Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 575. Отображено 184.
02-03-2017 дата публикации

Oxidationsbeständige Vanadiumlegierungen für hochtemperaturbeanspruchte Bauteile

Номер: DE102015114092A1
Принадлежит:

Die vorliegende Erfindung betrifft eine Vanadiumlegierung mit 2 bis 35 At.% Silizium und 3 bis 50 At.% Bor, die auch bei höheren Temperaturen oxidationsbeständig ist und insbesondere für die Herstellung von hochtemperaturbeanspruchten Bauteilen geeignet ist.

Подробнее
07-10-1971 дата публикации

Номер: DE0002010871A1
Автор:
Принадлежит:

Подробнее
20-03-1930 дата публикации

Improved manufacture of vanadium-aluminium-silicon alloys

Номер: GB0000305202A
Автор:
Принадлежит:

... 305,202. Vanadium Corporation of America, (Assignees of Saklatwalla, B. D.). Feb. 2, 1928, [Convention date]. Alloys.-An alloy contains vanadium as its major constituent with smaller but effective amounts of aluminium and silicon and a negligible quantity of carbon. A preferred alloy contains about 40-90 per cent, preferably 70 to 90 per cent of vanadium, 3-15 per cent of aluminium, 5-30 per cent of silicon, and the remainder principally iron. The alloy may be substantially free from iron, and the carbon less than 0.5 per cent. The alloy may be made by the thermo-aluminic reduction of vanadium pentoxide, and may be used for introducing vanadium into a molten steel or other metal bath, the aluminium and silicon serving as deoxidizing agents.

Подробнее
12-10-1970 дата публикации

Vanadium basis alloy

Номер: AT0000285187B
Автор:
Принадлежит:

Подробнее
26-11-1985 дата публикации

PROCESS FOR PRODUCING A VANADIUM SILICON ALLOY

Номер: CA0001197104A1
Автор: MERKERT RODNEY F
Принадлежит:

Подробнее
21-07-2005 дата публикации

HYDROGEN STORAGE MATERIALS HAVING EXCELLENT KINETICS, CAPACITY, AND CYCLE STABILITY

Номер: CA0002548995A1
Принадлежит:

A BCC phase hydrogen storage alloy capable of storing approximately 4.0 wt.% hydrogen and delivering reversibly up to 3.0 wt.% hydrogen at temperatures up to 110~C. The hydrogen storage alloys also possess excellent kinetics whereby up to 80% of the hydrogen storage capacity of the hydrogen storage alloy may be reached in 30 seconds and 80% of the total hydrogen storage capacity may be desorbed from the hydrogen storage alloy in 90 seconds. The hydrogen storage alloys also have excellent stability which provides for long cycle life.

Подробнее
30-04-1973 дата публикации

Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties

Номер: CH0000536362A

Metal or semiconductor alloy, esp. for the mfr. of oscillating and spring elements, except for chronometers, with a temp. coefft. of elastic modulus >-10-4 degrees C-1, is paramagnetic. It has a high N-electron phase density (EF), which is recognisable either at room temp. by a magnetic susceptibility chi of over 50 x 10-6 emu/g-atom or at low temp., by a specific heat gamma (electronic heat) of over 5 x 10-4 cal/g-atom degree C temp. coefft. dN(EF)/dT of this phase density, which is recognisable by a non-positive temp. coefft. d chi/dT of the magnetic susceptibility. The main constituent is an element of grps. IIIB or VB or of the last column of grp. VIII. These alloys can be used for electromagnetic filters, using oscillating elements; weighing, levelling devices, electric meters etc., using spring elements, which measure force; and also in turbines, rockets etc. They avoid familiar disadvantages, such as dependence on processing (cold forming, heat treatment) and magnetic fields, lack ...

Подробнее
28-06-1974 дата публикации

Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties

Номер: CH0000551032A
Автор:
Принадлежит:

Metal or semiconductor alloy, esp. for the mfr. of oscillating and spring elements, except for chronometers, with a temp. coefft. of elastic modulus >-10-4 degrees C-1, is paramagnetic. It has a high N-electron phase density (EF), which is recognisable either at room temp. by a magnetic susceptibility chi of over 50 x 10-6 emu/g-atom or at low temp., by a specific heat gamma (electronic heat) of over 5 x 10-4 cal/g-atom degree C temp. coefft. dN(EF)/dT of this phase density, which is recognisable by a non-positive temp. coefft. d chi/dT of the magnetic susceptibility. The main constituent is an element of grps. IIIB or VB or of the last column of grp. VIII. These alloys can be used for electromagnetic filters, using oscillating elements; weighing, levelling devices, electric meters etc., using spring elements, which measure force; and also in turbines, rockets etc. They avoid familiar disadvantages, such as dependence on processing (cold forming, heat treatment) and magnetic fields, lack ...

Подробнее
31-08-1966 дата публикации

Supraleitendes Material

Номер: CH0000419623A

Подробнее
31-08-1966 дата публикации

Supraleitendes Material

Номер: CH0000419622A

Подробнее
13-02-1970 дата публикации

Номер: CH0000587766A4
Автор:
Принадлежит:

Подробнее
30-09-2022 дата публикации

Ressort spiral pour mouvement d'horlogerie et procédé de fabrication de ce ressort spiral.

Номер: CH0000718455A2
Принадлежит:

La présente invention concerne un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce que le ressort spiral est réalisé dans un alliage constitué : - de Nb, Ti et au moins un élément choisi parmi le V et le Ta, - optionnellement d'au moins un élément choisi parmi le Zr et Hf, - optionnellement d'au moins un élément choisi parmi le W et Mo, de traces éventuelles d'autres éléments choisis parmi O, H, C, Fe, N, Ni, Si, Cu, Al, avec les pourcentages en poids suivants : o une teneur totale en Nb, V et Ta comprise entre 40 et 85%, o une teneur totale en Ti, Zr et Hf comprise entre 15 et 55%, o une teneur pour respectivement le W et le Mo comprise entre 0 et 2.5%, o une teneur pour chacun desdits éléments choisis parmi O, H, C, Fe, N, Ni, Si, Cu, Al comprise entre 0 et 1600 ppm avec la somme desdites traces inférieure ou égale à 0.3% en poids. La présente invention concerne également son procédé de fabrication.

Подробнее
25-09-1973 дата публикации

ALLOY FOR SUPERCONDUCTIVE MAGNET

Номер: US0003761254A1
Автор:
Принадлежит: NATIONAL RESEARCH INSTITUTE FOR METALS

Подробнее
16-01-2018 дата публикации

Materials for near field transducers and near field transducers containing same

Номер: US0009870793B2

A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element.

Подробнее
28-02-2019 дата публикации

STEEL-VANADIUM ALLOY CLADDING FOR FUEL ELEMENT

Номер: US20190066857A1
Принадлежит: TerraPower, LLC

This disclosure describes various configurations and components for bimetallic and trimetallic claddings for use as a wall element separating nuclear material from an external environment. The cladding materials are suitable for use as cladding for nuclear fuel elements, particularly for fuel elements that will be exposed to sodium or other coolants or environments with a propensity to react with the nuclear fuel. 1. A wall element consisting of:a first layer of steel;a second layer of at least 90% vanadium; anda third layer of nickel, nickel alloy, chromium, chromium alloy, zirconium or zirconium alloy between the first layer and the second layer.2. The wall element of claim 1 , wherein the second layer has a thickness that is from 0.1% to 50% of the thickness of the first layer and the third layer has a thickness that is from 0.1% to 50% of the thickness of the first layer.3. The wall element of claim 1 , wherein the second layer has a thickness that is from 1% to 5% of the thickness of the first layer and the third layer has a thickness that is from 1% to 5% of the thickness of the first layer.4. The wall element of - claim 1 , wherein the second layer is selected from the vanadium alloys V-20Ti claim 1 , V-10Cr-5Ti claim 1 , V-15Cr-5Ti claim 1 , V-4Cr-4Ti claim 1 , V-4Cr-4Ti NIFS Heats 1 & 2 claim 1 , V-4Cr-4Ti US Heats 832665 & 8923864 claim 1 , and V-4Cr-4Ti Heat CEA-J57.5. The wall element of claim 4 , wherein the second layer is V-4Cr-4Ti.6. The wall element of claim 4 , wherein the second consists of:3.0-5.0 wt. % Cr;3.0-5.0 wt. % Ti; andno more than 0.02 wt. % C;with the balance being V and other elements, wherein the vanadium alloy includes not greater than 0.1 wt. % of each of these other elements, and wherein the total of these other elements does not exceed 0.5 wt. %.7. The wall element of claim 5 , wherein the second layer consists of:3.5-4.5 wt. % Cr;3.5-4.5 wt. % Ti;0.04-0.1 wt. % Si;up to 0.02 wt. % O;up to 0.02 wt. % N;up to 0.02 wt. % C;up to 0. ...

Подробнее
01-01-1970 дата публикации

Frequency Controlling Elements of Low Temperature Coefficient of the Frequency Determining Modulus of Elasticity

Номер: GB0001175883A
Автор:
Принадлежит:

... 1,175,883. Alloys. INSTITUT DR. ING. REINHARD STRAUMANN A. G. April 20, 1967 [April 22, 1966], No.18160/67. Heading C7A. A frequency controlling element has a temperature coefficient of the frequency determining modulus of elasticity in the range between -0‹0001 and +0‹0001 per ‹C.; is paramagnetic; has a high effective density of states of the electrons N(E F ) corresponding to a magnetic atomic susceptibility X of > 50.10-6 em E/g-atom at room temperature, or corresponding to a specific heat of > 5.10-4 cal/g-atom (+K)2 at the temperature of liquid He; and possesses a non-positive temperature coefficient Nd(E F) of the effective density of states exhibited in a non-positive temperature coefficient dX of the magnetic susceptibility. Alloys from which such elements may be made are:- (a) 80V- 20Ti, (b) 80Ti-20Cr, (c) 50V-50Nb, (d) 75Nb- 25Ti, (e) 80Nb-20Zr, (f) 96Nb-4A1, (g) 67Mo-33Ti, (h) 83‹8Nb-10.8Mo-5‹4Ti, (i) 45Ti-41À3Co-13À7Fe, (j) 95Pd-5Rh.

Подробнее
03-06-1971 дата публикации

Номер: GB0001234533A
Автор:
Принадлежит:

Подробнее
12-10-1970 дата публикации

Vanadium basis alloy

Номер: AT0000285188B
Автор:
Принадлежит:

Подробнее
04-07-2019 дата публикации

Steel-vanadium alloy cladding for fuel element

Номер: AU2017398422A1
Принадлежит: Phillips Ormonde Fitzpatrick

This disclosure describes various configurations and components for bimetallic and trimetallic claddings for use as a wall element separating nuclear material from an external environment. The cladding materials are suitable for use as cladding for nuclear fuel elements, particularly for fuel elements that will be exposed to sodium or other coolants or environments with a propensity to react with the nuclear fuel.

Подробнее
14-11-1969 дата публикации

COMPOSITE MATERIAL OF VANADIUM ALLOYS AND IRON OR NICKEL ALLOYS

Номер: FR0002003884A1
Автор:
Принадлежит:

Подробнее
17-09-1971 дата публикации

ELECTRIC INCANDESCENT LAMP WITH AN IMPROVED PINCH SEAL

Номер: FR0002071859A5
Автор:
Принадлежит:

Подробнее
03-11-1969 дата публикации

VANADIUM?BASE ALLOY HAVING A HIGH CREEP?RUPTURE STRENGTH AND AN IMPROVED RESISTANCE TO CORROSION

Номер: BE0000733596A
Автор:
Принадлежит:

Подробнее
26-11-1974 дата публикации

FUEL ELEMENT CAN FOR A NUCLEAR REACTOR

Номер: US0003850584A1
Автор:
Принадлежит: METALLGESELLSCHAFT AKTIENGESELLSCHAFT

Подробнее
16-05-2006 дата публикации

Method of making a catalyst

Номер: US0007045484B2

A method of making a catalyst. The method comprises the step of leaching alloy particles. Preferably, the alloy particles are hydrogen storage alloy particles.

Подробнее
24-11-2022 дата публикации

BETA ENHANCED TITANIUM ALLOYS AND METHODS OF MANUFACTURING BETA ENHANCED TITANIUM ALLOYS

Номер: US20220372597A1
Принадлежит:

An α-β titanium alloy, comprising aluminum, vanadium, and molybdenum. The α-β titanium alloy comprises between 5.0 wt % and 8.0 wt % aluminum (Al), between 1.0 wt % and 5.5 wt % Vanadium (V), and between 0.75 wt % and 2.5 wt % molybdenum (Mo). The α-β titanium alloy having a density between 4.35 g/cc and 4.50 g/cc. 1. A titanium alloy comprising:a α-β titanium alloy;wherein the α-β titanium alloy comprises between 5.0 wt % and 8.0 wt % aluminum (Al), between 1.0 wt % and 5.5 wt % Vanadium (V), and between 0.75 wt % and 2.5 wt % molybdenum (Mo)a density;wherein the density is between 4.35 g/cc and 4.50 g/cc.2. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 0.2 wt % and 1.0 wt % iron (Fe) claim 1 , between 0.1 wt % and 0.2 wt % Silicon (Si) and 0.25 wt % or less oxygen (O).3. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 6.0 wt % and 8.0 wt % aluminum (Al).4. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 5.0 wt % to 7.0 wt % aluminum (Al).5. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 6.0 wt % to 7.0 wt % aluminum (Al).6. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises 0.25 wt % or less oxygen (O).7. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises 0.20 wt % or less oxygen (O).8. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises 0.15 wt % or less oxygen (O).9. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 1.5 wt % and 3.5 wt % vanadium (V).10. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 3.0 wt % and 5.0 wt % vanadium (V).11. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 3.5 wt % and 5.5 wt % vanadium (V).12. The titanium alloy of claim 1 , wherein the α-β titanium alloy comprises between 1.5 wt % and 2.5 wt % molybdenum (Mo).13. The titanium alloy of ...

Подробнее
13-11-1985 дата публикации

Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications

Номер: EP0000161075A2
Принадлежит: Ovonic Battery Co Inc

The present invention provides novel active materials (15,40,115) which reversibly store hydrogen under conditions which make them exceptionally well-suited for electrochemical applications. These active materials have both novel compositions and structures. A first group of active material compositions incorporate the elements of titanium, vanadium, and nickel. A second group adds zirconium to the first group of active materials. A preferred third composition group adds chromium to the first group of active materials. These materials may be single or multi- phase combinations of amorphous, microcrystalline, or polycrystalline structures. Preferably, these materials have a multiphase polycrystalline structure. Methods of reducing the size or of sizing these materials, as well as other hydride-forming alloys, also are provided. Methods of preparing the inventive hydrogen storage materials and fabricating electrodes (15,40,115) from these active materials are contemplated. Electrochemical cells (10,100) and batteries assembled with the inventive electrodes provide significantly improved capacity and cycle life.

Подробнее
05-04-1973 дата публикации

Номер: DE0002204871A1
Автор:
Принадлежит:

Подробнее
18-03-2015 дата публикации

Beta titanium alloy metal matrix composites

Номер: GB0002507236B

Подробнее
29-03-1972 дата публикации

ALLOYS AND THEIR PRODUCTION

Номер: GB0001268425A
Автор:
Принадлежит: SIEMENS AG

1,268,425. Super-conductor alloys. SIEMENS A.G. Oct. 16, 1969 [Nov. 30, 1968], No.50944/69. Heading C7A. An alloy comprising in terms of atomic %:- V 68-87 Al 1-22 and Ga 5-31, with optional additions of up to 10 each of C and/or B and having a composition lying within the area a, b, c, d, e, f, g, a in Fig.1 has at least partially an A15 crystal structure. The alloys are made by melting the constituents together, solidifying to produce an AZ structure (e.g. by quenching with inert gas, oil or water), optionally working to the desired form, and then tempering at from 700‹ C. to the temperature at which conversion from A 2 to A15 structure commences (e.g. 800- 1000‹C.) until the desired amount of A15 phase is formed. The alloys are super-conductors and may by used for magnetic lenses in electron microscopes.

