Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 9821. Отображено 200.
16-07-2018 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕНТЫ ПЕРЕМЕННОЙ ТОЛЩИНЫ И ПОЛУЧЕННАЯ ЭТИМ СПОСОБОМ ЛЕНТА

Номер: RU2661313C2
Принадлежит: АПЕРАМ (LU)

Изобретение относится к области металлургии. Для обеспечения одинаковых механических свойств и размера зерна в ленте переменной толщины по ее длине способ включает следующие последовательно проводимые этапы: подготовка исходной ленты одинаковой толщины, холодная равномерная прокатка исходной ленты по ее длине для получения промежуточной ленты одинаковой толщины в направлении прокатки, холодная гибкая прокатка промежуточной ленты по ее длине для получения ленты переменной толщины, содержащей по своей длине первые участки первой толщины (e+s) и вторые участки второй толщины (е), которая меньше первой толщины (e+s), отжиг ленты при ее протяжке. Степень пластической деформации после опционального рекристаллизационного отжига, достигаемая на этапах холодной равномерной прокатки и холодной гибкой прокатки на первых участках, более или равна 30%. 9 н. и 26 з.п. ф-лы, 6 табл., 7 ил.

Подробнее
20-06-2004 дата публикации

СПОСОБ ИЗМЕЛЬЧЕНИЯ ЗЕРНА СТАЛИ, СПЛАВ ДЛЯ ИЗМЕЛЬЧЕНИЯ ЗЕРНА СТАЛИ И СПОСОБ ПОЛУЧЕНИЯ СПЛАВА ДЛЯ ИЗМЕЛЬЧЕНИЯ ЗЕРНА

Номер: RU2230797C2
Принадлежит: ЭЛКЕМ АСА (NO)

Изобретение относится к области металлургии, конкретно к способу измельчения зерна стали, в частности ферритных и аустенитных сталей, сплаву для измельчения зерна стали и способу получения сплава для измельчения зерна. В способе измельчающий зерно сплав, имеющий химический состав FeXY, где Х - один или несколько элементов, выбранных из группы, состоящей из Cr, Mn, Si, Ni и Мо, и где Y - один или несколько оксидообразующих, и/или сульфидообразующих, и/или нитридообразующих, и/или карбидообразующих элементов, выбранных из группы, состоящей из Се, La, Nd, Pr, Ti, Al, Zr, Ca, Ba, Sr, Mg, С и N, где Х составляет от 0,001 до 99 мас.% от массы сплава, а Y составляет от 0,001 до 50 мас.% от массы сплава. Причем упомянутый сплав дополнительно содержит от 0,001 до 2 мас.% кислорода и/или от 0,001 до 2 мас.% серы и, по меньшей мере, 103 частиц включений на мм3, состоящих из оксидов, и/или сульфидов, и/или карбидов, и/или нитридов одного или нескольких элементов Y и/или одного или нескольких элементов ...

Подробнее
06-09-2018 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НАПЫЛЯЕМЫХ ПОРОШКОВ, СОДЕРЖАЩИХ НИТРИД ХРОМА

Номер: RU2666199C2

Группа изобретений относится к получению содержащего нитрид хрома порошка для термического напыления покрытий в виде спекшихся агломератов. Способ включает следующие стадии: a) приготовление порошковой смеси (А), содержащей порошок (В), содержащий по меньшей мере один компонент, выбранный из группы, включающей хром (Cr), CrN и CrN, и порошок (С), содержащий по меньшей мере один компонент, выбранный из группы, включающей никель, кобальт, никелевый сплав, кобальтовый сплав и железный сплав, b) спекание порошковой смеси (А) при парциальном давлении азота выше 1 бар с получением спекшихся агломератов, при этом обеспечивают неизменное содержание химически связанного азота или увеличение содержания химически связанного азота по сравнению с порошковой смесью (А). Обеспечивается получение прочного порошка. 5 н. и 14 з.п. ф-лы, 5 табл., 4 пр.

