Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 214. Отображено 170.
22-05-2018 дата публикации

Micro-electro-mechanical pressure device and methods of forming same

Номер: US0009975756B2

A micro-electro-mechanical pressure sensor device, formed by a cap region and by a sensor region of semiconductor material. An air gap extends between the sensor region and the cap region; a buried cavity extends underneath the air gap, in the sensor region, and delimits a membrane at the bottom. A through trench extends within the sensor region and laterally delimits a sensitive portion housing the membrane, a supporting portion, and a spring portion, the spring portion connecting the sensitive portion to the supporting portion. A channel extends within the spring portion and connects the buried cavity to a face of the second region. The first air gap is fluidically connected to the outside of the device, and the buried cavity is isolated from the outside via a sealing region arranged between the sensor region and the cap region.

Подробнее
18-05-2022 дата публикации

CAPACITIVE RF MEMS INTENDED FOR HIGH-POWER APPLICATIONS

Номер: EP3237324B1
Принадлежит: THALES

Подробнее
17-10-2018 дата публикации

MEMS Device

Номер: GB0002561403A
Принадлежит:

Micro-electro-mechanical system (MEMS) microphone device comprising a semiconductor die 102 including integrated circuitry 113, a thermal isolation structure 414, 404, 412 mounted on the semiconductor die and covering the circuitry, the structure defining a space between the structure and the circuitry, and a transducer membrane 106 located outside of the space. The circuitry may comprise a metal layer coupled to a heatsink. The circuitry may comprise a voltage regulator having bond pad connections on the die surface.

Подробнее
27-12-2019 дата публикации

OPTICAL MODULE COMPRISING AN ELECTRONIC CARD WITH AN ELECTRONIC CHIP

Номер: FR0003082920A1
Принадлежит:

Подробнее
25-09-2020 дата публикации

CAPACITIVE RF MEMS FOR HIGH POWER APPLICATIONS

Номер: FR0003030476B1
Принадлежит: Thales SA

Selon un aspect de l'invention, il est proposé un Microsystème ElectroMécanique radiofréquence capacitif ou MEMS RF capacitif comprenant une membrane métallique suspendue au-dessus d'une ligne de transmission RF et reposant sur des plans de masse, et présentant une face inférieure, une face supérieure opposée à la face inférieure et une première couche comprenant un matériau métallique réfractaire recouvrant au moins partiellement la face supérieure de la membrane de manière à empêcher l'échauffement de la membrane. According to one aspect of the invention, there is provided an ElectroMechanical radiofrequency capacitive or capacitive RF MEMS system comprising a metal membrane suspended above an RF transmission line and resting on ground planes, and having a lower face, a upper face opposite the lower face and a first layer comprising a refractory metallic material at least partially covering the upper face of the membrane so as to prevent heating of the membrane.

Подробнее
19-01-2023 дата публикации

MEMS MODULE AND METHOD OF MANUFACTURING MEMS MODULE

Номер: US20230016416A1
Принадлежит: ROHM CO., LTD.

A MEMS module includes: a MEMS element provided with a substrate in which a hollow portion is formed, and including a movable portion, which is a part of the substrate, around the hollow portion, the movable portion having a thickness whose shape is changeable by an air pressure difference between an air pressure inside the hollow portion and an air pressure outside the substrate; and an electronic component, to which an output signal of the MEMS element is inputted, formed on the substrate, wherein the electronic component and the MEMS element are spaced apart from each other in a direction perpendicular to a thickness direction of the movable portion.

Подробнее
10-09-2020 дата публикации

MIKROFONGEHÄUSE FÜR VOLLUMMANTELTE ASIC UND DRÄHTE UND DARAUF GERICHTETES HERSTELLUNGSVERFAHREN

Номер: DE112018002672B4

Mikrofonvorrichtung, umfassend:ein Gehäuse, das ein Substrat mit einer ersten Oberfläche und einer über dem Substrat angeordneten Abdeckung umfasst, wobei das Gehäuse eine Schallöffnung zwischen dem Inneren des Gehäuses und der Außenseite des Gehäuses umfasst;einen Mikroelektromechanisches-System (MEMS) -Wandler, der auf dem Substrat montiert ist;eine integrierte Schaltung (IC), die auf dem Substrat montiert ist;den MEMS-Wandler, der elektrisch mit der IC verbunden ist;wobei die IC elektrisch mit einem Leiter auf dem Substrat verbunden ist;ein Ummantelungsmaterial, das den IC bedeckt; undeine Ummantelungsmaterial-Einschließungsstruktur, die zwischen dem MEMS-Wandler und dem IC angeordnet ist, wobei die Ummantelungsmaterial-Einschließungsstruktur das Ummantelungsmaterial wenigstens teilweise um den IC herum einschließt;wobei die Ummantelungsmaterial-Einschließungsstruktur einen Wandabschnitt umfasst, der zwischen dem MEMS-Wandler und dem IC angeordnet ist; undwobei das Substrat einen Hohlraum ...

Подробнее
18-10-2018 дата публикации

THERMAL PROTECTION MECHANISMS FOR UNCOOLED MICROBOLOMETERS

Номер: CA0003052956A1
Принадлежит: RICHES, MCKENZIE & HERBERT LLP

Methods and apparatus for preventing solar damage, and other heat-related damage, to uncooled microbolometer pixels. In certain examples, at least some of the pixels (110) of an uncooled microbolometer are configured with a bimetallic thermal shorting structure (200) that protects the pixel(s) from excessive heat damage. In other examples a thermochroic membrane that becomes highly reflective at temperatures above a certain threshold is applied over the microbolometer pixels to prevent the pixels from being damaged by excessive heat.

Подробнее
10-01-2023 дата публикации

Systems and methods for operating a MEMS device based on sensed temperature gradients

Номер: US0011548780B2
Принадлежит: InvenSense, Inc., INVENSENSE, INC.

An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.

Подробнее
03-05-2018 дата публикации

Halbleiter-Differenzdrucksensor und Herstellungsverfahren des selbigen

Номер: DE102017209858A1
Принадлежит:

Ein Halbleiter-Differenzdrucksensorelement (100A) ist derart ausgebildet, dass spannungssensitive Elemente (6) nur innerhalb einer Membran (5) angeordnet sind und entlang der Membran (5) Spannungsabbaunuten (13) vorgesehen sind, wodurch es schwierig ist, dass sich thermische Spannungen, die durch Ausdehnung oder Kontraktion eines Gehäuses (30) verursacht werden, zu den spannungssensitiven Elementen (6) ausbreiten, wodurch charakteristische Schwankungen unterdrückt werden, die sich aus einer Änderung der Außentemperatur ergeben. Ferner, da eine Konfiguration so vorgesehen ist, dass innerhalb eines vertieften Abschnitts (3) eine Opfersäule (12) vorgesehen ist und dass die Membran (5) von der Opfersäule (12) in einem Membranbildungsschritt gehalten wird, in dem ein zweites Halbleitersubstrat (2) in der Dicke reduziert wird, und einem Funktionselementbildungsschritt, in dem wiederholt ein Reinigungsschritt durchführt wird, kann ein Bruch der Membran (5) verhindert werden, wodurch eine signifikante ...

Подробнее
07-05-2019 дата публикации

A micromechanical structure element and for micromechanical structure of a corresponding inspection method

Номер: CN0104418293B
Принадлежит: ROBERT BOSCH GMBH

本发明提供了一种微机械结构元件和一种用于微机械结构元件的相应检查方法。微机械结构元件包括:至少一个第一区域(1),所述至少一个第一区域通过一弹簧装置(2a)与一第二区域(100)弹性连接;一布置在所述弹簧装置(2a)中和/或上的电阻装置(R;R1;R″;R″';R1、R2、R0),所述电阻装置能够在所述弹簧装置(2a、2b;2a'、2a″、2b'、2b″;22‑25)损坏时至少部分被中断;一检测装置(50;50'),所述检测装置与所述电阻装置(R)电连接,用于检测所述电阻装置(R;R1;R″;R″';R1、R2、R0)的中断和用于产生相应的检测信号(S)。

Подробнее
19-01-2016 дата публикации

Semiconductor arrangement with stress release and thermal insulation

Номер: US0009238578B2

Among other things, one or more semiconductor arrangements and techniques for forming such semiconductor arrangements are provided herein. A semiconductor arrangement comprises a cap wafer, a microelectromechanical systems (MEMS) wafer, and a complementary metal-oxide-semiconductor (CMOS) wafer. The cap wafer comprises one or more spring structures, such as a first spring structure and a second spring structure. The first spring structure and the second spring structure relieve stress as portions of the semiconductor arrangement, such as a membrane and a poly layer, move. An ambient pressure chamber is formed between the CMOS wafer and the MEMS wafer, such as for CMOS outgassing relief. One or more thermal insulator structures are formed between the CMOS wafer and the MEMS wafer to protect the MEMS wafer from heat originating from the CMOS wafer.

Подробнее
07-06-2017 дата публикации

MEMS Device

Номер: GB0201706637D0
Автор:
Принадлежит:

Подробнее
10-12-2019 дата публикации

Microelectromechanical resonator with improved electrical features

Номер: US0010501310B2

A MEMS resonator is equipped with a substrate, a moving structure suspended above the substrate in a horizontal plane formed by first and second axes, having first and second arms, parallel to one another and extending along the second axis, coupled at their respective ends by first and second transverse joining elements, forming an internal window. A first electrode structure is positioned outside the window and capacitively coupled to the moving structure. A second electrode structure is positioned inside the window. One of the first and second electrode structures causes an oscillatory movement of the flexing arms in opposite directions along the first horizontal axis at a resonance frequency, and the other electrode structure has a function of detecting the oscillation. A suspension structure has a suspension arm in the window. An attachment arrangement is coupled to the suspension element centrally in the window, near the second electrode structure.

Подробнее
28-01-2020 дата публикации

Microphone package for fully encapsulated ASIC and wires

Номер: US0010547955B2

A microphone device includes a housing including a substrate having a first surface and a cover disposed over the substrate, the housing including a sound port between the interior of the housing and the exterior of the housing. The device also includes a microelectromechanical systems (MEMS) transducer mounted on the substrate and an integrated circuit (IC) mounted on the substrate. The MEMS transducer of the device is electrically connected to the IC, and the IC of the device is electrically connected to a conductor on the substrate. An encapsulating material covers the IC. And an encapsulating material confinement structure is disposed between the MEMS transducer and the IC, wherein the encapsulating material confinement structure at least partially confines the encapsulating material around the IC.

Подробнее
06-05-2021 дата публикации

METHOD FOR MANUFACTURING A SUBSTRATE HAVING A REGION MECHANICALLY DECOUPLED FROM A SUPPORT, METHOD FOR MANUFACTURING AT LEAST ONE SPRING, AND A SUBSTRATE

Номер: US20210130168A1
Принадлежит:

A method for manufacturing a substrate including a region, which is mechanically decoupled from a support and has at least one component situated on the region; at least one recess being introduced on a front side of the substrate; an etching pattern being prepared on a back side of the substrate and etched anisotropically in such a manner, that vertical channels are produced on the back side of the substrate; and subsequently, a cavity being introduced at the back side of the substrate; the at least one recess on the front side of the substrate being connected to the cavity on the back side of the substrate; and in at least one region between the front side of the substrate and the cavity, at least two recesses or at least two segments of a recess being interconnected by at least one channel.

Подробнее
19-10-2023 дата публикации

APPARATUS AND METHOD FOR DISSIPATING HEAT WITH MICROELECTROMECHANICAL SYSTEM

Номер: US20230331545A1
Автор: Joel Richard Goergen
Принадлежит: Cisco Technology Inc

In one or more embodiments, an apparatus generally comprises a microelectromechanical system (MEMS) module comprising a plurality of air movement cells and a power unit operable to control the plurality of air movement cells, and a housing configured for slidably receiving the MEMS module and positioning the MEMS module adjacent to a heat generating component of a network device. The MEMS module is operable to dissipate heat from the heat generating component and is configured for online installation and removal during operation of the heat generating component.

Подробнее
05-03-2015 дата публикации

Mikromechanisches Bauelement und entsprechendes Prüfverfahren für ein mikromechanisches Bauelement

Номер: DE102013217094A1
Принадлежит:

Die vorliegende Erfindung schafft ein mikromechanisches Bauelement und ein entsprechendes Prüfverfahren für ein mikromechanisches Bauelement. Das mikromechanisches Bauelement umfasst mindestens einen ersten Bereich (1; 1a), welcher über eine Federeinrichtung (2a, 2b; 2a, 2a, 2b, 2b; 2225) mit einem zweiten Bereich (100; 1b) elastisch verbunden ist, eine in und/oder auf der Federeinrichtung (2a, 2b) angeordnete Widerstandseinrichtung (R; R1; R; R; R1, R2, R0), welche bei einer Beschädigung der Federeinrichtung (2a, 2b; 2a, 2a, 2b, 2b; 2225) zumindest teilweise unterbrechbar ist, und eine Erfassungseinrichtung (50; 50), welche elektrisch mit der Widerstandseinrichtung (R) verbunden ist, zum Erfassen einer Unterbrechung der Widerstandseinrichtung (R; R1; R; R; R1, R2, R0) und zum Erzeugen eines entsprechenden Erfassungssignals (S).

Подробнее
24-06-2016 дата публикации

CAPACITIVE RF MEMS FOR HIGH POWER APPLICATIONS

Номер: FR0003030476A1
Принадлежит: THALES

Selon un aspect de l'invention, il est proposé un Microsystème ElectroMécanique radiofréquence capacitif ou MEMS RF capacitif comprenant une membrane métallique suspendue au-dessus d'une ligne de transmission RF et reposant sur des plans de masse, et présentant une face inférieure, une face supérieure opposée à la face inférieure et une première couche comprenant un matériau métallique réfractaire recouvrant au moins partiellement la face supérieure de la membrane de manière à empêcher l'échauffement de la membrane.

Подробнее
04-11-2021 дата публикации

Mikromechanisches Bauelement und entsprechendes Prüfverfahren für ein mikromechanisches Bauelement

Номер: DE102013217094B4
Принадлежит: BOSCH GMBH ROBERT, Robert Bosch GmbH

Mikromechanisches Bauelement mit:mindestens einem ersten Bereich (1; 1a), welcher über eine Federeinrichtung (2a, 2b; 2a', 2a", 2b', 2b"; 22-25) mit einem zweiten Bereich (100; 1b) elastisch verbunden ist;einer in und/oder auf der Federeinrichtung (2a, 2b) angeordneten Widerstandseinrichtung (R; R1; R"; R'''; R1, R2, R0), welche bei einer Beschädigung der Federeinrichtung (2a, 2b; 2a', 2a", 2b', 2b"; 22-25) zumindest teilweise unterbrechbar ist; undeiner Erfassungseinrichtung (50; 50'), welche elektrisch mit der Widerstandseinrichtung (R) verbunden ist, zum Erfassen einer Unterbrechung der Widerstandseinrichtung (R; R1; R"; R'''; R1, R2, R0) und zum Erzeugen eines entsprechenden Erfassungssignals (S; S1, S2).dadurch gekennzeichnet, dass der erste Bereich (1a) ein elastisch auslenkbarer Antriebsbereich und der zweite Bereich ein elastisch auslenkbarer Spiegelbereich ist.

Подробнее
20-11-2018 дата публикации

Monolithic fabrication of thermally isolated microelectromechanical system (MEMS) devices

Номер: US0010131535B2

A method for fabricating a thermally isolated microelectromechanical system (MEMS) structure is provided. The method includes processing a first wafer of a first material with a glass wafer to form a composite substrate including at least one sacrificial structure of the first material and glass; forming a MEMS device in a second material; forming at least one temperature sensing element on at least one of: the composite substrate; and the MEMS device; and etching away the at least one sacrificial structure of the first material in the composite substrate to form at least one thermally isolating glass flexure. The MEMS device is thermally isolated on a thermal isolation stage by the at least one thermally isolating glass flexure. The at least one temperature sensing element in on a respective at least one of: the thermal isolation stage; and the MEMS device.

Подробнее
29-01-2019 дата публикации

Internal temperature measurement device

Номер: US0010190921B2

Provided is an internal temperature measurement device capable of measuring an internal temperature of a measuring object for which the thermal resistance value of a non-heating body present on the surface side of the object is unknown, more accurately with better responsiveness than hitherto. The internal temperature measurement device 10 includes a MEMS chip 12 including: two cells 20a, 20b for measuring two heat fluxes for calculating an internal temperature of a measuring object for which the thermal resistance value of a non-heating body is unknown; and a cell 20c for increasing a difference between the heat fluxes.

Подробнее
30-07-2020 дата публикации

MICROPHONE PACKAGE

Номер: US20200245078A1
Принадлежит: Knowles Electronics, LLC

A microphone includes a housing including a substrate and a cover disposed over the substrate, the housing including a sound port between the interior of the housing and the exterior of the housing. The microphone also includes a microelectromechanical systems (MEMS) transducer and an integrated circuit (IC) positioned within the housing and mounted on a common surface of the housing, where the MEMS transducer is electrically connected to the IC, and the IC is electrically connected to a conductor on the substrate. The microphone further includes an encapsulating material covering the IC, and an encapsulating material confinement structure disposed between the MEMS transducer and the IC, where the encapsulating material confinement structure at least partially confines the encapsulating material around the IC. 1. A microphone device , comprising:a housing including a substrate and a cover disposed over the substrate, the housing including a sound port between the interior of the housing and the exterior of the housing;a microelectromechanical systems (MEMS) transducer and an integrated circuit (IC) positioned within the housing and mounted on a common surface of the housing, the MEMS transducer electrically connected to the IC, and the IC electrically connected to a conductor on the substrate;an encapsulating material covering the IC; andan encapsulating material confinement structure disposed between the MEMS transducer and the IC, wherein the encapsulating material confinement structure at least partially confines the encapsulating material around the IC.2. The microphone device of claim 1 , wherein the encapsulating material completely covers the IC.3. The microphone device of claim 1 , wherein the encapsulating material confinement structure includes a wall portion disposed between the MEMS transducer and the IC.4. The microphone device of claim 3 , wherein the substrate is the common surface of the housing claim 3 , wherein the MEMS transducer and the IC are ...