Подробнее
15-05-1974 дата публикации

VANADIUM ALLOYS

Номер: GB0001352824A
Автор:
Принадлежит:

... 1352824 Vanadium base alloys EUROPEAN ATOMIC ENERGY COMMUMTY 22 Jan 1973 [21 Jan 1972] 3086/73 Heading C7A [Also in Division G6] An alloy, suitable for nuclear fuel element cans, comprises:- the balance, apart from impurities, such as up to 500 ppm oxygen and up to 80 ppm nitrogen, being vanadium. The alloy may be worked and then aged at 800‹C. or 1100‹C.

Подробнее
09-06-2010 дата публикации

Finely divided metal catalyst and method for making same

Номер: CN0101721999A
Принадлежит:

The invention relates to a finely divided metal catalyst and a method for making the same. An inexpensive, highly catalytic material preferably formed by a leaching process. The catalyst comprises a finely divided metal particulate and a support. The active material may be a nickel and/or nickel alloy particulate having a particle size less than about 100 Angstroms. The support may be one or moremetal oxides.

Подробнее
14-08-2018 дата публикации

Method for preparing nitrided manganese-vanadium iron

Номер: CN0108396161A
Принадлежит:

Подробнее
08-03-2017 дата публикации

고온 중성자 조사 손상에 강한 엔트로피 제어 BCC 합금

Номер: KR0101708763B1

... 본 발명은 고온 중성자 조사 손상에 강한 엔트로피 제어 고용체 기지 BCC 합금에 관한 것으로서, 중성자 흡수 단면적 및 혼합 엔탈피를 기준으로 선택된 Zr, Al, Nb, Mo, Cr, V 및 Ti 로 이루어진 원소군에서 선택된 3개 이상의 다성분 주원소로 구성되고, 상기 각 원소가 5~35at% 범위로 포함되어 중간 엔트로피 상태 내지 고 엔트로피 상태인 BCC 구조 고용체 기지 합금인 것을 특징으로 한다. 본 발명은, 중성자 흡수 단면적이 작은 원소들로 구성되어 중성자 조사에 의한 손상이 적고, 엔트로피 조절을 통해 느린 확산속도를 가진 고용체 기지 BCC 구조를 유지하여 방사선에 의한 보이드스웰링에 대한 저항이 높은 장점이 있다. 또한, 본 발명의 고온 중성자 조사 손상에 강한 엔트로피 제어 고용체 기지합금은 중간 엔트로피 내지 고 엔트로피 상태의 합금을 구성하여 고온에서도 BCC 상을 안정적으로 유지할 뿐만 아니라, 엔트로피가 제어된 고용체 기지 상태를 통해서 고온 경도와 연성을 동시에 증가시킬 수 있는 효과가 있다. 이와 같은 특성으로 인해 본 발명의 BCC 구조 고용체 기지 합금은 현재 개발이 한창 진행 중인 미래형 4세대 원자로의 상대적으로 높은 가동온도 범위와 가혹한 중성자 노출환경의 복합 극한 환경에 대응 가능하도록 하여 에너지 효율이 높은 미래형 차세대 원자로 개발에 필수 소재로 활용될 수 있다.

Подробнее
19-06-2015 дата публикации

전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스

Номер: KR1020150068405A
Принадлежит:

... 본 발명의 과제는 높은 사이클 특성을 유지하면서, 또한 초기 용량도 높고 밸런스 좋은 특성을 나타내는 Li 이온 이차 전지 등의 전기 디바이스용 부극을 제공하는 것이다. 집전체와, 상기 집전체의 표면에 배치된 부극 활물질, 도전 보조제 및 바인더를 포함하는 전극층을 갖는 전기 디바이스용 부극이며, 상기 부극 활물질이, 다음 식 (1): SixZnyMzAa[상기 식 (1)에 있어서, M은 V, Sn, Al, C 및 이들의 조합으로 이루어지는 군에서 선택되는 적어도 1개의 금속이며, A는 불가피 불순물이며, x, y, z 및 a는 질량%의 값을 나타내고, 이때, 0 Подробнее

02-09-2010 дата публикации

COATING SYSTEM AND COATING METHOD FOR PRODUCING A COATING SYSTEM

Номер: WO2010097124A1
Принадлежит:

The invention relates to a coating system (1) for forming a surface coating on a surface of a substrate (100), in particular on the surface of a forging die, wherein the coating system comprises at least one surface coating of the composition ((VaMebMcXd)α(NuCvOw)ß, where (a+b+c+d) = α, α = 100% based on the atoms Va,Meb,Mc,Xd present in the coating, (u+v+w) = ß, ß= 100% based on the atoms N, C, O present in the coating, where the sum of all atoms in the coating (α+ß) = 100 atom %, wherein 40 ≤ α ≤ 80 atom %, and wherein Meb is at least one element from the group of chemical elements made up of Zr, Hf, Nb, Ta, Mo, W, Ni, Cu, Sc, Y, La, Ce, Pr, Nd, Pm, Sm of the periodic system of chemical elements, and Mc is at least one element from the group of chemical elements made up of Ti, Cr, and Xd is at least one element from the group of chemical elements made up of S, Se, Si, B of the periodic table of the elements, where 0 ≤ u ≤ 100, 0 ≤ v ≤ 100, and 0 ≤ w ≤ 80. According to the invention, 50 ...

Подробнее
29-09-2016 дата публикации

NEGATIVE ELECTRODE FOR ELECTRIC DEVICE AND ELECTRIC DEVICE USING THE SAME

Номер: US20160285077A1
Принадлежит: NISSAN MOTOR CO., LTD.

The negative electrode for an electric device includes a current collector and an electrode layer containing a negative electrode active material, a conductive auxiliary agent and a binder and formed on a surface of the current collector, wherein the negative electrode active material contains an alloy represented by the following formula (1): Si x Sn y M z A a (in the formula (1), M is at least one metal selected from the group consisting of Al, V, C and a combination thereof, A is inevitable impurities, and x, y, z and a represent mass percent values and satisfy the conditions of 0<x<100, 0<y<100, 0<z<100, 0≦a<0.5, and x+y+z+a=100), and elastic elongation of the current collector is 1.30% or greater.

Подробнее
01-12-1965 дата публикации

Superconducting devices

Номер: GB0001011766A
Автор:
Принадлежит:

A workable superconductive alloy consists of V 10-90 atomic per cent, Ti 10-90 atomic per cent.

Подробнее
08-11-1972 дата публикации

Номер: GB0001295787A
Автор:
Принадлежит:

Подробнее
19-10-2000 дата публикации

MODIFIED ELECTROCHEMICAL HYDROGEN STORAGE ALLOY HAVING INCREASED CAPACITY, RATE CAPABILITY AND CATALYTIC ACTIVITY

Номер: CA0002334363A1
Принадлежит: Individual

A modified Ti-V-Zr-Ni-Mn-Cr electrochemical hydrogen storage alloy which has at least one of the following characteristics: 1) an increased charge/discharge rate capability over that the base Ti-V-Zr-Ni-Mn-Cr electrochemical hydrogen storage alloy; 2) a formation cycling requirement which is reduced to one tenth that of the base Ti-V-Zr-Ni-Mn-Cr electrochemical hydrogen storage alloy; 3) no chemical/thermal activation of the modified alloy is required to attain full operating capacity as is required by the base Ti-V-Zr-Ni-Mn-Cr electrochemical hydrogen storage alloy: and 4) an oxide surface layer having a higher electrochemical hydrogen storage catalytic activity than the base Ti-V-Zr-Ni-Mn-Cr electrochemical hydrogen storage alloy.

Подробнее
16-08-2018 дата публикации

STEEL-VANADIUM ALLOY CLADDING FOR FUEL ELEMENT

Номер: CA0003051052A1
Принадлежит: BORDEN LADNER GERVAIS LLP

This disclosure describes various configurations and components for bimetallic and trimetallic claddings for use as a wall element separating nuclear material from an external environment. The cladding materials are suitable for use as cladding for nuclear fuel elements, particularly for fuel elements that will be exposed to sodium or other coolants or environments with a propensity to react with the nuclear fuel.

Подробнее
18-07-2008 дата публикации

COMPOSITE NANOCRISTALLIN FOR THE STORAGE OF HYDROGEN

Номер: FR0002900401B1

The invention relates to a method for preparation of a material adapted to reversible storage of hydrogen, including steps consisting of providing a first powder of a magnesium-based material, hydrogenating the first powder to convert at least part of the first powder into metal hydrides, mixing the first hydrogenating powder with a second powder additive, the proportion by mass of the second powder in the mix obtained being between 1% and 20% by mass, wherein the additive is formed from an alloy with a centred cubic structure based on titatnium, vanadium and at least one other metal chosen from chromium or manganese, and grinding the mix of first and second powders.

Подробнее
27-05-1977 дата публикации

VANADIUM ALLOY, IN PARTICULAR FOR COMBUSTIBLE MATTER OF NUCLEAR REACTORS

Номер: FR0002329760A1
Принадлежит:

Подробнее
02-08-1968 дата публикации

Alloy containing vanadium

Номер: FR0001535048A
Принадлежит:

Подробнее
16-01-1970 дата публикации

METHOD FOR THE PRODUCTION OF VANADIUM ALLOYS

Номер: FR0001585379A
Автор:
Принадлежит:

Подробнее
10-12-1971 дата публикации

FUEL ELEMENT CAN FOR A NUCLEAR REACTOR

Номер: FR0002081762A1
Автор:
Принадлежит:

Подробнее
06-12-2006 дата публикации

HYDROGEN STORAGE MATERIALS HAVING EXCELLENT KINETICS, CAPACITY, AND CYCLE STABILITY

Номер: KR1020060125838A
Принадлежит:

A BCC phase hydrogen storage alloy capable of storing approximately 4.0 wt.% hydrogen and delivering reversibly up to 3.0 wt.% hydrogen at temperatures up to 110°C. The hydrogen storage alloys also possess excellent kinetics whereby up to 80% of the hydrogen storage capacity of the hydrogen storage alloy may be reached in 30 seconds and 80% of the total hydrogen storage capacity may be desorbed from the hydrogen storage alloy in 90 seconds. The hydrogen storage alloys also have excellent stability which provides for long cycle life. © KIPO & WIPO 2007 ...

Подробнее
30-05-2014 дата публикации

NEGATIVE ELECTRODE FOR ELECTRICAL DEVICE AND ELECTRICAL DEVICE PROVIDED WITH SAME

Номер: WO2014080892A1
Принадлежит:

... [Problem] To provide a negative electrode for an electrical device such as a lithium ion secondary battery that maintains high cycle characteristics, that has a high initial capacity, and that exhibits well-balanced characteristics. [Solution] A negative electrode for an electrical device comprising a current collector and an electrode layer that includes a negative electrode active material that is arranged on the surface of the current collector, a conductive auxiliary agent, and a binder. The negative electrode active material comprises an alloy represented by formula (1), namely, SixZnyMzAa (in formula (1), M is at least one metal selected from the group consisting of V, Sn, Al, C, and combinations thereof, A is unavoidable impurities, x, y, z, and a represent mass% values, and on this occasion, 0 < x < 100, 0 < y < 100, 0 < z < 100, 0 ≤ a ≤ 0.5, and x + y + z + a = 100). The binder comprises a resin having an E elastic modulus that is greater than 1.00 GPa and less than 7.40 GPa.

Подробнее
06-10-2020 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ СПЛАВОВ ФЕРРОВАНАДИЯ НА ОСНОВЕ АЛЮМИНОТЕРМИЧЕСКОГО САМОРАСПРОСТРАНЯЮЩЕГОСЯ ГРАДИЕНТНОГО ВОССТАНОВЛЕНИЯ И РАФИНИРОВАНИЯ ШЛАКОМ

Номер: RU2733772C1

Изобретение относится к металлургии и может быть использовано при получении сплавов феррованадия путем алюминотермического самораспространяющегося градиентного восстановления и рафинирования шлаком. Способ включает алюминотермическое самораспространяющееся градиентное восстановление ванадия и железа из их оксидов, тепловое консервирование и получение высокотемпературного расплава посредством электромагнитного индукционного нагревания для получения верхнего слоя алюминиевого шлака и нижнего слоя расплава, перемешивание и рафинирование полученного расплава шлаком путем его впрыскивания в нижний слой расплава и охлаждение рафинированного высокотемпературного расплава и удаление верхнего слоя шлака для получения феррованадия. Изобретение позволяет разделять сырьевые материалы на несколько партий с высокой и низкой долей алюминия в них, эффективно усовершенствовать процесс разделения шлака и расплава металла за счет электромагнитного нагревания, а также снизить потребление энергии в процессе ...

Подробнее
08-11-2018 дата публикации

АНОДНЫЙ МАТЕРИАЛ И БАТАРЕЯ

Номер: RU2671942C1

FIELD: electrical engineering. SUBSTANCE: invention relates to anode materials intended for use in a battery that contains an aqueous liquid electrolyte. Anode material includes: hydrogen storage alloy, reversibly accumulating and releasing hydrogen. Hydrogen storage alloy contains Ti, Cr and V as the main components and is an alloy that contains only the bcc phase; lattice constant of the bcc phase is 3.01 Å or more and 3.10 Å or less; and the Cr content in the hydrogen storage alloy is 20 atomic percent or more. Anode material further includes a catalyst that covers the hydrogen alloy. EFFECT: invention makes it possible to create an anode material with a high storage capacity. 6 cl, 11 dwg, 1 tbl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 671 942 C1 (51) МПК H01M 4/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК H01M 4/00 (2006.01); H01M 4/38 (2006.01); B22F 1/02 (2006.01); C22C 19/05 (2006.01) (21)(22) Заявка: 2017134558, 04.10.2017 (24) Дата начала отсчета срока действия патента: (73) Патентообладатель(и): ТОЙОТА ДЗИДОСЯ КАБУСИКИ КАЙСЯ (JP) Дата регистрации: 08.11.2018 27.10.2016 JP 2016-210702 (45) Опубликовано: 08.11.2018 Бюл. № 31 2 6 7 1 9 4 2 R U (54) АНОДНЫЙ МАТЕРИАЛ И БАТАРЕЯ (57) Реферат: Изобретение относится к анодным материалам, предназначенным для использования в батарее, которая содержит водный жидкий электролит. Анодный материал включает в себя: сплав-аккумулятор водорода, обратимо накапливающий и высвобождающий водород. Сплав-аккумулятор водорода содержит Ti, Cr и V в качестве главных компонентов и представляет собой сплав, который содержит только ОЦК- Стр.: 1 фазу; постоянная решетки ОЦК-фазы составляет 3,01 Å или более и 3,10 Å или менее; и содержание Cr в сплаве-аккумуляторе водорода составляет 20 ат.% или более. Анодный материал дополнительно включает катализатор, который покрывает сплав-аккумулятор водород. Изобретение позволяет создать анодный материал с высокой сохранностью ...

Подробнее
10-02-2015 дата публикации

АКТИВНЫЙ МАТЕРИАЛ ОТРИЦАТЕЛЬНОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРИЧЕСКОГО УСТРОЙСТВА

Номер: RU2540321C1

FIELD: electricity. SUBSTANCE: active material for negative electrode of electric device includes allow containing Si within the content range more than 27 wt % and less than 100 wt %, Sn within the content range more than 0 wt % and less or equal to 73 wt %, V within the content range more than 0 wt % and less or equal to 73 wt % and inevitable impurities as residue. The active material for negative electrode may be obtained by magnetron sputtering unit for multiple targets at direct current using Si, Sn and V as the targets. EFFECT: electrical device using active material for negative electrode may reach long-term cyclic life and provide high resistance and operating durability in cyclic mode. 8 cl, 5 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК H01M 4/38 (13) 2 540 321 C1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2013157562/07, 09.03.2012 (24) Дата начала отсчета срока действия патента: 09.03.2012 Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): ВАТАНАБЕ Манабу (JP), ЙОСИДА Масао (JP), ТАНАКА Осаму (JP) 25.05.2011 JP 2011-116536 (45) Опубликовано: 10.02.2015 Бюл. № 4 2327254 C1, 20.06.2008. JP 2005116390 A, 28.04.2005. JP 2004185810 A, 02.07.2004. JP 2005078999 A, 24.03.2005 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 25.12.2013 (86) Заявка PCT: JP 2012/056128 (09.03.2012) 2 5 4 0 3 2 1 (56) Список документов, цитированных в отчете о поиске: WO 2007015508 A1, 08.02.2007. RU R U (73) Патентообладатель(и): НИССАН МОТОР КО., ЛТД. (JP) 2 5 4 0 3 2 1 R U WO 2012/160858 (29.11.2012) Адрес для переписки: 129090, Москва, ул. Б. Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) АКТИВНЫЙ МАТЕРИАЛ ОТРИЦАТЕЛЬНОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРИЧЕСКОГО УСТРОЙСТВА (57) Реферат: Активный материал отрицательного электрода электрода может быть получен, например, с для электрического устройства включает в себя помощью установки для магнетронного сплав, ...

