will be referred to as a Capillary Force Actuator (CFA), and related methods, employs a conducting liquid bridge between two (or more) surfaces, at least one of which contains dielectric-covered electrodes, and operates according to the principles of electrowetting on dielectric.

Подробнее
20-09-2012 дата публикации

Driving apparatus

Номер: US20120235540A1
Автор: Jun Suzuki
Принадлежит: Pioneer Corp

A driving apparatus ( 100 ) is provided with: a base part ( 110 ); a stage part ( 130 ) on which a driven object ( 150 ) is mounted and which can be displaced; an elastic part ( 120 ) which has elasticity for displacing the stage part along one direction (Y axis); and an applying part ( 110 ) for applying to the base part microvibration for displacing the stage part ( 130 ) such that the stage part ( 130 ) resonates along the one direction (Y axis) at a resonance frequency determined by the elastic part ( 120 ) and the stage part ( 130 ), the microvibration is non-directional microvibration as non-directional vibrational energy.

Подробнее
04-10-2012 дата публикации

Micromechanical Component and Manufacturing Method for a Micromechanical Component

Номер: US20120248931A1
Автор: Jochen Reinmuth
Принадлежит: ROBERT BOSCH GMBH

A micromechanical component is described having a substrate which has at least one stator electrode fixedly mounted with respect to the substrate, a movable mass having at least one actuator electrode fixedly mounted with respect to the movable mass, and at least one spring via which the movable mass is displaceable. The movable mass is structured from the substrate with the aid of at least one separating trench, at least one outer stator electrode spans at least one section of the at least one separating trench and/or of the movable mass, the at least one actuator electrode protrudes between the at least one outer stator electrode and the substrate, and at least one inner stator electrode protrudes between the at least one actuator electrode and the substrate. A related manufacturing method is also described for a micromechanical component.

Подробнее
08-11-2012 дата публикации

Microelectromechanical systems (mems) resonators and related apparatus and methods

Номер: US20120280594A1
Принадлежит: Sand 9 Inc

Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator, may then be formed from the piezoelectric material wafer.

Подробнее
15-11-2012 дата публикации

Novel Electrostatically Addressable Microvalves

Номер: US20120285550A1
Принадлежит: Palo Alto Research Center Inc

A method of controlling a main fluid in a conduit using a microvalve is described. The microvalve includes a corresponding actuation aperture in an actuation aperture layer. A control fluid flows through the actuation aperture in response to an electric field applied via a charge distribution near an actuation aperture layer. In one embodiment, the electric field may adjust the opening and closing of the actuation aperture thereby controlling the flow of the control fluid. In a second embodiment, the control fluid is an electrorheological fluid where the electric field controls the viscosity of the ER fluid, thereby controlling fluid flow through the actuation aperture. In both embodiments the flow of the control fluid controls stretching of a flexible membrane into and out of the conduit, thereby controlling the flow of the main fluid by opening or closing the conduit.

Подробнее
15-11-2012 дата публикации

Nanoelectromechanical Structures Exhibiting Tensile Stress And Techniques For Fabrication Thereof

Номер: US20120286377A1
Принадлежит: International Business Machines Corp

Improved nano-electromechanical system devices and structures and systems and techniques for their fabrication. In one embodiment, a structure comprises an underlying substrate separated from first and second anchor points by first and second insulating support points, respectively. The first and second anchor points are joined by a beam. First and second deposition regions overlie the first and second anchor points, respectively, and the first and second deposition regions exert compression on the first and second anchor points, respectively. The compression on the first and second anchor points causes opposing forces on the beam, subjecting the beam to a tensile stress. The first and second deposition regions suitably exhibit an internal tensile stress having an achievable maximum varying with their thickness, so that the tensile stress exerted on the beam depends at least on part on the thickness of the first and second deposition regions.

Подробнее
22-11-2012 дата публикации

Nonvolatile nano-electromechanical system device

Номер: US20120293236A1
Автор: David J. Frank, Guy Cohen
Принадлежит: International Business Machines Corp

A nonvolatile nano-electromechanical system device is provided and includes a cantilever structure, including a beam having an initial shape, which is supported at one end thereof by a supporting base and a beam deflector, including a phase change material (PCM), disposed on a portion of the beam in a non-slip condition with a material of the beam, the PCM taking one of an amorphous phase or a crystalline phase and deflecting the beam from the initial shape when taking the crystalline phase.

Подробнее
06-12-2012 дата публикации

Plate, Transducer and Methods for Making and Operating a Transducer

Номер: US20120308053A1
Автор: Alfons Dehe
Принадлежит: INFINEON TECHNOLOGIES AG

A plate, a transducer, a method for making a transducer, and a method for operating a transducer are disclosed. An embodiment comprises a plate comprising a first material layer comprising a first stress, a second material layer arranged beneath the first material layer, the second material layer comprising a second stress, an opening arranged in the first material layer and the second material layer, and an extension extending into opening, wherein the extension comprises a portion of the first material layer and a portion of the second material layer, and wherein the extension is curved away from a top surface of the plate based on a difference in the first stress and the second stress.

Подробнее
20-12-2012 дата публикации

Micro-electro-mechanical system (mems) and related actuator bumps, methods of manufacture and design structures

Номер: US20120319527A1
Принадлежит: International Business Machines Corp

Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming a wiring layer on a substrate comprising actuator electrodes and a contact electrode. The method further includes forming a MEMS beam above the wiring layer. The method further includes forming at least one spring attached to at least one end of the MEMS beam. The method further includes forming an array of mini-bumps between the wiring layer and the MEMS beam.

Подробнее
14-03-2013 дата публикации

Electromechanical transducer

Номер: US20130063530A1
Принадлежит: KONICA MINOLTA INC

An electromechanical transducer ( 1 ) has a pressurizing chamber ( 21 ) and a side-chamber ( 23 ) formed in a plate ( 11 ). On a driven film ( 13 ) forming the upper wall surface ( 21 a ) of the pressurizing chamber ( 21 ) and the side-chamber ( 23 ), a lower electrode ( 33 ), a driving member, and an upper electrode ( 35 ) are formed in this order. The driving member is composed of an operation section ( 31 p ) located over the pressurizing chamber ( 21 ), and an extended section ( 31 a ) extending from the operation section ( 31 p ) to over the side-chamber ( 23 ). The side-chamber ( 23 ) has a smaller width than the pressurizing chamber ( 21 ) in a second direction perpendicular to a first direction in which the side-chamber ( 23 ) is located beside the pressurizing chamber ( 21 ). The extended section ( 31 a ) of the driving member has a smaller width than the side-chamber ( 23 ) in the second direction.

Подробнее
28-03-2013 дата публикации

Electrostatic parallel plate actuators whose moving elements are driven only by electrostatic force and methods useful in conjunction therewith

Номер: US20130076275A1
Принадлежит: Audio Pixels Ltd

An actuator apparatus is provided that includes at least one actuator device, each actuator device including an array of moving elements, each individual moving element is operative to be constrained to travel alternately back and forth along a respective axis responsive to an individual first electrostatic force operative thereupon, wherein each moving element has an at-rest position and is driven away from its at rest position solely by the first electrostatic force; and at least one electrode operative to apply a controlled temporal sequence of potential differences with at least one individual moving element from among the array of moving elements thereby to selectably generate the first electrostatic force; and a controller operative to receive the digital input signal and to control at least one of the at least one electrode and the individual moving element to apply the sequence of potential differences.

Подробнее
28-03-2013 дата публикации

Rotationally deployed actuator devices

Номер: US20130077947A1
Принадлежит: DigitalOptics Corp MEMS

A method for making an actuator device includes forming a substantially planar structure, including an outer frame with a latch foot, a fixed frame coupled to the outer frame, a latch mass coupled to the fixed frame, a latch block coupled to the latch mass by a latch block flexure, a moveable frame coupled to the outer frame, and an actuator incorporating a plurality of interdigitated teeth alternately attached to the fixed and moving frames. For operation, the latch mass is rotated downward until an upper surface of the latch block is disposed below and held in latching contact with a lower surface of the latch foot by the latch block flexure.

Подробнее
04-04-2013 дата публикации

3d integrated electronic device structure including increased thermal dissipation capabilities

Номер: US20130082376A1
Принадлежит: General Electric Co

A microelectronic device structure including increased thermal dissipation capabilities. The structure including a three-dimensional (3D) integrated chip assembly that is flip chip bonded to a substrate. The chip assembly including a device substrate including an active device disposed thereon. A cap layer is phsyically bonded to the device substrate to at least partially define a hermetic seal about the active device. The microelectronic device structure provides a plurality of heat dissipation paths therethrough to dissipate heat generated therein.

Подробнее
11-04-2013 дата публикации

SEMICONDUCTOR COMPONENT

Номер: US20130087864A1
Автор: Ten Have Arnd
Принадлежит: ELMOS SEMICONDUCTOR AG

A semiconductor component is provided with a semiconductor substrate, in the upper face of which an active region made of a material of a first conductivity type is introduced by ion implantation. A semiconducting channel region having a defined length and width is designed within the active region. Each of the ends of the channel region located in the longitudinal extension is followed by a contacting region made of a semiconductor material of a second conductivity type. The channel region is covered by an ion implantation masking material, which comprises transverse edges defining the length of the channel region and longitudinal edges defining the width of the channel region and which comprises an edge recess at each of the opposing transverse edges aligned with the longitudinal extension ends of the channel region, the contacting regions that adjoin the channel region extending all the way into said edge recess. 1. A semiconductor component for use as a component that is sensitive to mechanical stresses in a micro-electromechanical semiconductor component , the semiconductor component comprisinga semiconductor substrate, in an upper face of which an active region made of a material of a first conductivity type is introduced by ion implantation, anda semiconducting channel region having a defined length and width being formed within the active region,wherein, in the active region, each end of the channel region is arranged in a longitudinal extension being followed by a contacting region made of a semiconductor material of a second conductivity type,{'b': '81', 'wherein the channel region is covered by an ion implantation masking material (), which comprises transverse edges defining the length of the channel region and longitudinal edges defining the width of the channel region and which comprises an edge recess at each of the opposing transverse edges aligned with the longitudinal extension ends of the channel region, and'}wherein the contacting regions that ...

Подробнее
11-04-2013 дата публикации

Micro-electromechanical semiconductor component

Номер: US20130087865A1
Автор: Arnd Ten Have
Принадлежит: ELMOS SEMICONDUCTOR SE

The micro-electromechanical semiconductor component is provided with a semiconductor substrate in which a cavity is formed, which is delimited by lateral walls and by a top and a bottom wall. In order to form a flexible connection to the region of the semiconductor substrate, the top or bottom wall is provided with trenches around the cavity, and bending webs are formed between said trenches. At least one measuring element that is sensitive to mechanical stresses is formed within at least one of said bending webs. Within the central region surrounded by the trenches, the top or bottom wall comprises a plurality of depressions reducing the mass of the central region and a plurality of stiffening braces separating the depressions.

Подробнее
11-04-2013 дата публикации

MICRO-ELECTROMECHANICAL SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF

Номер: US20130087866A1
Автор: Senf Reinhard
Принадлежит: ELMOS SEMICONDUCTOR AG

The micro-electromechanical semiconductor component is provided with a first silicon semiconductor substrate having an upper face, into which a cavity delimited by side walls and a floor wall is introduced, and having a second silicon semiconductor substrate comprising a silicon oxide layer and a polysilicon layer applied thereon having a defined thickness. The polysilicon layer of the second silicon semiconductor substrate faces the upper side of the first silicon semiconductor substrate, the two silicon semiconductor substrates are bonded, and the second silicon semiconductor substrate covers the cavity in the first silicon semiconductor substrate. Grooves that extend up to the polysilicon layer are arranged in the second silicon semiconductor substrate in the region of the section thereof that covers the cavity. 1. A micro-electromechanical semiconductor component comprising:a first silicon semiconductor substrate having an upper side in which a cavity delimited by side walls and a bottom wall is formed,a second silicon semiconductor substrate comprising a silicon oxide layer and a polysilicon layer applied thereon having a defined thickness,wherein the polysilicon layer of the second silicon semiconductor substrate is arranged to face the upper side of the first silicon semiconductor substrate, and is bonded to the first silicon semiconductor substrate,wherein the second silicon semiconductor substrate covers the cavity in the first silicon semiconductor substrate,wherein grooves that extend up to the polysilicon layer are arranged in the second silicon semiconductor substrate in a region of a section thereof that covers the cavity.221. The micro-electromechanical semiconductor component according to claim 1 , wherein adjacent trenches are separated from each other by bending webs which extend between a region () of the second silicon semiconductor substrate surrounded by the trenches and a region of the first silicon semiconductor substrate arranged around the ...