Подробнее
23-01-2020 дата публикации

VORRICHTUNG ZUR UNTERDRÜCKUNG VON STÖRSTRAHLUNG

Номер: DE102018216361B3

Vorrichtung, umfassend ein MEMS-Sensormodul und eine leitfähige Käfigstruktur. Die leitfähige Käfigstruktur kann das MEMS-Sensormodul umschließen, um ein Eindringen von elektro-magnetischer Störstrahlung mit einer Störwellenlänge λin die leitfähige Käfigstruktur zu unterdrücken, und die leitfähige Käfigstruktur kann von dem MEMS-Sensormodul thermisch isoliert angeordnet sein. Zudem kann die Vorrichtung zumindest eine Verbindungsleitung umfassen. Die zumindest eine Verbindungsleitung kann an das MEMS-Sensormodul angeschlossen sein und mittels eines kapazitiven Elements durch die leitfähige Käfigstruktur geführt sein.

Подробнее
04-12-2018 дата публикации

MICROELECTROMECHANICAL RESONATOR WITH IMPROVED ELECTRICAL FEATURES

Номер: CN0108933578A
Принадлежит:

Подробнее
29-01-2019 дата публикации

Embedded structures for high glass strength and robust packaging

Номер: US0010189707B2

A sensor device is constructed to maintain a high glass strength to avoid the glass failure at low burst pressure, resulting from the sawing defects located in the critical high stress area of the glass pedestal as one of the materials used for construction of the sensor. This is achieved by forming polished recess structures in the critical high stress areas of the sawing street area. The sensor device is also constructed to have a robust bonding with the die attach material by creating a plurality of micro-posts on the mounting surface of the glass pedestal.

Подробнее
13-02-2020 дата публикации

MIKROFONGEHÄUSE FÜR VOLLUMMANTELTE ASIC UND DRÄHTE

Номер: DE112018002672T5

Eine Mikrofonvorrichtung umfasst ein Substrat mit einem Hohlraum. Die Vorrichtung umfasst auch einen mikroelektromechanischen System (MEMS)-Wandler, der auf dem Substrat außerhalb des Hohlraums montiert ist, und eine anwendungsspezifische integrierte Schaltung, die in dem Hohlraum montiert ist. Ein erster Satz von Bonddrähten verbindet den MEMS-Wandler mit dem ASIC und ein zweiter Satz von Bonddrähten verbindet die ASIC mit einem Leiter innerhalb des Hohlraums. Ein Ummantelungsmaterial bedeckt die ASIC und wenigstens einen Teil des zweiten Kabelsatzes vollständig und ist im Wesentlichen im Hohlraum eingeschlossen. Eine Abdeckung ist über dem Substrat angebracht, um den MEMS-Wandler, das Ummantelungsmaterial, die ASIC, den ersten Satz Bonddrähte und den zweiten Satz Bonddrähte abzudecken.

Подробнее
21-04-2020 дата публикации

Microphone package

Номер: US0010631099B2

A microphone includes a substrate defining an embedded cavity between a first surface of the substrate and an opposing second surface of the substrate, the first surface defining a first opening into the embedded cavity, a distance between the first surface and the second surface defining a substrate thickness. A cover is disposed over the first surface of the substrate and forms a housing, the cover including a port, the substrate thickness being greater than a height of the cover from the first surface of the substrate. A microelectromechanical systems (MEMS) transducer is disposed in the housing and mounted on the first surface of the substrate over the first opening, and an integrated circuit (IC) is disposed in the housing and electrically coupled to the MEMS transducer. The MEMS transducer and the IC are disposed in a front volume of the housing defined by the cover and the substrate.

Подробнее
06-09-2012 дата публикации

INFRARED SENSOR DESIGN USING AN EPOXY FILM AS AN INFRARED ABSORPTION LAYER

Номер: US20120223400A1
Принадлежит: TEXAS INSTRUMENTS INCORPORATED

A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.

Подробнее
14-03-2023 дата публикации

MEMS device with optimized geometry for reducing the offset due to the radiometric effect

Номер: US0011603310B2
Принадлежит: STMICROELECTRONICS S.R.L.

A MEMS device with teeter-totter structure includes a mobile mass having an area in a plane and a thickness in a direction perpendicular to the plane. The mobile mass is tiltable about a rotation axis extending parallel to the plane and formed by a first and by a second half-masses arranged on opposite sides of the rotation axis. The first and the second masses have a first and a second centroid, respectively, arranged at a first and a second distance b1, b2, respectively, from the rotation axis. First through openings are formed in the first half-mass and, together with the first half-mass, have a first total perimeter p1 in the plane. Second through openings are formed in the second half-mass and, together with the second half-mass, have a second total perimeter p2 in the plane, where the first and the second perimeters p1, p2 satisfy the equation: p1×b1=p2×b2.

Подробнее
18-01-2019 дата публикации

For high glass strength and soundness packing embedded structure

Номер: CN0105910736B
Автор:
Принадлежит:

Подробнее
30-11-2021 дата публикации

Systems and methods for operating a MEMS device based on sensed temperature gradients

Номер: US0011186479B2
Принадлежит: INVENSENSE, INC., INVENSENSE INC

An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.

Подробнее
19-07-2018 дата публикации

MEMS-Heiz- oder Emitter-Struktur für schnelle Heiz- und Kühlzyklen

Номер: DE102017106593B4

Verfahren zum Betreiben eines Mikroelektromechaniksystem-Elements, das ein bewegbares Heizelement (104), das mittels einer Verankerung (108) über einem Substrat (110) gelagert ist, sodass ein Hohlraum (106) zwischen dem Heizelement und dem Substrat gebildet ist, umfasst, wobei das Verfahren Folgendes umfasst:Erwärmen des bewegbaren Heizelements (104) durch Verursachen eines Stromflusses durch das bewegbare Heizelement (104), während das bewegbare Heizelement (104) vom Substrat beabstandet ist; undKühlen des bewegbaren Heizelements (104) durch Veranlassen eines physischen Kontakts des bewegbaren Heizelements (104) zu dem Substrat (110), während es vom Substrat (110) elektrisch isoliert ist.

Подробнее
03-04-2020 дата публикации

Nanometer heat flow regulation and control device

Номер: CN0109422233B
Автор:
Принадлежит:

Подробнее
20-07-2011 дата публикации

Sensor device packaging and method

Номер: CN0102132136A
Принадлежит:

A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.

Подробнее
16-02-2021 дата публикации

Sensor and package assembly thereof

Номер: TW202106605A

本發明揭露了一種感測器的封裝組件,包括:重佈線層,其包括相對的第一面和第二面;第一晶粒,其電連接至所述重佈線層的所述第一面;模塑膠,其包括相對的第三面和第四面,所述模塑膠的所述第三面與所述重佈線層的所述第一面結合;所述模塑膠在所述重佈線層的所述第一面側囊封所述第一晶粒;以及,感測元件,其電連接至所述重佈線層。該感測器的封裝組件允許更多的元件封裝在一起,並且提供更好的結構支撐或提供封裝組件更好的熱分佈,同時降低了整個封裝組件的體積和成本。

Подробнее
14-01-2016 дата публикации

MEMS PRESSURE SENSOR WITH THERMAL COMPENSATION

Номер: US20160009546A1
Принадлежит:

A semiconductor device having a capacitive pressure sensor structure includes a substrate, an interlayer dielectric layer on the substrate, a bottom electrode of a pressure sensor within the interlayer dielectric layer, a pressure sensing cavity above the bottom electrode, a sensing film above the pressure sensing cavity and covering a portion of the interlayer dielectric layer, a cover layer on the interlayer dielectric layer and on the sensing film, the cover layer having an opening exposing a portion of the sensing film, and a high thermal expansion coefficient material layer disposed on cover layer and sidewalls of the opening. Through the use of the high thermal expansion coefficient material layer, the capacitive pressure sensor structure is not susceptible to changes in ambient temperature to enhance the sensitivity of the capacitive pressure sensor structure. 1. A semiconductor device comprising:a substrate;an interlayer dielectric layer on the substrate;a bottom electrode of a pressure sensor within the interlayer dielectric layer;a pressure sensing cavity above the bottom electrode;a sensing film above the pressure sensing cavity and covering a portion of the interlayer dielectric layer;a cover layer on the interlayer dielectric layer and on the sensing film, the cover layer having an opening exposing a portion of the sensing film;a high thermal expansion coefficient material layer disposed on cover layer and sidewalls of the opening.2. The semiconductor device of claim 1 , wherein the sensing film comprises silicon or silicon germanium.3. The semiconductor device of claim 1 , wherein the layer having a high thermal expansion coefficient material is disposed in a peripheral edge of the sensing film.4. The semiconductor device of claim 1 , wherein the high thermal expansion coefficient material layer is distributed in an annular form around a peripheral edge of the sensing film.5. The semiconductor device of claim 1 , wherein the layer having a high thermal ...

Подробнее
29-12-2016 дата публикации

SYSTEMS AND METHODS FOR NUCLEAR EVENT CIRCUMVENTION IN AN INERTIAL DEVICE

Номер: US20160377645A1
Принадлежит: Honeywell International Inc.

Systems and methods with the ability to raise the set point temperature immediately after a temperature increase due to radiation exposure, thereby reducing T-dot (rate of change in temperature) errors when trying to cool the inertial system back to its original set point temperature. An example system includes an inertial instrument, a sensor that senses if an increased temperature event has been experienced by the inertial instrument, and a controller device that will increase the set point temperature of the inertial instrument based on the determined increase in temperature. The controller device will also maintain the inertial instrument at a temperature associated with at least one of the sensed increased temperature event or the increased set point temperature.

Подробнее
05-11-2020 дата публикации

MICROPHONE DEVICE AND METHOD FOR MANUFACTURING SAME

Номер: US20200351596A1
Принадлежит:

A MEMS microphone device greatly reduced in size includes a metallic substrate, a printed circuit including an audio sensor, and a processing chip. The metallic substrate includes a first bent portion and a second bent portion. The printed circuit is directly formed by thick film printing on the metal substrate which is then punched and shaped into the first and second bent portions. The audio sensor receives sounds and functions as a microphone. The processing chip is coupled to the printed circuit and processes the electrical signal. A method for manufacturing such microphone device is also disclosed.

Подробнее
19-08-2021 дата публикации

Sensor und Gehäusebaugruppe davon

Номер: DE112019005860T5
Принадлежит: BOSCH GMBH ROBERT, Robert Bosch GmbH

Die vorliegende Erfindung offenbart eine Gehäusebaugruppe eines Sensors, die Folgendes umfasst: eine Umverteilungsschicht, die eine erste Fläche und eine zweite Fläche umfasst, die einander gegenüberliegen; einen ersten Die, der elektrisch mit der ersten Fläche der Umverteilungsschicht verbunden ist; eine Vergussmasse, die eine dritte Fläche und eine vierte Fläche umfasst, die einander gegenüberliegen, wobei die dritte Fläche der Vergussmasse mit der ersten Fläche der Umverteilungsschicht kombiniert ist und die Vergussmasse den ersten Die auf der Seite der ersten Fläche der Umverteilungsschicht verkapselt; und ein Erfassungselement, das elektrisch mit der Umverteilungsschicht verbunden ist. Die Gehäusebaugruppe des Sensors ermöglicht, dass mehrere Elemente zusammen gekapselt werden und stellt eine bessere strukturelle Unterstützung bereit oder stellt eine bessere Wärmeverteilung für die Gehäusebaugruppe bereit und reduziert zur gleichen Zeit das Volumen und die Kosten der gesamten Gehäusebaugruppe ...

Подробнее
25-03-2014 дата публикации

Thermally neutral anchor configuration for an electromechanical actuator

Номер: US0008680955B1

A micro-electromechanical systems (MEMS) switch having a thermally neutral anchor configuration is provided. The MEMS switch includes a substrate onto which a first conductive pad and a second conductive pad are formed. A first conductive pad anchor is coupled to the first conductive pad and a second conductive anchor spaced from the first conductive anchor is also coupled to the first conductive pad. A conductive cantilever beam has a first end portion that is situated between and coupled to the first and second conductive anchors. Moreover, the conductive cantilever beam has a second end portion that is suspended over the second conductive pad, and a middle portion between the first end portion and the second end portion. The MEMS switch also includes a conductive actuator plate formed on the substrate at a location beneath the middle portion of the conductive cantilever beam and between the first and second conductive pads.

Подробнее
15-09-2022 дата публикации

MICROELECTRONICS H-FRAME DEVICE

Номер: US20220289559A1
Принадлежит: Northrop Grumman Systems Corp

A microelectronics H-frame device includes: a stack of two or more substrates wherein the substrate stack comprises a top substrate and a bottom substrate, wherein bonding of the top substrate to the bottom substrate creates a vertical electrical connection between the top substrate and the bottom substrate, wherein the top surface of the top substrate comprises top substrate top metallization, wherein the bottom surface of the bottom substrate comprises bottom substrate bottom metallization; mid-substrate metallization located between the top substrate and the bottom substrate; a micro-machined top cover bonded to a top side of the substrate stack; and a micro-machined bottom cover bonded to a bottom side of the substrate stack.

Подробнее
06-04-2023 дата публикации

SYSTEMS AND METHODS FOR OPERATING A MEMS DEVICE BASED ON SENSED TEMPERATURE GRADIENTS

Номер: US20230107211A1
Принадлежит: InvenSense Inc

An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.

Подробнее
25-05-2022 дата публикации

ENCLOSURE FOR ION TRAPPING DEVICE

Номер: EP4002427A1
Принадлежит:

Devices, methods, and systems for enclosures for an ion trapping device are described herein. One enclosure for an ion trapping device includes a heat spreader base that includes a plurality of apertures. The ion trapping device may also include a grid array having a plurality of pins extending outward from a surface of the grid array. The apertures of the heat spreader base may be arranged such that the plurality of pins passes through the plurality of apertures.

Подробнее
01-08-2013 дата публикации

Halbleitermessvorrichtung zur Minimierung von thermischem Rauschen

Номер: DE102013200106A1
Принадлежит:

Ein MEMS-Drucksensor ist dazu ausgebildet, thermisches Rauschen, wie zum Beispiel eine Temperatur-Offset-Spannungsausgabe, zu reduzieren oder vollständig zu unterdrücken. Der Drucksensor umfasst ein Druckmesselement mit einer Membran, sowie einen Hohlraum, welcher als Teil des Druckmesselementes ausgebildet ist, wobei der Hohlraum ein Fluid aufnimmt, so dass sich die Membran wenigstens teilweise auslenkt. Das Druckmesselement umfasst ebenso eine Mehrzahl an Piezowiderständen, welche derart betreibbar sind, um ein Signal auf Grundlage des Ausmaßes an Auslenkung der Membran ein Signal zu erzeugen. Wenigstens ein Graben ist integral als Teil des Druckmesselementes ausgebildet, wobei eine Klebmittel das Druckmesselement mit dem wenigstens einen Substrat verbindet, so dass sich wenigstens ein Abschnitt des Klebmittels in dem Graben befindet und thermisch induzierte Spannungen auf das Druckmesselement verteilt, so dass das thermisch induzierte Rauschen im Wesentlichen eliminiert ist.

Подробнее
28-09-2017 дата публикации

SYSTEM AND METHOD FOR AN OVENIZED SILICON PLATFORM USING Si/SiO2 HYBRID SUPPORTS

Номер: US20170275157A1
Принадлежит: Evigia Systems, Inc.

The present invention generally relates to an ovenized platform and a fabrication process thereof. Specifically, the invention relates to an ovenized hybrid Si/SiOplatform compatible with typical CMOS and MEMS fabrication processes and methods of its manufacture. Embodiments of the invention may include support arms, CMOS circuitry, temperature sensors, IMUs, and/or heaters among other elements. 1. An ovenized silicon platform comprising:at least one silicon layer;at least one silicon oxide layer;{'sub': '2', 'a hybrid Si/SiOplatform support structure,'}wherein said support structure is formed by depositing silicon oxide within trenches formed by a deep reactive ion etching of a silicon layer to create alternating layers of silicon and silicon oxide configured to thermally isolate the platform from temperature fluctuations; andat least one thin-film electrical interconnect displaced on the top surface of said platform.2. The platform of further comprising: at least one element selected from the group comprising CMOS circuitry claim 1 , thermal sensor claim 1 , heater claim 1 , and inertial sensor.3. The platform of wherein the alternating layers of silicon and silicon oxide within the platform support structure are separated by a layer of silicon nitride.4. The platform of wherein the at least one silicon layer is a device layer of a silicon-on-isolator wafer.5. The platform of comprising at least one thermal sensor and at least one heater wherein said at least one thermal sensor and said at least one heater are each positioned within a layer of silicon.6. The platform of comprising at least one thermal sensor and at least one heater wherein said at least one thermal sensor and said at least one heater are each positioned on the top surface of said platform.7. The platform of wherein the thin-film electrical interconnect is a trace comprising metal or polysilicon.8. A method for fabricating an ovenized silicon platform claim 1 , said method comprising the steps of: ...