Подробнее
05-10-2020 дата публикации

СТАЛЬ, ПРОДУКТ, ПРОИЗВЕДЕННЫЙ ИЗ ТАКОЙ СТАЛИ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2733612C2
Принадлежит: АПЕРАМ (LU)

Сталь, характеризующаяся тем, что ее состав, мас. %, представляет собой: 10,0≤Ni≤24,5; 1,0≤Mo≤12,0; 1,0≤Со≤25,0; 20,0≤Мо+Со+Si+Mn+Cu+W+V+Nb+Zr+Ta+Cr+C≤29,0; Со+Мо≥20,0; Ni+Co+Mo≥29; следовые количества≤Al≤4,0; следовые количества≤Ti≤0,1; следовые количества≤N≤0,0050; следовые количества≤Si≤2,0; следовые количества≤Mn≤4,0; следовые количества≤C≤0,03; следовые количества≤S≤0,0020; следовые количества≤Р≤0,005; следовые количества≤В≤0,01; следовые количества≤Н≤0,0005; следовые количества≤О≤0,0025; следовые количества≤Cr≤5,0; следовые количества≤Cu≤2,0; следовые количества≤W≤4,0; следовые количества≤Zr≤4,0; следовые количества≤Ca≤0,1; следовые количества≤Mg≤0,1; следовые количества≤Nb≤4,0; следовые количества≤V≤4,0; следовые количества≤Ta≤4,0; остаток - железо и неизбежные примеси. Техническим результатом является изготовление стали с улучшенными механическими свойствами. 8 н. и 27 з.п. ф-лы, 3 ил., 7 табл.

Подробнее
27-06-2012 дата публикации

ДОПУСКАЮЩИЙ ОБРАБОТКУ ДАВЛЕНИЕМ СПЛАВ КОБАЛЬТА (ВАРИАНТЫ)

Номер: RU2454476C2

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, упрочняемым азотированием. Сплав на основе кобальта, который может быть подвергнут упрочнению посредством азотирования на всю толщину и который содержит, вес.%: хром 23-30, железо 15-25, никель до 27,3, титан 0,75-1,7, ниобий или цирконий или их комбинацию 0,85-1,9, углерод 0,2, бор до 0,015, редкоземельные элементы до 0,015, алюминий до 0,5, марганец до 1, кремний до 1, вольфрам до 1, молибден до 1, кобальт и примеси - остальное, причем содержание титан + ниобий составляет от 1,6 до 3,6. Сплавы характеризуются повышенными механическими свойствами. 2 н. и 9 з.п. ф-лы, 1 ил., 2 табл.

Подробнее
19-04-2017 дата публикации

НОВЫЕ СУСПЕНЗИИ ОСНОВАННЫХ НА ЗОЛОТЕ И ПЛАТИНЕ БИМЕТАЛЛИЧЕСКИХ НАНОКРИСТАЛЛОВ, ЭЛЕКТРОХИМИЧЕСКИЕ СПОСОБЫ ИХ ПРОИЗВОДСТВА И ИХ ПРИМЕНЕНИЯ

Номер: RU2617055C2

Изобретение относится к фармацевтически приемлемым суспензиям для лечения рака. Суспензии включают воду, усилитель обработки и золото-платиновые биметаллические нанокристаллы, которые имеют средний размер частиц менее чем 50 нм, присутствуют в суспензии в общей атомной концентрации металла, равной 2-1000 ч/млн, и имеют поверхности, обладающие по меньшей мере одной характеристикой, выбранной из: (1) нет органических химических составляющих, прилипших или прикрепленных к упомянутым поверхностям, и (2) являются по существу чистыми и не имеют химических составляющих, прилипших или прикрепленных к поверхностям, отличных от воды, продуктов лизиса воды или усилителя обработки, ни один из которых не изменяет функционирование нанокристаллов. Также суспензии характеризуются тем, что имеют рН между 5 и 12 и дзета-потенциал по меньшей мере -30 мВ. Кроме того, изобретение относится к способам получения суспензий и способам лечения пациента с раковым состоянием, включающим введение данных суспензий.