Подробнее
25-04-2013 дата публикации

MICRO-ELECTRO-MECHANICAL SYSTEM HAVING MOVABLE ELEMENT INTEGRATED INTO LEADFRAME-BASED PACKAGE

Номер: US20130099333A1
Принадлежит: TEXAS INSTRUMENTS INCORPORATED

A MEMS may integrate movable MEMS parts, such as mechanical elements, flexible membranes, and sensors, with the low-cost device package, leaving the electronics and signal-processing parts in the integrated circuitry of the semiconductor chip. The package may be a leadframe-based plastic molded body having an opening through the thickness of the body. The movable part may be anchored in the body and extend at least partially across the opening. The chip may be flip-assembled to the leads to span across the foil, and may be separated from the foil by a gap. The leadframe may be a prefabricated piece part, or may be fabricated in a process flow with metal deposition on a sacrificial carrier and patterning of the metal layer. The resulting leadframe may be flat or may have an offset structure useful for stacked package-on-package devices. 1. A microelectromechanical system (MEMS) device , comprising:a body having a thickness, a first surface and an opposite second surface;an opening through the thickness of the body, the opening extending from the first to the second surface;metal leads embedded in the first surface of the body;a metal foil anchored in the body and extending at least partially across the opening at the first surface; andan integrated circuit chip flip-assembled to the leads on the first surface, the chip spanning at least partially across the foil, separated from the foil by a gap.2. The MEMS device of claim 1 , wherein the foil is movable normal to the first surface in the space of the opening and of the gap.3. The MEMS device of claim 1 , wherein the foil has the configuration of a membrane sealing the opening at the first surface.4. The MEMS device of claim 1 , wherein the foil has the configuration of a movable suspension beam anchored on the first surface claim 1 , the beam extending to a plate remote from the anchor and operable to move the plate normal to the first surface.5. The MEMS device of claim 4 , further including an additional mass ...

Подробнее
02-05-2013 дата публикации

MICROELECTROMECHANICAL DEVICE PROVIDED WITH AN ANTI-STICTION STRUCTURE, AND CORRESPONDING ANTI-STICTION METHOD

Номер: US20130106241A1
Принадлежит: STMICROELECTRONICS S.R.L.

An embodiment of a microelectromechanical device having a first structural element, a second structural element, which is mobile with respect to the first structural element, and an elastic supporting structure, which extends between the first and second structural elements to enable a relative movement between the first and second structural elements. The microelectromechanical device moreover possesses an anti-stiction structure, which includes at least one flexible element, which is fixed only with respect to the first structural element and, in a condition of rest, is set at a first distance from the second structural element. The anti-stiction structure is designed to generate a repulsive force between the first and second structural elements in the case of relative movement by an amount greater than the first distance. 1. A microelectromechanical device comprising:a first structural element;a second structural element movable with respect to said first structural element, the second structural element including a trench facing a side of the second structural element;an elastic supporting structure extending between said first and second structural elements and configured to enable a relative movement between said first and second structural elements; andan anti-stiction structure including a flexible element fixed to second structural element and, in a rest condition thereof, arranged at a first distance from the first structural element, said anti-stiction structure being configured to generate a repulsive force between the first and the second structural elements in the case of a relative movement of an amount greater than said first distance, said flexible element extending within the trench and having an elongated shape with a first end portion fixed to said second structural element and a second end portion provided with a protruding portion facing and arranged at said first distance from said first structural element.2. The microelectromechanical device ...

Подробнее
16-05-2013 дата публикации

MICROELECTRONIC DEVICE AND MEMS PACKAGE STRUCTURE AND FABRICATING METHOD THEREOF

Номер: US20130119441A1
Принадлежит: PIXART IMAGING INC.

A microelectronic device including a substrate, at least a semi-conductor element, an anti metal ion layer, a non-doping oxide layer and a MEMS structure is provided. The substrate has a CMOS circuit region and a MEMS region. The semi-conductor element is configured within the CMOS circuit region of the substrate. The anti metal ion layer is disposed within the CMOS circuit region of the substrate and covers the semi-conductor element. The non-doping oxide layer is disposed on the substrate within the MEMS region. The MEMS structure is partially suspended above the non-doping oxide layer. The present invention also provides a MEMS package structure and a fabricating method thereof. 1. A microelectronic device , comprising:a substrate having a CMOS circuit region and a MEMS region;at least a semi-conductor element configured within the CMOS circuit region of the substrate;an anti metal ion layer disposed within the CMOS circuit region of the substrate and covering the semi-conductor element;a non-doping oxide layer disposed on the substrate within the MEMS region; anda MEMS structure partially suspended above the non-doping oxide layer.2. The microelectronic device as claimed in claim 1 , further comprising an interconnecting structure disposed on the anti metal ion layer.3. The microelectronic device as claimed in claim 1 , wherein the anti metal ion layer is a phosphorus doped silicon oxide layer.4. A MEMS package structure claim 1 , comprising:a substrate;a MEMS structure partially suspended above the substrate;a metallic layer with a plurality of first openings disposed above the MEMS structure;a mask layer with a plurality of second openings disposed above the metallic layer, wherein the second openings and the first openings staggered with each other; anda packaging layer disposed on the mask layer and filling into the second openings so as to connect to the metallic layer.5. The MEMS package as claimed in claim 4 , wherein materials of the mask layer and the ...

Подробнее
23-05-2013 дата публикации

MEMS Chip Package and Method for Manufacturing an MEMS Chip Package

Номер: US20130126992A1
Принадлежит: ROBERT BOSCH GMBH

A MEMS chip package includes a first chip, a second chip, a first coupling element, and a first redistribution layer. The first chip has a first chip surface and a second chip surface, which is opposite the first chip surface. The second chip has a first chip surface and a second chip surface, which is opposite the first chip surface. The first coupling element couples the first chip surface of the second chip to the first chip surface of the first chip, so that a first cavity is defined between the first chip and the second chip. The first redistribution layer is mounted on the second chip surface of the second chip and is configured to provide contact with a substrate. 1. A MEMS chip package , comprising:a first chip having a first chip surface and a second chip surface, which is opposite the first chip surface;a second chip having a first chip surface and a second chip surface, which is opposite the first chip surface;a first coupling element, which couples the first chip surface of the second chip to the first chip surface of the first chip, so that a first cavity is defined between the first chip and the second chip; anda first redistribution layer, which is mounted on the second chip surface of the second chip and which is configured to provide contact with a substrate,wherein a chip from the group comprising the first chip and the second chip has (i) at least one microelectromechanical structure element which is produced on the first chip surface, and (ii) a frame element, produced between the first chip surface and the second chip surface, which encloses the microelectromechanical structure element, andwherein the respective other chip from the group comprising the first chip and second chip has (i) a potting compound layer, (ii) a control circuit, embedded in the potting compound layer, which is configured to drive the at least one microelectromechanical structure element, and (iii) a third redistribution layer, which is mounted on the first chip surface.2. ...

Подробнее
23-05-2013 дата публикации

ELECTROMECHANICAL TRANSDUCER AND METHOD OF PRODUCING THE SAME

Номер: US20130126993A1
Принадлежит: CANON KABUSHIKI KAISHA

The present invention relates to an electromechanical transducer and a method of producing it, in which the substrate rigidity is maintained to prevent the substrate from being broken during formation of dividing grooves or a film. 1. A method of producing an electromechanical transducer including a plurality of elements each having at least one cell , the method comprising:forming an insulating layer on a first substrate and forming gaps in the insulating layer;bonding a second substrate to the insulating layer provided with the gaps;reducing the thickness of the second substrate;forming dividing grooves in the first substrate to form a plurality of elements on the opposite side to the side of the insulating layer provided with the gaps; andfilling at least partially the dividing grooves of the first substrate with an insulating member, whereinthe step of forming dividing grooves in the first substrate to form a plurality of elements and the step of filling at least partially the dividing grooves of the first substrate with an insulating member are conducted after the step of bonding the second substrate to the insulating layer; andthe step of reducing the thickness of the second substrate is conducted after the step of filling at least partially the dividing grooves of the first substrate with an insulating member.2. The method according to claim 1 , wherein the first substrate and the second substrate are a first silicon substrate and a second silicon substrate claim 1 , respectively.3. The method according to claim 1 , wherein the insulating member is silicon oxide formed from tetraethoxysilane.4. The method according to claim 1 , wherein the widths of the dividing grooves at the surface side claim 1 , on which the gaps are formed claim 1 , of the first substrate are smaller than those of the dividing grooves at the other surface side of the first substrate.5. The method according to claim 1 , wherein the widths of the dividing grooves at the inner of the first ...

Подробнее
30-05-2013 дата публикации

ETCHANT-FREE METHODS OF PRODUCING A GAP BETWEEN TWO LAYERS, AND DEVICES PRODUCED THEREBY

Номер: US20130134528A1
Принадлежит:

Etchant-free methods of producing a gap between two materials are provided. Aspects of the methods include providing a structure comprising a first material and a second material, and subjecting the structure to conditions sufficient to cause a decrease in the volume of at least a portion of at least one of the first material and the second material to produce a gap between the first material and the second material. Also provided are devices produced by the methods (e.g., MEMS and NEMS devices), structures used in the methods and methods of making such structures. 1. A method of producing a gap between a first material and a second material of a structure , the method comprising:subjecting a structure comprising a first material and a second material to conditions sufficient to cause a decrease in the volume of at least a portion of at least one of the first material and the second material to produce a gap between the first material and the second material.2. The method according to claim 1 , wherein the subjecting comprises subjecting the structure to electromagnetic radiation.3. The method according to claim 1 , wherein the structure further comprises an intermediate material positioned between the first material and the second material claim 1 , and wherein the subjecting comprises subjecting the structure to conditions sufficient for at least a portion of the intermediate material and the first material to react to produce a product compound and a gap between the first material and the second material.4. The method according to claim 3 , wherein the first material comprises silicon claim 3 , the intermediate material comprises a metal and the product compound comprises a silicide.5. The method according to claim 4 , wherein the metal is selected from the group consisting of Ni claim 4 , Ti claim 4 , Pt claim 4 , Co and Mo.6. The method according to claim 3 , wherein the second material is selected from the group consisting of an oxide claim 3 , silicon and a ...

Подробнее
30-05-2013 дата публикации

METHOD FOR MANUFACTURING CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCER AND APPARATUS CONFIGURED TO OBTAIN SUBJECT INFORMATION USING THE CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCER

Номер: US20130135971A1
Автор: Nakanishi Koichiro
Принадлежит: CANON KABUSHIKI KAISHA

There is provided a method for manufacturing a capacitive micromachined ultrasonic transducer. In this method, a first insulating layer and a vibrating membrane are bonded by heat treatment and a second insulating layer is formed by thermal oxidation in a single heating step, with a cavity provided in the transducer communicating with the outside of the transducer through a communication portion. 1. A method for manufacturing a capacitive micromachined ultrasonic transducer having a vibrating membrane , a substrate , and a vibrating-membrane-supporting member configured to support the vibrating membrane to form a cavity between the substrate and the vibrating membrane , comprising steps of:forming a first insulating layer on either side of the substrate, the first insulating layer patterned to serve as the vibrating-membrane-supporting member;overlaying the vibrating membrane on the patterned first insulating layer;bonding the first insulating layer and the vibrating membrane by heat treatment after overlaying the vibrating membrane on the patterned first insulating layer; andforming a second insulating layer on a surface of the substrate or the vibrating membrane exposed to the cavity by introducing a gas into the cavity through a communication portion that allows the cavity to communicate with an outside of the capacitive micromachined ultrasonic transducer and subsequent thermal oxidation in an atmosphere containing the gas, after overlaying the vibrating membrane on the patterned first insulating layer, whereinwith the cavity communicating with the outside of the capacitive micromachined ultrasonic transducer through the communication portion, the first insulating layer and the vibrating membrane are bonded by heat treatment and the second insulating layer is formed by thermal oxidation in a single heating step.2. The method for manufacturing a capacitive micromachined ultrasonic transducer according to claim 1 , whereinthe patterned first insulating layer is ...

Подробнее
06-06-2013 дата публикации

MEMS MULTI-AXIS GYROSCOPE Z-AXIS ELECTRODE STRUCTURE

Номер: US20130139592A1
Автор: Acar Cenk
Принадлежит: Fairchild Semiconductor Corporation

Various examples include microelectromechanical die for sensing motion that includes symmetrical proof-mass electrodes interdigitated with asymmetrical stator electrodes. Some of these examples include electrodes that are curved around an axis orthogonal to the plane in which the electrodes are disposed. An example provides vertical flexures coupling an inner gimbal to a proof-mass in a manner permitting flexure around a horizontal axis. 1. A microelectromechanical die for sensing motion , comprising:a substrate;a proof-mass coupled to the substrate at an anchor, the proof-mass including:a first portion moveable with respect to the anchor, the first portion including a first proof-mass electrode; anda second portion, opposite the first portion with respect to the anchor, the second portion moveable with respect to the anchor and the first portion, the second portion including a second proof-mass electrode;a first stator coupled to the substrate and including a first stator electrode extending alongside the first proof-mass electrode of the first portion of the proof-mass to form a first electrode pair; anda second stator coupled to the substrate and including a second stator electrode, opposite the first stator electrode, and extending alongside the second proof-mass electrode of the second portion of the proof-mass to form a second electrode pair;wherein in a first vibratory mode, in which the first portion of the proof-mass is to move away from the second portion of the proof-mass, the proof-mass, first stator electrode and second stator electrode are arranged such that a distance between electrodes of the first electrode pair is inversely proportional to a distance between electrodes of the second electrode pair.2. The die of claim 1 , wherein the first proof-mass electrode of the proof-mass is opposite the second proof-mass electrode of the proof-mass claim 1 , across the anchor and wherein the first stator electrode is coupled to the substrate opposite the ...