Подробнее
25-08-2016 дата публикации

Eingebettete Strukturen für hohe Glasfestigkeit und stabiles Packaging

Номер: DE102016200701A1
Принадлежит:

Eine Sensoreinrichtung ist zur Aufrechterhaltung einer hohen Glasfestigkeit konstruiert, um den Glasdefekt bei geringem Berstdruck zu vermeiden, der aus den Schneid-Defekten resultiert, die in dem kritischen Hochbeanspruchungsbereich des Glassockels lokalisiert sind, wenn eines der Materialien für die Konstruktion des Sensors verwendet werden. Dies wird erreicht durch Bilden von polierten Ausnehmungsstrukturen in den kritischen Hochbeanspruchungsbereichen des Sägestraßenbereichs. Das Sensorelement ist außerdem derart konstruiert, um ein stabiles Bonden mit dem Die-Befestigungsmaterial aufzuweisen, und zwar durch Erzeugen einer Mehrzahl von Mikro-Stäben auf der Befestigungsfläche des Glassockels.

Подробнее
19-07-2018 дата публикации

Verfahren zum Herstellen eines Substrates mit einem von einem Träger mechanisch entkoppelten Bereich, Verfahren zum Herstellen von mindestens einer Feder und eines Substrates

Номер: DE102017200587A1
Принадлежит:

Offenbart wird ein Verfahren zum Herstellen eines Substrates mit einem von einem Träger mechanisch entkoppelten Bereich mit mindestens einem auf dem Bereich angeordneten Bauteil bereitgestellt, wobei mindestens eine Ausnehmung auf einer Vorderseite des Substrates eingebracht werden, ein Ätzmuster auf einer Rückseite des Substrates vorbereitet und derart anisotrop geätzt wird, dass vertikale Kanäle auf der Rückseite des Substrates erzeugt werden und anschließend ein Hohlraum an der Rückseite des Substrates eingebracht wird, wobei die mindestens eine Ausnehmung auf der Vorderseite des Substrates mit dem Hohlraum auf der Rückseite des Substrates verbunden wird und mindestens zwei Ausnehmungen oder mindestens zwei Abschnitte einer Ausnehmung in mindestens einem Bereich zwischen der Vorderseite des Substrates und dem Hohlraum durch mindestens eine Aushöhlung miteinander verbunden werden, sodass mindestens eine zwischen den mindestens zwei Ausnehmungen oder mindestens zwei Abschnitte einer Ausnehmung ...

Подробнее
18-10-2018 дата публикации

THERMAL PROTECTION MECHANISMS FOR UNCOOLED MICROBOLOMETERS

Номер: US20180299329A1
Принадлежит: Raytheon Co

Methods and apparatus for preventing solar damage, and other heat-related damage, to uncooled microbolometer pixels. In certain examples, at least some of the pixels of an uncooled microbolometer are configured with a bimetallic thermal shorting structure that protects the pixel(s) from excessive heat damage. In other examples a thermochroic membrane that becomes highly reflective at temperatures above a certain threshold is applied over the microbolometer pixels to prevent the pixels from being damaged by excessive heat.

Подробнее
31-03-2016 дата публикации

Stress Isolation Platform for MEMS Devices

Номер: US20160090297A1
Принадлежит:

A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform. 1. An apparatus that includes a micro-electro-mechanical system (MEMS) structure and trenches to relief stress on the MEMS structure comprising:a MEMS structure in a substrate, the substrate including at least one trench passing through the substrate to receive stress on the MEMS structure; andat least one flexible electrical conductor electrically coupled to the MEMS structure, and spanning the at least one trench in the substrate, the flexible electrical conductor configured to carry an electrical signal across the at least on trench and configured to flex if there is movement on either side of the at least on trench.2. The apparatus of claim 1 , wherein the MEMS device layer further comprises aa top cap coupled to the substrate creating a seal and enclosing the MEMS structure.3. The apparatus of claim 1 , wherein the at least one trench defines a MEMS platform within the substrate claim 1 , the MEMS structure on the MEMS platform claim 1 , the apparatus further comprising:at least one bridge physically coupling the substrate and the MEMS platform.4. The apparatus of claim 3 , wherein the at least one bridge comprises a plurality of bridges disposed between the substrate and the MEMS platform.5. The apparatus of claim 4 , wherein the at least one bridge is a Z-shaped bridge claim 4 , an L-shaped bridge claim 4 , or a U-shaped bridge.6. The apparatus of claim 1 , wherein the electrical conductor comprises a jumper.7. The apparatus of claim 1 , wherein the electrical conductor comprises an electrical conductor on at least one bridge claim 1 , the electrical conductor electrically coupled to the MEMS structure.8. A MEMS device comprising:a substrate;a MEMS platform suspended within the substrate and defining a stress-relief ...

Подробнее
27-07-2017 дата публикации

Innentemperatur-Messvorrichtung

Номер: DE112015004861T5

Bereitgestellt wird eine Innentemperatur-Messvorrichtung, die in der Lage ist, eine Innentemperatur eines Messobjekts, bei dem der an der Oberflächenseite des Objekts vorliegende thermische Widerstandswert eines nicht erwärmenden Körpers nicht bekannt ist, mit einer besseren Ansprechempfindlichkeit als bislang genauer zu messen. Die Innentemperatur-Messvorrichtung 10 umfasst einen MEMS-Chip 12 mit: zwei Zellen 20a, 20b für das Messen von zwei Wärmeflüssen zum Berechnen einer Innentemperatur eines Messobjekts, bei dem der thermische Widerstandswert eines nicht erwärmenden Körpers nicht bekannt ist; und einer Zelle 20c für das Erhöhen einer Differenz zwischen den Wärmeflüssen.

Подробнее
01-09-2017 дата публикации

Micro-electro-mechanical type pressure device having low sensitivity to temperature

Номер: CN0107117577A
Принадлежит:

Подробнее
05-10-2017 дата публикации

Lichtemitterbauelemente, photoakustische Gassensoren und Verfahren zum Bilden von Lichtemitterbauelementen

Номер: DE102017102188A1
Принадлежит:

Ein Lichtemitterbauelement umfasst eine Emitterkomponente umfassend eine Heizerstruktur, die auf einer Membranstruktur angeordnet ist. Die Membranstruktur ist über einem ersten Hohlraum angeordnet. Zusätzlich dazu ist der erste Hohlraum zwischen der Membranstruktur und zumindest einem Abschnitt eines Stützsubstrats der Emitterkomponente angeordnet. Ferner ist die Heizerstruktur ausgebildet, um Licht zu emittieren, wenn ein vordefinierter Strom durch die Heizerstruktur fließt. Zusätzlich dazu umfasst das Lichtemitterbauelement ein Deckelsubstrat mit einer Aussparung. Das Deckelsubstrat ist an die Emitterkomponente so angebracht, dass die Aussparung einen zweiten Hohlraum zwischen der Membranstruktur und dem Deckelsubstrat bildet. Ferner ist ein Druck in dem zweiten Hohlraum kleiner als 100 mbar.

Подробнее
12-08-2021 дата публикации

Innentemperatur-Messvorrichtung

Номер: DE112015004861B4

Innentemperatur-Messvorrichtung (10), umfassend:- einen Basisabschnitt (11), dessen eine Oberfläche in Kontakt mit einer Oberfläche eines Messobjekts zu bringen ist, wenn eine Innentemperatur des Messobjekts gemessen wird;- einen MEMS-Chip (12), der an einer anderen Oberfläche des Basisabschnitts (11) angeordnet ist und umfasst: einen Substratabschnitt mit einem ersten Dünnfilmabschnitt (24a) und einem zweiten Dünnfilmabschnitt (24b), die an der Basisabschnittseite hohl sind; eine erste Thermosäule (25a), die dafür ausgelegt ist, eine erste Temperaturdifferenz zwischen einer vorgegebenen Region und einer anderen Region des ersten Dünnfilmabschnitts (24a) zu messen; und eine zweite Thermosäule (25b), die dafür ausgelegt ist, eine zweite Temperaturdifferenz zwischen einer vorgegebenen Region und einer anderen Region des zweiten Dünnfilmabschnitts (24b) zu messen; und- eine Berechnungseinheit (14), die dafür ausgelegt ist, unter Verwendung der ersten, durch die erste Thermosäule (25a) gemessenen ...

Подробнее
04-02-2014 дата публикации

Sensor device packaging

Номер: US0008643127B2
Принадлежит: S3C, Inc., DANGTRAN JOHN, HORTON ROGER, S3C INC, S3C, INC.

A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.

Подробнее
10-12-2019 дата публикации

Proof mass and polysilicon electrode integrated thereon

Номер: US0010505006B2
Принадлежит: InvenSense, Inc., INVENSENSE INC

A method includes depositing a silicon layer over a first oxide layer that overlays a first silicon substrate. The method further includes depositing a second oxide layer over the silicon layer to form a composite substrate. The composite substrate is bonded to a second silicon substrate to form a micro-electro-mechanical system (MEMS) substrate. Holes within the second silicon substrate are formed by reaching the second oxide layer of the composite substrate. The method further includes removing a portion of the second oxide layer through the holes to release MEMS features. The MEMS substrate may be bonded to a CMOS substrate.

Подробнее
05-10-2017 дата публикации

Lichtemitterbauelemente, optische Filterstrukturen und Verfahren zum Bilden von Lichtemitterbauelementen und optischen Filterstrukturen

Номер: DE102017102183A1
Принадлежит:

Ein Lichtemitterbauelement enthält eine Heizerstruktur, die ausgebildet ist, um Licht zu emittieren, wenn ein vordefinierter Strom durch die Heizerstruktur fließt. Die Heizerstruktur ist auf einer Heizerträgerstruktur angeordnet. Das Lichtemitterbauelement enthält einen oberen Abschnitt eines Hohlraums, der vertikal zwischen der Heizerträgerstruktur und einer Abdeckungsstruktur angeordnet ist. Das Lichtemitterbauelement enthält einen unteren Abschnitt des Hohlraums, der vertikal zwischen der Heizerträgerstruktur und zumindest einem Abschnitt eines Trägersubstrats angeordnet ist. Die Heizerträgerstruktur enthält eine Mehrzahl von Löchern, die den oberen Abschnitt des Hohlraums und den unteren Abschnitt des Hohlraums verbinden. Ein Druck in dem Hohlraum ist kleiner als 100 mbar.

Подробнее
22-01-2019 дата публикации

Internal temperature measuring device

Номер: CN0106605132B
Автор:
Принадлежит:

Подробнее
20-11-2012 дата публикации

Thermally tolerant electromechanical actuators

Номер: US0008314467B1

A micro-electromechanical systems (MEMS) switch having a thermally tolerant anchor configuration is provided. The MEMS switch includes a substrate onto which first and second conductive pads are formed. A conductive cantilever beam having a first end portion, a middle portion, a second end portion, a top surface, and a bottom surface includes an internal surface that defines an open space through the first end portion. A conductive anchor coupled to the internal surface of the first end portion extends through the open space and is coupled to the first conductive pad such that the bottom surface of the second end portion of the conductive cantilever beam is suspended above the second conductive pad by a predetermined distance. The MEMS switch also includes a conductive actuator plate formed on the substrate at a location beneath the middle portion of the conductive cantilever beam and between the first and second conductive pads.

Подробнее
24-12-2019 дата публикации

Mikromechanischer Sensor

Номер: DE102018210111A1
Принадлежит:

Mikromechanischer Sensor (100), aufweisend:- ein Substrat (10);- ein auf dem Substrat (10) angeordnetes Kappenelement (20); und- wenigstens eine orthogonal zum Kappenelement (20) auslenkbare seismische Masse (40), wobei innerhalb einer Kavität (30) ein gegenüber der Umgebung definiert abgesenkter Innendruck herrscht; gekennzeichnet durch- Ausgleichsmittel, die ausgebildet sind, im Betrieb des mikromechanischen Sensors (100) eine Vergleichmäßigung eines Temperaturgradientenfelds in der Kavität (30) bereitzustellen.

Подробнее
04-04-2013 дата публикации

MEMS SENSOR

Номер: WO2013046955A1
Принадлежит:

The present invention has a signal-processing LSI in which is installed a temperature sensor for measuring the sensor temperature, and a MEMS sensor chip installed on the signal-processing LSI; the MEMS sensor chip being installed on the heat-generating unit of the signal-processing LSI. It is thereby possible to provide a MEMS sensor in which the effect of the change in temperature characteristics due to heat is reduced.

Подробнее
17-02-2022 дата публикации

SYSTEMS AND METHODS FOR OPERATING A MEMS DEVICE BASED ON SENSED TEMPERATURE GRADIENTS

Номер: US20220048760A1
Принадлежит:

An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient. 125-. (canceled)26. A microelectromechanical (MEMS) device , comprising:a layer;{'claim-text': ['a first temperature sensor at a first location relative to a center point within the layer, wherein a first response of the first temperature sensor changes based on a temperature at the first location;', 'a second temperature sensor at a second location relative to the center point, wherein the second location is on a first common measurement axis on an opposite side of the center point from the first location, and wherein a second response of the second temperature sensor changes based on a temperature at the second location;', 'a third temperature sensor at a third location relative to the center point, wherein a third response of the third temperature sensor changes based on a temperature at the third location, and wherein a first output value is based on the first response and the third response; and', 'a fourth temperature sensor at a fourth location relative to the center point, wherein the fourth location is on a second common measurement axis on an opposite side of the center point from the third location, wherein a fourth response of the fourth temperature sensor changes based on a temperature at the fourth location, and wherein a second output value is based on the second response and the fourth response; and'], '#text': 'a plurality of temperature sensors located within the layer, comprising;'}processing circuitry configured to output a signal ...

Подробнее
14-04-2016 дата публикации

전자 디바이스 밀봉용 수지 시트 및 전자 디바이스 패키지의 제조 방법

Номер: KR1020160040465A
Принадлежит:

... 복사열에 의한 전자 디바이스의 온도 상승을 억제할 수 있는 전자 디바이스 밀봉용 수지 시트 및 전자 디바이스 패키지의 제조 방법을 제공한다. 열반사층 및 수지층을 구비하는 전자 디바이스 밀봉용 수지 시트에 관한 것이다.

Подробнее
20-03-2014 дата публикации

SEMICONDUCTOR DEVICE

Номер: WO2014042055A1
Принадлежит:

... [Problem] The purpose of the present invention is to provide a semiconductor device enabling an unprecedented reduction in the impact of thermal stress, in particular on a MEMS sensor. [Solution] The present invention is characterized by comprising: a MEMS sensor (3) composed principally of silicon layered onto a printed substrate (2) (support substrate) with a first die-bonding resin (5) interposed therebetween; a first silicon substrate (11) (magnetic sensor ASIC) layered onto the MEMS sensor (3) with a second die-bonding resin (9) interposed therebetween; and a molded resin (20) serving as a sealant; the die-bonding resins (5, 9) being formed of materials softer than the molded resin (20).

Подробнее
31-01-2019 дата публикации

PROOF MASS AND POLYSILICON ELECTRODE INTEGRATED THEREON

Номер: US20190035905A1
Принадлежит:

A method includes depositing a silicon layer over a first oxide layer that overlays a first silicon substrate. The method further includes depositing a second oxide layer over the silicon layer to form a composite substrate. The composite substrate is bonded to a second silicon substrate to form a micro-electro-mechanical system (MEMS) substrate. Holes within the second silicon substrate are formed by reaching the second oxide layer of the composite substrate. The method further includes removing a portion of the second oxide layer through the holes to release MEMS features. The MEMS substrate may be bonded to a CMOS substrate.

Подробнее
19-11-2019 дата публикации

Heater or transmitter structure for rapid heating and MEMS cooling cycles

Номер: CN0107265390B
Автор:
Принадлежит:

Подробнее
11-11-2014 дата публикации

Semiconductor sensing device to minimize thermal noise

Номер: US0008881596B2

An MEMS pressure sensor is designed to reduce or eliminate thermal noise, such as temperature offset voltage output. The pressure sensor includes a pressure sensing element having a diaphragm, and a cavity formed as part of the pressure sensing element, where the cavity receives a fluid such that the diaphragm at least partially deflects. The pressure sensing element also includes a plurality of piezoresistors, which are operable to generate a signal based on the amount of deflection in the diaphragm. At least one trench is integrally formed as part of the pressure sensing element, and an adhesive connects the pressure sensing element to the at least one substrate such that at least a portion of the adhesive is attached to the trench and redistributes thermally induced stresses on the pressure sensing element such that the thermally induced noise is substantially eliminated.

Подробнее
31-07-2013 дата публикации

Semiconductor sensing device to minimize thermal noise

Номер: CN103226047A
Принадлежит:

An MEMS pressure sensor is designed to reduce or eliminate thermal noise, such as temperature offset voltage output. The pressure sensor includes a pressure sensing element having a diaphragm, and a cavity formed as part of the pressure sensing element, where the cavity receives a fluid such that the diaphragm at least partially deflects. The pressure sensing element also includes a plurality of piezoresistors, which are operable to generate a signal based on the amount of deflection in the diaphragm. At least one trench is integrally formed as part of the pressure sensing element, and an adhesive connects the pressure sensing element to the at least one substrate such that at least a portion of the adhesive is attached to the trench and redistributes thermally induced stresses on the pressure sensing element such that the thermally induced noise is substantially eliminated.

Подробнее
23-07-2015 дата публикации

Elektronisches Funktionsbauteil und Verfahren zur Herstellung eines elektronischen Funktionsbauteils

Номер: DE102014201121A1
Принадлежит:

Die vorliegende Erfindung schafft ein elektronisches Funktionsbauteil und ein Herstellungsverfahren für ein elektronisches Funktionsbauteil. Das elektronische Funktionsbauteil umfasst ein elektronisches Bauteil, das mittels eines dreidimensionalen Druckprozesses in das Funktionsbauteil eingebettet wird. Durch den dreidimensionalen Druckprozess kann dabei neben dem Umschließen des elektronischen Bauteils auch eine individuelle Anpassung der bezüglich Formgebung und mechanischen Eigenschaften des Funktionsbauteils erfolgen. Ferner werden die elektrischen Anschüsse des elektronischen Bauteils in geeigneter Form an die Oberfläche des Funktionsbauteils geführt.