Подробнее
11-10-2017 дата публикации

Интерметаллический сплав на основе TiAl

Номер: RU2633135C1

Изобретение относится к области металлургии, в частности легированным сплавам на основе γ-TiAl. Интерметаллический сплав на основе TiAl содержит, ат.%: алюминий 44-46, ниобий 5-7, хром 1-3, цирконий 1-2, бор 0,1-0,5, лантан ≤0,2, титан - остальное. Сплав характеризуется мелкозернистой изотропной микроструктурой, низким содержанием растворенного кислорода, высокой прочностью и пластичностью до температур 700-800°С при плотности менее 4,2 г/см. 1 табл., 2 ил.

Подробнее
12-07-2017 дата публикации

Сплав на основе никеля

Номер: RU2625192C1

Изобретение относится к области металлургии, в частности, к составам сплавов на основе никеля, которые могут быть использованы, например, для изготовления деталей двигателей, труб. Сплав на основе никеля содержит, мас. %: углерод 0,02-0,1; хром 20,0-25,0; кобальт 10,0-15,0; алюминий 0,1-0,18; элемент из группы, включающей лантан и неодим 0,01-0,1; рений 0,3-0,8; гафний 2,0-4,0; ниобий 2,0-4,0; никель - остальное. Сплав характеризуется высокой термостойкостью. 1 табл.

Подробнее
22-03-2022 дата публикации

Сплав на основе кобальта

Номер: RU2767961C1

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей газотурбинных двигателей методом аддитивного производства содержит, мас.%: хром 25-27, вольфрам 10-12, никель 7-10, углерод 0,1-0,3, тантал 3-6, титан 0,10-0,2, цирконий 0,01-0,05, магний 0,03-0,08, бор 0,003-0,01, иттрий 0,05-0,3, лантан 0,03-0,1, церий 0,01-0,05, кобальт и вредные вещества, в том числе кислород – остальное. Отношение суммарного атомного содержания карбидообразующих элементов W, Та, Zr, Ti к атомному содержанию углерода в сплаве составляет 3-7. Сплав предназначен для изготовления изделий методом аддитивных технологий, в частности методом селективного лазерного сплавления из металлопорошковой композиции. Сплав характеризуется повышенными механическими характеристиками, высокой пластичностью ...

Подробнее
14-02-2020 дата публикации

Номер: RU2018113405A3
Автор:
Принадлежит:

Подробнее
19-06-2019 дата публикации

Номер: RU2017126060A3
Автор:
Принадлежит:

Подробнее
27-08-1999 дата публикации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ (ЕГО ВАРИАНТЫ) И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2135619C1

Изобретение относится к жаропрочным композиционным материалам, способным работать в напряженных узлах двигателей в окислительной атмосфере при температурах выше 1100oС. Композиционный материал содержит тугоплавкий металл вольфрам и/или молибден и моноалюминид никеля, структура материала выполнена в виде трехмерной сетки тугоплавкого металла с ячейками, заполненными моноалюминидом никеля, с толщиной стенки ячейки 1-5 мкм при следующем соотношении компонентов, атм.%: алюминии 35-48, никель 35-48, вольфрам и/или молибден 30-4, при этом до 12% атомных никеля могут быть заменены на ниобий и/или титан при следующем соотношении компонентов, атм.%: алюминий 35-48, никель 23 - 48, ниобий и/или титан до 12, вольфрам и/или молибден 30 - 4. Способ включает приготовление порошкообразного моноалюминида никеля, нанесение на поверхность частиц моноалюминида никеля покрытия из тугоплавкого металла вольфрама и/или молибдена толщиной 1-5 мкм, его компактирование и спекание. Предел текучести материала при ...