Подробнее
06-06-2013 дата публикации

Pressure sensor having nanostructure and manufacturing method thereof

Номер: US20130140611A1

The present disclosure relates to a pressure sensor having a nanostructure and a method for manufacturing the same. More particularly, it relates to a pressure sensor having a nanostructure attached on the surface of the pressure sensor and thus having improved sensor response time and sensitivity and a method for manufacturing the same. The pressure sensor according to the present disclosure having a nanostructure includes: a substrate; a source electrode and a drain electrode arranged on the substrate with a predetermined spacing; a flexible sensor layer disposed on the source electrode and the drain electrode; and a nanostructure attached on the surface of the flexible sensor layer and having nanosized wrinkles.

Подробнее
06-06-2013 дата публикации

MICROELECTROMECHANICAL SYSTEMS (MEMS) RESONATORS AND RELATED APPARATUS AND METHODS

Номер: US20130140651A1
Принадлежит: Sand 9, Inc.

Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator, may then be formed from the piezoelectric material wafer. 1. A capped microelectromechanical systems (MEMS) resonator , comprising:a piezoelectric microelectromechanical systems (MEMS) resonating structure formed on a first wafer; anda cap wafer capping the piezoelectric MEMS resonating structure, wherein the cap wafer comprises no integrated circuitry.2. The capped MEMS resonator of claim 1 , wherein the cap wafer comprises silicon.3. The capped MEMS resonator of claim 1 , wherein the cap wafer is silicon-based.4. The capped MEMS resonator of claim 1 , wherein the cap wafer comprises an electrode configured to sense the MEMS resonating structure formed on the first wafer across a gap.5. The apparatus of claim 1 , wherein the cap wafer is formed of an insulating material claim 1 , and wherein the apparatus further comprises through-silicon vias (TSVs) in the cap wafer and configured to conduct electrical signals between the piezoelectric MEMS resonating structure and circuitry formed external to the apparatus.6. A capped microelectromechanical systems (MEMS) resonator claim 1 , comprising:a piezoelectric microelectromechanical systems (MEMS) resonating structure formed on a first wafer, the piezoelectric MEMS resonating structure comprising a resonating body including a piezoelectric material active layer and a layer of silicon; anda cap wafer capping the piezoelectric MEMS resonating structure, wherein the cap wafer comprises no integrated circuitry.7. The apparatus of claim 6 , wherein the cap is formed of an insulating material claim 6 , and wherein the apparatus further comprises through-silicon vias (TSVs) in the cap and configured to conduct electrical signals ...

Подробнее
13-06-2013 дата публикации

Integrated Mechanical Device for Electrical Switching

Номер: US20130146873A1
Принадлежит: STMICROELECTRONICS (ROUSSET) SAS

An integrated circuit comprising a mechanical device for electrical switching comprising a first assembly being thermally deformable and having a beam held at at least two different locations by at least two arms, the beam and the arms being metal and disposed within the same metallization level, and further comprising at least one electrically conducting body. The first assembly has a first configuration at a first temperature and a second configuration at a second temperature different from the first temperature. The beam is out of contact with the electrically conducting body in one configuration in contact with the body in the other configuration. The beam establishes or breaks an electrical link passing through the said at least one electrically conducting body and through the said beam in the different configurations. 1. An integrated circuit , comprising:a plurality of metallization levels separated by an insulating region and disposed on a substrate; and a first assembly being thermally deformable and disposed within an enclosure and having a beam held at at least two different locations by at least two arms rigidly attached to edges of the enclosure, the beam and the arms being metal and disposed within a same metallization level; and', 'at least one electrically conducting body, the said first assembly having at least a first configuration at a first temperature and a second configuration when at least one of the arms is at a second temperature different from the first temperature;, 'a mechanical device for electrical switching comprisingwherein the beam is out of contact with the said at least one electrically conducting body in one of the first configuration and second configuration and in contact with the said at least one electrically conducting body in the other of the first configuration and the second configuration and establishing or breaking an electrical link passing through the said at least one electrically conducting body and through the said ...

Подробнее
20-06-2013 дата публикации

System With Recessed Sensing Or Processing Elements

Номер: US20130154032A1
Принадлежит: Analog Devices Inc

Backside recesses in a base member host components, such as sensors or circuits, to allow closer proximity and efficient use of the surface space and internal volume of the base member. Recesses may include covers, caps, filters and lenses, and may be in communication with circuits on the frontside of the base member, or with circuits on an active backside cap. An array of recessed components may a form complete, compact sensor system.

Подробнее
20-06-2013 дата публикации

Method for Wafer-Level Surface Micromachining to Reduce Stiction

Номер: US20130157005A1
Автор: Fang Liu, Kuang Yang
Принадлежит: Analog Devices Inc

An array of microbumps with a layer or coating of non-superhydrophobic material yields a superhydrophobic surface, and may also have a contact angle hysteresis of 15 degrees or less. A surface with such an array may therefore be rendered superhydrophobic even though the surface structure and materials are not, by themselves, superhydrophobic.

Подробнее
11-07-2013 дата публикации

METHOD FOR PRODUCTION OF A STRUCTURE WITH A BURIED ELECTRODE BY DIRECT TRANSFER AND STUCTURE OBTAINED IN THIS MANNER

Номер: US20130175643A1
Принадлежит:

A device is described of the micro-system and/or nano-system type including: 1. A device being a micro-system and/or a nano-system , said device including:a first substrate, including at least one lower electrode, and at least one dielectric layer,an intermediate substrate, extending across a main plane of the device, including a moving portion, and attached, outside the moving portion, by molecular bonding to the first substrate, where the moving portion is facing at least a portion of the lower electrode,an upper substrate, attached to the intermediate substrate, where said moving portion is movable between the lower electrode and the upper substrate.2. A device according to claim 1 , where the upper substrate includes at least one upper electrode claim 1 , where the moving portion faces at least a portion of the upper electrode claim 1 , and where said moving portion is movable between the lower electrode and the upper electrode.3. A device according to claim 2 , further comprising an electrical contact between the lower electrode and the upper electrode.4. A device according to claim 1 , further comprising an electrical contact between the lower electrode and the first substrate.5. A device according to claim 1 , where the upper substrate is fixed securely to the intermediate substrate by a sealing bead.6. A device according to claim 1 , where the intermediate substrate is made from monocrystalline silicon.7. A device according to claim 1 , where the upper substrate is attached to the intermediate substrate hermetically.8. A device according to claim 1 , where the upper substrate is a CMOS device.9. A device according to claim 1 , where the lower substrate includes at least one alignment mark.10. A device according to claim 1 , where the lower substrate includes at least one portion made from a monocrystalline or polycrystalline semiconducting material claim 1 , or forming an SOI substrate claim 1 , or composed of several stacked materials.11. A device according ...

Подробнее
11-07-2013 дата публикации

METHOD OF FORMING A MICRO-STRUCTURE

Номер: US20130177738A1
Принадлежит:

A method of forming a micro-structure () involves forming a multi-layered structure () including i) an oxidizable material layer () on a substrate () and ii) another oxidizable material layer () on the oxidizable material layer (). The oxidizable material layer () is formed of an oxidizable material having an expansion coefficient, during oxidation, that is more than 1. The method further involves forming a template (), including a plurality of pores (), from the other oxidizable material layer (), and growing a nano-pillar () inside each pore (). The nano-pillar () has a predefined length (L) that terminates at an end (). A portion of the template () is selectively removed to form a substantially even plane () that is oriented in a position opposed to the substrate (). A material is deposited on at least a portion of the plane () to form a film layer () thereon, and the remaining portion of the template () is selectively removed to expose the nano-pillars (). 1100100100100. A method of forming a micro-structure ( , ′ , ″ , ′″) , comprising:{'b': 10', '14', '12', '16', '14', '14, 'forming a multi-layered structure () including i) an oxidizable material layer () established on a substrate () and ii) an other oxidizable material layer () established on the oxidizable material layer (), the oxidizable material layer () being formed of an oxidizable material having an expansion coefficient, during oxidation, that is more than 1;'}{'b': 16', '16', '16', '18, 'forming a template (′) from the other oxidizable material layer (), the template (′) including a plurality of pores ();'}{'b': 20', '18', '20', '21, 'growing a nano-pillar () inside each of the plurality of pores (), wherein the nano-pillar () has a predefined length (L) that terminates at an end ();'}{'b': 16', '23', '12, 'selectively removing a portion of the template (′) to form a substantially even plane () that is oriented in a position opposed to the substrate ();'}{'b': 23', '22', '22, 'depositing a material ...

Подробнее
18-07-2013 дата публикации

METHOD FOR MAKING A SUSPENDED MEMBRANE STRUCTURE WITH BURIED ELECTRODE

Номер: US20130181302A1

A microsystem and/or nanosystem type device is disclosed, comprising: 1. A microsystem and/or nanosystem device comprising:a first substrate, being an intermediate substrate, comprising a mobile part,a second substrate being a support substrate,at least one first electrode, being a lower electrode, defined in a lower electrode layer, and one dielectric layer located between the first and second substrates, the dielectric layer being arranged in part or in whole between the lower electrode and the first substrate, part of the dielectric layer being eliminated to form a cavity under the mobile part of the system, the bottom of said cavity being formed partly by the upper surface of an electrode that faces at least part of the mobile part,the first substrate comprising through vias filled with conducting material in contact with said lower electrode.2. The device according to claim 1 , further comprising a second electrode claim 1 , being an upper electrode claim 1 , located on the first substrate claim 1 , and in electrical contact with the vias passing through the first substrate.3. The device according to claim 2 , the upper electrode being located on the intermediate substrate using conductors claim 2 , or being supported by a third substrate.4. The device according to claim 1 , also comprising electrical contact zones between the lower electrode and the first substrate.5. The device according to claim 1 , the first substrate being made of a semiconducting material claim 1 , for example silicon claim 1 , or SiGe or SiC or SiGeC or GaAs or Ge or a semiconducting material in Group III-V claim 1 , preferably doped claim 1 , or a “silicon on insulator” (SOI) type substrate.6. The device according to claim 1 , the first substrate comprising several layers stacked on a substrate.7. The device according to claim 1 , further comprising a dielectric layer between the second substrate and the lower electrode layer.8. The device according to claim 7 , etched zones being ...

Подробнее
01-08-2013 дата публикации

MICRO-ELECTROMECHANICAL SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF

Номер: US20130193529A1
Автор: Burchard Bernd
Принадлежит: ELMOS SEMICONDUCTOR AG

The micro-electromechanical semiconductor component is provided with a first semiconductor substrate, which has an upper face, and a second semiconductor substrate, which has an upper face. Both semiconductor substrates are bonded resting on the upper faces thereof. A cavity is introduced into the upper face of at least one of the two semiconductor substrates. The cavity is defined by lateral walls and opposing top and bottom walls, which are formed by the two semiconductor substrates. The top or the bottom wall acts as a reversibly deformable membrane and an opening extending through the respective semiconductor substrate is arranged in the other of said two walls of the cavity. 1. A micro-electromechanical semiconductor component comprising:a first semiconductor substrate having an upper face,a second semiconductor substrate having an upper face,both semiconductor substrates being bonded resting on the upper faces thereof,a cavity being introduced into the upper face of at least one of the two semiconductor substrates, andthe cavity being defined by lateral walls and opposing top and bottom walls which are formed by the two semiconductor substrates, andone of the top or the bottom wall acting as a reversibly deformable membrane, and an opening extending through the respective semiconductor substrate being arranged in the other of the top or the bottom wall of the cavity.2. The micro-electromechanical semiconductor component according to claim 1 , characterized in that claim 1 , an insulating layer claim 1 , particularly an oxide layer claim 1 , is arranged on the top face of at least one of the two semiconductor substrates.3. The micro-electromechanical semiconductor component according to claim 1 , characterized in that electrical and/or electronic components are formed on and/or in the membrane and/or on and/or in one of the two semiconductor substrates.4. A method for producing a micro-electromechanical semiconductor component claim 1 , comprising the following ...

Подробнее
01-08-2013 дата публикации

EMBEDDED CIRCUIT IN A MEMS DEVICE

Номер: US20130193533A1
Принадлежит: Knowles Electronics, LLC

A Microelectromechanical System (MEMS) microphone includes a printed circuit board, a MEMS die, and an integrated circuit. The MEMS die is disposed on a top surface of the printed circuit board. The integrated circuit is disposed at least partially within the printed circuit board and produces at least one output signal. The output signals of the integrated circuit are routed directly into at least one conductor to access pads at the printed circuit board and the access pads are disposed on a bottom surface of the printed circuit board that is opposite the top surface. 1. A Microelectromechanical System (MEMS) microphone , comprising ,a printed circuit board;a MEMS die disposed on a top surface of the printed circuit board;an integrated circuit disposed at least partially within the printed circuit board, the integrated circuit producing at least one output signal; andsuch that the at least one output signal of the integrated circuit is routed directly into at least one conductor to access pads at the printed circuit board, the access pads being disposed on a bottom surface of the printed circuit board that is opposite the top surface.2. The MEMS microphone of wherein at least one conductor comprises plated through hole vias and an outer layer of metallization on the printed circuit board.3. The MEMS microphone of wherein the MEMS die is mounted to the top surface of the PCB and a lid is adhered to the top surface of the PCB to acoustically seal and protect the MEMS device from external environmental elements.4. The MEMS microphone of wherein a port extends through the lid.5. The MEMS microphone of wherein a port extends through the printed circuit board.6. The MEMS microphone of wherein a back volume is disposed between the printed circuit board and the MEMS die.7. The MEMS microphone of wherein the integrated circuit is disposed partially under the MEMS die.8. The MEMS microphone of wherein the integrated circuit is disposed completely under the MEMS die.9. The ...