Подробнее
19-11-2013 дата публикации

DISPOSITIVO SENSOR SEMICONDUTOR PARA REDUZIR O RUÍDO TÉRMICO

Номер: BR102013002325A2
Автор:
Принадлежит:

Подробнее
25-02-2010 дата публикации

SENSOR DEVICE PACKAGING AND METHOD

Номер: WO2010022373A1
Принадлежит:

A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.

Подробнее
12-04-2012 дата публикации

Semiconductor component for use in micro-electromechanical system in microsystems technology, has dielectric closure layer attached on structured dielectric layer, where surface of layer comprises depth profile in direction of chip interior

Номер: DE102010042113A1
Принадлежит:

The component (100) has a micro-electromechanical element (3) i.e. absolute pressure sensor, embedded in a region (4a) of a chip (1), and trenches (7) brought into the chip. The trenches comprise an opening (7a) on a main surface (2a) or another main surface (2b). The opening is covered by a structured dielectric layer. A metallic or dielectric closure layer i.e. passivation layer, is attached on the structured dielectric layer, and a surface of the metallic or dielectric closure layer comprises a depth profile in direction of the interior of the chip. An independent claim is also included for a method for manufacturing a semiconductor component.

Подробнее
28-09-2023 дата публикации

SENSING ELEMENT AND RELATED METHODS

Номер: US20230304879A1
Принадлежит:

A sensing element having improved temperature and pressure characteristics including at least one acoustic sensing device formed mainly from a silicon substrate and having a microelectromechanical system without the use of quartz or polymer, wherein the at least one acoustic sensing device detects a torque associated with a metal object subject to said torque, and a high temperature bonding surface for directly connecting the sensing element to the metal object via a high temperature connecting processes comprising at least one of soldering, metalizing and/or brazing, without the need for a polymer adhesive. Related sensors using such sensing elements and methods are also disclosed herein.

Подробнее
22-06-2017 дата публикации

INFRARED SENSOR DESIGN USING AN EPOXY FILM AS AN INFRARED ABSORPTION LAYER

Номер: US20170174505A1
Принадлежит:

A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal. 1. A microelectronic mechanical system (MEMS) infrared (IR) sensor , comprising:a substrate;an overlying dielectric layer disposed over said substrate, with access holes through said overlying dielectric layer;a cavity in said substrate under said access holes;a first temperature sensing component disposed over said cavity; and an adhesive material contacting the overlying dielectric material;', 'an IR-absorbing material on the adhesive material; and', 'an overcoat layer over the IR-absorbing material., 'an IR-absorbing seal disposed over said overlying dielectric layer so as to cover said access holes without extending into said cavity, said IR-absorbing seal including2. The MEMS IR sensor of claim 1 , wherein the IR-absorbing seal does not extend past the lateral edges of the cavity.3. The MEMS IR sensor of claim 1 , further including a plated input/output (I/O) bump claim 1 , said plated I/O bump including:a bump seed layer making electrical connection to an I/O pad disposed in said overlying dielectric layer through an I/O opening in said overlying dielectric layer;a plated copper bump disposed on said bump seed layer; anda plated metal cap layer disposed on said plated copper bump.4. The MEMS IR sensor of claim 1 , wherein the IR-absorbing material is adapted to absorb at least 50 percent of infrared energy incident on said IR-absorbing seal in a wavelength band of 8 to 10 microns.5. The MEMS IR sensor of claim 1 , ...

Подробнее
05-10-2017 дата публикации

MEMS-Heiz- oder Emitter-Struktur für schnelle Heiz- und Kühlzyklen

Номер: DE102017106593A1
Принадлежит:

Gemäß verschiedenen Ausführungsformen umfasst eine Mikroelektromechaniksystem-Vorrichtung ein Substrat; ein elektrisch bewegbares Heizelement mit einem ersten Knoten und einem zweiten Knoten, wobei der erste Knoten mit einem ersten Anschluss einer ersten Spannungsquelle und der zweite Knoten mit einer Referenzspannungsquelle gekoppelt ist; eine erste Verankerung, die den ersten Knoten verankert, und eine zweite Verankerung, die den zweiten Knoten des elektrisch bewegbaren Heizelements auf dem Substrat verankert; und einen Hohlraum zwischen der ersten Verankerung und der zweiten Verankerung sowie zwischen dem elektrisch bewegbaren Heizelement und dem Substrat.

Подробнее
26-03-2020 дата публикации

DEVICE FOR SUPPRESSING STRAY RADIATION

Номер: US20200095118A1
Принадлежит: INFINEON TECHNOLOGIES AG

A device for suppressing stray radiation includes a MEMS sensor module and a conductive cage structure. The conductive cage structure may enclose the MEMS sensor module in order to suppress penetration of stray electromagnetic radiation with a stray wavelength λ o into the conductive cage structure, and the conductive cage structure may be arranged to be thermally insulated from the MEMS sensor module. The device may also include a connecting line. The connecting line may be connected to the MEMS sensor module and fed through the conductive cage structure by a capacitive element.

Подробнее
15-01-2013 дата публикации

Thermally tolerant anchor configuration for a circular cantilever

Номер: US0008354901B1

A micro-electromechanical systems (MEMS) includes a substrate onto which a first conductive pad and a second conductive pad are formed. A conductive anchor coupled to the first conductive pad is a semi-circular frame that includes a first radial tab and a second radial tab. A conductive cantilever disc has a first end portion, a middle portion, and a second end portion. The first end portion of the conductive cantilever disc is coupled to the first radial tab and the second radial tab of the conductive anchor. The second end portion of the conductive cantilever disc is suspended over the second conductive pad with the middle portion being between the first end portion and the second end portion. A conductive actuator plate is formed onto the substrate at a location beneath the middle portion of the cantilever disc and between the first conductive pad and the second conductive pad.

Подробнее
13-06-2017 дата публикации

Embedded structures for high glass strength and robust packaging

Номер: US0009676618B2

A sensor device is constructed to maintain a high glass strength to avoid the glass failure at low burst pressure, resulting from the sawing defects located in the critical high stress area of the glass pedestal as one of the materials used for construction of the sensor. This is achieved by forming polished recess structures in the critical high stress areas of the sawing street area. The sensor device is also constructed to have a robust bonding with the die attach material by creating a plurality of micro-posts on the mounting surface of the glass pedestal.

Подробнее
10-08-2017 дата публикации

EMBEDDED STRUCTURES FOR HIGH GLASS STRENGTH AND ROBUST PACKAGING

Номер: US20170225950A1
Принадлежит: Continental Automotive Systems, Inc.

A sensor device is constructed to maintain a high glass strength to avoid the glass failure at low burst pressure, resulting from the sawing defects located in the critical high stress area of the glass pedestal as one of the materials used for construction of the sensor. This is achieved by forming polished recess structures in the critical high stress areas of the sawing street area. The sensor device is also constructed to have a robust bonding with the die attach material by creating a plurality of micro-posts on the mounting surface of the glass pedestal. 1. (canceled)2. (canceled)3. (canceled)4. (canceled)5. (canceled)6. (canceled)7. (canceled)8. A method for making a pressure sensor , comprising the steps of:providing a first wafer; andproviding a second wafer;forming at least one angled recess as part of the first wafer;forming at least one upper recess as part of the second wafer;forming at least one lower recess as part of the second wafer;bonding the first wafer to the second wafer to form a wafer stack having at least one saw street area, such that the at least one angled recess, the at least one upper recess, and the at least one lower recess are partially located in the saw street area;partitioning the wafer stack in the saw street area to form at least two pressure sensors.9. The method for making a pressure sensor of claim 8 , further comprising the steps of:providing a third wafer;forming at least one outer recess as part of the third wafer, the at least one outer recess located in the saw street area;bonding the third wafer to the second wafer such that the third wafer is part of the wafer stack, and the at least one saw street area extends through at least part of the third wafer;partitioning the wafer stack such that a portion of the third wafer is part of each of the at least two pressure sensors.10. The method for making a pressure sensor of claim 9 , further comprising the steps of:providing a plurality of smooth areas;forming a portion of the ...

Подробнее
09-07-2019 дата публикации

MEMS heater or emitter structure for fast heating and cooling cycles

Номер: US0010347814B2

According to various embodiments, a MEMS device includes a substrate, an electrically movable heating element having a first node coupled to a first terminal of a first voltage source and the second node coupled to a reference voltage source, a first anchor anchoring the first node and a second anchor anchoring the second node of the electrically movable heating element to the substrate, and a cavity between the first anchor and the second anchor and between the electrically movable heating element and the substrate.

Подробнее
25-02-2021 дата публикации

SYSTEMS AND METHODS FOR OPERATING A MEMS DEVICE BASED ON SENSED TEMPERATURE GRADIENTS

Номер: US20210053819A1
Принадлежит:

An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient. 1. A microelectromechanical (MEMS) device , comprising:a first layer comprising a first plane located within the first layer;a second layer comprising a second plane located within the second layer, wherein the second layer is located below the first layer;an anchor, wherein the anchor couples the first layer to the second layer;a plurality of temperature sensors located within the second plane, wherein each temperature sensor of the plurality of temperature sensors is located at a different distance relative to the anchor; andprocessing circuitry configured to output a signal that corresponds to a thermal gradient perpendicular to the second plane based on an output of the plurality of temperature sensors.2. The MEMS device of wherein the signal corresponding to the thermal gradient is based on one or more outputs from the plurality of temperature sensors.3. The MEMS device of claim 1 , wherein the first layer comprises a MEMS layer and the second layer comprises a CMOS layer.4. The MEMS device of claim 2 , wherein the first plane is parallel to the second plane.5. The MEMS device of claim 1 , further comprising a gap between the first layer and the second layer claim 1 , wherein the anchor is located within the gap.6. The MEMS device of claim 1 , wherein the anchor is in contact with the second layer at an anchoring location claim 1 , wherein a first temperature sensor of the plurality of temperature sensors is located below the anchoring location ...

Подробнее
28-05-2020 дата публикации

MEMS MEMBRANE STRUCTURE AND METHOD OF FABRICATING SAME

Номер: US20200165123A1

Disclosed is a method of fabricating a MEMS membrane structure. The method comprises: forming a silicon oxide film dam structure on a silicon substrate; depositing an adhesive layer and then forming a sacrificial layer; depositing a surface protective film on the sacrificial layer; etching the surface protective film and the sacrificial layer, thus forming trenches of first to third rows on the silicon oxide film dam structure; depositing a support film inside of the trenches of first to third rows and on the surface protective film of the sacrificial layer, thus forming a membrane; and removing the sacrificial layer disposed inside the support film deposited inside of the trench of first row, thus forming an empty space.

Подробнее
22-03-2023 дата публикации

Z-AXIS RESONANT ACCELEROMETER WITH IMPROVED-PERFORMANCE DETECTION STRUCTURE

Номер: EP4152010A1
Принадлежит:

A detection structure (1) for a vertical-axis resonant accelerometer (32) is provided with: an inertial mass (2), suspended above a substrate (8) and having a window (5) provided therewithin and traversing it throughout a thickness thereof, the inertial mass (2) being coupled to a main anchorage (4), arranged in the window and integral with the substrate, through a first and a second anchoring elastic element (6a, 6b) of a torsional type and defining a rotation axis (A) of the inertial mass, such that they allow the inertial mass an inertial movement of rotation in response to an external acceleration (aext) acting along a vertical axis (z); and at least a first resonator element (10a), having longitudinal extension, coupled between the first elastic element and a first constraint element (12a) arranged in the window. The first constraint element is suspended above the substrate, to which it is fixedly coupled through a first auxiliary anchoring element (14a) which extends below the first ...

Подробнее
17-03-2020 дата публикации

Silicon carbide microelectromechanical structure, device, and method

Номер: US0010589983B2

Electromechanical device structures are provided, as well as methods for forming them. The device structures incorporate at least a first and second substrate separated by an interface material layer, where the first substrate comprises an anchor material structure and at least one suspended material structure, optionally a spring material structure, and optionally an electrostatic sense electrode. The device structures may be formed by methods that include providing an interface material layer on one or both of the first and second substrates, bonding the interface materials to the opposing first or second substrate or to the other interface material layer, followed by forming the suspended material structure by etching.

Подробнее
16-09-2015 дата публикации

Electronic functional component and method for producing an electronic functional component

Номер: TW0201534553A
Принадлежит:

The invention relates to an electronic functional component and to a production method for an electronic functional component. The electronic functional component comprises an electronic component, which is embedded into the functional component by means of a three-dimensional printing process. By means of the three-dimensional printing process, individual adaptation with regard to the shape and mechanical properties of the functional component can be performed in addition to the enclosing of the electronic component. Furthermore, the electrical connections of the electronic component are led to the surface of the functional component in a suitable form.

Подробнее
29-11-2018 дата публикации

MICROELECTROMECHANICAL RESONATOR WITH IMPROVED ELECTRICAL FEATURES

Номер: US20180339898A1
Принадлежит: STMICROELECTRONICS SRL

A MEMS resonator is equipped with a substrate, a moving structure suspended above the substrate in a horizontal plane formed by first and second axes, having first and second arms, parallel to one another and extending along the second axis, coupled at their respective ends by first and second transverse joining elements, forming an internal window. A first electrode structure is positioned outside the window and capacitively coupled to the moving structure. A second electrode structure is positioned inside the window. One of the first and second electrode structures causes an oscillatory movement of the flexing arms in opposite directions along the first horizontal axis at a resonance frequency, and the other electrode structure has a function of detecting the oscillation. A suspension structure has a suspension arm in the window. An attachment arrangement is coupled to the suspension element centrally in the window, near the second electrode structure.

Подробнее
16-10-2018 дата публикации

MEMS device

Номер: TW0201836969A
Принадлежит:

Micro-electro-mechanical system (MEMS) devices are disclosed, including a MEMS device comprising a semiconductor die including integrated circuitry, a structure mounted on the semiconductor die and covering at least a portion of the circuitry, the structure defining a space between the structure and the at least a portion of the circuitry, and a transducer including a membrane, the transducer located outside of the space.

Подробнее
08-01-2019 дата публикации

Thermal protection mechanisms for uncooled microbolometers

Номер: US0010175113B2
Принадлежит: RAYTHEON COMPANY, RAYTHEON CO

Methods and apparatus for preventing solar damage, and other heat-related damage, to uncooled microbolometer pixels. In certain examples, at least some of the pixels of an uncooled microbolometer are configured with a bimetallic thermal shorting structure that protects the pixel(s) from excessive heat damage. In other examples a thermochroic membrane that becomes highly reflective at temperatures above a certain threshold is applied over the microbolometer pixels to prevent the pixels from being damaged by excessive heat.

Подробнее
22-10-2013 дата публикации

Thermally tolerant anchor configuration for a circular cantilever

Номер: US0008564387B1

A micro-electromechanical systems (MEMS) includes a substrate onto which a first conductive pad and a second conductive pad are formed. A conductive anchor coupled to the first conductive pad is a semi-circular frame that includes a first radial tab and a second radial tab. A conductive cantilever disc has a first end portion, a middle portion, and a second end portion. The first end portion of the conductive cantilever disc is coupled to the first radial tab and the second radial tab of the conductive anchor. The second end portion of the conductive cantilever disc is suspended over the second conductive pad with the middle portion being between the first end portion and the second end portion. A conductive actuator plate is formed onto the substrate at a location beneath the middle portion of the cantilever disc and between the first conductive pad and the second conductive pad.

Подробнее
01-12-2015 дата публикации

Thermally shorted bolometer

Номер: US0009199838B2

In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.

Подробнее
28-11-2019 дата публикации

Thermal protection mechanisms for uncooled microbolometers

Номер: IL0000269501D0
Автор:
Принадлежит:

Подробнее
30-04-2015 дата публикации

Thermally Shorted Bolometer

Номер: US20150115160A1
Принадлежит:

In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate. 1. A MEMS sensor assembly comprising:a substrate;a first sensor supported by the substrate and including a first absorber spaced apart from the substrate; anda second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.2. The MEMS sensor assembly of claim 1 , wherein:the first absorber includes a plurality of spaced apart first conductive legs defining a first tortuous path across a first area above the substrate;the second absorber includes a plurality of spaced apart second conductive legs defining a second tortuous path across a second area above the substrate; andthe at least one thermal shorting portion extends downwardly from at least one of the plurality of spaced apart second conductive legs.3. The MEMS sensor assembly of claim 2 , wherein the at least one thermal shorting portion comprises a single thermal shorting leg extending downwardly from each of the plurality of spaced apart second conductive legs.4. The MEMS sensor assembly of claim 2 , wherein the at least one thermal shorting portion comprises a plurality of thermal shorting legs claim 2 , each of the plurality of thermal shorting legs extending downwardly from a respective one of the plurality of spaced apart second conductive legs ...

Подробнее
05-10-2021 дата публикации

Device for suppressing stray radiation

Номер: US0011136237B2
Принадлежит: INFINEON TECHNOLOGIES AG

A device for suppressing stray radiation includes a Micro-ElectroMechanical System (MEMS) sensor module and a conductive cage structure. The conductive cage structure may enclose the MEMS sensor module in order to suppress penetration of stray electromagnetic radiation with a stray wavelength λo into the conductive cage structure, and the conductive cage structure may be arranged to be thermally insulated from the MEMS sensor module. The device may also include a connecting line. The connecting line may be connected to the MEMS sensor module and fed through the conductive cage structure by a capacitive element.

Подробнее
11-04-2019 дата публикации

THERMAL PROTECTION MECHANISMS FOR UNCOOLED MICROBOLOMETERS

Номер: US20190107442A1
Принадлежит:

Methods and apparatus for preventing solar damage, and other heat-related damage, to uncooled microbolometer pixels. In certain examples, a thermochroic membrane that becomes highly reflective at temperatures above a certain threshold is applied over at least some of the microbolometer pixels to prevent the pixels from being damaged by excessive heat.