Подробнее
20-07-2014 дата публикации

МЕТАЛЛИЧЕСКОЕ ПОКРЫТИЕ СО СВЯЗУЮЩИМ ВЕЩЕСТВОМ С ВЫСОКОЙ ТЕМПЕРАТУРОЙ ПЕРЕХОДА ГАММА/ГАММА' И ДЕТАЛЬ

Номер: RU2523185C2

Изобретение относится к области металлургии, в частности к металлическому покрытию со связующим, и может быть использовано в качестве покрытия для детали газовой турбины. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ-фазы и, необязательно, β-фазу, при этом сплав содержит, вес.%: тантал 0,1-7,0, кобальт по меньшей мере 1, хром от 12 до 22, предпочтительно от 15 до 19, алюминий от 5 до 15, предпочтительно от 8 до 12, причем сплав предпочтительно не содержит кремний (Si), и/или гафний (Hf), и/или цирконий. Покрытие характеризуется высокими термомеханическими свойствами и стойкостью к окислению, а также длительным сроком службы. 2 н. и 10 з.п. ф-лы, 5 ил.

Подробнее
20-11-2000 дата публикации

СОЕДИНИТЕЛЬНЫЕ ВЫВОДЫ ЭЛЕКТРОННОГО КОМПОНЕНТА (ВАРИАНТЫ), ЭЛЕКТРОННЫЙ КОМПОНЕНТ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ)

Номер: RU2159482C2

Использование: микроэлектроника. Сущность изобретения: соединительные выводы электронного компонента предложено выполнять из дисперсионно твердеющего сплава мартенситного или аустенитного типа определенных составов. Предложен электронный компонент с соединительными выводами из указанных сплавов и способы его изготовления. Техническим результатом изобретения является создание соединительных выводов толщиной менее 0,1 мм для электронного компонента, имеющих механическую прочность, достаточную для осуществления различных операций, обеспечение удобства обращения с электронным компонентом и его монтажа на печатной схеме. 7 с. и 10 з.п.ф-лы.

Подробнее
20-04-2016 дата публикации

ЖАРОПРОЧНЫЙ СПЛАВ

Номер: RU2581936C1
Автор:

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, и может быть использовано для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре от плюс 1000°С до плюс 1200°С и давлении до 46 атмосфер. Жаропрочный сплав содержит, мас. %: углерода 0,45÷0,55; хрома 25,0÷28,0; никеля 34,0÷37,0; вольфрама 4,50÷5,50; кобальта 14,0÷16,0; кремния 1,1995÷1,59; марганца 0,0005÷1,25; ванадия 0,0005÷0,20; титана 0,0005÷0,10; алюминия 0,0005÷0,10; иттрия >0÷0,001; кислорода >0,0005÷0,028; водорода >0,0005÷0,0025; азота >0,0005÷0,095; серы ≤0,02; фосфора ≤0,025; свинца ≤0,009; олова ≤0,009; мышьяка ≤0,009; цинка ≤0,009; сурьмы ≤0,009; молибдена ≤0,5; меди ≤0,2; железа - остальное. Выполняются следующие условия, мас. %: (Cr/Ni)≥0,506, где: Cr- эквивалент хрома; Ni- эквивалент никеля; Cr=Cr+2×Al+3×Ti+V+Mo+1,6×Si+W; Ni=Ni+32C+0,6×Mn+Co+22×N+Cu. Для содержаний серы и фосфора выполняется условие (S+Р)≤0,025. Обеспечивается увеличение ...