Подробнее
19-08-2021 дата публикации

Anlage und Verfahren zum Herstellen eines Bandes mit einer Rascherstarrungstechnologie sowie metallisches Band

Номер: DE102020104312A1
Принадлежит:

Eine Anlage zum Herstellen eines Metallbandes mit einer Rascherstarrungstechnologie wird bereitgestellt, die ein sich drehendes Gießrad mit einer Außenoberfläche, auf die eine Schmelze an einer ersten Position gegossen wird, wobei die Schmelze auf der Außenoberfläche erstarrt und ein Metallband geformt wird, erste Mittel zum Bearbeiten der Außenoberfläche an einer zweiten Position mit einer ersten Oberflächenbearbeitungsmethode, wobei die Oberflächenrauigkeit der Außenoberfläche des Gießrades mit der ersten Oberflächenbearbeitungsmethode verändert wird und zweite Mittel zum Bearbeiten der Außenoberfläche an einer dritten Position mit einer zweiten Oberflächenbearbeitungsmethode, die unterschiedlich zu der ersten Oberflächenbearbeitungsmethode ist, umfasst. Das Gießrad bewegt sich in einer Rotationsrichtung und die erste Position ist in Rotationsrichtung gesehen nach der zweiten Position und die zweite Position in Rotationsrichtung gesehen nach der dritten Position angeordnet. Diese dritte ...

Подробнее
19-07-1974 дата публикации

NOVEL AMORPHOUS METALS AND AMORPHOUS METAL ARTICLES

Номер: FR0002211536A1
Автор: [UNK]

Подробнее
19-04-1968 дата публикации

Alloy containing titanium

Номер: FR0001522172A
Автор:
Принадлежит:

Подробнее
28-08-2014 дата публикации

MAGNETIC RECORDING-USE Cr-ALLOY, SPUTTERING-USE TARGET MATERIAL, AND VERTICAL MAGNETIC RECORDING MEDIUM USING SAME

Номер: WO2014129423A1
Принадлежит:

Provided, as an orientation control layer for an MgO film, is a BCC-structure Cr-based alloy having a lattice constant for which mismatch with a (001) surface of the MgO is minimal, and a fine and uniform crystal grain distribution. Also provided is a sputtering target material comprising the alloy. This alloy is a magnetic recording-use Cr alloy, the alloy including, in atomic percent, one or more types of elements selected from a group comprising Al, Ti, Mo, W, V, and Ru, in total, in amounts for which the value of a in formula (1) is greater than or equal to 2.919 Å and less than or equal to 3.037 Å, a3 = N/ρΣ(MnAn) (1) [in the formula, a represents the lattice constant, N represents Avogadro's number, ρ represents calculated density (g/cm3), m represents the number of elements existing within a unit cell, and A represents atomic weight]. The alloy also includes one or more types of elements selected from a group comprising B, C, P, Si and Sn so as to total 0.1 to 5%, and the remainder ...

Подробнее
24-12-1974 дата публикации

NOVEL AMORPHOUS METALS AND AMORPHOUS METAL ARTICLES

Номер: US0003856513A1
Автор:
Принадлежит: ALLIED-SIGNAL INC.

Подробнее
23-11-2021 дата публикации

Method for preparing ferrovanadium alloys based on aluminothermic self-propagating gradient reduction and slag washing refining

Номер: US0011180827B2

The present invention provides a method for preparing ferrovanadium alloys based on aluminothermic self-propagating gradient reduction and slag washing refining. The method includes the steps of (1) performing aluminothermic self-propagating gradient reduction; (2) performing heat preserving and smelting to obtain an upper layer alumina-based slag and a lower layer alloy melt; (3) jetting refining slags into the lower layer alloy melt, and performing stirring and slag washing refining; and (4) cooling the refined high-temperature melt to room temperature, and removing an upper layer smelting slag to obtain the ferrovanadium alloys.

Подробнее
07-06-2007 дата публикации

Hydrogen storage alloy and producing method thereof

Номер: US2007125457A1
Принадлежит:

To produce a hydrogen storage alloy by melting a hydrogen storage alloy having a body-centered cubic crystal structure without using a refractory crucible and solidifying a molten alloy by a unidirectional solidification process. The unidirectional solidification is carried out by a cold crucible induction melting method at a moving speed of a solid-liquid interface in the range of 10 to 200 mm/hr by using a water-cooled metal crucible in a vacuum or an inert gas atmosphere.

Подробнее
29-10-2015 дата публикации

Batteries and Related Structures Having Fractal or Self-Complementary Structures

Номер: US20150311535A1
Автор: Nathan Cohen
Принадлежит:

An aspect of the subject technology/invention of the present disclosure includes electrode structures or elements/components that have (e.g., present) fractal and/or self-complementary shapes or structures, e.g., on a surface. Such shapes or structures can be pre-existing. The electrodes can be made of any suitable material. The electrodes may function or operate or be used as a “seed” structure to incorporate or receive a material or materials useful for lattice assisted nuclear reactions and/or cold fusion processes. 1. An electrode including a surface having one or more self-complementary features.2. The electrode of claim 1 , wherein the self-complementary features comprise nickel.3. The electrode of claim 1 , wherein the electrode comprises palladium claim 1 , niobium claim 1 , lithium containing ceramics claim 1 , tantalum claim 1 , vanadium claim 1 , platinum claim 1 , iridium claim 1 , boron-10 claim 1 , or nickel-boron alloy.4. The electrode of claim 1 , wherein the self-complementary features are pre-existing features made prior to use for a LANR or cold fusion process.5. The electrode of claim 1 , wherein the self-complementary features have constant impedance across a surface of the electrode.6. The electrode of claim 5 , wherein the electrode has constant impedance at multiple frequencies.7. A battery comprising:a first electrode including a surface having one or more self-complementary features;a second electrode; andan electrolyte, wherein the electrolyte connects the first electrode to the second electrode along a first conductive path, and a second conductive path connecting the first electrode to the second electrode, wherein an electrical circuit is formed.8. The batter of claim 7 , wherein the second electrode comprises a fractal-based feature. This application claims the benefit of U.S. Provisional Application No. 61/969,076, entitled “LANR Electrodes Having Fractal Structures and Related Excitation Techniques,” filed 21 Mar. 2014; this ...

Подробнее
10-08-1976 дата публикации

Paramagnetic alloy

Номер: US0003974001A
Автор:
Принадлежит:

A vibratory or spring element. The element is formed from a paramagnetic alloy having a temperature coefficient of the moduli of elasticity between -10<->4 per centigrade and +10<->4 per centigrade and having the following further characteristics: ...

Подробнее
12-12-1974 дата публикации

Номер: DE0002253439B2

Подробнее
30-10-2013 дата публикации

Beta titanium alloy metal matrix composites

Номер: GB0008807997D0
Автор:
Принадлежит:

Подробнее
28-07-1971 дата публикации

VANDIUM-BASE ALLOY HAVING A HIGH CREEP-RUPTURE STRENGTH AND AN IMPROVED RESISTANCE TO CORROSION

Номер: GB0001241133A
Принадлежит:

... 1,241,133. Vanadium alloys. METALLGESELLSCHAFT A. G. and KERNFORSCHUNG m.b.H. GES FUR. May 19, 1969 [May 25, 1968], No. 26545/ 69. Heading C7A. A V-base alloy consists by weight, of Each of the impurities is present not in excess of 1000 ppm, e.g. up to 700 ppm of each of Fe, Cr and Ni, and up to 300 ppm Cu. Uses. Cladding for fuel elements in nuclear reactors, particularly Na-cooled breeders, material for aircraft and spacecraft.

Подробнее
31-01-1989 дата публикации

HYDROGEN STORAGE MATERIALS AND METHODS OF SIZING AND PREPARING THE SAME FOR ELECTROCHEMICAL APPLICATIONS

Номер: CA0001249454A1
Принадлежит:

The present invention provides novel active materials which reversibly store hydrogen under conditions which make them exceptionally well-suited for electrochemical applications. These active materials have both novel compositions and structures. A first group of active material compositions incorporate the elements of titanium, vanadium, and nickel. A second group adds zirconium to the first group of active materials. A preferred third composition group adds chromium to the first group of active materials. These materials may be single or multiphase combinations of amorphous, microcrystalline, or polycrystalline structures. Preferably, these materials have a multiphase polycrystalline structure. Methods of reducing the size or of sizing these materials, as well as other hydride-forming alloys, also are provided. Methods of preparing the inventive hydrogen storage materials and fabricating electrodes from these active materials are contemplated. Electrochemical cells and batteries assembled ...

Подробнее
29-01-1974 дата публикации

FUEL ELEMENT CAN FOR NUCLEAR REACTORS WHICH RESISTS CORROSION BY NUCLEAR FUEL AND REACTOR COOLANT

Номер: CA941078A
Автор:
Принадлежит:

Подробнее
05-10-2000 дата публикации

HYDROGEN STORAGE METAL ALLOY, METHOD FOR ABSORPTION AND RELEASE OF HYDROGEN USING THE SAID ALLOY AND HYDROGEN FUEL BATTERY USING THE SAID METHOD

Номер: CA0002365714A1
Принадлежит: Individual

The present invention provides a method for absorbing and releasing hydrogen which comprises applying repeatedly hydrogen pressurization and depressurization to a hydrogen storage metal alloy of a body-centered cubic structure-type phase exerting a two-stage or inclined plateau characteristic in a hydrogen storage amount vs hydrogen pressure relation in an appropriate fashion to absorb and release hydrogen, and at least at one stage during the release of hydrogen, making the temperature (T2) of the above-mentioned hydrogen storage metal alloy higher than the temperature (T1) of the hydrogen storage metal alloy during the hydrogen absorption process (T2 > T1), thereby enabling the release and utilization of occluded hydrogen at a low-pressure plateau region or an inclined plateau lower region, which has not been utilized in the prior art.

Подробнее
21-04-1978 дата публикации

VANADIUM ALLOY, IN PARTICULAR FOR COMBUSTIBLE MATTER OF NUCLEAR REACTORS

Номер: FR0002329760B1
Автор:
Принадлежит:

Подробнее
25-06-1976 дата публикации

NOVEL AMORPHOUS METALS AND AMORPHOUS METAL ARTICLES

Номер: FR0002211536B1
Автор:
Принадлежит:

Подробнее
18-01-2008 дата публикации

A METHOD OF ACTIVATING HYDROGEN ABSORBING ALLOYS

Номер: FR0002894598B1
Автор: HEURTAUX, LATROCHE, CHALLET
Принадлежит: RENAULT SAS

Подробнее
02-11-2007 дата публикации

COMPOSITE NANOCRISTALLIN FOR THE STORAGE OF HYDROGEN

Номер: FR0002900401A1
Принадлежит:

L'invention concerne un procédé de préparation d'un matériau adapté au stockage réversible de l'hydrogène, comprenant les étapes consistant à fournir une première poudre d'un matériau à base de magnésium ; à hydrogéner la première poudre pour convertir au moins une partie de la première poudre en hydrures métalliques ; à mélanger la première poudre hydrogénée à une seconde poudre d'un additif, la proportion massique de la seconde poudre dans le mélange obtenu étant comprise entre 1 et 20 % massique, ledit additif étant formé à partir d'un alliage de structure cubique centrée, à base de titane, de vanadium et d'au moins un autre métal choisi parmi le chrome ou le manganèse ; et à broyer le mélange des première et seconde poudres.

Подробнее
23-10-2018 дата публикации

Separation membrane, hydrogen separation membrane including the separation membrane, and method of manufacturing the separation membrane

Номер: US0010105657B2

In Chemical Formula 1, A is vanadium, niobium, or tantalum, B and C are same or different and are independently selected from nickel (Ni), aluminum (Al), iron (Fe), cobalt (Co), manganese (Mn), iridium (Ir), palladium (Pd), and platinum (Pt), x is a real number of greater than or equal to about 0.8 and less than 1, y+z=1−x, and y and z are independently real numbers of greater than or equal to about 0.

Подробнее
19-08-1980 дата публикации

NONCRYSTALLINE ALLOY

Номер: JP0055107746A
Принадлежит:

Подробнее
29-08-2012 дата публикации

Номер: JP0005010791B2
Автор:
Принадлежит:

Подробнее
27-06-1974 дата публикации

AMORPHE METALL-LEGIERUNG UND DEREN VERWENDUNG

Номер: DE0002364131A1
Принадлежит:

Подробнее
21-06-1977 дата публикации

AMORPHOUS METALS AND AMORPHOUS METAL ARTICLES

Номер: CA1012382A
Автор:
Принадлежит:

Подробнее
14-03-1969 дата публикации

VANADIUM BASE ALLOY

Номер: FR0001559945A
Автор:
Принадлежит:

Подробнее
16-07-1962 дата публикации

Composition superconductrice

Номер: BE615865A
Принадлежит: Western Electric Co

Подробнее
18-06-2019 дата публикации

Compliant layer for ceramic components and methods of forming the same

Номер: US0010323326B2
Принадлежит: Rolls-Royce Corporation, ROLLS ROYCE CORP

An apparatus includes a ceramic matrix composite (CMC) component and an interface coating on the CMC component, wherein the interface coating includes a layer of at least one of the following compositions: 40-50 wt % Nb, 28-42 wt % Al, 4-15 wt % Cr, 1-2 wt % Si; 90-92 wt % Mo, 4-5 wt % Si, 4-5 wt % B; or 60-80 wt % V, 20-30 wt % Cr, 2-15 wt % Ti.

Подробнее
06-01-1971 дата публикации

VANADIUM BASE ALLOY

Номер: GB0001218605A
Автор:
Принадлежит:

... 1,218,605. Vanadium base alloys. WESTINGHOUSE ELECTRIC CORP. Jan. 24, 1968 [March 16, 1967], No. 3672/68. Heading C7A. [Also in Division G6] A vanadium base alloy, for use in fuel cladding or structural parts in nuclear reactors and especially fast breeder reactors, comprises up to 0À15% oxygen and sufficient C and N to give an atomic ratio of Zr (not combined with oxygen) /C + N of 1À5-2, the balance, apart from impurities, such as up to 2% Al and up to 0À5% in total of Mn, P and Si, being V. The Zr used is preferably low in Hf. The alloys may be hot and cold worked to sheet and then heated above 1200‹ C. to give a grain size of 3-5 ASTM.

Подробнее
18-12-1968 дата публикации

Vanadium-based alloys

Номер: GB0001137242A
Автор:
Принадлежит:

... 1,137,242. Vanadium alloys. GES. FUER KERNFORSCHUNG m.b.H. July 31, 1967 [Aug. 6, 1966], No.34981/67. Heading C7A. A vanadium base alloy comprises:- Up to half the weight of Ti may be replaced by Zr and/or Hf on a weight for weight basis. The alloy may be used in nuclear reactors, space vehicles or chemical apparatus and may be made by fusion under vacuum or by sintering.

Подробнее
26-11-1985 дата публикации

PROCESS FOR PRODUCING A VANADIUM SILICON ALLOY

Номер: CA1197104A

PROCESS FOR PRODUCING A VANADIUM SILICON ALLOY A vanadium-silicon alloy having a low carbon and oxygen content is produced by vacuum furnacing a mixture of V2O3, carbon and silicon metal in at least the stoichiometric amounts necessary to reduce V2O3 and form V2Si while preventing vanadium from combining with carbon and oxygen.