Подробнее
04-05-2011 дата публикации

SENSOR DEVICE PACKAGING AND METHOD

Номер: EP2316008A1
Принадлежит:

Подробнее
31-08-2017 дата публикации

MICRO-ELECTRO-MECHANICAL PRESSURE DEVICE AND METHODS OF FORMING SAME

Номер: US20170247249A1
Принадлежит:

A micro-electro-mechanical pressure sensor device, formed by a cap region and by a sensor region of semiconductor material. An air gap extends between the sensor region and the cap region; a buried cavity extends underneath the air gap, in the sensor region, and delimits a membrane at the bottom. A through trench extends within the sensor region and laterally delimits a sensitive portion housing the membrane, a supporting portion, and a spring portion, the spring portion connecting the sensitive portion to the supporting portion. A channel extends within the spring portion and connects the buried cavity to a face of the second region. The first air gap is fluidically connected to the outside of the device, and the buried cavity is isolated from the outside via a sealing region arranged between the sensor region and the cap region.

Подробнее
01-08-2019 дата публикации

MEMS Heater or Emitter Structure for Fast Heating and Cooling Cycles

Номер: US20190237654A1
Принадлежит:

According to various embodiments, a MEMS device includes a substrate, an electrically movable heating element having a first node coupled to a first terminal of a first voltage source and the second node coupled to a reference voltage source, a first anchor anchoring the first node and a second anchor anchoring the second node of the electrically movable heating element to the substrate, and a cavity between the first anchor and the second anchor and between the electrically movable heating element and the substrate.

Подробнее
11-02-2016 дата публикации

Semiconductor Structure with Multiple Active Layers in an SOI Wafer

Номер: US20160043108A1
Автор: Fanelli Stephen A.
Принадлежит:

An semiconductor on insulator wafer has an insulator layer between a substrate layer and a semiconductor layer. A first active layer is formed in and on the semiconductor layer. A second active layer is formed in and on the substrate layer. In some embodiments, a handle wafer is bonded to the semiconductor on insulator wafer, and the substrate layer is thinned before forming the second active layer. In some embodiments, a third active layer may be formed in the substrate of the handle wafer. In some embodiments, the first and second active layers include a MEMS device in one of these layers and a CMOS device in the other. 1. A method comprising:providing a semiconductor on insulator (SOI) wafer having an insulator layer between a substrate layer and a semiconductor layer;forming a first active layer in and on the semiconductor layer of the SOI wafer; andforming a second active layer in and on the substrate layer of the same SOI wafer.2. The method of claim 1 , further comprising:removing a first portion of the substrate layer; andforming the second active layer in and on a second portion of the substrate layer.3. The method of claim 2 , further comprising:before the removing of the first portion of the substrate layer, bonding a handle wafer to a first surface of the semiconductor on insulator wafer; andremoving the first portion of the substrate layer from a second surface of the semiconductor on insulator wafer.4. The method of claim 3 , further comprising:providing a trap rich layer in the handle wafer.5. The method of claim 1 , further comprising:bonding a handle wafer to a surface of the semiconductor on insulator wafer, the surface of the semiconductor on insulator wafer being opposite the insulator layer from the substrate layer, and the handle wafer having a handle substrate layer; andforming a third active layer in and on the handle substrate layer.6. The method of claim 5 , further comprising:removing a first portion of the handle substrate layer; ...

Подробнее
05-03-2015 дата публикации

MICROMECHANICAL COMPONENT AND CORRESPONDING TEST METHOD FOR A MICROMECHANICAL COMPONENT

Номер: US20150061695A1
Принадлежит: ROBERT BOSCH GMBH

A micromechanical component and a corresponding test method for a micromechanical component are described. The micromechanical component includes at least one first region, which is elastically connected to a second region via a spring device, a resistor element, which is situated in and/or on the spring device and is at least partially interruptible in the event of damage to the spring device, and a detection device, which is electrically connected to the resistor element, for detecting an interruption in the resistor element and for generating a corresponding detection signal. 1. A micromechanical component , comprising:at least one first region;a second region;a spring device via which the first region is connected elastically to the second region;a resistor element situated at least one of in and on the spring device, the resistor element being at least partially interruptible in the event of damage to the spring device; anda detection device electrically connected to the resistor element, for detecting an interruption in the resistor element, and for generating a corresponding detection signal.2. The micromechanical component as recited in claim 1 , wherein the first region is a stationary region and the second region is an elastically deflectable mirror region.3. The micromechanical component as recited in claim 1 , wherein the first region is an elastically deflectable drive region and the second region is an elastically deflectable mirror region.4. The micromechanical component as recited in claim 1 , wherein the resistor element passes over the first region claim 1 , so that the resistor element is also interruptible in the event of damage to the first region.5. The micromechanical component as recited in claim 4 , wherein the resistor element meanders over the first region.6. The micromechanical component as recited in claim 1 , wherein the resistor element is connected to the detection device via the first region.7. The micromechanical component as ...

Подробнее
29-03-2018 дата публикации

GLASS-SENSOR STRUCTURES

Номер: US20180086664A1
Принадлежит:

The present invention generally relates to glass-sensor structures and methods of making the same. 1. A glass-sensor structure: comprising: Layer A: a flat glass layer, optionally comprising: a reflective surface on its top or bottom; and,', 'a sensory element;, 'a sensor glass layer, comprising Layer B: a flat glass layer located on top of and at least partially in contact with Layer A, provided that if Layer B is present, Layer C is also present;', 'Layer C: a flat glass layer located on top of and at least partially in contact with Layer B, if present, or Layer A if Layer B is not present, and optionally comprising: a reflective surface on its top or bottom;', 'Layer D: a flat glass layer located on the bottom of and at least partially in contact with Layer A, provided that if Layer D is present, Layer E is also present; and', 'Layer E: a flat glass layer located on the bottom of and at least partially in contact with Layer D, if present, or Layer A if Layer D is not present, and optionally comprising: a reflective surface on its top or bottom., 'optionally, the glass-sensor structure, further comprises: from 1-4 layers selected from;'}2. The glass-sensor structure of claim 1 , wherein:the sensor glass layer, comprises: a plurality of sensory elements.3. The glass-sensor structure of claim 1 , whereinthe sensory element is in contact with at least a portion of the top of Layer A and has a smaller surface area than Layer A.4. The glass-sensor structure of claim 3 , wherein:the glass of Layer A near the edges of the sensory element is partially absent.5. The glass-sensor structure of claim 3 , wherein:the reflective surface is present on Layer A.6. The glass-sensor structure of claim 5 , wherein:the reflective surface is on the bottom of Layer A.7. The glass-sensor structure of claim 3 , wherein:Layers B and C are present.8. The glass-sensor structure of claim 7 , wherein:a middle portion of Layer B is absent, such that an inner portion of Layer B is near the edges ...

Подробнее
29-03-2018 дата публикации

INTEGRATED MICRO-CHANNEL HEATSINK IN DMD SUBSTRATE FOR ENHANCED COOLING CAPACITY

Номер: US20180088319A1
Принадлежит:

A DMD cooling apparatus and method includes a DMD chip configured on a substrate, and a heatsink located within and integrated into the substrate upon which the DMD is configured. A plurality of micro-channels can be formed on a backside of the substrate. The micro-channels are fabricated via microlithography in association with a fabrication of the DMD chip such that the heatsink integrated into the silicon substrate allows for direct heat removal from the substrate. 1. A DMD cooling apparatus , comprising:a DMD configured on a substrate, said DMD including a mirror array located below a glass cover;a heatsink located within and integrated into said substrate upon which said DMD is configured, and wherein said heatsink comprises an integrated heatsink located inside a DMD chip that comprises said DMD; anda plurality of micro-channels configured on a backside of said substrate, wherein said plurality of micro-channels is fabricated in association with a fabrication of said DMD such that said heatsink is integrated into said substrate and allows for direct heat removal from said substrate and wherein a pre-heat beam pre-heats said substrate to a specified temperature before an imaging beam writes on said substrate.2. The apparatus of wherein said plurality of micro-channels is fabricated via microlithography in association with said fabrication of said DMD.3. The apparatus of wherein said substrate comprises silicon.4. The apparatus of wherein said DMD comprises a housing and an inlet port and outlet port formed from said housing.5. The apparatus of wherein said housing comprises an alumina housing.6. The apparatus of wherein a fluid path is formed between said inlet port and said outlet port.7. The apparatus of wherein said fluid path comprises said plurality of micro-channels.8. The apparatus of further comprising an epoxy seal that contains cooling fluid disposed on an underside of said substrate so that none of said cooling fluid interferes with mirrors on an ...

Подробнее
16-04-2020 дата публикации

Silicon Carbide Microelectromechanical Structure, Device, and Method

Номер: US20200115219A1

Electromechanical device structures are provided, as well as methods for forming them. The device structures incorporate at least a first and second substrate separated by an interface material layer, where the first substrate comprises an anchor material structure and at least one suspended material structure, optionally a spring material structure, and optionally an electrostatic sense electrode. The device structures may be formed by methods that include providing an interface material layer on one or both of the first and second substrates, bonding the interface materials to the opposing first or second substrate or to the other interface material layer, followed by forming the suspended material structure by etching.

Подробнее
03-06-2021 дата публикации

Capacitive Sensors Having Temperature Stable Output

Номер: US20210163282A1
Принадлежит:

In an embodiment a system includes a sensor including a base having a base electrode and a first membrane suspended above the base, wherein the first membrane has a first membrane electrode, wherein the first membrane is configured to deflect with respect to the base electrode in response to an environmental condition, and wherein the sensor is configured to measure a capacitance between the base electrode and the first membrane electrode. The system further includes a first device of the system configured to generate electrical interference signals, a first electrically conductive shield layer positioned between the sensor and the first device of the system, wherein the first electrically conductive shield layer defines a plurality of first apertures extending through the first electrically conductive shield layer and a dielectric material disposed in the plurality of first apertures. 128-. (canceled)29. A system comprising: a base having a base electrode; and', 'a first membrane suspended above the base, wherein the first membrane comprises a first membrane electrode, wherein the first membrane is configured to deflect with respect to the base electrode in response to an environmental condition, and wherein the sensor is configured to measure a capacitance between the base electrode and the first membrane electrode;, 'a sensor comprisinga first device of the system configured to generate electrical interference signals;a first electrically conductive shield layer positioned between the sensor and the first device of the system, wherein the first electrically conductive shield layer defines a plurality of first apertures extending through the first electrically conductive shield layer; anda dielectric material disposed in the plurality of first apertures.30. The system of claim 29 ,wherein a length of the first membrane in a first direction is greater than a length of the first membrane in a second direction orthogonal to the first direction, andwherein each ...

Подробнее
10-06-2021 дата публикации

Pressure Relief Device for Microphone Protection in an Electronic Device and Corresponding Methods

Номер: US20210171338A1
Принадлежит:

An electronic device includes a microphone coupled to a first substrate, a second substrate defining an acoustic port, and a pressure relief device situated between the first substrate and the second substrate. The pressure relief device includes a bore defining an acoustic duct through which the microphone receives acoustic energy from the acoustic port. The pressure relief device also includes a venting section. The venting section breaches the acoustic duct when a pressure within the acoustic duct exceeds a predefined pressure threshold. 1. An electronic device , comprising:a microphone coupled to a first substrate;a second substrate defining an acoustic port; anda pressure relief device situated between the first substrate and the second substrate; a bore defining an acoustic duct through which the microphone receives acoustic energy from the acoustic port; and', 'a venting section, the venting section breaching the acoustic duct when a pressure within the acoustic duct exceeds a predefined pressure threshold;', 'the first substrate situated between the microphone and the pressure relief device and defining another acoustic port., 'the pressure relief device comprising2. The electronic device of claim 1 , the predefined pressure threshold between 20 and 1000 Pascals claim 1 , inclusive.3. (canceled)4. The electronic device of claim 1 , the first substrate comprising a can covering the microphone.5. The electronic device of claim 1 , the second substrate comprising a housing member of the electronic device.6. The electronic device of claim 5 , the housing member defining a major face of the electronic device.7. The electronic device of claim 6 , the housing member comprising a substantially flat fascia of the electronic device.8. The electronic device of claim 1 , the pressure relief device manufactured from an elastomeric material claim 1 , the first substrate and the second substrate applying a loading force to compress the pressure relief device by a ...

Подробнее
31-05-2018 дата публикации

PLANAR PROCESSING OF SUSPENDED MICROELECTROMECHANICAL SYSTEMS (MEMS) DEVICES

Номер: US20180148318A1
Принадлежит: ANALOG DEVICES GLOBAL

Suspended microelectromechanical systems (MEMS) devices including a stack of one or more materials over a cavity in a substrate are described. The suspended MEMS device may be formed by forming the stack, which may include one or more electrode layers and an active layer, over the substrate and removing part of the substrate underneath the stack to form the cavity. The resulting suspended MEMS device may include one or more channels that extend from a surface of the device to the cavity and the one or more channels have sidewalls with a spacer material. The cavity may have rounded corners and may extend beyond the one or more channels to form one or more undercut regions. The manner of fabrication may allow for forming the stack layers with a high degree of planarity. 1. A microelectromechanical systems (MEMS) device comprising:a bottom electrode positioned over a cavity of a silicon substrate;a top electrode;an active layer positioned between the bottom electrode and the top electrode; andat least one channel extending from a surface of the microelectromechanical device to the cavity, wherein one or more sidewalls of the at least one channel include a spacer.2. The MEMS device of claim 1 , wherein the bottom electrode claim 1 , the top electrode claim 1 , and the active layer are enclosed by at least one spacer material in at least one cross-sectional plane of the microelectromechanical device.3. The MEMS device of claim 1 , wherein the MEMS device further comprises a layer of spacer material positioned over the top electrode claim 1 , wherein the layer of spacer material is in contact with the top electrode and the active layer.4. The MEMS device of claim 3 , wherein the layer of spacer material is configured to provide thermal compensation for the MEMS device.5. The MEMS device of claim 1 , wherein the cavity extends from underneath the bottom electrode beyond the at least one channel.6. The MEMS device of claim 5 , wherein the cavity has rounded corners.7. The ...

Подробнее
09-07-2020 дата публикации

MEMS DEVICE WITH OPTIMIZED GEOMETRY FOR REDUCING THE OFFSET DUE TO THE RADIOMETRIC EFFECT

Номер: US20200216305A1
Принадлежит:

A MEMS device with teeter-totter structure includes a mobile mass having an area in a plane and a thickness in a direction perpendicular to the plane. The mobile mass is tiltable about a rotation axis extending parallel to the plane and formed by a first and by a second half-masses arranged on opposite sides of the rotation axis. The first and the second masses have a first and a second centroid, respectively, arranged at a first and a second distance b1, b2, respectively, from the rotation axis. First through openings are formed in the first half-mass and, together with the first half-mass, have a first total perimeter p1 in the plane. Second through openings are formed in the second half-mass and, together with the second half-mass, have a second total perimeter p2 in the plane, where the first and the second perimeters p1, p2 satisfy the equation: p1×b1=p2×b2. 1. A MEMS device , comprising:a mobile mass having an area in a plane and a thickness in a direction perpendicular to the plane, the mobile mass being tiltable about a rotation axis extending parallel to the plane and thereby forming a first mass portion and a second mass portion arranged on opposite sides of the rotation axis, the first and the second mass portions having a first centroid and a second centroid, respectively, the first and second centroids being arranged at first and second distances b1, b2, respectively, from the rotation axis;a plurality of first through openings in the first mass portion, wherein the plurality of first through openings and the first mass portion have a first total perimeter p1 in the plane; anda plurality of second through openings in the second mass portion, wherein the plurality of second through openings and the second mass portion have a second total perimeter p2 in the plane, {'br': None, 'i': p', 'b', 'p', 'b, '1×1=2×2.'}, 'wherein the first and the second total perimeters p1, p2 satisfy equation2. The MEMS device according to claim 1 , wherein the MEMS device is ...

Подробнее
03-09-2015 дата публикации

Infrared sensor design using an epoxy film as an infrared absorption layer

Номер: US20150246810A1
Принадлежит: Texas Instruments Inc

A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.

Подробнее
25-08-2016 дата публикации

Embedded structures for high glass strength and robust packaging

Номер: US20160244322A1
Автор: James Nowicki, Xiaoyi Ding
Принадлежит: Continental Automotive Systems Inc

A sensor device is constructed to maintain a high glass strength to avoid the glass failure at low burst pressure, resulting from the sawing defects located in the critical high stress area of the glass pedestal as one of the materials used for construction of the sensor. This is achieved by forming polished recess structures in the critical high stress areas of the sawing street area. The sensor device is also constructed to have a robust bonding with the die attach material by creating a plurality of micro-posts on the mounting surface of the glass pedestal.

Подробнее
30-07-2020 дата публикации

HYDROGEN SENSOR ON MEDIUM OR LOW TEMPERATURE SOLID MICRO HEATING PLATFORM

Номер: US20200239300A1
Принадлежит: Shanghai Jiaotong University

Described herein is a hydrogen sensor on medium or low temperature solid micro heating platform, comprising: a substrate; a thermal-insulating layer disposed above the substrate; a heating structure disposed above the thermal-insulating layer, and thermally and electrically isolated from the substrate by the thermal-insulating layer; a thermal-conducting layer covering the heating structure; and a sensitive layer disposed on the thermal-conducting layer. The sensitive layer can be heated to a set temperature by the heating structure to improve sensitivity and reduce the response time. 1. A hydrogen sensor on medium or low temperature solid micro heating platform , comprising:a substrate;a thermal-insulating layer disposed above the substrate;a heating structure disposed above the thermal-insulating layer, and isolated, thermally and electrically, from the substrate by the thermal-insulating layer;a thermal-conducting layer covering the heating structure; anda sensitive layer disposed on the thermal-conducting layer, wherein the sensitive layer is heated to a set temperature by the heating structure to improve sensitivity and reduce the response time.2. The hydrogen sensor on medium or low temperature solid micro heating platform of claim 1 , wherein the material of the substrate is glass claim 1 , ceramics claim 1 , or organic substrate.3. The hydrogen sensor on medium or low temperature solid micro heating platform of claim 1 , wherein the thermal-insulating layer is disposed on the bottom and sides of the heating structure.4. The hydrogen sensor on medium or low temperature solid micro heating platform of claim 1 , wherein the material of the thermal-insulating layer is an insulating material having a thermal conductivity of less than 0.12 W/(m*K);wherein the material of the thermal-insulating layer is organic colloid doped with inorganic nanoparticles or whiskers of low thermal conductivity; orwherein the material of the thermal-insulating layer is polyimide ...