Подробнее
10-04-2016 дата публикации

ЖАРОПРОЧНЫЙ СПЛАВ

Номер: RU2580765C1
Автор:

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, и может быть использовано при изготовлении труб, листа, поковок и др. металлопроката для теплообменного и др. оборудования, работающего в коррозионных средах, а также для сосудов и аппаратов, работающих высоком давлении в диапазоне температур от минус 196°С до плюс 450°С. Жаропрочный сплав содержит компоненты в следующем соотношении, мас. %: углерод ≤0,10; хром 20,5÷23,5; кремний ≤0,60; марганец ≤0,60; ниобий 3,05÷4,20; кобальт ≤1,1; титан ≤0,45; алюминий ≤0,45; иттрий >0÷0,001; кислород >0,0005÷0,018; водород >0,0005÷0,0017; азот >0,0005÷0,050; сера ≤0,013; фосфор ≤0,013; свинец ≤0,009; олово ≤0,009; мышьяк ≤0,009; цинк ≤0,009; сурьма ≤0,009; молибден 7,9÷10,1; железо ≤5,1; никель - остальное. Для содержаний серы и фосфора выполняется условие (S+Р)≤0,020, а для соотношения эквивалентов хрома и никеля выполняется следующее условие, мас. %: (Сr/Ni)≥0,537, где: Сr- эквивалент хрома; Ni- эквивалент никеля; Сr=%Cr+ ...

Подробнее
28-04-2023 дата публикации

Биомедицинский высокоэнтропийный сплав

Номер: RU2795150C1

Изобретение относится к металлургии, а именно к биомедицинскому высокоэнтропийному сплаву, и может быть использовано для медицинских имплантов благодаря превосходным сочетаниям прочности и пластичности, а также хорошей воспроизводимостью данных характеристик. Биомедицинский высокоэнтропийный сплав для медицинских имплантов получен путем вакуумно-дугового переплава и содержит химические элементы высокой чистоты в следующем процентном соотношении, ат.%: титан 30, цирконий 38, ниобий 20, тантал 8, олово 4. Сплав характеризуется пределом прочности 1020 МПа, пределом текучести – 990 МПа и пластичностью на растяжение 20% при комнатной температуре. 1 з.п. ф-лы, 2 ил., 1 табл.

Подробнее
02-07-2019 дата публикации

Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением

Номер: RU2693417C1

Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 1000 до 1160°С и давлением до 0,7 МПа. Жаропрочный хромоникелевый сплав содержит, мас.%: углерод 0,35÷0,45; кремний 1,4÷2,0; марганец 0,8÷1,55; хром 34÷36; никель 43÷47; титан 0,26÷0,50; цирконий <0,1; церий 0,005÷0,10; лантан 0,005÷0,10; скандий 0,005÷0,10; кобальт 0,005÷0,10; алюминий 0,001÷0,05; сера ≤0,025; фосфор ≤0,025; свинец ≤0,007; олово ≤0,007; мышьяк ≤0,007; цинк ≤0,007; сурьма ≤0,007; азот ≤0,01; медь ≤0,2; железо - остальное. Сплав имеет структуру, состоящую из аустенитной матрицы и распределенных в ней интерметаллидов СrFeNi и NbCr(FeNiTi)при массовом соотношении аустенитной матрицы и интерметаллидов (88÷94):(4÷10):(1÷3). Сплав характеризуется ...

Подробнее
21-10-2019 дата публикации

ЗАГОТОВКА ИЗ СПЛАВА НА ОСНОВЕ КОБАЛЬТА, ИЗГОТОВЛЕННАЯ ПО АДДИТИВНОЙ ТЕХНОЛОГИИ, ИЗДЕЛИЕ ИЗ СПЛАВА НА ОСНОВЕ КОБАЛЬТА И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ

Номер: RU2703670C1

Изобретение относится к изготовленной по аддитивной технологии заготовке из сплава на основе кобальта, имеющего химический состав, содержащий, мас.%: 0,08-0,25 С; не более 0,1 В; 10-30 Cr; не более 30 Fe и Ni в суммарном количестве, где Fe составляет не более 5; 5-12 W и/или Мо в суммарном количестве; 0,5-2 Ti, Zr, Nb и Та в суммарном количестве; не более 0,5 Si; не более 0,5 Mn; 0,003-0,04 N и остальное - Со и примеси. Заготовка содержит кристаллические зерна со средним размером 10-100 мкм, в которых компоненты, составляющие карбидную фазу МС-типа, содержащую Ti, Zr, Nb и/или Та, сегрегированы в граничных областях сегрегационных ячеек, и/или образовавшиеся в результате выпадения зерна карбидной фазы МС-типа располагаются на среднем межзеренном расстоянии 0,15-1,5 мкм. Изделие из сплава на основе кобальта представляет собой поликристаллическое тело, содержащее зерна со средним размером 20-145 мкм. Заготовку получают путем послойного нанесения порошка на подложку посредством облучения лазерным ...