Подробнее
01-08-2013 дата публикации

MICRO-ELECTROMECHANICAL DEVICE AND USE THEREOF

Номер: US20130193535A1
Принадлежит:

The micro-electromechanical device has a substrate. Integrated into the substrate is a micromechanical component that has a bending element which can be bent reversibly and which has a first end connected to the substrate and extends from the first end over a free space. The bending element has at least one web having two side edges, the course of which is defined by depressions introduced into the bending element and adjacent to the side edges. In order to form a homogenization region located within the web, in which mechanical stresses occurring during bending of the bending element are substantially equal, the mutual spacing of the side edges of the web decreases, as viewed from the first end of the bending element. The device further comprises at least one microelectronic component that is sensitive to mechanical stresses and embedded in the web in the homogenization region of the latter. 1. A micro-electromechanical device comprising:a substrate suitable for the production of microelectronic components, in particular a semiconductor substrate,{'b': '3', 'a micromechanical component integrated into the substrate, the micromechanical component comprising a bending element which can be bent reversibly and which has a first end connected to the substrate and extends from the first end over a free space (),'}the bending element comprising at least one web having two side edges, the course of the side edges being defined by depressions introduced into the bending element and adjacent to the side edges,wherein, to form a homogenization region located within the web, in which mechanical stresses occurring during bending of the bending element are substantially equal, the mutual spacing of the side edges of the web decreases, as viewed from the first end of the bending element, andat least one microelectronic component sensitive to mechanical stresses, the microelectronic component being integrated in the web within the homogenization region of the web.2. The micro- ...

Подробнее
01-08-2013 дата публикации

METHOD OF MANUFACTURING A SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE HAVING A MEMS ELEMENT

Номер: US20130193536A1
Автор: ARAI Koichi
Принадлежит: RENESAS ELECTRONICS CORPORATION

In a method of manufacturing a semiconductor integrated circuit device having an MEMS element over a single semiconductor chip, the movable part of the MEMS element is fixed before the formation of a rewiring. After formation of the rewiring, the wafer is diced. Then, the movable part of the MEMS element is released by etching the wafer. 1. A method of manufacturing a semiconductor integrated circuit device having a micro electro mechanical system (MEMS) element , comprising the steps of:(a) forming a wiring layer and a MEMS element having a movable part over a first main surface of a semiconductor wafer having the first main surface and a second main surface;(b) fixing the movable part of the MEMS element;(c) after the step (b), forming a rewiring layer over the wiring layer over the first main surface of the semiconductor wafer while the movable part of the MEMS element is fixed;(d) after the step (c), dicing the semiconductor wafer while the movable part of the MEMS element is fixed; and(e) after the step (d), releasing the movable part of the MEMS element by etching the first main surface of the semiconductor wafer.2. The method according to claim 1 , wherein the step (d) is carried out while the second main surface of the semiconductor wafer is affixed to a dicing tape.3. The method according to claim 2 , wherein the step (e) is carried out while the second main surface of the semiconductor wafer is affixed to a dicing tape.4. The method according to claim 3 , wherein the MEMS element is an air pressure sensor.5. The method according to claim 4 , wherein the MEMS element is formed to have:(x1) a lower electrode formed over the first main surface of the semiconductor wafer;(x2) a cavity formed over the lower electrode;(x3) a diaphragm type upper electrode formed to cover the cavity over the first main surface of the semiconductor wafer; and(x4) a diaphragm cover for isolating the diaphragm type upper electrode from the outside world.6. The method according to ...

Подробнее
08-08-2013 дата публикации

MICRO-ELECTROMECHANICAL SEMICONDUCTOR COMPONENT

Номер: US20130200439A1
Автор: Doelle Michael
Принадлежит: ELMOS SEMICONDUCTOR AG

A micro-electromechanical semiconductor component is provided with a semiconductor substrate, a reversibly deformable bending element made of semiconductor material, and at least one transistor that is sensitive to mechanical stresses. The transistor is designed as an integrated component in the bending element. 1. A micro-electromechanical semiconductor component comprising:a semiconductor substrate,a reversibly deformable bending element made of semiconductor material, andat least one transistor being sensitive to mechanical stresses, wherein the transistor is designed as an integrated component in the bending element and is arranged in an implanted active region pan which is made of a semiconductor material of a first conducting type and is introduced in the bending element,wherein two mutually spaced, implanted drain and source regions made of a semiconductor material of a second conducting type are formed in the active region pan, a channel region extending between the two regions,wherein implanted feed lines made of a semiconductor material of the second conducting type lead to the drain and source regions,wherein an upper face of the active region pan is covered by a gate oxide, andwherein a gate electrode made of polysilicon is located on the gate oxide in the area of the channel region, a feed line likewise made of polysilicon leading to the gate electrode.2. The micro-electromechanical semiconductor component according to claim 1 , wherein the first conductive type is an n-conductive type and the second conductive type is a p-conductive type. The invention relates to a micro-electromechanical semiconductor component comprising a bending element made of a semiconductor material, and comprising a transistor which sensitive to mechanical stresses and is arranged within the bending element. Particularly, the invention relates to a micro-electromechanical semiconductor component being compatible with regard to usual semiconductor manufacturing processes and ...

Подробнее
08-08-2013 дата публикации

Micromechanical component and method for the manufacture of same

Номер: US20130200473A1
Принадлежит: ROBERT BOSCH GMBH

A method for manufacturing a micromechanical component is described in which a trench etching process and a sacrificial layer etching process are carried out to form a mass situated movably on a substrate. The movable mass has electrically isolated and mechanically coupled subsections of a functional layer. A micromechanical component having a mass situated movably on a substrate is also described.

Подробнее
08-08-2013 дата публикации

MEMS OSCILLATOR AND MANUFACTURING METHOD THEREOF

Номер: US20130200957A1
Автор: Mao Jianhong

A crystal oscillator and manufacturing method thereof are provided. The crystal oscillator includes: a semiconductor substrate; an interlayer dielectric layer located on the surface of the semiconductor substrate, an excitation plate and a positive electrode plug and a negative electrode plug being formed inside the interlayer dielectric layer, and the positive electrode plug and the negative electrode plug being located at the both sides of the excitation plate; a bottom cavity on top of the excitation plate, located between the positive electrode plug and the negative electrode plug; a vibrating crystal located on the surface of the interlayer dielectric layer, across the bottom cavity and connected with the positive electrode plug and the negative plug, wherein the vibrating crystal connects the positive electrode plug and the negative electrode plug at its both sides and besides the other both sides are the free ends and do not contact with the surrounding objects; an isolating layer located on top of the interlayer dielectric layer, a gap between the isolating layer and the vibrating crystal thus forming a top cavity; a covering layer formed on the surface of the isolating layer. The crystal oscillator is manufactured based on Complementary Metal-Oxide-Semiconductor Transistor (CMOS) technology, and can be integrated into the semiconductor chip easily and can meet the requirement for the miniature components. 1. A method for manufacturing a MEMS oscillator , comprising:providing a substrate;forming an interlayer dielectric layer on the substrate, the interlayer dielectric layer forming an drive plate, an anode plug and a cathode plug therein, the anode plug and the cathode plug extending through the interlayer dielectric layer;etching a part of the interlayer dielectric layer, which is located between the anode plug and the cathode plug and above the drive plate, for forming a groove;filling the groove for forming a first sacrifice layer;forming an oscillating ...

Подробнее
15-08-2013 дата публикации

Pressure Sensor with Doped Electrode

Номер: US20130207208A1
Принадлежит: ROBERT BOSCH GMBH

In one embodiment, a sensor device includes a bulk silicon layer, a first doped region of the bulk silicon layer of a first dopant type, a second doped region of the bulk silicon layer of a second dopant type, wherein the first dopant type is a type of dopant different from the second dopant type, the second doped region located at an upper surface of the bulk silicon layer and having a first doped portion bounded by the first doped region, a first cavity portion directly above the second doped region, and an upper electrode formed in an epitaxial layer, the upper electrode directly above the first cavity portion. 1. A sensor device , comprising:a bulk silicon layer;a first doped region of the bulk silicon layer of a first dopant type;a second doped region of the bulk silicon layer of a second dopant type, wherein the first dopant type is a type of dopant different from the second dopant type, the second doped region located at an upper surface of the bulk silicon layer and having a first doped portion bounded by the first doped region;a first cavity portion over the second doped region; andan upper electrode formed in a deposited cap layer, the upper electrode over the first cavity portion.2. The sensor device of further comprising:a spacer formed in the deposited cap layer and defining a portion of the upper electrode.3. The sensor device of claim 2 , wherein the deposited cap layer is formed by at least one of an epitaxial process claim 2 , a CVD process claim 2 , a LPCVD process claim 2 , and a PECVD process.4. The sensor device of claim 1 , further comprising:a trench formed in the bulk silicon layer and separating a portion of the second doped region from a portion of the first doped region.5. The sensor device of claim 4 , wherein:the trench is filled with a dielectric material, andthe dielectric material includes at least one of silicon dioxide, silicon nitride, and ALD alumina.6. The sensor device of claim 4 , further comprising:a second cavity portion ...

Подробнее
15-08-2013 дата публикации

MICROELECTRONIC SUBSTRATE COMPRISING A LAYER OF BURIED ORGANIC MATERIAL

Номер: US20130207281A1

Microelectronic substrate comprising at least:

Подробнее
15-08-2013 дата публикации

Single-axis flexure bearing configurations

Номер: US20130207328A1
Принадлежит: University of Michigan

Flexure bearing systems and configurations guide translational motion along a single-axis in micro and macro applications such as micro-electro-mechanical system (MEMS) devices including sensors and actuators like electrostatic comb-drive actuators. The flexure bearing systems and configurations described herein provide an improved constraint against movement (i.e., stiffness) of the primary mover in non-motion axes such as a bearing axis.

Подробнее
29-08-2013 дата публикации

Microelectromechanical sensor with out-of-plane sensing and process for manufacturing a microelectromechanical sensor

Номер: US20130220016A1
Принадлежит: STMICROELECTRONICS SRL

A microelectromechanical sensor that in one embodiment includes a supporting structure, having a substrate and electrode structures anchored to the substrate; and a sensing mass, movable with respect to the supporting structure so that a distance between the sensing mass and the substrate is variable. The sensing mass is provided with movable electrodes capacitively coupled to the electrode structures. Each electrode structure comprises a first fixed electrode and a second fixed electrode mutually insulated by a dielectric region and arranged in succession in a direction substantially perpendicular to a face of the substrate.

Подробнее
29-08-2013 дата публикации

MEMS Switch Having One or More Vacuum Gaps

Номер: US20130220783A1
Принадлежит:

A MEMS switch comprises a top conductor and at least one first insulator layer having a lateral opening. The at least one first insulator layer hermetically seals the top conductor. At least one second insulator layer is positioned below the at least one first insulator layer such that at least one vacuum gap is formed within the lateral opening between the top conductor and the at least one second insulator layer. The at least one vacuum gap has a thickness in the range 0.5 Å to 100 Å when the top conductor is at rest. The thickness of the at least one vacuum gap varies when the top conductor is moved. The insulator layer has at least one opening that exposes a conducting area of at least one contact conductor within the second insulator layer. At least one actuation conductor that is electrically insulated from the at least one contact conductor such that application of at least one actuation voltage to the at least one actuation conductor moves the at least one contact conductor and the top conductor closer to each other within the at least one vacuum gap. 1. A MEMS switch , comprising:a top conductor;at least one first insulator layer having a lateral opening, wherein the at least one first insulator layer is hermetically sealed to the top conductor;at least one second insulator layer positioned below the at least one first insulator layer such that at least one vacuum gap is formed within the lateral opening between the top conductor and the at least one second insulator layer, said at least one vacuum gap having a thickness in the range 0.5 Å to 100 Å when said top conductor is at rest, wherein the thickness of the at least one vacuum gap varies when the top conductor is moved;at least one contact conductor, wherein said second insulator layer has at least one opening that exposes a conducting area of the at least one contact conductor within the second insulator layer; andat least one actuation conductor electrically insulated from the at least one contact ...