Подробнее
21-10-2021 дата публикации

APPARATUS AND METHOD FOR DISSIPATING HEAT WITH MICROELECTROMECHANICAL SYSTEM

Номер: US20210323811A1
Автор: Goergen Joel Richard
Принадлежит: CISCO TECHNOLOGY, INC.

In one or more embodiments, an apparatus generally comprises a microelectromechanical system (MEMS) module comprising a plurality of air movement cells and a power unit operable to control the plurality of air movement cells, and a housing configured for slidably receiving the MEMS module and positioning the MEMS module adjacent to a heat generating component of a network device. The MEMS module is operable to dissipate heat from the heat generating component and is configured for online installation and removal during operation of the heat generating component. 1. An apparatus comprising:a microelectromechanical system (MEMS) module comprising a plurality of air movement cells and a power unit operable to control said plurality of air movement cells; anda housing configured for slidably receiving the MEMS module and positioning the MEMS module adjacent to a heat generating component of a network device;wherein the MEMS module is operable to dissipate heat from the heat generating component and is configured for online installation and removal during operation of the heat generating component.2. The apparatus of wherein the heat generating component comprises an optical module and the housing comprises an optical module cage with a first opening for receiving the optical module and a second opening for receiving the MEMS module.3. The apparatus of wherein the optical module comprises a first set of ribs positioned within the optical module cage and a second set of fins positioned outside of the optical module cage when the optical module is inserted into the optical module cage.4. The apparatus of wherein the optical module cage comprises a dual optical module cage comprising two openings for receiving two MEMS modules and two openings for receiving two optical modules.5. The apparatus of further comprising a printed circuit board comprising a cut-out for receiving the dual optical module cage.6. The apparatus of wherein the MEMS module comprises an online ...

Подробнее
28-09-2017 дата публикации

INTERNAL TEMPERATURE MEASUREMENT DEVICE

Номер: US20170276553A1
Принадлежит: Omron Corporation

Provided is an internal temperature measurement device capable of measuring an internal temperature of a measuring object for which the thermal resistance value of a non-heating body present on the surface side of the object is unknown, more accurately with better responsiveness than hitherto. The internal temperature measurement device includes a MEMS chip including: two cells for measuring two heat fluxes for calculating an internal temperature of a measuring object for which the thermal resistance value of a non-heating body is unknown; and a cell for increasing a difference between the heat fluxes. 1. An internal temperature measurement device , comprising:a base portion, one surface of which is to be brought into contact with a surface of a measuring object when an internal temperature of the measuring object is measured;a MEMS chip arranged on another surface of the base portion, and including: a substrate portion including a first thin film portion and a second thin film portion that are hollow on the base portion side; a first thermopile configured to measure a first temperature difference between a predetermined region and another region of the first thin film portion; and a second thermopile configured to measure a second temperature difference between a predetermined region and another region of the second thin film portion; anda calculation unit configured to calculate an internal temperature of the measuring object by using the first temperature difference measured by the first thermopile and the second temperature difference measured by the second thermopile,wherein the MEMS chip is configured such that a first heat flux which passes through the predetermined region of the first thin film portion from the measuring object in contact with the one surface of the base portion, and which is determined on the basis of the first temperature difference, and a second heat flux which passes through the predetermined region of the second thin film portion from ...

Подробнее
22-10-2015 дата публикации

ALUMINUM NITRIDE (AlN) DEVICES WITH INFRARED ABSORPTION STRUCTURAL LAYER

Номер: US20150298965A1
Принадлежит:

A micro-electro-mechanical system device is disclosed. The micro-mechanical system device comprises a first silicon substrate comprising: a handle layer comprising a first surface and a second surface, the second surface comprises a cavity; an insulating layer deposited over the second surface of the handle layer; a device layer having a third surface bonded to the insulating layer and a fourth surface; a piezoelectric layer deposited over the fourth surface of the device layer; a metal conductivity layer disposed over the piezoelectric layer; a bond layer disposed over a portion of the metal conductivity layer; and a stand-off formed on the first silicon substrate; wherein the first silicon substrate is bonded to a second silicon substrate, comprising: a metal electrode configured to form an electrical connection between the metal conductivity layer formed on the first silicon substrate and the second silicon substrate. 1. A micro-electro-mechanical system device , comprising: a handle layer comprising a first surface and a second surface, the second surface comprises a cavity;', 'an insulating layer deposited over the second surface of the handle layer;', 'a device layer having a third surface bonded to the insulating layer and a fourth surface;', 'a piezoelectric layer deposited over the fourth surface of the device layer;', 'a metal conductivity layer disposed over the piezoelectric layer;', 'a bond layer disposed over a portion of the metal conductivity layer; and', 'a stand-off formed on the first silicon substrate;, 'a first silicon substrate comprising 'a metal electrode configured to form an electrical connection between the metal conductivity layer formed on the first silicon substrate and the second silicon substrate.', 'wherein the first silicon substrate is bonded to a second silicon substrate, comprising2. The device of claim 1 , wherein the stand-off is formed on the piezoelectric layer.3. The device of claim 1 , wherein the stand-off is formed of a ...

Подробнее
22-10-2015 дата публикации

Functional element, electronic apparatus and mobile entity

Номер: US20150303153A1
Автор: Satoru Tanaka
Принадлежит: Seiko Epson Corp

According to an aspect of the invention, a functional element includes a substrate which is provided with a concave section; a stationary section connected to a wall section that defines the concave section of the substrate; an elastic section which extends from the stationary section and is capable of stretching and contracting in a first axis direction; a movable body connected to the elastic section; a movable electrode section which extends from the movable body. The concave section includes a cutout section which is provided on the wall section. The stationary section includes an overlap section which is spaced with the substrate, and overlaps the concave section when seen in a plan view. At least a portion of the overlap section overlaps the cutout section when seen in the plan view, and the elastic section extends from the overlap section.

Подробнее
24-11-2016 дата публикации

MONOLITHIC FABRICATION OF THERMALLY ISOLATED MICROELECTROMECHANICAL SYSTEM (MEMS) DEVICES

Номер: US20160340174A1
Принадлежит:

A method for fabricating a thermally isolated microelectromechanical system (MEMS) structure is provided. The method includes processing a first wafer of a first material with a glass wafer to form a composite substrate including at least one sacrificial structure of the first material and glass; forming a MEMS device in a second material; forming at least one temperature sensing element on at least one of: the composite substrate; and the MEMS device; and etching away the at least one sacrificial structure of the first material in the composite substrate to form at least one thermally isolating glass flexure. The MEMS device is thermally isolated on a thermal isolation stage by the at least one thermally isolating glass flexure. The at least one temperature sensing element in on a respective at least one of: the thermal isolation stage; and the MEMS device. 1. A method for fabricating a thermally isolated microelectromechanical system (MEMS) structure , the method comprising:processing a first wafer of a first material with a glass wafer to form a composite substrate including at least one sacrificial structure of the first material and glass;forming a MEMS device in a second material;forming at least one temperature sensing element on at least one of: the composite substrate; and the MEMS device; andetching away the at least one sacrificial structure of the first material in the composite substrate to form at least one thermally isolating glass flexure, wherein the MEMS device is thermally isolated on a thermal isolation stage by the at least one thermally isolating glass flexure, and wherein the at least one temperature sensing element in on a respective at least one of: the thermal isolation stage; and the MEMS device.2. The method of claim 1 , wherein processing the first wafer of the first material with the glass wafer to form the composite substrate comprises:etching a layer of the first material to form the at least one sacrificial structure, the at least ...

Подробнее
24-10-2019 дата публикации

HIGH TEMPERATURE CAPACITIVE MEMS PRESSURE SENSOR

Номер: US20190323912A1
Автор: Zheng Jun
Принадлежит:

A MEMS pressure sensor includes a first plate with a hole on a diaphragm bonded to the first plate around its rim with the diaphragm positioned over the hole. An isolation frame is bonded to the diaphragm and a second plate with a pillar is bonded to the isolation frame around its rim to form a cavity such that the end of the pillar in the cavity is proximate a surface of the diaphragm. The diaphragm and second plate form a capacitive sensor which changes output upon deflection of the diaphragm relative to the second plate. 1. A MEMS pressure sensor comprising:a first plate with a central hole;a diaphragm bonded to the first plate around a rim of the first plate with the diaphragm positioned over the hole;an isolation frame bonded to a top of the diaphragm; anda second plate with a central pillar bonded to the isolation frame around a rim of the isolation frame to form a cavity such that an end of the pillar in the cavity is proximate the first surface of the diaphragm;wherein the diaphragm and second plate form a capacitive sensor that changes output upon deflection of the diaphragm relative to the second plate.2. The pressure sensor of claim 1 , wherein the first plate is composed of silicon.3. The pressure sensor of claim 1 , wherein the diaphragm is composed of silicon.4. The pressure sensor of claim 1 , wherein the isolation frame is composed of quartz or glass.5. The pressure sensor of claim 1 , wherein the diaphragm and second plate are electrically isolated.6. The pressure sensor of claim 1 , wherein the diaphragm is bonded to the first plate by a fusion bond.7. The pressure sensor of claim 1 , wherein the isolation frame is bonded to the diaphragm by a fusion bond claim 1 , anodic bond claim 1 , metal eutectic claim 1 , or glass frit bond.8. The pressure sensor of claim 1 , wherein the second plate is bonded to the isolation frame by a fusion bond.9. The pressure sensor of claim 1 , wherein the cavity between the second plate claim 1 , isolation frame claim ...

Подробнее
19-08-2015 дата публикации

Sensor device packaging and method

Номер: CN102132136B
Принадлежит: S3C Inc

一种传感器装置及其形成方法包括管芯垫盘,所述管芯垫盘容纳传感器装置,例如MEMS装置。MEMS装置具有第一热膨胀系数(CTE)。管芯垫盘由具有第二CTE的材料制成,第二CTE与第一CTE相符。管芯垫盘包括基底和支撑结构,所述支撑结构具有的CTE与第一CTE和第二CTE相符。管芯垫盘具有从基底突伸的支撑结构。支撑结构具有的高度和壁厚使得:当基底受到来自管座的热膨胀或收缩力时,管芯垫盘和MEMS装置所受到的力最小。

Подробнее
23-06-2020 дата публикации

All-silicon environment isolation MEMS device

Номер: CN109292726B

本发明公开一种全硅环境隔离MEMS器件,包括隔离硅片,隔离硅片上方依次设有形成配合的衬底SOI硅片、敏感结构硅片与硅盖帽,隔离硅片、衬底SOI硅片与敏感结构硅片相互之间晶圆级硅硅直接键合;隔离硅片的中部蚀刻有加热电阻图形,使隔离硅片中部形成加热电阻;隔离硅片的四周蚀刻有悬臂梁图形,使隔离硅片四周形成悬臂梁;敏感结构硅片上制备有MEMS敏感可动结构,敏感结构硅片上还蚀刻有温度传感电阻;硅盖帽顶面集成有MEMS结构处理电路与温度控制电路;温度传感电阻采集加热电阻的温度,并将温度反馈给温度控制电路,温度控制电路根据温度传感电阻反馈的温度对加热电阻进行闭环加热控制;整个器件可实现高性能指标,极大提高了环境适应性。

Подробнее
20-04-2012 дата публикации

Microstage having piezoresistive sensor and chevron beam structure

Номер: KR101137979B1
Автор: 이동원, 최영수
Принадлежит: 전남대학교산학협력단

본 발명은 압저항 변위센서 및 쉐브론 빔 구조를 가지는 마이크로스테이지에 관한 것으로서, 정확한 위치제어를 위한 압저항 변위센서가 내부에 집적되어 있으며, 대변위를 갖는 열구동기의 변위를 증폭시키기 위하여 쉐브론 빔 구조를 가지는 압저항 변위센서 및 쉐브론 빔 구조를 가지는 마이크로스테이지를 제공함에 그 목적이 있다. The present invention relates to a microstage having a piezoresistive displacement sensor and a chevron beam structure. A piezoresistive displacement sensor for accurate position control is integrated therein and a chevron beam structure for amplifying displacement of a thermal actuator having a large displacement. It is an object of the present invention to provide a micro stage having a piezoresistive displacement sensor having a chevron beam structure. 이러한 목적을 달성하기 위한 본 발명은, 사각형상으로서, 그 중앙부에 샘플이 놓여지는 플랫폼; 상기 플랫폼의 일측면으로부터 연장되며, 특정 축으로의 처짐현상을 방지하기 위한 전극이 배치되는 연장 빔; ' V ' 형상이며, 그 중심부가 상기 연장 빔과 연결되어, 열구동기가 구동되었을 경우 상기 연장 빔을 끌어 당김으로써 플랫폼을 구동시키는 쉐브론 빔; 및 전압이 인가되면 줄열을 발생시킴으로써 특정 방향으로 구동되며, 압저항 변위센서가 각각 집적화된 2개의 열구동기; 를 포함하되, 상기 연장 빔, 쉐브론 빔 및 2개의 열구동기는, 상기 플랫폼의 네 측면으로부터 각각 연장되어, 상기 플랫폼을 기준으로 상하 좌우 대칭구조를 가지도록 형성되는 것을 특징으로 한다. The present invention for achieving this object, the rectangular shape, the platform on which the sample is placed; An extension beam extending from one side of the platform and having an electrode disposed thereon to prevent deflection on a specific axis; A chevron beam having a 'V' shape, the center of which is connected to the extension beam to drive the platform by attracting the extension beam when a heat driver is driven; And two heat drivers each of which is driven in a specific direction by generating joule heat when a voltage is applied, and each of which has a piezoresistive displacement sensor integrated therein; Including, the extension beam, the chevron beam and the two thermal actuators, each extending from the four sides of the platform, characterized in that formed to have a vertical symmetry structure with respect to the platform. 마이크로스테이지, 변위, 압저항, 쉐브론 빔 Microstage, Displacement, Piezoresistive, Chevron Beam

Подробнее
21-05-2019 дата публикации

Solid low-grade fever platform of low temperature and preparation method thereof in a kind of super low-power consumption

Номер: CN109775655A
Автор: 丁桂甫, 刘琦
Принадлежит: Shanghai Jiaotong University

本发明公开了一种超低功耗中低温实心微热平台,包括:衬底;绝热层,所述绝热层设置在所述衬底上;加热结构,所述加热结构设置在所述绝热层上,通过所述绝热层实现与所述衬底的热隔离和电绝缘;以及导热层,所述导热层设置成覆盖所述加热结构,通过所述导热层实现快速热传导、电绝缘和温度均匀化。

Подробнее
21-06-2019 дата публикации

SUPPORT ELEMENT OF AT LEAST ONE ELECTRONIC COMPONENT

Номер: FR3075192A1

L'invention concerne un élément de support (10a) d'au moins un composant électronique, ledit élément de support (10a) comportant : - une zone de réception (11) destinée à soutenir au moins un composant électronique ; - au moins un élément de liaison (12a-12b) apte à assurer une liaison mécanique inamovible entre ladite zone de réception (11) et un bord externe (14) dudit élément de support (10a) ; et - un élément de régulation (18) en température de ladite zone de réception (11) mobile entre deux positions : - une position de faible conductance thermique avec ladite zone de réception (11) ; et - une position de forte conductance thermique avec ladite zone de réception (11) ; les déplacement dudit élément de régulation (18) étant assurés par les propriétés de dilatation thermiques dudit élément de régulation (18).

Подробнее
28-02-2017 дата публикации

Systems and methods for nuclear event circumvention in an inertial device

Номер: US9580300B2
Автор: Robert Meyer
Принадлежит: Honeywell International Inc

Systems and methods with the ability to raise the set point temperature immediately after a temperature increase due to radiation exposure, thereby reducing T-dot (rate of change in temperature) errors when trying to cool the inertial system back to its original set point temperature. An example system includes an inertial instrument, a sensor that senses if an increased temperature event has been experienced by the inertial instrument, and a controller device that will increase the set point temperature of the inertial instrument based on the determined increase in temperature. The controller device will also maintain the inertial instrument at a temperature associated with at least one of the sensed increased temperature event or the increased set point temperature.

Подробнее
23-11-2016 дата публикации

Monolithic fabrication of thermally isolated microelectromechanical system (mems) devices

Номер: EP3095755A1
Автор: Grant Lodden, John Reinke
Принадлежит: Honeywell International Inc

A method for fabricating a thermally isolated microelectromechanical system (MEMS) structure is provided. The method includes processing a first wafer of a first material with a glass wafer to form a composite substrate including at least one sacrificial structure of the first material and glass; forming a MEMS device in a second material; forming at least one temperature sensing element on at least one of: the composite substrate; and the MEMS device; and etching away the at least one sacrificial structure of the first material in the composite substrate to form at least one thermally isolating glass flexure. The MEMS device is thermally isolated on a thermal isolation stage by the at least one thermally isolating glass flexure. The at least one temperature sensing element in on a respective at least one of: the thermal isolation stage; and the MEMS device.