Подробнее
19-03-1976 дата публикации

FUEL ELEMENT CAN FOR A NUCLEAR REACTOR

Номер: FR0002081762B1
Автор:
Принадлежит:

Подробнее
13-03-1970 дата публикации

VANADIUM?BASE ALLOY HAVING A HIGH CREEP?RUPTURE STRENGTH AND AN IMPROVED RESISTANCE TO CORROSION

Номер: FR0002011867A1
Автор:
Принадлежит:

Подробнее
10-04-2017 дата публикации

전기 디바이스용 부극 활물질

Номер: KR0101720832B1

본 발명의 전기 디바이스용 부극 활물질은, 27질량% 이상 100질량% 미만의 Si와, 0질량% 초과 73질량% 이하의 Sn과, 0질량% 초과 73질량% 이하의 V를 함유하고, 잔량부가 불가피 불순물인 합금을 갖는다. 당해 부극 활물질은, 예를 들어 Si, Sn 및 V를 타깃으로 하고, 다원 DC 마그네트론 스퍼터 장치를 사용함으로써 얻을 수 있다. 그리고, 본 발명의 부극 활물질을 적용한 전기 디바이스는, 사이클 수명이 향상되고, 용량 및 사이클 내구성이 우수하다. The negative electrode active material for an electric device of the present invention contains 27 mass% or more and less than 100 mass% of Si, 0 mass% or more and 73 mass% or less of Sn, 0 mass% or more and 73 mass% or less of V, And an alloy which is inevitable impurities. The negative electrode active material can be obtained by using, for example, a target of Si, Sn and V, and using a multi-source DC magnetron sputtering apparatus. The electric device to which the negative electrode active material of the present invention is applied has an improved cycle life and excellent capacity and cycle durability.

Подробнее
19-01-2017 дата публикации

BCC METAL HYDRIDE ALLOYS FOR ELECTROCHEMICAL APPLICATIONS

Номер: US20170018769A1
Принадлежит:

BCC metal hydride alloys historically have limited electrochemical capabilities. Provided are a new examples of these alloys useful as electrode active materials. BCC metal hydride alloys provided include a disordered structure that is formed of a BCC primary phase and three or more electrochemically active secondary phases that are induced to create structural disorder in the system. The structurally disordered hydrogen storage alloys possess unexpectedly superior electrochemical characteristics relative to compositionally similar materials. 1. A structurally disordered hydrogen storage alloy capable of reversibly charging and discharging hydrogen electrochemically , said alloy comprising:a primary phase and three or more electrochemically active secondary phases, said primary phase having a crystal structure of BCC, said secondary phases creating structural disorder in said alloy.2. The alloy of wherein said wherein said alloy has an electrochemical discharge capacity of 350 milliAmperehours per gram or greater at a discharge rate of 100 milliAmperehours per gram.3. The alloy of wherein one or more of said secondary phases is a C14 claim 1 , TiNi claim 1 , or TiNi phase.4. The alloy of wherein one of said secondary phases is an electrochemically active TiNi secondary phase.5. The alloy of wherein said TiNi secondary phase is present at 2 weight percent or greater relative phase abundance.6. The alloy of comprising four electrochemically active phases.7. The alloy of comprising an electrochemically active TiNi secondary phase.8. The alloy of comprising greater than 50 weight percent BCC phase.9. The alloy of with an elemental composition of Formula I:{'br': None, 'sub': w', 'x', 'y', 'z, 'TiVCrM\u2003\u2003(I)'}where w+x+y+z=1, 0.1≦w≦0.6, 0.1≦x≦0.6, 0.01≦y≦0.6, and M is selected from the group consisting of B, Al, Si, Sn and transition metals.10. The alloy of having an electrochemical discharge capacity of 350 milliAmperehours per gram or greater at a discharge ...

Подробнее
28-01-2016 дата публикации

LAVES PHASE-RELATED BCC METAL HYDRIDE ALLOYS FOR ELECTROCHEMICAL APPLICATIONS

Номер: US20160024620A1
Принадлежит:

Laves phase-related BCC metal hydride alloys historically have limited electrochemical capabilities. Provided are a new examples of these alloys useful as electrode active materials. Alloys include a composition defined by Formula I: TiVCrM(I) where w+x+y+z=1, 0.1≦w≦0.6, 0.1≦x≦0.6, 0.01≦y≦0.6 and M is selected from the group consisting of B, Al, Si, Sn and one or more transition metals that achieve discharge capacities of 350 mAh/g or greater for cycles of 10 or more. 2. The alloy of having a capacity of 400 milliamperes per gram or greater.3. The alloy of having a capacity of 420 milliamperes per gram or greater.4. The alloy of comprising less than 24% C14 phase.5. The alloy of wherein said metal hydride alloy is predominantly a combination of BCC phase and Laves phase claim 1 , said BCC phase in abundance of greater than 5% and less than 95% claim 1 , said Laves phase in abundance of greater than 5% and less than 95%.6. The alloy of comprising a BCC phase crystallite size of less than 400 angstroms.7. The alloy of comprising a BCC phase crystallite size of less than 200 angstroms.8. The alloy of comprising a B/A ratio of 1.20 to 1.31.9. The alloy of where x/y is from 1 to 3.11. The alloy of where x is 2 claim 10 , 4 claim 10 , 6 claim 10 , 8 claim 10 , 10 or 12.12. The alloy of where x is 2 or 4. This invention was made with government support under contract no. DE-FOA-0000869 and control no. 0869-1630 awarded by United States Department of Energy. The government has certain rights in the invention.This invention relates to alloy materials and methods for their fabrication. In particular, the invention relates to metal hydride alloy materials that are capable of absorbing and desorbing hydrogen. Activated metal hydride alloys with a laves phase-related body centered cubic (BCC) structure are provided that have unique electrochemical properties including high capacity for use in electrochemical applications.Certain metal hydride (MH) alloy materials are capable of ...

Подробнее
23-01-2020 дата публикации

STABLE BINARY NANOCRYSTALLINE ALLOYS AND METHODS OF IDENTIFYING SAME

Номер: US20200025697A1
Принадлежит: Massachusetts Institute of Technology

Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase. In different aspects, an enthalpy of mixing of the binary alloy may be calculated as a first thermodynamic parameter, and an enthalpy of segregation of the binary alloy may be calculated as a second thermodynamic parameter. In another example, a diagram delineating a plurality of regions respectively representing different stable phases of at least one binary alloy is employed, wherein respective regions of the plurality of regions are delineated by at least one boundary determined as a function of at least two thermodynamic parameters associated with grain growth and phase separation of the at least one binary alloy. 143-. (canceled)44. An alloy comprising:a solvent element and a solute element;the alloy comprising at least one of Al—Pb, Co—Bi, Co—Cd, Co—Pb, Cr—Au, Cr—Bi, Cr—La, Cr—Na, Cr—Pb, Cr—Sc, Cr—Sn, Cr—Th, Cr—Y, Cu—Y, Fe—Ba, Fe—Bi, Fe—Ca, Fe—Cd, Fe—In, Fe—La, Fe—Mg, Fe—Pb, Hf—Mg, Hf—Ti, Ir—Cu, Ir—Ni, Ir—Rh, La—Mn, Mn—Ba, Mn—Ca, Mn—Cd, Mn—La, Mn—Mg, Mn—Pb, Mn—Sr, Mn—Tl, Mo—Au, Mo—Cr, Mo—In, Mo—Na, Mo—Sc, Mo—Th, Mo—V, Mo—Y, Nb—Bi, Nb—Cu, Nb—Ti, Nb—Tl, Nb—V, Ni—Pb, Ni—Sn, Ni—Tl, Os—Bi, Os—Co, Os—Ni, Os—Pb, Os—Pt, Os—Rh, Os—Ru, Pb—Al, Pd—Au, Pt—Au, Re—Bi, Re—Co, Re—La, Re—Ni, Re—Pd, Re—Rh, Re—Sb, Re—Sn, Re—Tc, Rh—Au, Rh—Co, Rh—Cu, Rh—Ni, Ru—Bi, Ru—Co, Ru—Hg, Ru—Ni, Ru—Pt, Ru—Sb, Ta—Bi, Ta—Cu, Ta—Hf, Ta—In, Ta—Ti, Ta—Tl, Ta—Zr, Tc—Ni, Tc—Pd, Tc—Rh, Th—La, Th—Sc, Th—Y, V—Bi, V—Cd, V—In, V—Ti, V—Tl, W—Au, W—Cr, W—In, W—Mn, W—Sb, W—Sc, W—Sn, W—Sr, W—Th, W—Ti, W—V, W ...

Подробнее
23-01-2020 дата публикации

STEEL-VANADIUM ALLOY CLADDING FOR FUEL ELEMENT

Номер: US20200027581A1
Принадлежит: TerraPower, LLC

This disclosure describes various configurations and components for bimetallic and trimetallic claddings for use as a wall element separating nuclear material from an external environment. The cladding materials are suitable for use as cladding for nuclear fuel elements, particularly for fuel elements that will be exposed to sodium or other coolants or environments with a propensity to react with the nuclear fuel. 1. A steel-middle layer-vanadium cladding manufacturing method comprising:fabricating a steel tube;fabricating a vanadium tube of carbon-doped vanadium or vanadium alloy;depositing one of nickel, nickel alloy, chromium, chromium alloy, zirconium or zirconium alloy one either the inside of the steel tube or the outside of the vanadium tube;inserting the vanadium tube into the steel tube thereby creating a steel-middle layer-vanadium intermediate tube;metallurgical bonding the steel-middle layer-vanadium intermediate tube;pilgering or extruding the steel-middle layer-vanadium intermediate tube; andcold working the steel-middle layer-vanadium intermediate tube after the metallurgical bonding and pilgering or extruding operations to obtain a steel-middle layer-vanadium cladding.2. The steel-middle layer-vanadium cladding manufacturing method of claim 1 , wherein the steel-middle layer-vanadium cladding consists of:an outer layer of steel;an inner layer of at least 90% vanadium; anda middle layer of nickel, nickel alloy, chromium, chromium alloy, zirconium or zirconium alloy between the outer layer and the inner layer.3. The steel-middle layer-vanadium cladding manufacturing method of claim 1 , wherein the metallurgical bonding operation includes hot isostatic pressing of the steel-middle layer-vanadium intermediate tube.4. The steel-middle layer-vanadium cladding manufacturing method of claim 1 , wherein the metallurgical bonding operation is performed after the pilgering or extruding operation.5. The steel-middle layer-vanadium cladding manufacturing method ...

Подробнее
22-05-2014 дата публикации

Vanadium-based hydrogen permeation alloy for membrane, method of manufacturing the same, and method of using the membrane

Номер: US20140140920A1

A vanadium-based hydrogen permeation alloy for a membrane, a method of manufacturing the same, and a method of using a membrane including the same are provided. The vanadium-based hydrogen permeation alloy for a membrane includes nickel (Ni) at more than 0 atm % and 5 atm % or less, iron (Fe) at 5 atm % to 15 atm %, yttrium (Y) at more than 0 atm % and 1 atm % or less, and a remainder of vanadium and impurities.

Подробнее
08-03-2018 дата публикации

Fire Containment Coating System for Titanium

Номер: US20180066348A1
Принадлежит: United Technologies Corp

A blade outer air seal (BOAS) or segment thereof comprises: a metallic substrate having an inner diameter (ID) surface; and a coating system along the inner diameter surface comprises: a bondcoat atop the substrate; and a ceramic barrier coat atop the bondcoat. The bondcoat has a combined content of one or more of molybdenum, chromium, and vanadium of at least 50 percent by weight.

Подробнее
16-03-2017 дата публикации

Compliant layer for ceramic components and methods of forming the same

Номер: US20170073820A1
Принадлежит: Rolls Royce Corp

An apparatus includes a ceramic matrix composite (CMC) component and an interface coating on the CMC component, wherein the interface coating includes a layer of at least one of the following compositions: 40-50 wt % Nb, 28-42 wt % Al, 4-15 wt % Cr, 1-2 wt % Si; 90-92 wt % Mo, 4-5 wt % Si, 4-5 wt % B; or 60-80 wt % V, 20-30 wt % Cr, 2-15 wt % Ti.

Подробнее
21-03-2019 дата публикации

MATERIALS FOR NEAR FIELD TRANSDUCERS AND NEAR FIELD TRANSDUCERS CONTAINING SAME

Номер: US20190088280A1
Принадлежит:

A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element. 1. A method of forming a near field transducer (NFT) layer , the method comprising:depositing a film of a primary element, the film having a film thickness and a film expanse; andimplanting at least one secondary element into the primary element,wherein the NFT layer comprises the film of the primary element doped with the at least one secondary element.2. The method according to claim 1 , wherein the at least one secondary element is implanted using beam line implanting claim 1 , or plasma immersion implanting.3. The method according to claim 1 , wherein the concentration of the at least one secondary element is not constant across the thickness of the film4. The method according to claim 1 , wherein the concentration of the at least one secondary element is not constant across the expanse of the film.5. The method according to claim 1 , wherein the at least one secondary element is implanted at more than one energy.6. The method according to further comprising annealing after implanting the at least one secondary element.7. The method according to further comprising depositing a metal or dielectric layer on the implanted film before annealing.8. The method according to further comprising implanting at least one secondary element after annealing.9. The method according to further comprising patterning the NFT layer into a NFT.10. The method according to further comprising depositing a metal or dielectric layer on the film of primary element before implanting the at least one secondary element.11. A method of forming a peg of a near field transducer (NFT) claim 1 , the method comprising:depositing a primary element to ...

Подробнее
07-05-2015 дата публикации

STABLE BINARY NANOCRYSTALLINE ALLOYS AND METHODS OF IDENTIFYING SAME

Номер: US20150125338A1
Принадлежит:

Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase. 1. A method of identifying a stable phase of a binary alloy comprising a solute element and a solvent element , the method comprising:(A) determining at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy; and(B) identifying the stable phase of the binary alloy based on the first thermodynamic parameter and the second thermodynamic parameter by comparing the first thermodynamic parameter and the second thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase;wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.2. The method of claim 1 , wherein (A) further comprises at least one of:calculating an enthalpy of mixing of the binary alloy as a first thermodynamic parameter,calculating an enthalpy of segregation of the binary alloy as a second thermodynamic parameter, anddetermining a third thermodynamic parameter that is a free energy of mixing as a function of at least one of (i) concentration of grain boundary in the binary alloy, (ii) grain size of the binary alloy, (iii) concentration of the solute element in the binary alloy, and (iv) concentration of the solvent element in the binary alloy.3. (canceled)4. (canceled)5. The method of claim 1 , wherein the binary alloy has a positive enthalpy of mixing claim 1 , and at least one of the at least two thermodynamic parameters is ...

Подробнее
03-05-2018 дата публикации

Anode material and battery

Номер: US20180123126A1
Автор: Makio Kon
Принадлежит: Toyota Motor Corp

An object of the present disclosure is to provide an anode material with a high capacity maintenance rate. To achieve the above object, the present disclosure provides an anode material to be used for a battery that contains an aqueous liquid electrolyte, the anode material comprising: a hydrogen storing alloy that reversibly stores and releases hydrogen; wherein the hydrogen storing alloy contains Ti, Cr, and V as main components, and is an alloy that contains a BCC phase as a main phase; a lattice constant of the BCC phase is 3.01 Å or more and 3.10 Å or less; and the Cr content in the hydrogen storing alloy is 20 at % or more.

Подробнее
02-05-2019 дата публикации

Method of forming a pd-au layer on a substrate

Номер: US20190127870A1

A method for preparing a palladium-gold alloy layer on a substrate by electrodepositing said coating surface with an aqueous electroplating solution comprising of an aqueous solution of a soluble palladium compound and a soluble gold complex, wherein the ratio of gold to palladium to in the solution is from 5 to 40 w/w %. Also taught is a substrate such as a vanadium or vanadium alloy gas separation membrane coated with a palladium-gold alloy layer.

Подробнее
11-06-2015 дата публикации

Process for manufacturing metal powders

Номер: US20150158087A1
Автор: Di Luca Carla D.
Принадлежит: InNova Powders, Inc.