Подробнее
29-08-2013 дата публикации

MICROMECHANICAL SENSOR APPARATUS WITH A MOVABLE GATE, AND CORRESPONDING PRODUCTION PROCESS

Номер: US20130221411A1
Принадлежит: ROBERT BOSCH GMBH

A micromechanical sensor apparatus has a movable gate and a field effect transistor. The field effect transistor has a drain region, a source region, an intermediate channel region with a first doping type, and a movable gate which is separated from the channel region by an intermediate space. The drain region, the source region, and the channel region are arranged in a substrate. A guard region is provided in the substrate at least on the longitudinal sides of the channel region and has a second doping type which is the same as the first doping type and has a higher doping concentration. 1. A micromechanical sensor apparatus with a movable gate , the micromechanical sensor apparatus comprising:a field effect transistor with a drain region, a source region, an intermediate channel region with a first doping type, and a movable gate which is separated from the channel region by an intermediate space, wherein the drain region, the source region and the channel region are arranged in a substrate; anda guard region provided in the substrate at least on longitudinal sides of the channel region, the guard region having a second doping type which is the same as the first doping type and has a higher doping concentration than the first doping type.2. The micromechanical sensor apparatus according to claim 1 , wherein the guard region is configured to run annularly around the drain region claim 1 , the source region and the channel region in the substrate.3. The micromechanical sensor apparatus according to claim 1 , wherein the channel region is covered by at least one gate insulation layer.4. The micromechanical sensor apparatus according to claim 1 , wherein the movable gate is polysilicon.5. The micromechanical sensor apparatus according to claim 1 , wherein the guard region has an external voltage connection.6. A process for producing a micromechanical sensor apparatus with a movable gate claim 1 , the process comprising:forming a field effect transistor with a drain ...

Подробнее
29-08-2013 дата публикации

PLANAR CAVITY MEMS AND RELATED STRUCTURES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES

Номер: US20130221454A1

A Micro-Electro-Mechanical System (MEMS). The MEMS includes a lower chamber with a wiring layer and an upper chamber which is connected to the lower chamber. A MEMS beam is suspended between the upper chamber and the lower chamber. A lid structure encloses the upper chamber, which is devoid of structures that interfere with a MEMS beam. The lid structure has a surface that is conformal to a sacrificial material vented from the upper chamber. 1. A structure , comprising:a lower chamber with a wiring layer;an upper chamber which is connected to the lower chamber;a MEMS beam suspended between the upper chamber and the lower chamber; anda lid structure enclosing the upper chamber, which is devoid of structures that interfere with a MEMS beam, wherein the lid structure has a surface that is conformal to a sacrificial material vented from the upper chamber.2. The structure of claim 1 , wherein at least one of:electrical vias within the upper chamber have a top view profile of rounded or chamfered profiles; anda cavity via connecting the upper chamber with the lower chamber has a top view profile of rounded or chamfered profiles.3. The structure of claim 1 , wherein a bottom surface of the lid structure comprises a tapered sidewall profile having an angle of less than 90 degrees.4. The structure of claim 1 , wherein the upper chamber and the lower chamber are connected together by a cavity via.5. The structure of claim 1 , further comprising electrical vias with a top view profile of rounded or chamfered edges.6. The structure of claim 5 , wherein at least one of the electrical vias is formed with a taper to reduce a seam or void in subsequent sacrificial material deposition processes.7. The structure of claim 1 , wherein at least one vent hole in the lid structure is circular or nearly circular claim 1 , to minimize an amount of subsequent material needed to pinch off the at least one vent hole.8. The structure of claim 1 , wherein the MEMS beam is a cantilever beam.9. ...

Подробнее
29-08-2013 дата публикации

Capacitance Type Micro-Silicon Microphone and Method for Making the Same

Номер: US20130221456A1
Автор: Hu Wei, Li Gang, Mei Jia-Xin

A capacitance type micro-silicon microphone includes a base, a backplate and a diaphragm positioned above the backplate in a suspended manner. The base includes a top face, a bottom face and a number of sound bores recessing inwardly from the top face. Bottom sides of the sound bores are in communication with each other so as to form an upper cavity. The base defines at least one lower cavity recessing inwardly from the bottom face. The backplate is positioned above the upper cavity in a suspended manner. The lower cavity is in communication with the upper cavity so as to jointly form a back cavity of the capacitance type micro-silicon microphone. Besides, a method for fabricating the capacitance type micro-silicon microphone is also disclosed. 1. A capacitance type micro-silicon microphone comprising:a base having a top face, a bottom face opposite to the top face and a plurality of sound bores recessing inwardly from the top face, bottom sides of the sound bores being in communication with each other so as to form an upper cavity, the base defining at least one lower cavity recessing inwardly from the bottom face;a backplate positioned above the upper cavity in a suspended manner; anda diaphragm positioned above the backplate in a suspended manner as well; whereinthe lower cavity is in communication with the upper cavity so as to jointly form a back cavity of the capacitance type micro-silicon microphone.2. The capacitance type micro-silicon microphone as claimed in claim 1 , wherein the lower cavity comprises an integral figure or a combination of multiple figures.3. The capacitance type micro-silicon microphone as claimed in claim 1 , wherein a cross-sectional figure of the back cavity is T-shaped.4. The capacitance type micro-silicon microphone as claimed in claim 1 , wherein the lower cavity is comprised of four small rectangular cavities.5. The capacitance type micro-silicon microphone as claimed in claim 1 , wherein a cross-sectional figure of each sound ...

Подробнее
29-08-2013 дата публикации

ASSEMBLY OF A CAPACITIVE ACOUSTIC TRANSDUCER OF THE MICROELECTROMECHANICAL TYPE AND PACKAGE THEREOF

Номер: US20130221457A1
Принадлежит: STMicroelectronics S.r.I.

A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers. 1. An assembly comprising:a microelectromechanical sensor (MEMS) integrated in a first die of semiconductor material and having active surfaces configured to sense a change in capacitance;an electronic circuit integrated in a second die of semiconductor material, the electronic circuit operatively coupled to said MEMS sensor, the first die being stacked on the second die, the second die having a through hole that exposes the active surfaces of the MEMS sensor; anda cap covering portions of the first die and second die, the cap, the first die, and the second die forming a cavity therebetween.2. The assembly of claim 1 , wherein the second die includes a plurality of through holes that place the portion of the MEMS sensor in fluid communication with the external environment.3. The assembly of claim 2 , wherein the plurality of through holes act as a filter.4. The assembly of claim 2 , wherein the MEMS sensor includes a membrane.5. The assembly of claim 4 , wherein the MEMS sensor is a ...

Подробнее
05-09-2013 дата публикации

HIGH ASPECT RATIO CAPACITIVELY COUPLED MEMS DEVICES

Номер: US20130228881A1
Принадлежит: STMicroelectronics, Inc.

A method that includes forming an opening between at least one first electrode and a second electrode by forming a recess in a first electrode layer, the recess having sidewalls that correspond to a surface of the at least one first electrode, forming a first sacrificial layer on the sidewalls of the recess, the first sacrificial layer having a first width that corresponds to a second width of the opening, forming a second electrode layer in the recess that corresponds to the second electrode, and removing the first sacrificial layer to form the opening between the second electrode and the at least one first electrode. 1a substrate;a first suspended electrode having a first width in a first direction and a first height in a second direction, the first direction being transverse to the second direction; and 'a first extension having a second width in the first direction, the first extension being separated from the substrate by the first electrode; and', 'a second suspended electrode includinga second extension having a second height in the second direction, the second extension separated the first electrode by a third width in the first direction.. A micro electro-mechanical system, comprising: 1. Technical FieldThe present disclosure relates generally to micro electro-mechanical systems, and more particularly to forming at least one suspended electrode and a second electrode separated by a submicron opening.2. Description of the Related ArtMicro electro-mechanical systems (MEMS) in semiconductors have arisen for various applications such as to sense temperature, pressure, strain, acceleration, rotation, and chemical properties of liquids and gases. Those MEMS structures are usually combined with other integrated circuits, such as complimentary metal oxide semiconductor (CMOS) circuits, for analyzing and calculating the parameters sensed by MEMS. Therefore, the MEMS manufacturing processes are required to be compatible with the existing MOS or CMOS manufacturing ...

Подробнее
12-09-2013 дата публикации

MICROMECHANICAL COMPONENT HAVING A DIAPHRAGM

Номер: US20130234140A1
Принадлежит: ROBERT BOSCH GMBH

Measures are described with the aid of which not only a rupture, but also cracks may be detected in the diaphragm structure of a micromechanical component with the aid of circuit means integrated into the diaphragm structure. At least some circuit elements are integrated for this purpose into the bottom side of the diaphragm, i.e., into a diaphragm area directly adjoining the cavern below the diaphragm. 1. A micromechanical component , comprising:at least one diaphragm which spans a cavern in a layer structure of the component; andat least one circuit element integrated into the diaphragm for electrically detecting cracks in the diaphragm;wherein at least one of the at least one circuit elements extend across a diaphragm area directly adjoining the cavern.2. The component as recited in claim 1 , wherein connecting contacts claim 1 , via which at least one diaphragm layer directly adjoining the cavern is energized claim 1 , are provided on a surface of the component in an area of one of an edge of the diaphragm or a frame of the diaphragm claim 1 , and a monitor is provided to monitor current flow through the diaphragm layer.3. The component as recited in claim 2 , wherein in the diaphragm layer directly adjoining the cavern claim 2 , at least one resistor element is provided which extends at least across an entire length or width of the diaphragm and is contacted via the connecting contacts.4. The component as recited in claim 3 , wherein the resistor element extends across an entire surface of the diaphragm.5. The component as recited in claim 3 , wherein at least four connecting contacts are situated in the area of one of the edge of the diaphragm or the frame of the diaphragm claim 3 , and are interconnected in such a way that one of the diaphragm layer directly adjoining the cavern or the at least one resistor element may be energized in two different directions.6. The component as recited in claim 5 , wherein the one of the diaphragm layer directly adjoining ...

Подробнее
12-09-2013 дата публикации

Method for coating micromechanical parts with dual diamond coating

Номер: US20130234165A1

Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate ( 4 ) component to be coated; providing said component with a first diamond coating ( 2 ) doped with boron; providing said component with a second diamond coating ( 3 ); wherein: said second diamond coating ( 3 ) is provided by CVD in a reaction chamber; during CVD deposition, during the last portion of the growth process, a controlled increase of the carbon content within the reaction chamber is provided, thereby providing an increase of the sp2/sp3 carbon ( 6 ) bonds up to an sp2 content substantially between 1% and 45%. Corresponding micromechanical components are also provided.

Подробнее
12-09-2013 дата публикации

MEMS ELEMENT

Номер: US20130234263A1
Автор: IKEHASHI Tamio
Принадлежит:

According to one embodiment, a MEMS element comprises a first electrode that is fixed on a substrate and has plate shape, a second electrode that is disposed above the first electrode while facing the first electrode, the second electrode being movable in a vertical direction and having plate shape, and a first film that includes a first cavity in which the second electrode is accommodated on the substrate. The second electrode is connected to an anchor portion connected to the substrate via a spring portion. An upper surface of the second electrode is connected to the first film. 1. A MEMS element comprising:a first electrode that is fixed on a substrate and has plate shape;a second electrode that is disposed above the first electrode while facing the first electrode, the second electrode being movable in a vertical direction and having plate shape; anda first film that includes a first cavity in which the second electrode is accommodated on the substrate,wherein the second electrode is connected to an anchor portion connected to the substrate via a spring portion, and an upper surface of the second electrode is connected to the first film.2. The element of claim 1 , wherein the first film includes an insulating material.3. The element of claim 1 , further comprising:a third electrode that is fixed on the substrate and has plate shape; anda fourth electrode that is disposed above the third electrode while facing the third electrode, the forth electrode having plate shape,wherein the first cavity accommodates the fourth electrode.4. The element of claim 1 , further comprising:a third electrode that is fixed on the substrate and has plate shape; anda fourth electrode that is disposed above the third electrode while facing the third electrode, the forth electrode having plate shape; anda second film that includes a second cavity in which the fourth electrode is accommodated on the substrate.5. The element of claim 1 , further comprising a circuit that detects a ...

Подробнее
12-09-2013 дата публикации

PLANAR CAVITY MEMS AND RELATED STRUCTURES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES

Номер: US20130234265A1

A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity. 1. A structure , comprising:a lower chamber with at least one fixed plate;an insulator layer covering the at least one fixed plate, the insulator layer structured to prevent formation of aluminum silicide with a sacrificial material deposition; andat least one upper MEMS beam that is moveable over the at least one fixed plate.2. The structure of claim 1 , further comprising an upper chamber over the at least one upper MEMS beam.3. The structure of claim 1 , wherein the at last one fixed plate is a patterned wiring layer.4. The structure of claim 1 , wherein the insulator layer is one or more films over the at least one fixed plate and exposed portions of an underlying substrate.5. The structure of claim 1 , wherein the at least one fixed plate contains aluminum.6. The structure of claim 1 , wherein the insulator is a conformal barrier comprising AlO(alumina) claim 1 , TaO(tantalum pentaoxide) claim 1 , or a combination of both.7. The structure of claim 1 , wherein the insulator layer comprises HDPCVD oxide followed ALD alumina.8. The structure of claim 1 , wherein the insulator layer comprises a combination of fast deposition SiOand slow deposition alumina.9. A method in a computer-aided design system for generating a functional design model of a MEMS claim 1 , the method comprising:generating a functional ...