Подробнее
25-02-2010 дата публикации

Sensor Device Packaging And Method

Номер: US20100044809A1
Принадлежит: S3C Inc

A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.

Подробнее
16-07-2021 дата публикации

OPTICAL MODULE INCLUDING AN ELECTRONIC CARD WITH AN ELECTRONIC CHIP

Номер: FR3082920B1
Принадлежит: Valeo Vision SA

Module optique (3) caractérisé en ce qu'il comprend : - un boîtier (10), - une carte électronique (30), - une puce (20) électronique comprenant une matrice de micro-miroirs (21), la puce (20) étant fixée à la carte électronique (30), - un organe de dissipation thermique (50) comprenant un dissipateur thermique (51), la puce (20) étant en contact d'une part contre le boîtier (10) et d'autre part avec le dissipateur thermique (51), l'organe de dissipation thermique (50) étant fixé au boîtier (10) par l'intermédiaire d'un premier volume de colle (41) et fixé à la carte électronique (30) par l'intermédiaire d'un deuxième volume de colle (42). Optical module (3) characterized in that it comprises: - a housing (10), - an electronic card (30), - an electronic chip (20) comprising a matrix of micro-mirrors (21), the chip (20 ) being fixed to the electronic card (30), - a heat dissipation member (50) comprising a heat sink (51), the chip (20) being in contact on the one hand against the housing (10) and on the other part with the heat sink (51), the heat dissipation member (50) being fixed to the housing (10) by means of a first volume of glue (41) and fixed to the electronic card (30) by the 'intermediary of a second volume of glue (42).

Подробнее
12-04-2017 дата публикации

Micro electro mechanical element with enhanced structural strength

Номер: CN104555884B
Принадлежит: PixArt Imaging Inc

本发明提供一种具有增强结构强度的微机电元件,包含多个金属层,多个金属层包含一最上金属层,此最上金属层包含多个独立金属段;其中,该多个独立金属段分别通过至少一支持柱以连接至相邻的金属层,且在该最上层独立金属段与该相邻的金属层之间除了支持柱外,无介电层设置于其中;除该最上金属层外,其余金属层分别通过至少一支持柱及一介电层而与相邻的金属层彼此连接。

Подробнее
25-08-2017 дата публикации

A kind of micro mechanical pressure sensor chip of pressure resistance type and preparation method thereof

Номер: CN107089637A
Автор: 焦文龙

本发明涉及一种压力传感器,尤其涉及一种压阻式的微机械压力传感器芯片及其制备方法,该压力传感器包括:第一基底;第二基底,形成于第一基底的上表面,且第二基底与第一基底接触的一面形成有一硅杯空腔;第一绝缘层,覆盖于第二基底未形成硅杯空腔的一面的上方;两个第一掺杂结构,分别形成于第一绝缘层的上表面的两侧;多个第二掺杂结构,间隔分布于第一绝缘层的上表面两个第一掺杂结构之间;钝化层,覆盖每个第一掺杂结构和第二掺杂结构的上表面及侧部;钝化层于两侧的第一掺杂结构的上方分别包括有一接触孔;金属焊盘,填充每个接触孔使得每个第一掺杂结构分别与一个金属焊盘相接触;所形成的传感器芯片具有耐高温,可靠性高的优点。

Подробнее
14-02-2020 дата публикации

Transmission-type MEMS chip and lighting system

Номер: CN110790216A
Автор: 戈斌, 朱明华, 郭田忠
Принадлежит: HASCO Vision Technology Co Ltd

本发明涉及智能照明技术领域,尤其涉及一种透射式MEMS芯片及一种包括该透射式MEMS芯片的照明系统。该透射式MEMS芯片包括一中心设有透光通道的支撑框架,支撑框架上设有可开启或关闭透光通道的MEMS微镜阵列和用于测量MEMS微镜阵列温度的第一测温器件,MEMS微镜阵列与驱动MEMS微镜阵列动作的芯片驱动电路相连接,第一测温器件与芯片驱动电路相连接。由第一测温器件对MEMS微镜阵列的整体温度进行实时测量,并将测量结果反馈给芯片驱动电路,芯片驱动电路则可根据该温度反馈信号动态调整MEMS微镜阵列的工作状态,从而保证透射式MEMS芯片工作在其最佳工作状态。

Подробнее
03-03-2021 дата публикации

Capacitive sensor having temperature stable output

Номер: EP3784621A1
Принадлежит: Sciosense BV

An example system includes a sensor. The sensor includes a base having a base electrode, and a first membrane suspended above the base. The first membrane includes a first membrane electrode. The first membrane is configured to deflect with respect to the base electrode in response to an environmental condition. The sensor is operable to measure a capacitance between the base electrode and the first membrane electrode. The system also includes a first electrically conductive shield layer positioned between the sensor and a device of the system operable to generate electrical interference signals. The first electrically conductive shield layer defines a plurality of first apertures extending through the first electrically conductive shield layer. The system also includes dielectric material disposed in the plurality of first apertures.

Подробнее
30-08-2017 дата публикации

Micro-electro-mechanical type pressure device having low sensitivity to temperature

Номер: EP3210934A1
Принадлежит: STMICROELECTRONICS SRL

A micro-electro-mechanical pressure sensor device (100), formed by a cap region (102) and by a sensor region (101) of semiconductor material. An air gap (107) extends between the sensor region (101) and the cap region (102; 103); a buried cavity (109) extends underneath the air gap, in the sensor region (101), and delimits a membrane (111) at the bottom. A through trench (110) extends within the sensor region (101) and laterally delimits a sensitive portion (121) housing the membrane, a supporting portion (120), and a spring portion (122), the spring portion connecting the sensitive portion (121) to the supporting portion (120). A channel (123) extends within the spring portion (122) and connects the buried cavity (109) to a face (101A) of the second region (101). The first air gap (107) is fluidically connected to the outside of the device, and the buried cavity (109) is isolated from the outside via a sealing region (106B) arranged between the sensor region (101) and the cap region (102).

Подробнее
25-07-2023 дата публикации

Preparation method and application of MEMS infrared light source

Номер: CN111115565B

本发明属于红外光源领域,具体公开了一种MEMS红外光源的制备方法及其应用,制备方法包括:在单晶硅片的一面上制备能透红外光的支撑层;在单晶硅片的另一面上采用MEMS工艺刻蚀并将该单晶硅片的中间区域刻穿,形成掏空结构;在支撑层上进行图案溅射,得到红外热辐射体,并在红外热辐射体表面沉积能透红外光且绝热的隔离层,以及在隔离层上沉积反射层,得到背发射式结构的硅基MEMS红外光源。本发明在单晶硅片的一面设置支撑层后,在另一面进行MEMS工艺刻蚀,形成边缘为硅基且中间区域刻穿的掏空结构,同时在支撑层依次设置红外热辐射体、隔离层和反射层。本发明制备得到背发射式的红外光源,红外发射效率高,在应用是能够有效降低集成难度、集成成本。

Подробнее
04-04-2023 дата публикации

Method for producing a substrate having a region mechanically decoupled from a carrier, method for producing at least one spring and substrate

Номер: CN110177757B
Принадлежит: ROBERT BOSCH GMBH

本发明公开了一种用于制造具有与载体机械脱耦的区域的衬底的方法,所述区域具有掷筛一个在其上布置的构件,其中,至少一个凹槽在衬底的正面被引入,蚀刻图案在衬底的背面被准备并且被这样各向异性的蚀刻,使得在衬底的背面上产生垂直通道并且随后在衬底的背面上引入空腔,其中,衬底正面上的至少一个凹槽与衬底背面上的空腔连接并且至少两个凹槽或凹槽的至少两个区段在衬底正面与空腔之间的至少一个区域中通过至少一个蚀空部相互连接。

Подробнее
30-06-2016 дата публикации

Capacitive rf mems intended for high-power applications

Номер: WO2016102650A1
Принадлежит: THALES

According to one aspect of the invention, a capacitive radiofrequency electromechanical microsystem or capacitive RF MEMS comprising a metal membrane (1) suspended above an RF transmission line (3) and resting on ground planes (6a, 6b), and having a lower face (1b), and an upper face (1a) opposite the lower face and a first layer (7) comprising a refractory metal material (Matl) at least partially covering the upper face of the membrane so as to prevent heating of the membrane, is provided.

Подробнее
31-08-2016 дата публикации

Thermally shorted bolometer

Номер: EP3060891A1
Принадлежит: ROBERT BOSCH GMBH

In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.

Подробнее
08-11-2021 дата публикации

Sensor and package assembly thereof

Номер: PH12021551230A1
Автор: Ken Chang, Wallace Chuang
Принадлежит: Bosch Gmbh Robert

The present invention discloses a package assembly of a sensor, comprising: a redistribution layer comprising a first face and a second face opposite to each other; a first die electrically connected to the first face of the redistribution layer; a molding compound comprising a third face and a fourth face opposite to each other, wherein the third face of the molding compound is combined with the first face of the redistribution layer, and the molding compound encapsulates the first die on the side of the first face of the redistribution layer; and a sensing element electrically connected to the redistribution layer. The package assembly of the sensor allows more elements to be packaged together, and provides a better structural Support or provides a better heat distribution for the package assembly, and at the same time, reduces the volume and costs of the entire package assembly.

Подробнее
22-07-2021 дата публикации

Thermal protection mechanism for uncooled microbolometers.

Номер: KR102280921B1
Принадлежит: 레이던 컴퍼니

비냉각 마이크로 볼로미터 픽셀에 대한, 태양 손상, 및 기타 열-관련 손상을 방지하기 위한 방법 및 장치. 특정 예에서, 비냉각 마이크로 볼로미터의 픽셀 중 적어도 일부는 픽셀(들)을 과도한 열 손상으로부터 보호하는 바이메탈릭 열적 단락 구조로 구성된다. 다른 예에서, 특정 임계값을 초과하는 온도에서 고도로 반사성인 써모크로익 막이 마이크로 볼로미터 픽셀 상에 적용되어 픽셀이 과도한 열에 의해 손상되는 것을 방지한다. Methods and apparatus for preventing sun damage, and other heat-related damage to uncooled microbolometer pixels. In certain instances, at least some of the pixels of the uncooled microbolometer are configured with a bimetallic thermal shorting structure that protects the pixel(s) from excessive thermal damage. In another example, a highly reflective thermochromic film at a temperature exceeding a certain threshold is applied on a microbolometer pixel to prevent the pixel from being damaged by excessive heat.

Подробнее
05-07-2018 дата публикации

Silicon carbide electromechanical structure, devices and method

Номер: WO2018049076A3

Electromechanical device structures are provided, as well as methods for forming them. The device structures incorporate at least a first and second substrate separated by an interface material layer, where the first substrate comprises an anchor material structure and at least one suspended material structure, optionally a spring material structure, and optionally an electrostatic sense electrode. The device structures may be formed by methods that include providing an interface material layer on one or both of the first and second substrates, bonding the interface materials to the opposing first or second substrate or to the other interface material layer, followed by forming the suspended material structure by etching.

Подробнее
03-08-2023 дата публикации

Microfluidic passage with protective layer

Номер: US20230241889A1
Принадлежит: Hewlett Packard Development Co LP

A microfluidic die may include a microfluidic passage and a protective layer provided adjacent to internal surfaces of the microfluidic passage. The protective layer may include a protective nano-crystalline material and a protective amorphous matrix encapsulating the protective nano-crystalline material.

Подробнее
08-05-2020 дата публикации

Preparation method and application of MEMS infrared light source

Номер: CN111115565A

本发明属于红外光源领域,具体公开了一种MEMS红外光源的制备方法及其应用,制备方法包括:在单晶硅片的一面上制备能透红外光的支撑层;在单晶硅片的另一面上采用MEMS工艺刻蚀并将该单晶硅片的中间区域刻穿,形成掏空结构;在支撑层上进行图案溅射,得到红外热辐射体,并在红外热辐射体表面沉积能透红外光且绝热的隔离层,以及在隔离层上沉积反射层,得到背发射式结构的硅基MEMS红外光源。本发明在单晶硅片的一面设置支撑层后,在另一面进行MEMS工艺刻蚀,形成边缘为硅基且中间区域刻穿的掏空结构,同时在支撑层依次设置红外热辐射体、隔离层和反射层。本发明制备得到背发射式的红外光源,红外发射效率高,在应用是能够有效降低集成难度、集成成本。

Подробнее
28-01-2022 дата публикации

MEMS infrared light source and preparation method thereof

Номер: CN113979402A
Автор: 树东生, 陶继方
Принадлежит: Shandong University

本发明公开了一种MEMS红外光源及其制备方法,从下到上依次包括衬底、支撑薄膜、加热层和辐射层,所述加热层表面通过刻蚀形成加热电阻结构,所述辐射层位于加热电阻结构上方,所述衬底上开设上下贯穿所述衬底的空腔,所述空腔的横截面积大于所述辐射层的面积,所述支撑薄膜位于所述空腔上方边缘的位置处为波纹膜结构。本发明所公开的MEMS红外光源利用波纹膜结构将应力转换为水平方向的位移,从而释放红外光源工作时产生的热应力,避免在辐射层的局部高温下,支撑薄膜的中心发生很大的纵向位移;进而解决了红外光源在工作时,热应力导致的支撑薄膜破裂问题,提高了红外光源的稳定性,有利于延长红外光源的使用寿命。

Подробнее
18-03-2015 дата публикации

Micromechanical component and corresponding test method for a micromechanical component

Номер: CN104418293A
Принадлежит: ROBERT BOSCH GMBH

本发明提供了一种微机械结构元件和一种用于微机械结构元件的相应检查方法。微机械结构元件包括:至少一个第一区域(1),所述至少一个第一区域通过一弹簧装置(2a)与一第二区域(100)弹性连接;一布置在所述弹簧装置(2a)中和/或上的电阻装置(R;R1;R″;R″';R1、R2、R0),所述电阻装置能够在所述弹簧装置(2a、2b;2a'、2a″、2b'、2b″;22-25)损坏时至少部分被中断;一检测装置(50;50'),所述检测装置与所述电阻装置(R)电连接,用于检测所述电阻装置(R;R1;R″;R″';R1、R2、R0)的中断和用于产生相应的检测信号(S)。

Подробнее
01-11-2017 дата публикации

Capacitive rf mems intended for high-power applications

Номер: EP3237324A1
Принадлежит: Thales SA

According to one aspect of the invention, a capacitive radiofrequency electromechanical microsystem or capacitive RF MEMS comprising a metal membrane (1) suspended above an RF transmission line (3) and resting on ground planes (6a, 6b), and having a lower face (1b), and an upper face (1a) opposite the lower face and a first layer (7) comprising a refractory metal material (Matl) at least partially covering the upper face of the membrane so as to prevent heating of the membrane, is provided.

Подробнее
07-03-2024 дата публикации

マイクロエレクトロニクスhフレームデバイス

Номер: JP2024510384A
Принадлежит: Northrop Grumman Systems Corp

マイクロエレクトロニクスHフレームデバイスは、2つ以上の基板のスタックであって、基板のスタックが上部基板及び底部基板を含み、底部基板への上部基板の接合が、上部基板と底部基板との間の垂直電気接続を作成し、上部基板の上面が上部基板上部メタライゼーションを含み、底部基板の底面が底部基板底部メタライゼーションを含む、2つ以上の基板のスタックと、上部基板と底部基板との間に位置する中間基板メタライゼーションと、基板のスタックの上部側に接合された微細加工された上部カバーと、基板のスタックの底部側に接合された微細加工された底部カバーとを含む。

Подробнее
02-04-2024 дата публикации

一种微机电系统红外探测器的制作方法

Номер: CN109399552B

本发明提供一种微机电系统红外探测器的制作方法,包括配置至少二垂直导电区的衬底,相对固定于衬底、配置至少二电极的热敏感器件,及数量与电极的数量相同,电连接电极与垂直导电区的导电引线;其中,衬底配置热绝缘层,热绝缘层位于热敏感器件于衬底的投影面处。本发明提供MEMS红外探测器的结构,热敏感器件用于接收红外辐射信号,输出电学感应信号,将热敏感器件上面朝向待探测区域,并于热敏感器件的下部的热绝缘层,并于下热敏感器件的下部设置引线结构,提高测量的精准度。

Подробнее
19-05-2016 дата публикации

内部温度測定装置

Номер: JP2016085136A
Принадлежит: Omron Corp, Omron Tateisi Electronics Co

【課題】表面側に存在する非発熱体の熱抵抗値が未知の測定対象物の内部温度を従来よりも正確に応答性良く測定できる内部温度測定装置を提供する。 【解決手段】内部温度測定装置10は、非発熱体の熱抵抗値が未知の測定対象物の内部温度を算出するための2つの熱流束を測定するための2つのセル20a、20bと、熱流束差を大きくするためのセル20cとを備えたMEMSチップ12を含む。 【選択図】図4

Подробнее
14-03-2024 дата публикации

Mikroelektromechanische Vorrichtung

Номер: DE102022209402A1
Принадлежит: CARL ZEISS SMT GMBH, ROBERT BOSCH GMBH

Mikroelektromechanische Vorrichtung (110) umfassend ein Trägersubstrat (100) mit einer Substratoberfläche (100a) und mehrere MEMS-Module (120), wobei jedes der mehreren MEMS-Module (120) eine ASIC-Schicht (140) mit einer ASIC-Schicht-Vorderseite (140a) und einer ASIC-Schicht-Rückseite (140b), eine Grundplatte (160) mit einer Grundplattenvorderseite (160a) und einer Grundplattenrückseite (160b) und mehrere mikroelektromechanische Bauelemente (130) mit einer Bauelementrückseite (130b) umfasst, wobei die Grundplatte (160) auf der ASIC-Schicht-Vorderseite (140a) angeordnet und die Grundplattenrückseite (160b) mit der ASIC-Schicht-Vorderseite (140a) verbunden ist und die mehreren mikroelektromechanischen Bauelemente (130) auf der Grundplattenvorderseite (160a) angeordnet und deren Bauelementrückseiten (130b) mit der Grundplattenvorderseite (160a) verbunden sind, wobei die ASIC-Schicht (140) ein ASIC zum Ansteuern der mehreren mikroelektromechanischen Bauelemente (130) aufweist, wobei das ASIC mit den mikroelektromechanischen Bauelementen (130) über elektrische Kontakte (144) verbunden ist, wobei die mehreren MEMS-Module (120) auf der Substratoberfläche (100a) angeordnet sind und die ASIC-Schicht-Rückseiten (140b) der mehreren MEMS-Module (120) mit der Substratoberfläche (100a) verbunden sind.