A process of producing metal powders by feeding a metal oxide and a reducing agent into a rotary reactor to form a mechanical fluid bed. The fluid bed is rotated with a rotation speed of about 100 rpm. The fluid bed is then heated to a reaction temperature of up to 1200° C. The pressure is then set within the rotary reactor to a pressure in a range of 0.001 bars to 2.0 bars, as a result reducing the reaction temperature to a temperature in a range of 600° C. to 1200° C. Finally, the pressure and the rotation are maintained, wherein a high value metal powder is formed without the requirement for post-grinding process steps. A product resulting from specific settings of the process include a high value molybdenum powder capable of being used as a chemical catalyst and other specialty applications specific to the metal, eliminating costly production methods. 1. A process of producing a metal powder , comprising the steps of:feeding a metal oxide and a reducing agent into a rotary reactor to form a mechanical fluid bed;rotating said mechanical fluid bed with a rotation speed of about 100 rpm;heating said mechanical fluid bed to a reaction temperature of up to 1200° C.;setting pressure within said rotary reactor to a pressure in a range of 0.001 bars to 2.0 bars, as a result reducing said reaction temperature to a temperature in a range of 600° C. to 1200° C.; and,maintaining said pressure and said rotation to form said metal powder.2. The process of claim 1 , wherein prior to the step of feeding claim 1 , said metal oxide is discharged to a grinding mill.3. The process of claim 1 , wherein said reducing agent is selected from the group consisting of coal claim 1 , hydrogen claim 1 , natural gas claim 1 , ammonia claim 1 , carbon powder claim 1 , nitrogen claim 1 , and synthetic gas.4. The process of claim 1 , further comprising the step of cooling said metal powder to below 60° C.5. The process of claim 1 , wherein particles of said metal powder have a particle size in ...

Подробнее
22-09-2022 дата публикации

SPIRAL SPRING FOR A HOROLOGICAL MOVEMENT

Номер: US20220298611A1
Принадлежит: NIVAROX-FAR S.A.

A spiral spring is configured to equip a balance of a horological movement. The spiral spring is made of an alloy consisting of: Nb, Ti and at least one element selected from V and Ta, optionally at least one element selected from Zr and Hf, optionally at least one element selected from W and Mo, possible traces of other elements selected from O, H, C, Fe, N, Ni, Si, Cu, Al, with the following weight percentages: a total content of Nb, V and Ta comprised between 40 and 85%, a total content of Ti, Zr and Hf comprised between 15 and 55%, a content for W and Mo respectively comprised between 0 and 2.5%, a content for each of the elements selected from 0, H, C, Fe, N, Ni, Si, Cu, Al between 0 and 1600 ppm with the sum of the traces less than or equal to 0.3% by weight. 1. A spiral spring intended to equip a balance of a horological movement , wherein the spiral spring is made of an alloy consisting of:Nb, Ti and at least one element selected from V and Ta,optionally at least one element selected from Zr and Hf,optionally at least one element selected from W and Mo,possible traces of other elements selected from O, H, C, Fe, N, Ni Si, Cu, Al, with the following weight percentages:a total content of Nb, V and Ta comprised between 40 and 85%,a total content of Ti, Zr and Hf comprised between 15 and 55%,a content for W and Mo respectively comprised between 0 and 2.5%,a content for each of said elements selected from O, H, C, Fe, N, Ni, Si, Cu, Al comprised between 0 and 1600 ppm with the sum of said traces less than or equal to 0.3% by weight.2. The spiral spring according to claim 1 , wherein the Nb content is greater than 45% by weight.3. The spiral spring according to claim 1 , wherein the Ti content is greater than or equal to 15% by weight.4. The spiral spring according to claim 1 , wherein the sum of the content of V and Ta is comprised between 5 and 25% by weight.5. The spiral spring according to claim 1 , wherein the sum of the content of V and Ta is comprised ...

Подробнее
07-07-2016 дата публикации

Separation membrane, hydrogen separation membrane including the separation membrane, and method of manufacturing the separation membrane

Номер: US20160193571A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

Disclosed are a separation membrane including a Group 5-based alloy, wherein crystal particles in the alloy have an average minor axis length of about 3 μm to about 10 μm and an aspect ratio of about 1:8 to 1:20, wherein the alloy is represented by the following Chemical Formula 1, and a method of manufacturing the same. A x B y C z   (Chemical Formula 1) In Chemical Formula 1, A is vanadium, niobium, or tantalum, B and C are same or different and are independently selected from nickel (Ni), aluminum (Al), iron (Fe), cobalt (Co), manganese (Mn), iridium (Ir), palladium (Pd), and platinum (Pt), x is a real number of greater than or equal to about 0.8 and less than 1, y+z=1−x, and y and z are independently real numbers of greater than or equal to about 0.

Подробнее
25-06-2020 дата публикации

Method for preparing ferrovanadium alloys based on aluminothermic self-propagating gradient reduction and slag washing refining

Номер: US20200199712A1
Принадлежит: Northeastern University China

The present invention provides a method for preparing ferrovanadium alloys based on aluminothermic self-propagating gradient reduction and slag washing refining. The method includes the steps of (1) performing aluminothermic self-propagating gradient reduction; (2) performing heat preserving and smelting to obtain an upper layer alumina-based slag and a lower layer alloy melt; (3) jetting refining slags into the lower layer alloy melt, and performing stirring and slag washing refining; and (4) cooling the refined high-temperature melt to room temperature, and removing an upper layer smelting slag to obtain the ferrovanadium alloys.

Подробнее
11-08-2016 дата публикации

Hydrogen Storage Alloys

Номер: US20160230253A1
Автор: Nei Jean, Wong Diana, Young Kwo
Принадлежит:

Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ≧3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.98, exhibit improved electrochemical properties, for instance improved low temperature electrochemical performance. 1. A hydrogen storage alloy comprising at least one main phase and at least one secondary phase , where the main phase or phases in total are present at a higher abundance by weight than each of the secondary phases ,where the alloy comprises from about 0.05 at % to about 0.98 at % of one or more rare earth elements andwhich alloy exhibits an improvement of surface catalytic ability at{'sub': 2', '12.0', '21.5', '10.0', '7.5', '8.1', '32.2', '0.3', '0.4', '8.0, '−40° C., defined as the product of charge transfer resistance (R) and double layer capacitance (C), of at least 10%, relative to the ABalloy TiZrVCrMnNiSnAlCo; and/or'}which exhibits a charge transfer resistance at −40 C of ≦60 Ω·g; and/orwhich exhibits a surface catalytic ability at −40° C., defined as the product of charge transfer resistance (R) and double layer capacitance (C), of ≦30 seconds.2. An alloy according to comprisinga) at least one main phase,b) optionally a storage ...

Подробнее
11-08-2016 дата публикации

Hydrogen Storage Alloys

Номер: US20160230254A1
Автор: Nei Jean, Wong Diana, Young Kwo
Принадлежит:

Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ≧3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.98, exhibit improved electrochemical properties, for instance improved low temperature electrochemical performance. 1. A hydrogen storage alloy which exhibits{'sub': 2', '12.0', '21.5', '10.0', '7.5', '8.1', '32.2', '0.3', '0.4', '8.0, 'an improvement of surface catalytic ability at −40° C., defined as the product of charge transfer resistance (R) and double layer capacitance (C), of at least 10%, relative to the ABalloy TiZrVCrMnNiSnAlCo; and/or'}a charge transfer resistance at −40° C. of ≦60 Ω·g; and/ora surface catalytic ability at −40° C., defined as the product of charge transfer resistance (R) and double layer capacitance (C), of ≦30 seconds.2. An alloy according to which exhibitsa charge transfer resistance at −40° C. of ≦30 Ω·g; and/ora surface catalytic ability at −40° C. of ≦8.0 seconds.3. An alloy according to comprising at least one main phase and at least one secondary phase claim 1 , where the main phase or phases in total are present at a higher abundance by weight than each of the secondary phases.4. An alloy according to comprisinga) at ...

Подробнее
11-08-2016 дата публикации

Hydrogen Storage Alloys

Номер: US20160230255A1
Автор: Diana Wong, Jean NEI, Kwo Young
Принадлежит: BASF Corp

Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ≧3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.98, exhibit improved electrochemical properties, for instance improved low temperature electrochemical performance.

Подробнее
16-08-2018 дата публикации

STEEL-VANADIUM ALLOY CLADDING FOR FUEL ELEMENT

Номер: US20180233238A1
Принадлежит: TerraPower, LLC

This disclosure describes various configurations and components for bimetallic and trimetallic claddings for use as a wall element separating nuclear material from an external environment. The cladding materials are suitable for use as cladding for nuclear fuel elements, particularly for fuel elements that will be exposed to sodium or other coolants or environments with a propensity to react with the nuclear fuel. 1. A steel-middle layer-vanadium cladding manufacturing method comprising:fabricating a steel tube;fabricating a vanadium tube of carbon-doped vanadium or vanadium alloy;depositing one of nickel, nickel alloy, chromium, chromium alloy, zirconium or zirconium alloy one either the inside of the steel tube or the outside of the vanadium tube;inserting the vanadium tube into the steel tube thereby creating a steel-middle layer-vanadium intermediate tube;metallurgical bonding the steel-middle layer-vanadium intermediate tube;pilgering or extruding the steel-middle layer-vanadium intermediate tube; andcold working the steel-middle layer-vanadium intermediate tube after the metallurgical bonding and pilgering or extruding operations to obtain a steel-middle layer-vanadium cladding.2. The steel-middle layer-vanadium cladding manufacturing method of claim 1 , wherein the steel-middle layer-vanadium cladding consists of:an outer layer of steel;an inner layer of at least 90% vanadium; anda middle layer of nickel, nickel alloy, chromium, chromium alloy, zirconium or zirconium alloy between the outer layer and the inner layer.3. The steel-middle layer-vanadium cladding manufacturing method of claim 1 , wherein the metallurgical bonding operation includes hot isostatic pressing of the steel-middle layer-vanadium intermediate tube.4. The steel-middle layer-vanadium cladding manufacturing method of claim 1 , wherein the metallurgical bonding operation is performed after the pilgering or extruding operation.5. The steel-middle layer-vanadium cladding manufacturing method ...

Подробнее
16-08-2018 дата публикации

STEEL-VANADIUM ALLOY CLADDING FOR FUEL ELEMENT

Номер: US20180233241A1
Принадлежит: TerraPower, LLC

This disclosure describes various configurations and components for bimetallic and trimetallic claddings for use as a wall element separating nuclear material from an external environment. The cladding materials are suitable for use as cladding for nuclear fuel elements, particularly for fuel elements that will be exposed to sodium or other coolants or environments with a propensity to react with the nuclear fuel. 1. A wall element consisting of:a first layer of steel;a second layer containing at least some vanadium;a third layer between the first layer and the second layer; and 9.0-12.0 wt. % Cr;', '0.001-2.5 wt. % W;', '0.001-2.0 wt. % Mo;', '0.001-0.5 wt. % Si;', 'up to 0.5 wt. % Ti;', 'up to 0.5 wt. % Zr;', 'up to 0.5 wt. % V;', 'up to 0.5 wt. % Nb;', 'up to 0.3 wt. % Ta;', 'up to 0.1 wt. % N;', 'up to 0.3 wt. % C;', 'up to 0.01 wt. % B;', 'the balance being Fe and other elements, wherein the steel includes not greater than 0.15 wt. % of each of these other elements, and wherein the total of these other elements does not exceed 0.35 wt. %., 'wherein the steel of the first layer consists of2. The wall element of claim 1 , wherein the second layer has a thickness that is from 0.1% to 50% of the thickness of the first layer and the third layer has a thickness that is from 0.1% to 50% of the thickness of the first layer.3. The wall element of claim 1 , wherein the second layer has a thickness that is from 1% to 5% of the thickness of the first layer and the third layer has a thickness that is from 1% to 5% of the thickness of the first layer.4. The wall element of claim 1 , wherein the second layer is selected from the vanadium alloys V-20Ti claim 1 , V-10Cr-5Ti claim 1 , V-15Cr-5Ti claim 1 , V-4Cr-4Ti claim 1 , V-4Cr-4Ti NIFS Heats 1& 2 claim 1 , V-4Cr-4Ti US Heats 832665 & 8923864 claim 1 , and V-4Cr-4Ti Heat CEA-J57.5. The wall element of claim 4 , wherein the second layer is V-4Cr-4Ti.6. The wall element of claim 4 , wherein the second layer consists of:3.0-5.0 ...

Подробнее
16-07-2020 дата публикации

MATERIALS FOR NEAR FIELD TRANSDUCERS AND NEAR FIELD TRANSDUCERS CONTAINING SAME

Номер: US20200227086A1
Принадлежит:

A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof. 1. A device comprising: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof;', 'erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and', 'barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof., 'a near field transducer, the near field transducer comprising gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from2. The device according to claim 1 , wherein the at least one secondary atom is selected from: boron (B) claim 1 , bismuth (Bi) claim 1 , indium (In) claim 1 , sulfur (S) claim 1 , silicon (Si) claim 1 , tin (Sn) claim 1 , hafnium (Hf) claim 1 , niobium (Nb) claim 1 , manganese (Mn) claim 1 , antimony (Sb) claim 1 , tellurium (Te) claim 1 , carbon (C ...

Подробнее
06-08-2020 дата публикации

METHOD FOR PREPARING VANADIUM AND VANADIUM ALLOY POWDER FROM VANADIUM-CONTAINING MATERIALS THROUGH SHORTENED PROCESS

Номер: US20200246875A1
Принадлежит:

Disclosed is a method for preparing vanadium or vanadium alloy powder from a vanadium-containing raw material through a shortened process, including: calcinating a mixture of a vanadium-containing raw material and an alkali compound for oxidation to form a water-soluble vanadate; purifying the vanadate followed by vanadium precipitation to produce an intermediate CaVOwith high purity; dissolving CaVOin a molten-salt medium together with other raw materials to form a uniform reaction system; and introducing a reducing agent to the system followed by separation, washing and drying to produce vanadium or vanadium alloy powder having a particle size of 50-800 nm and a purity of 99.0 wt % or more. The method can continuously process vanadium-containing raw materials to prepare vanadium or vanadium alloy powder. 1. A method for preparing vanadium and vanadium alloy powder from a vanadium-containing raw material through a shortened process , comprising:(1) mixing the vanadium-containing raw material with an alkali compound to produce a mixture, and then calcinating the mixture for oxidation;{'sub': 2', '6, '(2) pulverizing the calcinated product obtained in step (1) to produce vanadium-containing particles and then dissolving the vanadium-containing particles followed by solid-liquid separation to produce a vanadium-containing solution; purifying the vanadium-containing solution followed by adding with a calcium salt for vanadium precipitation to obtain an intermediate CaVO;'}{'sub': 2', '6, '(3) mixing the intermediate CaVOobtained in step (2) with a molten-salt medium to produce a mixture, and dehydrating the mixture under vacuum followed by heating for melting to form a molten-salt reaction system;'}(4) adding a reducing agent to the molten-salt reaction system obtained in step (3) for thermal reduction reaction; and(5) subjecting the thermal-reduced product obtained in step (4) to solid-liquid separation, washing and drying to obtain a target product.2. The method of ...

Подробнее
25-12-2014 дата публикации

MATERIALS FOR NEAR FIELD TRANSDUCERS, NEAR FIELD TRANDUCERS CONTAINING SAME, AND METHODS OF FORMING

Номер: US20140376352A1
Принадлежит:

A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium (Er), ytterbium (Yb), promethium (Pm), neodymium (Nd cobalt (Co), cerium (Ce), lanthanum (La), praseodymium (Pr), or combinations thereof. 1. A device comprising:a near field transducer, the near field transducer comprising gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from:boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), ...

Подробнее
10-11-2016 дата публикации

ENTROPY-CONTROLLED BCC ALLOY HAVING STRONG RESISTANCE TO HIGH-TEMPERATURE NEUTRON RADIATION DAMAGE

Номер: US20160326616A1
Принадлежит:

Disclosed is an entropy-controlled solid solution matrix BCC alloy having strong resistance to high-temperature neutron radiation damage. The entropy-controlled solid solution matrix BCC alloy includes three or more multicomponent main elements selected from the element group consisting of Zr, Al, Nb, Mo, Cr, V, and Ti selected based on a neutron absorption cross-sectional area and a mixing enthalpy. Each of the elements is included in an amount of 5 to 35 at %, and the entropy-controlled solid solution matrix BCC alloy is a BCC-structure solid solution matrix alloy in a medium-entropy to high-entropy state. In this invention, damage caused by neutron radiation is reduced, and entropy is controlled to thus ensure a solid solution matrix BCC structure having a slow diffusion speed, and accordingly, resistance to void swelling due to radioactive rays is high. 1. An entropy-controlled solid solution matrix BCC alloy having strong resistance to high-temperature neutron radiation damage , comprising:three or more elements selected from the element group consisting of Zr, Al, Nb, Mo, Cr, V, and Ti, selected based on a neutron absorption cross-sectional area and a mixing enthalpy,wherein each of the elements is included in an amount of 5 to 35 at %, and the entropy-controlled solid solution matrix BCC alloy is a BCC-structure solid solution matrix alloy, which includes multicomponent main elements, in a medium-entropy to high-entropy state.2. The entropy-controlled solid solution matrix BCC alloy of claim 1 , wherein the entropy-controlled solid solution matrix BCC alloy includes one or more elements selected from Zr claim 1 , Al claim 1 , and Nb claim 1 , and one or more elements selected from Cr claim 1 , Ti claim 1 , Mo claim 1 , and V claim 1 , and a ratio of each of the elements is in a range of 5 to 35 at %.3. The entropy-controlled solid solution matrix BCC alloy of claim 1 , wherein the entropy-controlled solid solution matrix BCC alloy includes two or more ...