Подробнее
19-09-2013 дата публикации

HYBRID MEMS RF SWITCH AND METHOD OF FABRICATING SAME

Номер: US20130240336A1

Structures having a hybrid MEMS RF switch and method of fabricating such structures using existing wiring layers of a device is provided. The method of manufacturing a MEMS switch includes forming a forcing electrode from a lower wiring layer of a device and forming a lower electrode from an upper wiring layer of the device. The method further includes forming a flexible cantilever arm over the forcing electrode and the lower electrode such that upon application of a voltage to the forcing electrode, the flexible cantilever arm will contact the lower electrode to close the MEMS switch. 1. A method of manufacturing a MEMS structure , comprising:forming a lower wiring layer in a lower dielectric layer;forming an upper wiring layer in an upper dielectric layer by deposition and patterning of a conductive material;depositing a sacrificial material above the lower wiring layer and completely on one patterned wiring of the upper wiring layer and partially on another patterned wiring of the upper wiring layer;forming a cantilever arm by depositing a conductive material on the sacrificial material which includes extending the conductive material over the lower wiring layer and in contact with the another patterned wiring of the upper wiring layer; andstripping the sacrificial material.2. The method of claim 1 , further comprising forming a capping layer on the upper wiring layer prior to the patterning.3. The method of claim 2 , wherein the capping layer is at least one of gold and CoWP.4. The method of claim 1 , wherein the conductive material for the cantilever arm is at least one of deposited Au claim 1 , Al claim 1 , Cu claim 1 , TiN claim 1 , TaN claim 1 , Ta claim 1 , and Ru.5. The method of claim 1 , wherein the upper wiring layer and the lower wiring layer comprise Al or Cu or AlCu.6. The method of claim 1 , further comprising hermetically sealing the upper wiring layer and the cantilever arm.7. The method of claim 6 , wherein the hermetically sealing comprises: ...

Подробнее
03-10-2013 дата публикации

Physical quantity sensor and electronic apparatus

Номер: US20130256814A1
Автор: Satoru Tanaka
Принадлежит: Seiko Epson Corp

A physical quantity sensor includes: a movable body displaceable in a direction of a first axis; a fixed electrode portion disposed to face a movable electrode portion; a spring portion as a connection member connecting a fixed portion with the movable body and including a first extending portion extending from the fixed portion along a second axis crossing the direction of the first axis, a turn-around portion connected to the first extending portion, and a second extending portion extending from the turn-around portion along the second axis; and a wall portion extending from the fixed portion and disposed, in plan view, outside the first extending portion and the turn-around portion of the spring portion. The spring portion and the wall portion are electrically connected.

Подробнее
03-10-2013 дата публикации

MEMS PROCESS AND DEVICE

Номер: US20130256816A1
Принадлежит: Wolfson Microelectronics plc

A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately. 1. A micro-electrical-mechanical system (MEMS) package , comprising:a package substrate; and wherein the MEMS capacitive microphone comprises:', 'a substrate;', 'a membrane formed relative to a first side of the substrate; and', 'a back-volume formed through the substrate from a second side of the substrate;', 'wherein the back-volume comprises a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a discontinuity in a sidewall of the back-volume; and', 'wherein the cross sectional area of the second back-volume portion is greater than the cross sectional area of the first back-volume portion, for enabling the effective height of the MEMS capacitive microphone to be reduced for a given volume of back-volume., 'a MEMS capacitive microphone situated on the package substrate;'}2. A MEMS package as claimed in claim 1 , wherein the discontinuity comprises a discontinuity in the cross-sectional area of the back volume in a plane parallel to the substrate.3. A MEMS package as claimed in claim 1 , wherein the discontinuity comprises a ...

Подробнее
10-10-2013 дата публикации

PHYSICAL QUANTITY SENSOR AND ELECTRONIC APPARATUS

Номер: US20130264661A1
Автор: Tanaka Satoru
Принадлежит: SEIKO EPSON CORPORATION

A physical quantity sensor includes a substrate, a movable body which has first and second sections and in which a first movable electrode section is provided in the first section, a beam section which supports the movable body so as to be able to be displaced, and a first fixed electrode section disposed on the substrate. The first fixed electrode section is provided at a position overlapping an end of the first section in the second axis direction in plan view, and is provided in a range of 0.0500X≦L≦0.816X assuming that the width of the first section in the second axis direction is X and the width of a portion of the first fixed electrode section in the second axis direction overlapping the movable body in plan view is L. 1. A physical quantity sensor comprising:a movable body which can be displaced with a first axis as a rotation axis and has first and second sections with the first axis as a boundary in plan view and in which a first movable electrode section is provided in the first section;a beam section which supports the movable body; anda first fixed electrode section disposed so as to face the first movable electrode section,wherein the first fixed electrode section is provided at a position overlapping an end of the first section of the movable body in a direction of a second axis, which is perpendicular to the first axis, in plan view, and is provided in a range of 0.0500X≦L≦0.816X assuming that a width of the first section in the second axis direction is X and a width of a portion of the first fixed electrode section in the second axis direction overlapping the movable body in plan view is L.2. The physical quantity sensor according to claim 1 ,wherein the first fixed electrode section is provided in a range of 0.164X≦L≦0.633X.3. The physical quantity sensor according to claim 1 ,wherein, in the movable body, the width of the first section in the direction of the second axis perpendicular to the first axis is smaller than a width of the second section ...

Подробнее
10-10-2013 дата публикации

SEMICONDUCTOR PRESSURE SENSOR

Номер: US20130264664A1
Принадлежит: Panasonic Corporation

A semiconductor pressure sensor includes n-type semiconductor regions, which are formed in a diaphragm of a semiconductor substrate, piezoresistive elements, which are respectively formed in the n-type semiconductor regions, and conductive shielding thin film layers, which are respectively formed on the piezoresistive elements through an insulating thin film layer, and the piezoresistive elements form a Wheatstone bridge circuit. Further, the n-type semiconductor regions and the conductive shielding thin film layers are electrically connected to each other through contacts formed in the diaphragm. 1. A semiconductor pressure sensor comprising:a semiconductor substrate;a diaphragm formed by thinning a portion of the semiconductor substrate, the diaphragm serving as a pressure receiving portion;n-type semiconductor regions formed in the diaphragm;piezoresistive elements, which are respectively formed in the n-type semiconductor regions; andconductive shielding thin film layers, which are respectively formed on the piezoresistive elements through an insulating thin film layer, the piezoresistive elements forming a Wheatstone bridge circuit,wherein the n-type semiconductor regions and the conductive shielding thin film layers are electrically connected to each other through contacts, and the contacts are formed in the diaphragm.2. The semiconductor pressure sensor of claim 1 , wherein the conductive shielding thin film layers are made of polycrystalline silicon.3. The semiconductor pressure sensor of claim 1 , wherein each of the n-type semiconductor regions is connected to a high voltage of the Wheatstone bridge circuit.4. The semiconductor pressure sensor of claim 1 , wherein the n-type semiconductor regions including the piezoresistive elements claim 1 , one end of each of which is connected to a high voltage of the Wheatstone bridge circuit claim 1 , are electrically connected to each other claim 1 , andwherein the n-type semiconductor regions including the ...

Подробнее
17-10-2013 дата публикации

ELECTROMECHANICAL MICROSYSTEMS WITH AIR GAPS

Номер: US20130270096A1
Принадлежит:

The present invention relates to an microelectromechanical system () comprising: a base () comprising a substrate () and a substrate electrode (); a moveable beam (); a voltage generator () able to generate a potential difference between the beam () and the substrate electrode (); and at least one mechanical stop () connected to the beam and designed to make contact with the base () when a potential difference is applied between the beam () and the substrate electrode (), thereby defining an air-filled cavity () between the beam () and the substrate electrode (), characterized in that it furthermore comprises an electrical-charge blocking element () placed on the substrate (), said element facing the at least one mechanical stop () and being electrically connected to the beam (). 2507030. The electromechanical microsystem according to claim 1 , characterised in that said element for blocking electrical charges is constituted by at least one pin () placed opposite a mechanical stop () of the beam ().3100. The electromechanical microsystem according to claim 1 , characterised in that said element for blocking electrical charges is constituted by a layer () of material whereof the electrical resistivity is between 100 MOhms.square and 10 kOhms.square.45010030. The electromechanical microsystem according to claim 3 , characterised in that at least one metal pin () is arranged on said layer of material () claim 3 , opposite a mechanical stop of the beam ().5100. The electromechanical microsystem according to any one of or claim 3 , characterised in that said material constituting the element for blocking electrical charges () is an alloy of silicon chrome claim 3 , carbon of diamond structure claim 3 , implanted silicon claim 3 , or a conductive oxide.650309040. The electromechanical microsystem according to claim 1 , characterised in that said element for blocking electrical charges comprises at least one metal pin () connected to a conductive base arranged on the ...

Подробнее
17-10-2013 дата публикации

MICROMACHINED MONOLITHIC 6-AXIS INERTIAL SENSOR

Номер: US20130270657A1
Автор: Acar Cenk
Принадлежит: Fairchild Semiconductor Corporation

The device layer of a 6-degrees-of-freedom (6-DOF) inertial measurement system can include a single proof-mass 6-axis inertial sensor formed in an x-y plane, the inertial sensor including a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards the edge of the inertial sensor, a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane. 1. A 6-degrees-of-freedom (6-DOF) inertial measurement system , comprising:a device layer including a single proof-mass 6-axis inertial sensor formed in an x-y plane, the single proof-mass 6-axis inertial sensor including:a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards the edge of the 6-axis inertial sensor;a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor; anda drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane at a drive frequency;a cap wafer bonded to a first surface of the device layer; anda via wafer bonded to a second surface of the device layer, wherein the cap wafer and the via wafer are configured to encapsulate the single proof-mass 6-axis inertial sensor.2. The system of claim 1 , wherein the single proof-mass 6-axis inertial sensor includes first and second x-axis proof-mass sections coupled to the main proof-mass section using ...

Подробнее
17-10-2013 дата публикации

METHODS FOR PRODUCING A CAVITY WITHIN A SEMICONDUCTOR SUBSTRATE

Номер: US20130270658A1
Принадлежит: INFINEON TECHNOLOGIES AG

A method for producing at least one cavity within a semiconductor substrate includes dry etching the semiconductor substrate from a surface of the semiconductor substrate at at least one intended cavity location in order to obtain at least one provisional cavity. The method includes depositing a protective material with regard to a subsequent wet-etching process at the surface of the semiconductor substrate and at cavity surfaces of the at least one provisional cavity. Furthermore, the method includes removing the protective material at least at a section of a bottom of the at least one provisional cavity in order to expose the semiconductor substrate. This is followed by electrochemically etching the semiconductor substrate at the exposed section of the bottom of the at least one provisional cavity. A method for producing a micromechanical sensor system in which this type of cavity formation is used and a corresponding MEMS are also disclosed. 1. A method for producing at least one cavity within a semiconductor substrate , the method comprising:dry etching the semiconductor substrate from a surface of the semiconductor substrate at at least one intended cavity location in order to obtain at least one provisional cavity;depositing a protective material with regard to a subsequent wet-etching process at the surface of the semiconductor substrate and at cavity surfaces of the at least one provisional cavity;removing the protective material at least at a section of a bottom of the at least one provisional cavity in order to expose the semiconductor substrate; andelectrochemically etching the semiconductor substrate at the exposed section of the bottom of the at least one provisional cavity.2. The method according to claim 1 , further comprising:depositing an oxide mask for dry etching the semiconductor substrate prior to the dry etching.3. The method according to claim 1 , wherein the dry etching comprises at least one of the following processes:reactive ion etching ( ...

Подробнее
24-10-2013 дата публикации

SOI WAFER, MANUFACTURING METHOD THEREFOR, AND MEMS DEVICE

Номер: US20130277675A1
Принадлежит:

In order to obtain a SOI wafer having an excellent ability of gettering metal impurities, an efficient method of manufacturing a SOI wafer, and a highly reliable MEMS device using such a SOI wafer, provided is a SOI wafer including: a support wafer () and an active layer wafer () which are bonded together with an oxide film () therebetween, each of the support wafer () and the active layer wafer () being a silicon wafer; a cavity () formed in a bonding surface of at least one of the silicon wafers; and a gettering material () formed on a surface on a side opposite to the bonding surface. 1. A SOI wafer , comprising:two silicon wafers bonded together with an oxide film therebetween;a cavity formed in a bonding surface of at least one of the two silicon wafers; anda gettering material formed on a surface on a side opposite to the bonding surface.2. A SOI wafer according to claim 1 , wherein the gettering material comprises a crushed layer.3. A SOI wafer according to claim 1 , wherein the gettering material comprises a polysilicon thin film.4. A method of manufacturing a SOI wafer including a support wafer and an active layer wafer which are bonded together with an oxide film therebetween claim 1 , each of the support wafer and the active layer wafer being a silicon wafer claim 1 , the method comprising:forming a cavity in a first surface of the support wafer, the first surface being a bonding surface of the SOI wafer;forming a gettering material on a surface of one of the support wafer and the active layer wafer on a side opposite to the first surface;carrying out thermal oxidation of one of the support wafer and the active layer wafer;bonding together the first surface of the support wafer and the active layer wafer; andcarrying out bonding reinforcing heat treatment with respect to the support wafer and the active layer wafer which are bonded together.5. A method of manufacturing a SOI wafer according to claim 4 , further comprising removing the gettering material ...