Подробнее
19-12-2023 дата публикации

具有温度稳定输出的电容式传感器

Номер: CN112055694B
Принадлежит: Sciosense BV

一种示例系统,包括传感器。该传感器包括具有基底电极的基底以及悬在该基底上方的第一膜。第一膜包括第一膜电极。第一膜被配置为响应于环境条件而相对于基底电极偏转。传感器可操作以测量基底电极与第一膜电极之间的电容。该系统还包括第一导电屏蔽层,该第一导电屏蔽层定位在传感器与该系统的可操作以生成电干扰信号的设备之间。第一导电屏蔽层限定延伸穿过该第一导电屏蔽层的多个第一孔。该系统还包括设置在多个第一孔中的介电材料。

Подробнее
26-12-2023 дата публикации

Anchor structure for reducing temperature-based error

Номер: US11852649B2
Автор: Akira Konno
Принадлежит: Murata Manufacturing Co Ltd

The present invention relates to microelectromechanical systems (MEMS), and more specifically to an anchor structure for anchoring MEMS components within a MEMS device. The anchor points for rotor and stator components of the device are arranged such that the anchor points are arranged along and overlap a common axis.

Подробнее
29-08-2023 дата публикации

Systems and methods for operating a mems device based on sensed temperature gradients

Номер: US11738994B2
Принадлежит: InvenSense Inc

An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.

Подробнее
17-01-2024 дата публикации

Microelectronics h-frame device

Номер: EP4305669A1
Принадлежит: Northrop Grumman Systems Corp

A microelectronics H -frame device includes: a stack of two or more substrates wherein the substrate stack comprises a top substrate and a bottom substrate, wherein bonding of the top substrate to the bottom substrate creates a vertical electrical connection between the top substrate and the bottom substrate, wherein the top surface of the top substrate comprises top substrate top metallization, wherein the bottom surface of the bottom substrate comprises bottom substrate bottom metallization; mid-substrate metallization located between the top substrate and the bottom substrate; a micro- machined top cover bonded to a top side of the substrate stack; and a micro-machined bottom cover bonded to a bottom side of the substrate stack.

Подробнее
15-09-2022 дата публикации

Microelectronics h-frame device

Номер: WO2022191937A1
Принадлежит: Northrop Grumman Systems Corporation

A microelectronics H -frame device includes: a stack of two or more substrates wherein the substrate stack comprises a top substrate and a bottom substrate, wherein bonding of the top substrate to the bottom substrate creates a vertical electrical connection between the top substrate and the bottom substrate, wherein the top surface of the top substrate comprises top substrate top metallization, wherein the bottom surface of the bottom substrate comprises bottom substrate bottom metallization; mid-substrate metallization located between the top substrate and the bottom substrate; a micro- machined top cover bonded to a top side of the substrate stack; and a micro-machined bottom cover bonded to a bottom side of the substrate stack.

Подробнее
30-03-2023 дата публикации

Piezoelectric mems device with thermal compensation from one or more compensation layers

Номер: US20230094674A1
Принадлежит: Skyworks Global Pte Ltd

A system for compensating for thermal stress in piezoelectric microelectromechanical systems devices can have a piezoelectric layer at least partially spanning a cavity such that it generates electrical signals when external forces cause the piezoelectric layer to vibrate with respect to the cavity. At least one electrode layer can include a conductive metal positioned adjacent the piezoelectric layer and configured as an electrode to accept the electrical signals. The piezoelectric layer and electrode layer can have an expected thermal stress tending to cause expected deflection even when external forces are not causing the piezoelectric layer to vibrate. A compensation layer can be positioned adjacent at least one of the piezoelectric layer and the at least one electrode layer and configured to counteract the expected deflection from the expected thermal stress.

Подробнее
27-04-2023 дата публикации

Microelectromechanical Devices For Higher Order Passive Temperature Compensation and Methods of Designing Thereof

Номер: US20230131902A1
Принадлежит: Stathera IP Holdings Inc

An example silicon MEMS resonator device includes a support structure, a resonator element with at least one associated eigenmode of vibration, at least one anchor coupling the resonator element to the support structure, at least one driving electrode, and at least one sense electrode. The resonator element is homogeneously doped with N-type or P-type dopants to a doping concentration that causes a closely temperature-compensated mode in which (i) an absolute value of a first order temperature coefficient of frequency of the resonator element is reduced to a first value below a threshold value and (ii) an absolute value of a second order temperature coefficient of frequency of the resonator element is reduced to about zero. Further, a geometry of the resonator element is chosen such that the absolute value of the first order temperature coefficient of frequency is further reduced to a second value smaller than the first value.

Подробнее
31-03-2020 дата публикации

用于抑制干扰辐射的装置

Номер: CN110944277A
Принадлежит: INFINEON TECHNOLOGIES AG

本申请的实施例涉及一种用于抑制干扰辐射的装置。一种装置,包括MEMS传感器模块和导电笼结构。导电笼结构可以包围MEMS传感器模块以抑制具有干扰波长λ 0 的电磁干扰辐射侵入导电笼结构,并且导电笼结构可以与MEMS传感器模块热隔离地设置。此外,该装置可以包括至少一条连接线。至少一条连接线可以连接到MEMS传感器模块,并且借助于电容元件引导穿过导电笼结构。

Подробнее
23-12-2022 дата публикации

用于抑制干扰辐射的装置

Номер: CN110944277B
Принадлежит: INFINEON TECHNOLOGIES AG

本申请的实施例涉及一种用于抑制干扰辐射的装置。一种装置,包括MEMS传感器模块和导电笼结构。导电笼结构可以包围MEMS传感器模块以抑制具有干扰波长λ 0 的电磁干扰辐射侵入导电笼结构,并且导电笼结构可以与MEMS传感器模块热隔离地设置。此外,该装置可以包括至少一条连接线。至少一条连接线可以连接到MEMS传感器模块,并且借助于电容元件引导穿过导电笼结构。

Подробнее
03-04-2020 дата публикации

스트레이 방사선 억제 장치

Номер: KR20200035360A
Принадлежит: 인피니언 테크놀로지스 아게

장치는 MEMS 센서 모듈 및 전도성 케이지 구조체를 포함한다. 전도성 케이지 구조체는 스트레이 파장(λ 0 )을 갖는 스트레이 전자기 방사선이 전도성 케이지 구조체 내로 침투하는 것을 억제하기 위해 MEMS 센서 모듈을 둘러쌀 수 있고, 전도성 케이지 구조체는 MEMS 센서 모듈로부터 단열 배치될 수 있다. 장치는 또한 적어도 하나의 연결선을 포함할 수 있다. 적어도 하나의 연결선은 MEMS 센서 모듈에 연결될 수 있고, 용량성 소자에 의해 전도성 케이지 구조체를 거쳐 공급될 수 있다.

Подробнее
17-01-2020 дата публикации

用于全封闭的asic和导线的麦克风封装件

Номер: CN110710225A
Принадлежит: Merchant Building Electronics Co Ltd

一种麦克风装置包括具有腔体的基板。所述装置还包括安装在基板上的腔体外部的微机电系统(MEMS)换能器以及安装在所述腔体中的专用集成电路。第一组焊接线将MEMS换能器连接至ASIC,第二组焊接线将ASIC连接至腔体内的导线。封装材料完全覆盖ASIC和第二组导线的至少一部分,并且基本上被限制在腔体内。在基板上方安装有盖以覆盖MEMS换能器、封装材料、ASIC、第一组焊接线以及第二组焊接线。

Подробнее
05-06-2020 дата публикации

Mems隔膜结构体及其制造方法

Номер: CN111232916A
Автор: 李秉周, 林富泽

本发明涉及一种MEMS隔膜结构体制造方法,该方法包括下列步骤:在硅基板上形成氧化硅薄膜堤结构体;沉积粘结层后形成牺牲层;在所述牺牲层上沉积表面保护膜;蚀刻所述表面保护膜与牺牲层而在氧化硅薄膜堤结构体上形成1列至3列沟槽;在所述1列至3列沟槽内部与牺牲层的表面保护膜上沉积支持膜而形成隔膜;及除掉沉积在所述1列的支持膜内部的牺牲层而形成中空空间。

Подробнее
30-03-2023 дата публикации

Piezoelectric mems device with thermal compensation from different material properties

Номер: US20230099440A1
Принадлежит: Skyworks Global Pte Ltd

A piezoelectric microelectromechanical systems device is provided, having a first piezoelectric layer, a first metal layer including a first metal, a second metal layer including a second metal, the first and second metals having different properties to compensate deflection due to thermal stress of any or all of the piezoelectric layer, the first metal layer, and second metal layer and a substrate including at least one wall defining a cavity and the at least one wall supporting the layers. The method for making the piezoelectric microelectromechanical systems device is also provided.

Подробнее
28-11-2023 дата публикации

一种具有柔性连接结构的电热mems微动平台

Номер: CN112645274B
Автор: 丁英涛, 王鹏, 肖磊, 谢会开

本发明公开了一种具有柔性连接结构的电热MEMS微动平台,包括引线电极、衬底、两种或多种材料层结构的电热驱动臂、可动结构、衬底端连接结构和可动端连接结构;所述电热驱动臂的一端通过衬底端连接结构连接到衬底,另一端通过所述可动端连接结构连接到所述可动结构;所述衬底端连接结构和/或所述可动端连接结构为柔性连接结构;所述柔性连接结构主要由有机聚合物材料构成;所述电热驱动臂中包含内置电阻;所述衬底端连接结构包含导电引线,将所述内置电阻与所述衬底上的引线电极相连;所述可动结构可以是一个微平台、一个透镜、一个反射镜面、一个框架等。本发明能够显著提高电热MEMS微动平台的抗冲击能力。

Подробнее
10-05-2017 дата публикации

一种mems红外光源及其制作方法

Номер: CN106629574A
Принадлежит: Institute of Microelectronics of CAS

本发明公开一种MEMS红外光源及其制作方法,MEMS红外光源包括衬底、支撑层、第一热敏电阻层、介质层、第二热敏电阻层、隔离保护层、加热电阻层和辐射层,本发明中利用第一热敏电阻层和第二热敏电阻层中的一层热敏电阻层作为温度传感器,直接在外界通过热敏电阻层的阻值变化测量MEMS红外光源的辐射区温度变化;利用另一层作为温度补偿性能,在一定温度范围内于外围的补偿回路中抵消温漂产生的误差,即本发明提供的MEMS红外光源能够在实时监测温度漂移的同时进行实时温度补偿,从而提高MEMS红外光源的测量线性度,避免器受外界环境影响。所述制作方法,便于与红外光源内部芯片工艺兼容,减小了工艺难度。

Подробнее
10-12-2021 дата публикации

三维互联和散热一体化的微系统封装结构

Номер: CN113772617A

本发明提供了一种三维互联和散热一体化的微系统封装结构,包括散热壳体、硅基组件、转接电路板、封装盖板和毛纽扣连接器;散热壳体与封装盖板连接形成一封闭腔体,用于容置彼此连接的硅基组件和转接电路板,硅基组件与散热壳体相连,转接电路板与封装盖板相连;毛纽扣连接器包括第一类和第二类;第一类贯穿散热壳体底壁与硅基组件相连,散热壳体内嵌有用于流通冷却液的流道;第二类贯穿封装盖板与转接电路板相连;硅基组件通过金属层、铜通孔、硅通孔和BGA焊球阵列封装实现毛纽扣连接器、转接电路板和硅基组件三者之间电学互联,毛纽扣连接器用于硅基组件与外界进行信号传输。该结构能够同时兼具高集成度、高导热效率、高实用性和高使用寿命。

Подробнее
15-03-2024 дата публикации

具有温度稳定输出的电容式传感器

Номер: CN117699733A
Принадлежит: Sciosense BV

一种示例系统,包括传感器。该传感器包括具有基底电极的基底以及悬在该基底上方的第一膜。第一膜包括第一膜电极。第一膜被配置为响应于环境条件而相对于基底电极偏转。传感器可操作以测量基底电极与第一膜电极之间的电容。该系统还包括第一导电屏蔽层,该第一导电屏蔽层定位在传感器与该系统的可操作以生成电干扰信号的设备之间。第一导电屏蔽层限定延伸穿过该第一导电屏蔽层的多个第一孔。该系统还包括设置在多个第一孔中的介电材料。

Подробнее
04-05-2023 дата публикации

Microelectromechanical devices for higher order passive temperature compensation and methods of designing thereof

Номер: WO2023070214A1
Принадлежит: Stathera Ip Holdings Inc.

An example silicon MEMS resonator device includes a support structure, a resonator element with at least one associated eigenmode of vibration, at least one anchor coupling the resonator element to the support structure, at least one driving electrode, and at least one sense electrode. The resonator element is homogeneously doped with N-type or P-type dopants to a doping concentration that causes a closely temperature-compensated mode in which (i) an absolute value of a first order temperature coefficient of frequency of the resonator clement is reduced to a first value below a threshold value and (ii) an absolute value of a second order temperature coefficient of frequency of the resonator element is reduced to about zero. Further, a geometry of the resonator element is chosen such that the absolute value of the first order temperature coefficient of frequency is further reduced to a second value smaller than the first value.

Подробнее
26-04-2017 дата публикации

内部温度测量装置

Номер: CN106605132A
Принадлежит: Omron Corp

提供内部温度测量装置,能够比以往更准确地响应性良好地测量在表面侧存在的非发热体的热阻值未知的测量目标物体的内部温度。内部温度测量装置(10)包括MEMS芯片(12),MEMS芯片(12)包括用于计算非发热体的热阻值未知的测量目标物体的内部温度的2个热通量的2个单元(20a、20b),以及用于增大热通量差的单元(20c)。

Подробнее
03-05-2024 дата публикации

一种三明治式mems器件结构

Номер: CN111908419B

本发明涉及一种三明治式MEMS器件结构,包括衬底电极层、结构层、盖板层。衬底电极层通过第一键合层与结构层键合,结构层通过第二键合层与盖帽层键合;衬底电极层上加工若干衬底电极,盖帽层上加工若干盖板电极,结构层上加工质量块、锚区及弹簧梁、激励电极、拾振电极;衬底电极层包括绝缘层等,质量块通过锚区及弹簧梁和质量块电极引线引出,激励电极、拾振电极分别通过衬底电极层上的对应的激励电极引线和拾振电极引线引出;本发明中质量块上下双侧电极结构即三明治式结构的设计,能避免质量块在其与衬底电极间的静电力以及应力的作用下,偏离平衡位置,从而使器件具有更好的一致性和温度稳定性。

Подробнее
22-06-2023 дата публикации

Microsystem for measuring rotational movement and measurement device therefor

Номер: US20230194236A1
Автор: Guillaume JOURDAN

A microsystem includes a substrate; a main part connected to the substrate via an anchor; a moving part configured to rotate about an axis of rotation O; a first beam connecting the moving part to the main part, the main direction of said first beam being along a first vector ej1 having as origin the junction of the moving part with the first beam and in the sense of the main part; a second beam connecting the moving part to the main part, the main direction of the second beam being along a second vector ej2 having as origin the junction of the moving part with the second beam and in the sense of the main part.

Подробнее
29-02-2024 дата публикации

Halbleiter-Differenzdrucksensor und Herstellungsverfahren des selbigen

Номер: DE102017209858B4
Автор: Eiji Yoshikawa
Принадлежит: Mitsubishi Electric Corp

Halbleiter-Differenzdrucksensor, umfassend:ein Halbleiter-Differenzdrucksensorelement (100, 100A, 100B, 100C, 100D, 100E), wobei eine Hauptoberfläche (1a) eines ersten Halbleitersubstrats (1) und eine Hauptoberfläche (2a) eines zweiten Halbleitersubstrats (2) mittels eines auf dem zweiten Halbleitersubstrat (2) ausgebildeten Oxidfilms (4) miteinander verbunden sind, wobeidas erste Halbleitersubstrat (1) einen in der einen Hauptoberfläche (1a) vorgesehenen, vertieften Abschnitt (3), Spannungsabbaunuten (13, 13a und 13b), die um und entlang des vertieften Abschnitts (3) vorgesehen sind, und eine Druckleitungsbohrung (8), die den vertieften Abschnitt (3) mit der Außenseite auf der Seite einer anderen Hauptoberfläche (1b) in Kommunikation bringt, aufweist, und das zweite Halbleitersubstrat (2) eine durch den Umriss des vertieften Abschnitts (3) definierte Membran (5), spannungssensitive Elemente (6), die in Bereichen einer anderen Hauptoberfläche (2b) innerhalb der Membran (5) angeordnet sind, Elektroden (10), die in einem Rahmenabschnitt (7) außerhalb der Membran (5) angeordnet sind, und eine Diffusionsverdrahtung (9), die die spannungssensitiven Elemente (6) und Elektroden (10) elektrisch verbindet, aufweist, wobeidie Spannungsabbaunuten (13a und 13b) eine verschachtelte Struktur aufweisen, in der die Spannungsabbaunuten (13a und 13b) mehrfach den vertieften Abschnitt (3) umgeben.

Подробнее