Подробнее
15-12-2016 дата публикации

Fire Containment Coating System for Titanium

Номер: US20160362774A1
Принадлежит: UNITED TECHNOLOGIES CORPORATION

A coated substrate comprises: a metallic substrate; a bondcoat atop the substrate; and a ceramic barrier coat atop the bondcoat. The bondcoat has a combined content of one or more of molybdenum, chromium, and vanadium of at least 50 percent by weight. 2. The coated substrate of wherein:the metallic substrate is a titanium-based substrate.3. The coated substrate of wherein:the metallic substrate comprises aluminum and vanadium.4. The coated substrate of wherein:the metallic substrate is a steel substrate.5. The coated substrate of wherein:the bondcoat comprises by weight at least 50 weight percent said chromium.6. The coated substrate of wherein:the bondcoat comprises by weight at least 6.0 percent nickel.7. The coated substrate of wherein:the bondcoat comprises by weight at least 10.0 percent cobalt.8. The coated substrate of wherein:the bondcoat comprises by weight at least 50.0 percent said molybdenum and at least 6 percent nickel.9. The coated substrate of wherein:the bondcoat comprises by weight at least 54 weight percent said vanadium.10. The coated substrate of wherein:the bondcoat comprises by weight at least 6.0 weight percent aluminum.11. The coated substrate of wherein:the ceramic barrier coat comprises at least 50 weight percent zirconia.12. The coated substrate of wherein:the ceramic barrier coat comprises yttria-stabilized zirconia.13. The coated substrate of wherein at a location along the substrate:the bondcoat has a thickness of 25.4 micrometer to 0.41 millimeter; andthe ceramic barrier coat has a thickness of 0.10 millimeter to 1.27 millimeter.14. The coated substrate of wherein:the substrate has a melting point of at most 1660° C.; andthe bondcoat has a melting point of at least 1550° C.15. The coated substrate of wherein:the substrate has a melting point; andthe bondcoat has a melting point greater than the melting point of the substrate.16. The coated substrate of wherein:the substrate has a melting point; andthe bondcoat has a melting point at ...

Подробнее
24-12-2015 дата публикации

ALLOY FOR CATALYTIC MEMBRANE REACTORS

Номер: US20150368762A1
Принадлежит:

A vanadium alloy essentially consisting of: vanadium; and aluminium having a content of greater than 0 to 10 at %, and a process of producing thereof. 1. A vanadium alloy comprising:vanadium; andaluminium,the alloy having a content of greater than 0 up to 10 at % aluminium.2. A vanadium alloy according to claim 1 , further including a grain refining element selected from the group consisting of Ti claim 1 , Cr claim 1 , Fe claim 1 , Ni and B claim 1 , the alloy having a content of greater than 0 up to 5 at % of such grain refining element.3. A vanadium alloy according to claim 1 , wherein the vanadium alloy has a ductility of greater than 10% elongation.4. A vanadium alloy according to claim 1 , wherein the vanadium alloy has a grain linear intercept of less than 5.0 mm claim 1 , based upon a minimum sample size of 6 grains.5. A vanadium alloy according to claim 1 , wherein the vanadium alloy does not include any voids having an average size of greater than 0.5 mm.6. A process of producing a vanadium alloy comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'forming a vanadium alloy according to ; and'}heat treating the formed vanadium alloy at temperatures of from 800 to 1500° C. and pressures from 50 to 500 MPa,thereby producing a refined vanadium alloy suitable for a deformation process for forming a thin-walled tube.7. A process of producing a refined vanadium alloy according to claim 6 , wherein refined vanadium alloy has a ductility of greater than 10% elongation claim 6 , preferably greater or equal to 12% elongation claim 6 , more preferably greater or equal to 13% elongation claim 6 , yet more preferably greater or equal to 14% elongation.8. A process according to claim 6 , wherein the heat treatment step comprises a Hot Isostatic Pressing (HIP) process.9. A process according to claim 6 , wherein the heat treatment step comprises subjecting the vanadium alloy at temperatures of from 1000 to 1400° C. claim 6 , preferably between 1100 to 1300° C. ...

Подробнее
14-11-2019 дата публикации

Amorphous thin metal film coated substrates

Номер: US20190345593A1
Принадлежит: Hewlett Packard Development Co LP

The present disclosure is drawn to an amorphous thin metal film coated substrate including a crosslinked polymer substrate and a 10 angstrom nm to 10 μm amorphous thin metal film applied directly to the crosslinked polymer substrate. The amorphous thin metal film can include from 10 at % to 50 at % of a metalloid, wherein the metalloid is carbon, silicon, boron, or a mixture thereof. The film can also include from 5 at % to 70 at % of a first metal and 5 at % to 70 at % of a second metal. The first and the second metal can be, independently, titanium, vanadium, chromium, iron, cobalt, nickel, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, osmium, iridium, or platinum. The first metal and the second metal can also be from different periods of the periodic table of elements.

Подробнее
20-12-2018 дата публикации

MATERIALS FOR NEAR FIELD TRANSDUCERS AND NEAR FIELD TRANSDUCERS CONTAINING SAME

Номер: US20180366153A1
Принадлежит:

A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof. 1. A device comprising: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof;', 'erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and', 'barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof., 'a near field transducer, the near field transducer comprising gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from2. The device according to claim 1 , wherein the at least one secondary atom is selected from: boron (B) claim 1 , bismuth (Bi) claim 1 , indium (In) claim 1 , sulfur (S) claim 1 , silicon (Si) claim 1 , tin (Sn) claim 1 , hafnium (Hf) claim 1 , niobium (Nb) claim 1 , manganese (Mn) claim 1 , antimony (Sb) claim 1 , tellurium (Te) claim 1 , carbon (C ...

Подробнее
12-06-2008 дата публикации

FINE-PART METAL CATALYST AND PRODUCTION METHOD THEREFOR

Номер: DE60133806D1
Принадлежит: Ovonic Battery Co Inc

Подробнее
20-10-2004 дата публикации

Finely divided metal catalyst and method for making same

Номер: KR100453457B1

저가의 고촉매 물질은 바람직하게는 리칭 프로세스에 의해 형성된다. 촉매는 미세 분할된 금속 미립자와 지지부를 포함한다. 활성 물질은 약 100 옹스트롬 이하의 입자 크기를 갖는 니켈 및/또는 니켈 합금 미립자일 수 있다. 지지부는 하나 이상의 금속 산화물일 수 있다.

Подробнее
11-09-2019 дата публикации

Method of producing composite material based on vanadium alloy and steel

Номер: RU2699879C1

FIELD: technological processes.SUBSTANCE: invention relates to production of composite materials, namely deformation-thermal treatment of composite materials based on metals and alloys. Method of producing composite material consisting of vanadium alloy inner layer V – 3–11 wt% Ti – 3–6 wt% Cr and two outer layers of corrosion-resistant steel of ferritic grade with chromium content of not less than 13 wt%, includes preparation of a composite workpiece consisting of said inner layer and outer layers, hot treatment by pressure and subsequent exposure in furnace. Prepared composite workpiece, thickness of inner layer of which is 1.5–2 times more than total thickness of outer layers of corrosion-resistant steel, hot working is performed with pressure of said workpiece in the temperature range of 1,050–1,150 °C with degree of reduction from 30 to 40 % and with subsequent exposure for 1–3 hours with temperature reduction to 500–700 °C, then annealing workpiece by heating to temperature of 850–950 °C, holding for 2–4 hours and subsequent cooling in furnace.EFFECT: said production modes provide formation of zone of diffusion connection between vanadium alloy and steel of increased thickness with size of 60–70 mcm, which at given ratio of thicknesses in initial composite billet leads to production of higher complex of mechanical properties of composite material.3 cl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 699 879 C1 (51) МПК B32B 15/01 (2006.01) B23K 20/02 (2006.01) B23K 20/04 (2006.01) C22F 1/16 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК B32B 15/01 (2019.02); B23K 20/02 (2019.02); B23K 20/04 (2019.02); C22F 1/16 (2019.02) (21)(22) Заявка: 2018144226, 13.12.2018 (24) Дата начала отсчета срока действия патента: Дата регистрации: 11.09.2019 (45) Опубликовано: 11.09.2019 Бюл. № 26 Адрес для переписки: 119991, Москва, ГСП-1, В-49, Ленинский пр-кт, 4, НИТУ "МИСиС", отдел интеллектуальной собственности 2 6 9 9 8 7 9 ...

Подробнее
24-12-1974 дата публикации

Novel amorphous metals and amorphous metal articles

Номер: US3856513A
Автор: D Polk, H Chen
Принадлежит: Allied Chemical Corp

Novel metal alloy compositions which are obtained in the amorphous state and are superior to such previously known alloys based on the same metals are provided; these new compositions are easily quenched to the amorphous state and possess desirable physical properties. Also disclosed is a novel article of manufacture in the form of wire of these novel amorphous metal alloys and of other compositions of the same type.

Подробнее
28-07-2006 дата публикации

Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method

Номер: KR100605535B1

수소 흡장량과 수소 압력의 관계에서 2단 플래이토 특성 혹은 경사 플래이토 특성을 나타내는 체심입방구조상을 주상으로 하는 수소흡장합금으로, 수소 방출 과정의 적어도 한 시기에 해당 합금온도(T2)를 수소흡장과정의 합금온도(T1)보다 높은 온도로 하는 것에 의해(T2>T1), 상기 2단 플래이토에서 저압 플래이토 영역 혹은 경사 플래이토의 하부 플래이토 영역의 흡장 수소의 적어도 일부를 방출가능하도록 합금을 구성하는 금속의 조성비율을 저압 플래이토 영역 혹은 경사 플래이토의 하부 플래이토 영역의 합금 중의 흡장 수소의 안정성을 저감화하도록 적정화하는 것으로 구성되는 수소 흡장 및 방출방법. A hydrogen storage alloy mainly composed of a body-centered cubic structure exhibiting two-stage platelet characteristics or gradient platen characteristics in relation to hydrogen storage amount and hydrogen pressure, and the alloy temperature (T2) is hydrogenated at least at one time during the hydrogen release process. By making the temperature higher than the alloy temperature T1 of the process (T2> T1), the alloy can be released so as to release at least a portion of the occlusion hydrogen in the low pressure plateau region or the lower plateau region of the inclined plateau in the second stage plate. And a composition ratio of the constituent metals is adapted to reduce the stability of occlusion hydrogen in the alloy of the low-pressure platen region or the lower platen region of the inclined plate. 수소, 합금 Hydrogen alloy

Подробнее
20-12-2019 дата публикации

Production method of low-oxygen-content vanadium-aluminum alloy

Номер: CN110592453A

本发明涉及低氧含量钒铝合金的生产方法,属于钒铝合金制备技术领域。本发明提供了低氧含量钒铝合金的生产方法,包括如下步骤:a、配制炉料:取五氧化二钒、金属铝和冷却剂,混合均匀,备用;其中,所述金属铝的粒度≤3mm,所述五氧化二钒的钒元素中V 5+ 占比≥95%;b、冶炼:将炉料加入冶炼炉内,点火冶炼,与炉料接触的冶炼炉的工作层内层填充粒度<1mm,纯度在99.0%以上的白刚玉粉;c、冶炼结束后,冷却拆炉,分离炉渣与合金,即得钒铝合金。本发明生产方法的推广应用有助于降低航空军工钛合金的生产成本,对国家航空军工钛合金行业发展有积极的促进作用。

Подробнее
01-08-2000 дата публикации

(ti,zr)-cr-v alloy with hydrogen storaging capacity

Номер: KR100263718B1
Автор: 박형규, 조성욱, 한창석
Принадлежит: 이경운, 한국자원연구소

PURPOSE: A hydrogen storage alloy capable of storing hydrogen in high density and effectively absorbing and releasing hydrogen in the vicinity of ordinary temperature by a reversible reaction with hydrogen is provided, which can be effectively used for storage and transportation of hydrogen. CONSTITUTION: The hydrogen storage alloy of a general formula: Tia-xCr(1-a-b)+(x-y)Vb+y is obtained by heat treatment of a Ti-Cr-V alloy and a Ti-Zr-Cr-V alloy controlled by a composition ratio(Ti/Cr) of Ti and Cr. In formula, a, b, x and y are each 0.32≤a≤0.36, 0.14≤b≤0.18, a+b=0.50, 0≤x≤0.18, y=2.67x.

Подробнее
29-12-2020 дата публикации

Composition for dissimilar metal bonding and manufacturing method thereof

Номер: KR102196007B1
Принадлежит: 국방과학연구소

The present invention relates to a composition for dissimilar metal bonding and a method for manufacturing the same. More specifically, the composition can improve bonding strength between dissimilar metals when the dissimilar metals are laminated in a three-dimensional (3D) printing method. According to one aspect of the present invention, the composition for dissimilar metal bonding comprises vanadium (V), nickel (Ni), niobium (Nb), and silicon (Si).

Подробнее
03-11-1962 дата публикации

Superconducting composition

Номер: FR1308521A
Автор:
Принадлежит: Western Electric Co Inc

Подробнее
11-01-2022 дата публикации

Vanadium alloy and preparation method and device thereof

Номер: CN113913632A
Принадлежит: BGRIMM Technology Group Co Ltd

本发明涉及制备钒合金技术领域,具体而言,涉及一种钒合金及其制备方法与装置。钒合金的制备方法包括:将钒渣、造渣剂和还原剂混合均匀后进行熔炼,然后分离,得到粗合金;将所述粗合金、钒氧化物、还原剂和造渣剂混合后进行精炼,然后分离,得到钒合金;所述熔炼的温度为1450~1650℃;所述精炼的温度为1450~1700℃。通过采用熔炼和精炼联合冶炼工艺,先进行熔炼,实现钒渣粗还原,然后进行精炼,并通过调控熔炼和精炼过程中的温度,能够充分回收钒渣中的钒,获得钒含量高且质量符合要求的钒合金。且该制备方法生产过程无尾液,环境污染小,工艺流程短,操作简单易行,生产成本低。

Подробнее
29-08-2017 дата публикации

The method for preparing vanadium iron with wash heat refining is reduced based on aluminothermy self- propagating gradient

Номер: CN107099715A
Принадлежит: Northeastern University China

本发明提供一种基于铝热自蔓延梯度还原与渣洗精炼制备钒铁合金的方法,包括:(1)铝热自蔓延梯度还原:第一种方式,将原料分成若干批次,将首批次物料投入反应炉中,以镁粉从物料顶部点燃以引发自蔓延反应,陆续加入其它批次物料,直至反应完全;第二种方式,将除铝粉以外的原料混合均匀,以均匀流速加入到连续混料机中,同时将铝粉以梯度递减流速加入到连续混料机中,混匀的原料同时连续引入反应炉中进行铝热自蔓延反应,直至所有物料完全反应;(2)保温熔炼得到上层氧化铝基熔渣和下层合金熔体;(3)在下层合金熔体中喷吹精炼渣进行搅拌渣洗精炼;(4)将精炼后的高温熔体冷却至室温,除去上层熔炼渣后得到钒铁合金。

Подробнее
03-09-1957 дата публикации

High tensile vanadium alloys

Номер: US2805153A
Автор: Rostoker William
Принадлежит: Armour Research Foundation

Подробнее
19-06-2015 дата публикации

Negative electrode for electrical device and electrical device provided with same

Номер: KR20150068433A

본 발명의 과제는 높은 사이클 특성을 유지하면서, 또한 초기 용량도 높고 밸런스 좋은 특성을 나타내는 Li 이온 이차 전지 등의 전기 디바이스용 부극을 제공하는 것이다. 집전체와, 상기 집전체의 표면에 배치된 부극 활물질, 도전 보조제 및 바인더를 포함하는 전극층을 갖는 전기 디바이스용 부극이며, 상기 부극 활물질이, 하기 식 (1): Si x Zn y M z A a [상기 식 (1)에 있어서, M은 V, Sn, Al, C 및 이들의 조합으로 이루어지는 군에서 선택되는 적어도 1개의 금속이며, A는 불가피 불순물이며, x, y, z 및 a는 질량%의 값을 나타내고, 이때, 0<x<100, 0<y<100, 0<z<100 및 0≤a<0.5이며, x+y+z+a=100임]로 표시되는 합금을 포함하고, 상기 바인더가, 1.00GPa 초과 7.40GPa 미만의 E 탄성률을 갖는 수지를 포함하는, 전기 디바이스용 부극.