Подробнее
24-10-2013 дата публикации

MICROELECTROMECHANICAL PRESSURE SENSOR INCLUDING REFERENCE CAPACITOR

Номер: US20130277772A1
Автор: Bryzek Janusz
Принадлежит: Fairchild Semiconductor Corporation

This document discusses, among other things, an apparatus including a silicon die including a vibratory diaphragm, the die having a silicon die top opposite a silicon die bottom, with a top silicon die port extending from the silicon die top through the silicon die to a top of the vibratory diaphragm, and with a bottom silicon die port extending from the silicon die bottom to a bottom of the vibratory diaphragm, wherein the bottom silicon die port has a cross sectional area that is larger than a cross-sectional area of the top silicon die port, a capacitor electrode disposed along a bottom of the silicon die, across the bottom silicon die port, the capacitor electrode including a first signal generation portion that is coextensive with the top silicon die port, and a second signal generation portion surrounding the first portion. 172-. (canceled)73. An apparatus comprising:a silicon die including a vibratory diaphragm, the die having a silicon die top opposite a silicon die bottom, with a top silicon die port extending from the silicon die top through the silicon die to a top of the vibratory diaphragm, and with a bottom silicon die port extending from the silicon die bottom to a bottom of the vibratory diaphragm, wherein the bottom silicon die port has a cross sectional area that is larger than a cross-sectional area of the top silicon die port;a capacitor electrode disposed along a bottom of the silicon die, across the bottom silicon die port, the capacitor electrode including a first signal generation portion that is coextensive with the top silicon die port, and a second signal generation portion surrounding the first portion.74. The apparatus of claim 73 , wherein the capacitor electrode is a layer that defines a cavity including the bottom silicon die port.75. The apparatus of claim 74 , wherein the cavity is configured to be sealed under vacuum relative to an atmosphere to which the vibratory diaphragm is exposed.76. The apparatus of claim 73 , wherein the ...

Подробнее
24-10-2013 дата публикации

THROUGH SILCON VIA WITH REDUCED SHUNT CAPACITANCE

Номер: US20130277773A1
Принадлежит: Fairchild Semiconductor Corporation

This document refers to apparatus and methods for a device layer of a microelectromechanical system (MEMS) sensor having vias with reduced shunt capacitance. In an example, a device layer can include a substrate having a pair of trenches separated in a horizontal direction by a portion of the substrate, wherein each trench of the pair of trenches includes first and second vertical layers including dielectric, the first and second vertical layers separated by a third vertical layer including polysilicon. 1. A via layer for a MEMS device , the via layer comprising;a substrate having a pair of trenches separated in a horizontal direction by a portion of the substrate, wherein each trench of the pair of trenches includes first and second vertical layers including a dielectric, the first and second vertical layers separated by a third vertical layer including polysilicon.2. The via layer of claim 1 , wherein less than about 80% of the volume of the third vertical layer includes polysilicon.3. The via layer of claim 1 , wherein less than about 20% of the the volume of the third vertical layer includes polysilicon.4. The via layer of claim 1 , the first and second vertical layers include thermal oxide.5. The via layer of claim 1 , wherein each of the first and second vertical layers of dielectric include thermal oxide and a third material having a dielectric constant lower than the dielectric constant of the thermal oxide.6. A sensor comprising:a cap layer;a device layer, coupled to the cap layer, including a proof mass; and a silicon substrate having a pair of trenches separated in a horizontal direction by a portion of the silicon substrate,', 'wherein each trench of the pair of trenches includes first and second vertical layers including a dielectric separated by a third vertical layer including polysilicon., 'a via layer coupled to the device layer, wherein the device layer includes7. The sensor of claim 6 , wherein less than about 80% of the volume of the third ...

Подробнее
24-10-2013 дата публикации

Planar Structure For A Triaxial Gyrometer

Номер: US20130277775A1

An inertial sensor for measuring information relating to rotation in three orthogonal axes, comprising a support and a vibrating sensitive element secured to the support; said sensitive element having a deformable frame and at least two deformable projections which extend in a plane (X-Y); wherein the inertial sensor extends in the same plane; the deformable frame and said at least two deformable projections have a plane of symmetry parallel to the plane; said at least two projections are rectilinear beams which have an approximately square cross section, are not collinear and are preferably approximately orthogonal to one another; each of said deformable beams being connected by only one end to the deformable frame at a location at which the amplitude of the primary vibration mode is at a maximum; and in that said sensor has a device for detecting each of the secondary vibration modes. 1. An inertial sensor able to measure information relating to rotation in three (X , Y , Z) orthogonal axes , said inertial sensor comprising: a support and a sensitive element secured to the support; said sensitive element being adapted to vibrate relative to the support in a primary vibration mode when it is excited by an excitation device , and in secondary vibration modes induced by a Coriolis force , when the inertial sensor is moved about an axis and the sensitive element is excited by an excitation device; said sensitive element comprising a deformable frame which extends in a plane (X-Y) and at least two deformable projections which extend in the same plane (X-Y); said primary vibration mode implementing a deformation of the deformable frame; said secondary vibration modes implementing in-plane or out-of-plane bending deformations of said at least two deformable projections wherein:each of said at least two deformable projections is a beam of a substantially square cross-section whose longitudinal axis is rectilinear;each of said beams being connected only by one of its ends ...

Подробнее
24-10-2013 дата публикации

Method and structure of sensors and mems devices using vertical mounting with interconnections

Номер: US20130277836A1
Принадлежит: MCube Inc

A method and structure for fabricating sensor(s) or electronic device(s) using vertical mounting with interconnections. The method includes providing a resulting device including at least one sensor or electronic device, formed on a die member, having contact region(s) with one or more conductive materials formed thereon. The resulting device can then be singulated within a vicinity of the contact region(s) to form one or more singulated dies, each having a singulated surface region. The singulated die(s) can be coupled to a substrate member, having a first surface region, such that the singulated surface region(s) of the singulated die(s) are coupled to a portion of the first surface region. Interconnections can be formed between the die(s) and the substrate member with conductive adhesives, solder processes, or other conductive bonding processes.

Подробнее
31-10-2013 дата публикации

THROUGH-SILICON VIA RESONATORS IN CHIP PACKAGES AND METHODS OF ASSEMBLING SAME

Номер: US20130284572A1
Принадлежит:

A process of forming a through-silicon via (TSV) in a die includes forming a movable member in the TSV that can be actuated or that can be a sensor. Action of the movable member in the TSV can result in a logic word being sent from the TSV die to a subsequent die. The TSV die may be embedded in a substrate. The TSV die may also be coupled to a subsequent die. 1. A through-silicon via (TSV) microelectronic die , comprising:an active surface and a backside surface;a movable member disposed in the TSV that has a fixed first end at a location closer to the active surface than to the backside surface and that has a free end at a location closer to the backside surface than to the active surface; andan electrode disposed in the die closer to the free end, wherein the electrode is capable of moving the free end, or the electrode is capable of sensing motion of the free end.2. The TSV microelectronic die of claim 1 , further including a coreless claim 1 , bumpless build-up layer (BBUL-C) substrate in which the microelectronic die is disposed.3. The TSV microelectronic die of claim 1 , wherein the movable member is a bimetallic structure including a first component and a second component.4. The TSV microelectronic die of claim 1 , wherein the electrode is a metal electrode that is disposed in the TSV at the die backside surface.5. The TSV microelectronic die of claim 1 , wherein the electrode is a first metal electrode that is disposed in the TSV periphery at the die backside surface at a first side of the TSV claim 1 , and further including a second metal electrode that is disposed in the TSV periphery at a second side of the TSV that is opposite the first metal electrode.6. The TSV microelectronic die of claim 1 , wherein the electrode is a first metal electrode that is disposed in the TSV periphery at the die backside surface at a first side of the TSV claim 1 , and further including:a second metal electrode that is disposed in the TSV periphery at a second side of the ...

Подробнее
31-10-2013 дата публикации

ELECTRONIC DEVICE

Номер: US20130285122A1
Автор: YAMAZAKI Hiroaki
Принадлежит: KABUSHIKI KAISHA TOSHIBA

According to one embodiment, an electronic device includes a drive circuit on a semiconductor substrate, an insulating region including a first insulating part provided on the semiconductor substrate and formed of interlayer insulating films, and a second insulating part provided on the first insulating part, an element for a high-frequency provided on the insulating region and driven by the drive circuit, an interconnect including a first conductive part in the first insulating part, and a second conductive part in the second insulating part, and transmitting a drive signal from the drive circuit to the element, a first shield provided inside the insulating region and below the element, and a second shield provided inside the insulating region and below the second conductive part. 1. An electronic device comprising:a semiconductor substrate;a drive circuit provided on the semiconductor substrate;an insulating region including a first insulating part provided on the semiconductor substrate and formed of a plurality of interlayer insulating films, and a second insulating part provided on the first insulating part, the insulating region being configured to cover the drive circuit;an element for a high-frequency provided on the insulating region and driven by the drive circuit;an interconnect including a first conductive part provided in the first insulating part, and a second conductive part provided in the second insulating part, the interconnect being configured to transmit a drive signal from the drive circuit to the element;a first shield provided at a position inside the insulating region and below the element; anda second shield provided at a position inside the insulating region and below the second conductive part.2. The device of claim 1 , wherein the second shield is provided in the first insulating part and is not provided on the first insulating part.3. The device of claim 2 , wherein the first shield includes at least a part thereof provided on the first ...

Подробнее
31-10-2013 дата публикации

Microscale Metallic CNT Templated Devices and Related Methods

Номер: US20130285160A1
Принадлежит: BRIGHAM YOUNG UNIVERSITY

A microscale device comprises a patterned forest of vertically grown and aligned carbon nanotubes defining a carbon nanotube forest with the nanotubes having a height defining a thickness of the forest, the patterned forest defining a patterned frame that defines one or more components of a microscale device. A conformal coating of substantially uniform thickness at least partially coats the nanotubes, defining coated nanotubes and connecting adjacent nanotubes together, without substantially filling interstices between individual coated nanotubes. A metallic interstitial material infiltrates the carbon nanotube forest and at least partially fills interstices between individual coated nanotubes. 1. A microscale device , comprising:a patterned forest of vertically grown and aligned carbon nanotubes defining a carbon nanotube forest with the nanotubes having a height defining a thickness of the forest, the patterned forest defining a patterned frame that defines one or more components of a microscale device;a conformal coating of substantially uniform thickness at least partially coating the nanotubes, defining coated nanotubes and connecting adjacent nanotubes together, without substantially filling interstices between individual coated nanotubes; anda metallic interstitial material infiltrating the carbon nanotube forest and at least partially filling interstices between individual coated nanotubes.2. The device of claim 1 , wherein at least one component of the patterned frame is fixed and at least one component of the patterned frame is moveable relative to the fixed component.3. The device of claim 1 , wherein the metallic interstitial material is applied by an electroplating process.4. The device of claim 1 , wherein conformal coating comprises a carbon material.5. The device of claim 1 , wherein the thickness of the carbon nanotube forest is between 3 μm (microns) and 9 mm.6. The device of claim 1 , wherein the microscale device comprises a MEMS device.7. The ...

Подробнее
31-10-2013 дата публикации

MEMS ELEMENT AND METHOD OF MANUFACTURING THE SAME

Номер: US20130285163A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

According to one embodiment, a MEMS element comprises a first electrode fixed on a substrate, and a second electrode arranged above the first electrode, facing the first electrode, and vertically movable. The second electrode includes a second opening portion that penetrates from an upper surface to a lower surface of the second electrode. The first electrode includes a first opening portion at a position corresponding to at least a part of the second opening portion, the first opening portion penetrating from an upper surface to a lower surface of the first electrode. 1. A MEMS element comprising:a first electrode fixed on a substrate; anda second electrode arranged above the first electrode, facing the first electrode, and vertically movable;wherein the second electrode includes a second opening portion that penetrates from an upper surface to a lower surface of the second electrode, andthe first electrode includes a first opening portion at a position corresponding to at least a part of the second opening portion, the first opening portion penetrating from an upper surface to a lower surface of the first electrode.2. The element of claim 1 , whereinan area of the first opening portion is equal to an area of the second opening portion or is larger than the area of the second opening portion in a plan view.3. The element of claim 2 , whereinthe first opening portion includes the second opening portion in a plan view.4. The element of claim 1 , further comprising:a dummy electrode disposed at a center portion of the first opening portion in a plan view and separated from the first electrode.5. The element of claim 4 , whereinthe dummy electrode is formed at the same level as the first electrode, and includes the same material as the first electrode.6. The element of claim 1 , whereinthe second opening portion includes second holes, and the first opening portion includes a first hole formed at a position corresponding to at least a part of one or more of the second ...