Подробнее
20-05-2005 дата публикации

СПОСОБ УМЕНЬШЕНИЯ ТЕМПЕРАТУРЫ ГАЗА, СОДЕРЖАЩЕГО ВОДОРОД И МОНООКСИД УГЛЕРОДА, И ТЕПЛООБМЕННИК ДЛЯ ПОНИЖЕНИЯ ТЕМПЕРАТУРЫ ГОРЯЧЕГО ГАЗА

Номер: RU2004115603A
Принадлежит:

... 1. Способ уменьшения температуры газа, содержащего водород и монооксид углерода, характеризующийся тем, что вводят газ в контакт с образуемой металлическим сплавом поверхностью, имеющей более низкую температуру по сравнению с температурой газа, причем на образуемой металлическим сплавом поверхности содержится от 0 до 20% (мас.) железа, от 0 до 5% (мас.) алюминия, от 0 до 5% (мас.) кремния, от 20 до 50% (мас.) хрома и, по меньшей мере, 35% (мас.) никеля, при этом образуемую металлическим сплавом поверхность выдерживают при своей более низкой температуре по сравнению с температурой газа в результате использования охлаждающей воды. 2. Способ по п.1, характеризующийся тем, что на образуемой металлическим сплавом поверхности содержится от 1 до 5% (мас.) кремния. 3. Способ по п.1 или 2, характеризующийся тем, что содержание хрома превышает 30% (мас.). 4. Способ по любому из пп.1 и 2, характеризующийся тем, что на образуемой металлическим сплавом поверхности содержится от 1 до 5% (мас.) алюминия ...

Подробнее
18-11-2020 дата публикации

ЗАГОТОВКА ИЗ КОВОЧНОГО СПЛАВА НА ОСНОВЕ NI И ВЫСОКОТЕМПЕРАТУРНЫЙ ЭЛЕМЕНТ КОНСТРУКЦИИ ТУРБИНЫ С ИСПОЛЬЗОВАНИЕМ ЭТОЙ ЗАГОТОВКИ

Номер: RU2712323C9

Изобретение относится к области металлургии, а именно к получению заготовок из ковочного сплава на основе никеля, которые могут быть использованы при изготовлении высокотемпературных элементов конструкции турбины. Заготовка из ковочного сплава на основе Ni содержит кристаллические зерна γ-фазы и выпадающие частицы γ'-фазы и имеет химический состав, при котором в матричную γ-фазу при 700°С выпадает 50-70 об.% γ'-фазы. Фаза γ' содержит: частицы γ'-фазы старения, выпадающие в кристаллические зерна γ-фазы, и частицы γ'-фазы эвтектической реакции, выпадающие между этими кристаллическими зернами γ-фазы, причем в частицах γ'-фазы эвтектической реакции содержание Ni и Аl превышает содержание этих элементов в частицах γ'-фазы старения, а средний размер частиц γ'-фазы эвтектической реакции составляет 2-40 мкм. Заготовка характеризуется высокими значениями механических свойств. 3 н. и 4 з.п. ф-лы, 7 ил., 4 табл., 5 пр.