Подробнее
24-03-2023 дата публикации

Manufacturing method of vanadium tungsten alloy target material

Номер: JP2023512126A

本明細書は、バナジウムタングステン合金ターゲット素材の製造方法に関し、前記バナジウムタングステンターゲット素材は、含有質量%で、11%~19%のWを含み、残りがバナジウムであり、前記製造方法は、(1)バナジウム粉とタングステン粉とを処方に従って混合した後、型に入れるステップと、(2)炉内に入れて真空引きした後、ホットプレス焼結を行い、前記バナジウムタングステン合金ターゲット素材を取得するステップとを含む。【選択図】図1

Подробнее
20-10-2017 дата публикации

A kind of high-purity vanadium-silicon alloy and preparation method thereof

Номер: CN107267831A
Принадлежит: Institute of Materials of CAEP

本发明公开了一种高纯钒硅合金的制备方法,具体为:准备钒和硅的原料;硅原料在下、钒原料在上装入水冷铜坩埚中;将电子束熔炼炉抽真空,在真空条件下开启电子枪的高压和束流,调节电子枪功率,至原料完全熔化得到钒硅熔体;将钒硅熔体在表面温度2000~2500℃条件下保温10~30min;快速降低电子枪功率并停止电子束轰击,得到钒硅铸锭,待钒硅铸锭降温至室温后,向电子束熔炼炉中通入干洁空气并置换炉内气氛;取出钒硅铸锭并去除其表面渣皮,得到高纯钒硅铸锭。本发明的有益效果是:所得合金纯净度较高,且没有坩埚等的污染;利用电子束的搅动作用实现熔体组分的均匀化,所得合金组织和成分均匀性较好。

Подробнее
17-02-2015 дата публикации

Vanadium-based hydrogen permeation alloy used for a membrane, method for manufacturing the same and method for using the membrane

Номер: KR101493473B1
Принадлежит: 한국과학기술연구원

분리막용 바나듐계 수소투과합금, 그 제조 방법 및 이를 이용한 분리막의 사용 방법을 제공한다. 분리막용 바나듐계 수소투과합금은, 0 보다 크고 5at% 이하의 니켈(Ni), 5at% 내지 15at%의 철(Fe), 0 보다 크고 1at% 이하의 이트륨(Y) 및 나머지 바나듐 및 불순물을 포함한다. A vanadium-based hydrogen permeable alloy for a separator, a method for producing the same, and a method of using the separator using the same are provided. The vanadium-based hydrogen-permeable alloy for separator contains nickel (Ni) of greater than 0 and less than 5 at%, iron (Fe) of 5 at% to 15 at%, yttrium (Y) of greater than 0 and less than 1 at% and remaining vanadium and impurities do.

Подробнее
19-08-1980 дата публикации

Noncrystalline alloy

Номер: JPS55107746A
Принадлежит: Allied Chemical Corp

Подробнее
01-03-2022 дата публикации

50 ferrovanadium-silicon and preparation method thereof

Номер: CN114107773A

本发明涉及冶金技术领域,提供了一种50钒硅铁及其制备方法。本发明提供的50钒硅铁是由Si、Fe和V组成的合金,是一种创新产品,可作为钢铁冶金的增强合金添加剂,也可以作为生产高氮钒铁的原料。本发明采用钒渣和75硅铁为原料,通过还原熔炼得到钒硅铁水,并通过对熔渣贫化处理和还原处理使熔渣中的V 2 O 5 得到充分利用,最终实现采用钒渣直接制备50钒硅铁。本发明提供的制备方法步骤简单,容易操作,成本低,不产生废液废气。采用本发明的方法利用钒渣制备50钒硅铁,能够简化流程,降低生产成本,解决废水废气处理的问题,提高经济和社会效益。

Подробнее
29-04-2022 дата публикации

Method for treating ferrovanadium smelting slag

Номер: CN113213783B
Автор: 余彬, 叶明峰, 尹丹凤, 景涵

本发明涉及钒铁冶炼技术领域,公开了一种钒铁冶炼渣的处理方法。该方法包括:(1)在钒铁合金冶炼结束后向冶炼炉内冶炼渣中加入冷态钒铝刚玉渣进行调质;(2)将电极插入物料中进行通电加热;(3)停止通电,移除电极,使冶炼炉保持旋转状态并搅拌物料;(4)搅拌结束后停止旋转冶炼炉,将电极插入物料中进行通电加热保温;(5)通电加热保温结束后,将物料静置冷却后拆炉,得到钒铁饼和冷态钒铁刚玉渣。本方法灵活性好,可操作性强,可稳定将刚玉渣中的Al 2 O 3 含量提高至80%以上,满足一些高强度、高耐火度耐材对原料的成分和使用性能要求,并且工艺流程短,炉渣成分均匀。

Подробнее
20-08-2021 дата публикации

Apparatus and method for producing a strip by means of a rapid solidification technique, and metal strip

Номер: CN113275525A
Принадлежит: Vacuumschmelze GmbH and Co KG

提供一种利用快速凝固技术生产带材的设备和方法以及金属带材。将熔体浇注到转动的铸轮的移动的外表面上,其中,熔体在铸轮的外表面上凝固并且形成带材。将喷射物向铸轮的移动的外表面引导并且以喷射物加工铸轮的外表面。喷射物具有固体颗粒。

Подробнее
10-12-2021 дата публикации

Production process of vanadium-titanium carbonitride alloy

Номер: CN113770345A
Автор: 陈薛冰

本发明公开了一种碳氮化钒钛合金的生产工艺,该生产工艺包括如下步骤:S1:将钒钛合金通过研磨设备研磨至金属直径平均小于1mm后,在金属表面通过喷枪喷涂水补土,并在喷涂完成水补土后,喷涂碳粉;S2:喷涂完成碳粉后,再次在碳粉表面喷涂密度强化剂,并在喷涂完成密度强化剂后喷涂氰盐,随后将喷涂完成的合金粉末静置5小时以上进行干燥;S3:待合金粉末干燥3小时后,启动电阻炉进行预热,预热前对电阻炉内的空腔内表面进行清洁,清洁完毕后启动预热,预热时间2小时以上,预热温度不低于600度;S4:预热完成后,将干燥后的金属粉末送入电阻炉内,并同时向电阻炉内加入氮气,将温度在2小时内从600度缓慢提高到1200度,并保持该温度2小时。

Подробнее
09-11-2021 дата публикации

Method for directly smelting nitrided ferrovanadium or ferrovanadium from high-temperature vanadium slag without chemical process

Номер: CN113621864A
Автор: 张计辉
Принадлежит: Individual

本发明提供了一种无化工过程的高温钒渣直接冶炼氮化钒铁或钒铁的方法,包括含钒铁水在转炉吹钒过程中,在接近提钒终点时从炉底或炉侧喷吹还原剂,还原渣中氧化铁;出完半钢后从提钒炉顶部加入还原剂继续还原钒渣中的氧化铁,将高温钒渣直接倒入到中频感应炉或电弧炉中或者通过保温渣罐倒入中频感应炉或电弧炉中,在中频感应炉或电弧炉中通过控制还原温度深度还原钒渣中的钒及有益金属元素,并通过控制底吹氮气量得到氮化钒铁或钒铁。本发明以高温钒渣为原料直接生产氮化钒铁,也可生产不同品位的钒铁合金,无需化工用地,而且生产工艺绿色环保,不产生化工废水,能耗明显低于传统钒化工工艺,工艺流程短。

Подробнее
11-08-2020 дата публикации

Method for improving yield of AlV55 alloy

Номер: CN111519077A
Принадлежит: Pangang Group Research Institute Co Ltd

本发明提供一种提高AlV55合金成品率的方法,该方法包括以下步骤:步骤1:将五氧化二钒和铝粒原料按照一定配比混合均匀;步骤2:将混合好的物料倒入到反应器中,引燃镁带触发反应,进行铝热还原冶炼;步骤3:反应完毕后,立即向反应器内通入惰性气体;步骤4:冷却后,经喷砂破碎处理得到AlV55合金成品。采用本发明的方法制备AlV55合金,钒含量可控制在59%~59.5%,AlV55合金成品率可提高到70%以上。此外,本发明的方法工艺简单、成本低。

Подробнее
23-07-2021 дата публикации

Method for manufacturing composite material based on vanadium alloy and steel

Номер: CN113165337A

本发明涉及复合材料的生产,即基于金属和合金的复合材料的变形热处理。一种由钒合金内层V‑3‑11wt%Ti‑3‑6wt%Cr和铬含量不低于13wt%的铁素体级不锈钢的两个外层组成的复合材料的生产方法,包括制备由所述内层和外层组成的复合工件,加压热处理,随后暴露在炉中。所制备的复合工件,其内层的厚度比不锈钢外层的总厚度大1.5‑2倍,在所述工件的压力下,在1,050‑1,150℃的温度范围内以还原30‑40%进行热加工,随后暴露1‑3小时,降温至500‑700℃,然后通过加热至850‑950℃对工件进行退火,保持2‑4小时,随后在炉中冷却。生产模式提供了钒合金和尺寸为60‑70μm的增加厚度的钢之间的扩散连接区域的形成,这在初始复合坯料中的给定厚度比下导致产生更复杂机械性能的复合材料。

Подробнее
25-08-1976 дата публикации

Amorphous metal alloy wires

Номер: GB1447268A
Автор:
Принадлежит: Allied Chemical Corp

1447268 A morphous metal wire ALLIED CHEMICAL CORP 21 Nov 1973 [26 Dec 1972] 14469/75 Divided out of 1447267 Heading C7A A wire of a metal alloy which is at least 50% amorphous and which has the composition Ti X j wherein T is a transition metal of groups IB, IIIA, IVA, VA, VIA, VIIA or VIII or a mixture of two or more of said metals and X is an element which is Al, Ge, C, In, P, Si, Sn, Sb, Be or B or mixture thereof, i and j are respectively 70 to 87 atomic per cent and 13 to 30 atomic per cent and i plus j equals 100 atomic per cent. The wire may be prepared by squirting the molten alloy into stationary water or refrigerated brine optionally using argon to eject the melt from its container into the liquid. The wire may be used as a tyre cord, as reinforcement in moulded thermoplastics and thermosetting plastics, as a filter media, as a medical suture or as a relay magnet.

Подробнее
24-06-2022 дата публикации

Method for directly smelting nitrided ferrovanadium or ferrovanadium from high-temperature vanadium slag without chemical process

Номер: CN113621864B
Автор: 张计辉
Принадлежит: Individual

本发明提供了一种无化工过程的高温钒渣直接冶炼氮化钒铁或钒铁的方法,包括含钒铁水在转炉吹钒过程中,在接近提钒终点时从炉底或炉侧喷吹还原剂,还原渣中氧化铁;出完半钢后从提钒炉顶部加入还原剂继续还原钒渣中的氧化铁,将高温钒渣直接倒入到中频感应炉或电弧炉中或者通过保温渣罐倒入中频感应炉或电弧炉中,在中频感应炉或电弧炉中通过控制还原温度深度还原钒渣中的钒及有益金属元素,并通过控制底吹氮气量得到氮化钒铁或钒铁。本发明以高温钒渣为原料直接生产氮化钒铁,也可生产不同品位的钒铁合金,无需化工用地,而且生产工艺绿色环保,不产生化工废水,能耗明显低于传统钒化工工艺,工艺流程短。

Подробнее
05-11-1985 дата публикации

Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications

Номер: US4551400A
Принадлежит: Energy Conversion Devices Inc

The present invention provides novel active materials which reversibly store hydrogen under conditions which make them exceptionally well-suited for elecrochemical applications. These active materials have both novel compositions and structures. A first group of active material compositions incorporate the elements of titanium, vanadium, and nickel. A second group adds zirconium to the first group of active materials. A preferred third composition group adds chromium to the first group of active materials. These materials may be single or multiphase combinations of amorphous, microcrystalline, or polycrystalline structures. Preferably, these materials have a multiphase polycrystalline structure. Methods of reducing the size or of sizing these materials, as well as other hydride-forming alloys, also are provided. Methods of preparing the inventive hydrogen storage materials and fabricating electrodes from these active materials are contemplated. Electrochemical cells and batteries assembled with the inventive electrodes provide significantly improved capacity and cycle life.

Подробнее
19-12-2017 дата публикации

Negative electrode for electric device and electric device using the same

Номер: KR101810752B1

본 발명의 과제는 높은 사이클 특성을 유지하면서, 또한 초기 용량도 높고 밸런스 좋은 특성을 나타내는 Li 이온 이차 전지 등의 전기 디바이스용 부극을 제공하는 것이다. 집전체와, 상기 집전체의 표면에 배치된 부극 활물질, 도전 보조제 및 바인더를 포함하는 전극층을 갖는 전기 디바이스용 부극이며, 상기 부극 활물질이, 하기 식 (1): Si x Zn y M z A a [상기 식 (1)에 있어서, M은 V, Sn, Al, C 및 이들의 조합으로 이루어지는 군에서 선택되는 적어도 1개의 금속이며, A는 불가피 불순물이며, x, y, z 및 a는 질량%의 값을 나타내고, 이때, 0<x<100, 0<y<100, 0<z<100 및 0≤a<0.5이며, x+y+z+a=100임]로 표시되는 합금을 포함하고, 상기 바인더가, 1.00GPa 초과 7.40GPa 미만의 탄성률 E을 갖는 수지를 포함하는, 전기 디바이스용 부극. An object of the present invention is to provide a negative electrode for an electric device such as a Li ion secondary battery which exhibits high initial capacity and good balance while maintaining high cycle characteristics. 1. A negative electrode for an electric device, comprising: a current collector; and an electrode layer including a negative electrode active material, a conductive auxiliary agent and a binder disposed on a surface of the current collector, wherein the negative electrode active material satisfies the following formula (1): Si x Zn y M z A a Wherein M is at least one metal selected from the group consisting of V, Sn, Al, C and combinations thereof, A is an inevitable impurity, x, y, z and a are mass% Wherein 0 < x < 100, 0 < y < 100, 0 <z <100 and 0 a <0.5 and x + y + z + a = 100, wherein the binder has a And a resin having an elastic modulus E of less than 7.40 GPa above GPa.

Подробнее
16-10-2020 дата публикации

Ferrovanadium slag refining agent, preparation method thereof and slag vanadium removal method

Номер: CN111778423A
Принадлежит: Pangang Group Research Institute Co Ltd

本发明属于钒合金冶炼技术领域,具体涉及钒铁熔渣精炼剂及其制备方法和熔渣脱钒的方法。本发明所要解决的技术问题是提供一种钒铁熔渣精炼剂及熔渣脱钒的方法,以克服现有技术中钒铁冶炼渣中残钒含量高的问题。本发明提供的钒铁熔渣精炼剂按照质量比计由以下原料制备而成:金属铝、金属铁、缓释型还原剂1和氧化钙的质量比为20~40:0~20:10~20:30~60;所述缓释型还原剂1为铝铁合金、钢砂铝或钢芯铝中的至少一种。本发明钒铁熔渣精炼剂能改善熔渣精炼脱钒效果,减少铝剂损失,降低原料成本,并能够有效脱除钒铁冶炼结束后渣中残余的全钒元素,有效降低渣中残钒含量至1.2%以下。

Подробнее
15-09-2022 дата публикации

Steel-vanadium alloy cladding for fuel element

Номер: AU2017398422B2
Принадлежит: TerraPower LLC

This disclosure describes various configurations and components for bimetallic and trimetallic claddings for use as a wall element separating nuclear material from an external environment. The cladding materials are suitable for use as cladding for nuclear fuel elements, particularly for fuel elements that will be exposed to sodium or other coolants or environments with a propensity to react with the nuclear fuel.