Подробнее
31-10-2013 дата публикации

MEMS DEVICE AND METHOD OF MANUFACTURING THE SAME

Номер: US20130285164A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

According to one embodiment, a MEMS device comprises a first electrode fixed on a substrate, a second electrode formed above the first electrode to face the first electrode, and vertically movable, a second anchor portion formed on the substrate and configured to support the second electrode, and a second spring portion configured to connect the second electrode and the second anchor portion. The second spring portion is continuously formed from an upper surface of the second electrode to an upper surface of the second anchor portion, and has a flat lower surface. 1. A MEMS device comprising:a first electrode fixed on a substrate;a second electrode formed above the first electrode to face the first electrode, and vertically movable;a second anchor portion formed on the substrate and configured to support the second electrode; anda second spring portion configured to connect the second electrode and the second anchor portion,wherein the second spring portion is continuously formed from an upper surface of the second electrode to an upper surface of the second anchor portion, and has a flat lower surface.2. The device of claim 1 , wherein the second spring portion is made of a brittle material.3. The device of claim 2 , wherein the brittle material contains one material selected from the group consisting of SiO claim 2 , SiN claim 2 , and SiON.4. The device of claim 1 , further comprising a metal layer formed below the second spring portion and configured to connect the second electrode and the second anchor portion.5. The device of claim 4 , wherein the metal layer is made of Al claim 4 , an alloy containing Al as a main component claim 4 , Cu claim 4 , Au claim 4 , or Pt.6. The device of claim 4 , wherein the metal layer is integrated with the second electrode and the second anchor portion.7. The device of claim 1 , further comprising a metal layer formed below the second spring portion claim 1 ,wherein the second spring portion has a branched portion, and the metal ...

Подробнее
31-10-2013 дата публикации

HYBRID INTEGRATED COMPONENT AND METHOD FOR THE MANUFACTURE THEREOF

Номер: US20130285166A1
Автор: CLASSEN Johannes
Принадлежит: ROBERT BOSCH GMBH

Hybrid integrated components including an MEMS element and an ASIC element are described, whose capacitor system allows both signal detection with comparatively high sensitivity and sensitive activation of the micromechanical structure of the MEMS element. The hybrid integrated component includes an MEMS element having a micromechanical structure which extends over the entire thickness of the MEMS substrate. At least one structural element of this micromechanical structure is deflectable and is operationally linked to at least one capacitor system, which includes at least one movable electrode and at least one stationary electrode. Furthermore, the component includes an ASIC element having at least one electrode of the capacitor system. The MEMS element is mounted on the ASIC element, so that there is a gap between the micromechanical structure and the surface of the ASIC element. According to the invention, at least one electrode of the capacitor system is separated from the layered structure of the ASIC element and instead mechanically and electrically connected to the deflectable structural element of the MEMS element, so that this electrode functions as a movable electrode of the capacitor system. 1. A hybrid integrated component , comprising:at least one capacitor system including at least one movable electrode and at least one stationary electrode;an MEMS element including a micromechanical structure that extends over an entire thickness of the MEMS element, wherein at least one structural element of the micromechanical structure is deflectable and is operationally linked to the at least one capacitor system; and the MEMS element is mounted on the ASIC element so that there is a gap between the micromechanical structure and a surface of the ASIC element,', 'the at least one movable electrode is separated from a layered structure of the ASIC element,', 'the at least one movable electrode is mechanically and electrically connected to the deflectable structural ...

Подробнее
31-10-2013 дата публикации

MEMS INERTIAL SENSOR AND METHOD FOR MANUFACTURING THE SAME

Номер: US20130285168A1

A MEMS inertial sensor and a method for manufacturing the same are provided. The method includes: depositing a first carbon layer on a semiconductor substrate; patterning the first carbon layer to form a fixed anchor bolt, an inertial anchor bolt and a bottom sealing ring; forming a contact plug in the fixed anchor bolt and a contact plug in the inertial anchor bolt; forming a first fixed electrode, an inertial electrode and a connection electrode on the first carbon layer, where the first fixed electrode and the inertial electrode constitute a capacitor; forming a second carbon layer on the first fixed electrode and the inertial electrode; and forming a sealing cap layer on the second carbon layer and the top sealing ring. Under an inertial force, only the inertial electrode may move, the fixed electrode will almost not move or vibrate, which improves the accuracy of the MEMS inertial sensor. 1. A method for manufacturing a MEMS inertial sensor , comprising:providing a semiconductor substrate comprising a first dielectric layer, a bottom induction interconnect pad and a bottom reference interconnect pad embedded at the top of the first dielectric layer;depositing a first carbon layer on the first dielectric layer as a sacrificial layer;patterning the first carbon layer to form a plurality of openings therein;depositing a second dielectric layer on the first carbon layer and removing a portion of the second dielectric layer on the first carbon layer by chemical mechanical polishing (CMP), wherein the remaining second dielectric layer in the openings forms a fixed anchor bolt, an inertial anchor bolt and a bottom sealing ring;selectively etching the fixed anchor bolt and the inertial anchor bolt, so as to form an opening in the fixed anchor bolt which exposes the bottom induction interconnect pad and an opening in the inertial anchor bolt which exposes the bottom reference interconnect pad;filling the openings with a conductive material to form contact plugs and ...

Подробнее
31-10-2013 дата публикации

METHOD FOR PRODUCING AN OPTICAL WINDOW DEVICE FOR A MEMS DEVICE

Номер: US20130285169A1
Автор: PINTER Stefan
Принадлежит: ROBERT BOSCH GMBH

A method for producing an optical window device for a MEMS device, including applying a layer made of a transparent material onto a substrate having a recess, and deforming the layer so that it is folded and the deformed area of the layer forms an optical window. 1. A method for producing an optical window device for a MEMS device , comprising:applying a layer of a transparent material onto a substrate having a recess; anddeforming the layer so that the layer becomes folded and a deformed area of the layer forms an optical window.2. The method as recited in claim 1 , wherein the layer of the transparent material is applied on an upper side of the substrate and the layer is deformed claim 1 , so that the layer is folded into the recess and the deformed area of the layer forms the optical window.3. The method as recited in claim 2 , wherein claim 2 , on a side of the layer facing away from the substrate claim 2 , an auxiliary layer is generated claim 2 , which has a displaceable region which claim 2 , during the deformation claim 2 , is rotated into the recess about an axis of inclination and which is removed after the deforming.4. The method as recited in claim 3 , wherein the displaceable region has an overlap with a periphery of the recess.5. The method as recited in claim 3 , wherein the displaceable region is connected to a remaining auxiliary layer via at least one spring element.6. The method as recited in claim 4 , wherein the recess is a through hole opening claim 4 , and wherein the displaceable region has at least one stop element and corresponding sides of the substrate having a chamfer in the through hole opening which establishes the maximum rotation of the displaceable region into the through hole opening about the axis of inclination.7. The method as recited in claim 4 , wherein the recess is a through hole opening claim 4 , and wherein the substrate has a chamfer in the through hole opening claim 4 , which establishes a maximum rotation of the ...

Подробнее
31-10-2013 дата публикации

ENVIRONMENT-RESISTANT MODULE, MICROPACKAGE AND METHODS OF MANUFACTURING SAME

Номер: US20130285171A1
Принадлежит:

An environment-resistant module which provides both thermal and vibration isolation for a packaged micromachined or MEMS device is disclosed. A microplatform and a support structure for the microplatform provide the thermal and vibration isolation. The package is both hermetic and vacuum compatible and provides vertical feedthroughs for signal transfer. A micromachined or MEMS device transfer method is also disclosed that can handle a wide variety of individual micromachined or MEMS dies or wafers, in either a hybrid or integrated fashion. The module simultaneously provides both thermal and vibration isolation for the MEMS device using the microplatform and the support structure which may be fabricated from a thin glass wafer that is patterned to create crab-leg shaped suspension tethers or beams. 122-. (canceled)23. A method of making a packaged micromachined or MEMS device , the method comprising:providing a micromachined or MEMS device including at least one bonding site;providing a substrate;providing a microplatform including at least one bonding site;providing a support structure to support the microplatform above the substrate;aligning the respective bonding sites; andbonding the microplatform to the device at the respective bonding sites.24. The method as claimed in claim 23 , wherein the support structure is flexible and wherein the step of bonding includes the step of flexing the support structure above the substrate claim 23 , the substrate preventing flexing of the support structure beyond a predetermined amount.25. An environment-resistant module including a packaged device claim 23 , the module comprising:a device;a package having an inner surface which forms a cavity and an outer surface which communicates with the environment;a microplatform located within the cavity, the device being supported on the microplatform; anda flexible support structure to support the microplatform and the device within the cavity;wherein the microplatform is manufactured ...

Подробнее
31-10-2013 дата публикации

Combined Sensor

Номер: US20130285172A1
Принадлежит: HITACHI AUTOMOTIVE SYSTEMS, LTD

To provide a combined sensor that can detect a plurality of physical quantities. With the combined sensor, it is possible to realize, while maintaining performance, a reduction in size and a reduction in costs by increasing elements that can be shared among respective sensors. A weight M and a detection electrode DTE used in an angular-velocity detecting section are also used as a reference capacitive element of a Z-direction-acceleration detecting section configured to detect acceleration in a Z direction. That is, in the Z-direction-acceleration detecting section, a detection capacitive element including the weight M and the detection electrode DTE configuring the angular-velocity detecting section is used as a reference capacitive element for a detection capacitive element formed by a detection electrode DTE and a weight M 1. A combined sensor comprising:(a) a first detecting section configured to grasp application of a first physical quantity as a change in capacitance of a first detection capacitive element; and(b) a second detecting section configured to grasp application of a second physical quantity as a change in capacitance of a second detection capacitive element, whereinthe combined sensor detects the first physical quantity on the basis of a difference between a detection signal obtained by converting the capacitance of the first detection capacitive element output from the first detecting section and a reference signal obtained by converting the capacitance of the second detection capacitive element output from the second detecting section.2. The combined sensor according to claim 1 , wherein (a1) a first fixed section fixed to a semiconductor substrate;', '(a2) a first elastic deformable section connected to the first fixed section;', '(a3) a first movable section connected to the first elastically deformable section; and', '(a4) a first detection electrode formed on the semiconductor substrate,, 'the first detecting section includesthe first ...

Подробнее
31-10-2013 дата публикации

ACOUSTIC TRANSDUCERS WITH PERFORATED MEMBRANES

Номер: US20130285173A1
Принадлежит: NXP B.V.

A MEMS device, such as a microphone, uses a perforated plate. The plate comprises an array of holes across the plate area. The plate has an area formed as a grid of polygonal cells, wherein each cell comprises a line of material following a path around the polygon thereby defining an opening in the centre. In one aspect, the line of material forms a path along each side of the polygon which forms a track which extends at least once inwardly from the polygon perimeter towards the centre of the polygon and back outwardly to the polygon perimeter. This defines a meandering hexagon side wall, which functions as a local spring suspension. 1. A MEMS device comprising at least one membrane ,wherein the at least one membrane has an area including a grid of convex polygonal cells, wherein each cell comprises a line of material of constant width following a path around the polygon thereby defining an opening in the centre of the polygon,wherein the line of material forms a path along each side of the polygon which forms a track which, for each side of the polygon, extends at least once inwardly from the polygon perimeter towards the centre of the polygon and back outwardly to the polygon perimeter, wherein the polygon comprises one of a triangle, a pentagon and a hexagon.2. A device as claimed in claim 1 , wherein the polygon comprises the hexagon.3. A device as claimed in claim 2 , wherein each cell comprises a closed path around the hexagon claim 2 , with indents at the hexagon corners towards the hexagon centre.4. A device as claimed in claim 2 , wherein each side of the hexagon comprises a line between the corners claim 2 , which extends inwardly once towards the centre of the hexagon and outwardly once towards the centre of an adjacent hexagon.5. A device as claimed in claim 4 , wherein each side of the hexagon is rotationally 180 degrees symmetric.6. A device as claimed in claim 4 , wherein each side of the hexagon comprises a line between the corners claim 4 , which ...

Подробнее
07-11-2013 дата публикации

MEMS ELEMENT AND METHOD FOR MANUFACTURING SAME

Номер: US20130292783A1
Автор: YOSHIDA Junichi
Принадлежит: MURATA MANUFACTURING CO., LTD.

An acceleration sensor is formed using an etched layer sandwiched between first and second substrates. In this case, a structure including a movable portion which is displaceable in the thickness direction of the substrates, and a support frame are formed in the etched layer. In addition, first and second fixed electrodes are formed on the first and second substrates, respectively, at a position facing the movable portion. Further, a remaining sacrificial layer is provided on the substrate by leaving a portion of a second sacrificial layer when a first sacrificial layer is entirely etched away. Therefore, when the first sacrificial layer is etched away, corrosion of the structure and the support beams is prevented because the second sacrificial layer is preferentially corroded as compared to the structure. 1. A MEMS element comprising:a substrate;a smooth surface member provided on the substrate and including a smooth surface; anda structure provided on the substrate and disposed in contact with a first sacrificial layer; whereinthe first sacrificial layer is capable of being entirely etched away by an etchant that corrodes the smooth surface member;a second sacrificial layer is arranged on the substrate so as to be electrically connected to the smooth surface member, the second sacrificial layer having a higher ionization tendency than that of the smooth surface member so as to be capable of being preferentially etched away as compared to the smooth surface member; anda portion of the second sacrificial layer remains are the first sacrificial layer has been entirely etched away.2. The MEMS element according to claim 1 , wherein a cover is provided on the smooth surface member so as to cover a structure thereof.3. A MEMS element comprising:a substrate;a structure in which a fixed portion fixed to the substrate and a movable portion spaced from the substrate are connected to each other through a support beam; anda smooth surface member including a smooth surface and ...

Подробнее