Подробнее
16-05-2023 дата публикации

一种高品质AlV55合金的生产方法

Номер: CN114015874B

本发明涉及冶金领域,公开了一种高品质AlV55合金的生产方法。该方法包括以下步骤:(1)将纯度≥99.5质量%的V 2 O 5 、纯度≥99.7质量%的金属Al和纯度≥98.5质量%的CaO按照质量比1:0.88~0.90:0.12~0.16加入料罐中混合;(2)将混合后的物料分3~5次装入反应炉中,且每次装完物料后均进行压缩排气;(3)采用点火剂引发物料进行铝热反应;(4)待反应平稳后将反应炉炉体推入真空室内抽真空并通入氩气;(5)冷却后拆炉,得到高品质AlV55合金。本发明所述方法制得的AlV55合金的成品率高,杂质元素含量低,AlV55合金质量高。

Подробнее
08-02-2022 дата публикации

Method of Forming a Pd-Au Alloy Layer on a Substrate

Номер: KR102359764B1

본 발명은 가용성 팔라듐 화합물의 수용액 및 가용성 금 착물을 포함하는 수성 전기도금 용액으로 코팅 표면을 전착시키는 것에 의한 기재 상의 팔라듐-금 합금층의 제조 방법으로서, 용액 중 팔라듐에 대한 금의 비가 5∼40 w/w%인 제조 방법을 제공한다. 팔라듐-금 합금층으로 코팅된 바나듐 또는 바나듐 합금 가스 분리막과 같은 기재도 교시된다. The present invention provides a method for producing a palladium-gold alloy layer on a substrate by electrodepositing a coating surface with an aqueous electroplating solution comprising an aqueous solution of a soluble palladium compound and a soluble gold complex, wherein the ratio of gold to palladium in the solution is 5 to 40 w/w % is provided. Substrates such as vanadium or vanadium alloy gas separation membranes coated with a palladium-gold alloy layer are also taught.

Подробнее
27-09-2022 дата публикации

Method for producing vanadium-nitrogen alloy with preset sulfur content

Номер: CN113684363B

本发明涉及钒冶金技术领域,公开了一种生产预定硫含量的钒氮合金的方法。所述方法包括:(1)检测钒氧化物的硫含量W 钒氧化物 ;(2)将钒氧化物的硫含量W 钒氧化物 和钒氮合金产品的预定硫含量W 钒氮合金 代入公式中计算得到煅烧温度T,T的范围为1200‑1800,单位为℃;(3)将钒氧化物和碳粉进行混合,得到混合料;(4)向步骤(3)得到的混合料中加水继续混合,然后成型,得到成型物料;(5)将步骤(4)得到的成型物料转移至煅烧装置中,然后在氮气气氛中并按照步骤(2)中计算得到的煅烧温度T进行煅烧,得到钒氮合金产品。本发明所述的方法可以实现对钒氮合金中杂质硫的含量的精准控制。

Подробнее
10-09-2021 дата публикации

Method for improving nitrogen content in vanadium-nitrogen alloy production process

Номер: CN111101051B
Принадлежит: HBIS Co Ltd Chengde Branch

本发明公开了一种钒氮合金生产过程中提高氮含量的方法,所述方法在钒氮合金生料球压制前,即在配料过程中加入钒氮合金粉,混合均匀后压制成钒氮合金生料球,然后将钒氮合金生料球放入反应炉内进行烧制。本发明采用钒氮合金粉配料制备钒氮合金,可以提高钒氮合金产品氮含量为1~3%,从而提高产品的质量;同时使用V质量含量在40%≤V<77%的钒氮合金、或粒度<10mm的钒氮合金制备钒氮合金粉,可将生产过程中产生的不合格产品回收利用,降低生产成本。

Подробнее
15-06-2018 дата публикации

The preparation method of low Mn content Fs eV50

Номер: CN108165781A
Автор: 张巍, 杨志, 杨雄, 梁彬

本发明属于钒铁冶炼领域,具体涉及一种低Mn含量FeV50的制备方法。本发明所要解决的技术问题是提供一种低Mn含量FeV50的制备方法,包括以下步骤:对常规倾翻炉电铝热法冶炼FeV50的工艺进行调整,具体调整为:控制引弧电压为150~190V,电流为16000~24000A;控制贫渣电压为120~160V,电流为18000~26000A;控制精炼电压为110~150V,电流14000~22000A。本发明方法通过控制合适的电流、电压,得到低锰含量的FeV50。

Подробнее
01-05-2007 дата публикации

Finely divided metal catalyst and method for making same

Номер: CA2402713C
Принадлежит: Ovonic Battery Co Inc

An inexpensive, highly catalytic material preferably formed by a leaching process. The catalyst comprises a finely divided metal particulate and a support. The active material may be a nickel and/or nickel alloy particulate having a particle size less than about 100 Angstroms. The support may be one or more metal oxides.

Подробнее
10-10-1991 дата публикации

HYDROGEN STORAGE MATERIALS AND METHOD FOR CALIBRATING AND MANUFACTURING THE SAME FOR ELECTROCHEMICAL APPLICATIONS.

Номер: DE3583961D1
Принадлежит: Ovonic Battery Co Inc

The present invention provides novel active materials (15,40,115) which reversibly store hydrogen under conditions which make them exceptionally well-suited for electrochemical applications. These active materials have both novel compositions and structures. A first group of active material compositions incorporate the elements of titanium, vanadium, and nickel. A second group adds zirconium to the first group of active materials. A preferred third composition group adds chromium to the first group of active materials. These materials may be single or multi- phase combinations of amorphous, microcrystalline, or polycrystalline structures. Preferably, these materials have a multiphase polycrystalline structure. Methods of reducing the size or of sizing these materials, as well as other hydride-forming alloys, also are provided. Methods of preparing the inventive hydrogen storage materials and fabricating electrodes (15,40,115) from these active materials are contemplated. Electrochemical cells (10,100) and batteries assembled with the inventive electrodes provide significantly improved capacity and cycle life.

Подробнее
02-02-2018 дата публикации

A kind of preparation method of the vanadium alloy of anti-helium ion sputtering

Номер: CN105506428B
Принадлежит: Institute of Materials of CAEP

本发明公开一种新型抗氦离子溅射的钒合金,解决现有技术存在抗氦离子溅射能力不强的问题。本发明所述的合金中,各种组分的重量百分比为:Cr:3.0~6.5%,Ti:3.0~6.5%,Y:0.1~2.0%,V:余量。同时,本发明还提供了制备该种合金的方法。本发明中的钒合金以V‑Cr‑Ti三元合金系为基础,将Cr、Ti作为主要合金元素,通过简单的合金化手段,利用稀土元素钇的添加来降低钒合金中固溶氧的含量,减少铸锭晶粒尺寸,并结合塑性变形的加工手段,使高温性能稳定的钇氧化物弥散分布于基体上,同时使高温退火后的合金晶粒尺寸显著细化并均匀化,从而提高了合金韧性,使合金抗氦离子溅射的能力得到大幅增强。

Подробнее
07-07-2020 дата публикации

Method for preparing vanadium or vanadium-aluminum alloy by aluminothermic reduction of vanadium oxide in cryolite system

Номер: CN111378853A

本发明涉及一种冰晶石体系铝热还原钒氧化物制备钒或钒铝合金的方法,包括如下步骤:将冰晶石体系熔盐、钒氧化物和铝粒在混料机中充分混匀得到复合料,制备钒或钒铝合金时,冰晶石体系熔盐、钒氧化物和铝粒的质量比分别为:85~95:18.57:7.2~8.0,85~95:18.57:19~20。将所述复合料在密闭高温炉中指定温度焙烧,得到渣金混料,其中,焙烧温度960~1020℃,炉内保温时间为2~4h;将渣金混料进行渣金分离后获得钒或钒铝合金。本方法一方面降低了反应温度,铝热还原反应温度在1000℃左右;另一方面采用冰晶石体系熔盐,分离后渣进电解、破碎后得铝粒,使铝粒可在工艺中循环使用,极大降低生产成本。

Подробнее
19-11-2019 дата публикации

Materials for near field transducers and near field transducers containing same

Номер: US10482914B2
Принадлежит: SEAGATE TECHNOLOGY LLC

A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.

Подробнее
19-09-2006 дата публикации

Hydrogen storage alloys providing for the reversible storage of hydrogen at low temperatures

Номер: US7108757B2
Принадлежит: Ovonic Hydrogen Systems LLC

A reversible hydrogen storage alloy capable of storing large amounts of hydrogen and delivering reversibly large amounts of hydrogen at temperatures ranging from 0° C. up to 40° C. The hydrogen storage alloy is generally composed of titanium, vanadium, and chromium. The alloy may further include manganese. Modifier elements such as zirconium, iron, nickel, molybdenum, ruthenium, and/or cobalt, and scavenger elements such as misch metal, calcium, and/or magnesium may be included in the alloy to improve performance.

Подробнее
27-03-2020 дата публикации

Vanadium-nitrogen alloy and production method thereof

Номер: CN110923559A
Автор: 张春雨

一种钒氮合金及其生产方法,本发明之钒氮合金,主要元素组成如下:钒78‑80%,氮18‑19%,碳1‑3%,磷0.03‑0.05%,硫0.03‑0.05%,余量为其他杂质。本发明还包括所述钒氮合金的生产方法。本发明氮化混合气体中加入少量氩气和氨气,能加快反应的进行,并且能提高钒氮合金中氮的含量。可能是氨气中的氮在高温下发生分离,可能会与氮气中的氮元素重排,增加反应体系中游离氮的含量,加快反应的进行。本发明通过原料的破碎、压板,将原料的延展与氮气形成最大接触面,增加氮气的流动和接触面,更好更快更加经济的生产钒氮合金。

Подробнее
06-01-2023 дата публикации

Ferrovanadium alloy and preparation method thereof

Номер: CN115572888A
Принадлежит: CNMC NINGXIA ORIENT GROUP Co Ltd

本发明提供一种钒铁合金及其制备方法,属于钒铁合金生产技术领域。采用碳热法制备钒铁合金,一方面有效降低了钒铁合金中的Al含量,且使得钒铁合金的产品密度达到5.0g/cm 3 以上,适合在生产轧辊用钢材中添加使用。另一方面,多批次制备的钒铁合金中的C含量、O含量维持稳定,有利于生产轧辊用钢材的C含量和O含量的控制。

Подробнее
05-05-2020 дата публикации

Zr-Ti-Cr-V complex phase hydrogen storage alloy and preparation method thereof

Номер: CN108411182B
Принадлежит: Jiangsu University of Technology

一种Zr‑Ti‑Cr‑V复相储氢合金及其制备方法。所述储氢合金由Zr、Ti、Cr和V元素组成,其原子比为1:0.2~0.6:0.1~0.6:1.8~2.1。本发明通过非计量比的成分设计,经过真空热处理,使合金中形成了具有特定比例的C15型Laves相、富V固溶体以及富Zr固溶体共存的复相结构。本发明系列合金室温吸氢量可达2.80wt%,具有优异的吸氢动力学性能。

Подробнее
10-03-1976 дата публикации

AMORPHOUS METALS AND AMORPHOUS METALLIC ARTIFACTS

Номер: IT999851B
Автор:
Принадлежит: Allied Chem

Подробнее
28-09-2021 дата публикации

Method for improving quality of AlV55 alloy finished product

Номер: CN111549224B
Принадлежит: Pangang Group Research Institute Co Ltd

本发明提供一种提高AlV55合金成品质量的方法,该方法包括以下步骤:步骤1:将五氧化二钒和铝粒原料按照一定配比混合均匀;步骤2:将混合好的物料倒入到反应器中,引燃镁带触发反应,进行铝热还原冶炼;步骤3:向反应器的熔体内通入惰性气体进行熔池搅拌;步骤4:对反应器进行水冷;步骤5:向反应器的熔体上方通入惰性气体进行吹扫;步骤6:冷却后,经喷砂破碎处理得到AlV55合金成品。采用本发明的方法制备AlV55合金,可以提高其成品质量,使得成品中钒含量可控制在59%~59.6%,合金成品率可提高到70%以上。

Подробнее
01-10-2020 дата публикации

Density-optimized molybdenum alloy

Номер: DE102018113340B4
Автор: Manja Krüger

Molybdänlegierung mit 5 bis 25 At% Silizium, 0,5 bis 25 At% Bor und 10 bis 50 At% Vanadium sowie der Rest Molybdän, wobei die Molybdänlegierung eine Molybdän-Vanadium-Mischkristallmatrix und darin verteilt mindestens eine Silizidphase aufweist, wobei die mindestens eine Silizidphase ausgewählt ist unter (Mo, V)3Si, (Mo,V)5SiB2und (Mo,V)5Si3, und die Dichte der Molybdänlegierung weniger als 8 g/cm3beträgt. Molybdenum alloy with 5 to 25 at% silicon, 0.5 to 25 at% boron and 10 to 50 at% vanadium and the remainder molybdenum, the molybdenum alloy having a molybdenum-vanadium mixed crystal matrix and at least one silicide phase distributed therein, the at least one The silicide phase is selected from (Mo, V) 3Si, (Mo, V) 5SiB2 and (Mo, V) 5Si3, and the density of the molybdenum alloy is less than 8 g / cm3.

Подробнее
10-03-2021 дата публикации

Predicting method for solid-solution strength of complex concentrated alloy, designing method for complex concentrated alloy and V based complex concentrated alloy

Номер: KR102225980B1
Принадлежит: 서울대학교산학협력단

본 발명은 CCA(complex concentrated alloy)의 고용 강화를 예측하는 방법에 관한 것으로, 다음의 수학식에 의해서 상기 고용 강화를 예측하고, Δχ는 다음의 수학식으로 계산되며, c x 는 x 원소의 조성이고, χ x 는 x 원소의 전기음성도이며, < χ > element 는 로 표현되는 평균 전기음성도인 것을 특징으로 한다. 본 발명은, 전기음성도 값을 이용하여 CCA의 고용 강화를 쉽게 예측할 수 있는 효과가 있다. 또한, 본 발명은 전기음성도 값을 이용하여 CCA의 고용 강화를 예측함으로써, 고용 강화가 원하는 값으로 제어된 CCA를 설계할 수 있는 효과가 있다. The present invention relates to a method of predicting solid solution strengthening of CCA (complex concentrated alloy), Predict the employment strengthening by the following equation, Δχ is calculated by the following equation, c x is the composition of the x element, χ x is the electronegativity of the x element, and < χ > element is It is characterized in that it is an average electronegativity expressed as. The present invention has the effect of being able to easily predict the solid solution strengthening of CCA by using the electronegativity value. In addition, the present invention predicts the solid solution strengthening of CCA by using the electronegativity value, so that it is possible to design a CCA in which the solid solution strengthening is controlled to a desired value.

Подробнее
27-07-2018 дата публикации

A kind of new method preparing middle and high vanadium iron

Номер: CN108330303A
Принадлежит: CNMC NINGXIA ORIENT GROUP Co Ltd

本发明涉及一种制备中、高钒铁的新方法,该方法是将五氧化二钒与三氧化二钒、铝粉、铝线段、铁屑、氧化钙、回炉料混合均匀,投入到冶炼炉中进行铝热还原反应,之后电弧加热精炼,停止后随即向熔渣内喷吹铝粉,再次电弧加热精炼,冷却,翻炉分离即可得到钒铁合金产品。本发明可将钒的回收率提高到98%以上。比现行电铝热法生产的钒铁合金,降低了电能消耗,降低冶炼反应时发生的喷溅,同时节省了五氧化二钒冶炼钒铁消耗的铝材,从而达到降低钒铁冶炼成本,增加了企业的效益。具有冶炼周期较短,生产效率高、生产组织方便的特点。

Подробнее