Подробнее
03-05-2018 дата публикации

Жаростойкий сплав

Номер: RU2652926C1

Изобретение относится к области металлургии и касается составов сплавов, которые могут быть использованы для изготовления колосников, охлаждающих рам печей, дистанционных гребенок паровых котлов, зубьев и гребков колчеданных печей. Жаростойкий сплав содержит, маc. %: алюминий 28,0-30,0; углерод 0,03-0,05; хром 3,0-5,0; медь 0,03-0,05; кальций 0,0005-0,001; никель 7,0-10,0; бор 0,05-0,1; кремний 0,2-0,3; неодим 0,2-0,3; железо - остальное. Сплав характеризуется высокой жаростойкостью. 1 табл.

Подробнее
06-02-2020 дата публикации

МАТЕРИАЛЫ С ГПУ-СТРУКТУРОЙ НА ОСНОВЕ АЛЮМИНИЯ, ТИТАНА И ЦИРКОНИЯ И ИЗДЕЛИЯ, ПОЛУЧЕННЫЕ ИЗ НИХ

Номер: RU2713668C1
Принадлежит: АРКОНИК ИНК. (US)

Изобретение относится к области металлургии, в частности к алюминий-титан-циркониевым сплавам, и может быть использовано при изготовлении компонентов турбины в двигателях или в других высокотемпературных областях применения. Заявлен алюминий-титан-циркониевый сплав, деталь, выполненная из него, и способ изготовления детали. Алюминий-титан-циркониевый сплав содержит, вес.%: Al 29,0-42,4; Ti 41,2-59,9; Zr 10,3-24,1; второстепенные элементы-модификаторы: C до 0,15 вес.%, B до 0,15 вес.%. Способ изготовления детали включает подачу заготовки из алюминий-титан-циркониевого сплава в устройство для аддитивного производства и послойное формирование детали из алюминий-титан-циркониевого сплава. Сплав характеризуется высокими значениями прочности, трещиностойкости, стойкости к окислению, сопротивлению усталости, ползучести, а также высокой устойчивостью к воздействию высоких температур. 3 н. и 22 з.п. ф-лы, 4 ил., 2 табл.

Подробнее
09-09-2020 дата публикации

ОБЛАДАЮЩИЙ ВЫСОКИМ СОДЕРЖАНИЕМ АЗОТА, СОДЕРЖАЩИЙ НЕСКОЛЬКО ОСНОВНЫХ ЭЛЕМЕНТОВ ВЫСОКОЭНТРОПИЙНЫЙ КОРРОЗИОННО-СТОЙКИЙ СПЛАВ

Номер: RU2731924C1

Изобретение относится к области металлургии, а именно к высокоэнтропийным коррозионно-стойким сплавам. Высокоэнтропийный коррозионно-стойкий сплав содержит фазу твердого раствора, при этом сплав в основном состоит из, мас.%: Co от 13 до 28, Ni от 13 до 35, Fe+Mn от 13 до 28, Cr от 13 до 37, Mo от 8 до 28, N от 0,10 до 1,00 и обычные примеси, причем один из W и V или оба можно использовать вместо некоторого или всего количества Mo, при этом сплав необязательно содержит от 13 до 28 мас.% меди, а азот присутствует в качестве элемента внедрения. Сплав характеризуется высокой коррозионной стойкостью. 2 н. и 10 з.п. ф-лы, 1 ил., 7 табл., 6 пр.

Подробнее
20-05-2010 дата публикации

СПЛАВ "КАЗАХСТАНСКИЙ" ДЛЯ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ СТАЛИ

Номер: RU2008144242A
Принадлежит:

Сплав для раскисления и легирования стали, содержащий алюминий, кремний, кальций, углерод и железо, отличающийся тем, что дополнительно содержит в своем составе барий, ванадий и титан при следующем соотношении компонентов, мас.%: ! кремний 45,0-63,0 алюминий 10,0-25,0 кальций 1,0-10,0 барий 1,0-10,0 ванадий 0,3-5,0 титан 1,0-10,0 углерод 0,1-1,0 железо остальное ...

Подробнее
10-03-2013 дата публикации

СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА И НИКЕЛЯ И СПОСОБ ПОЛУЧЕНИЯ СПЛАВА НА ОСНОВЕ ЖЕЛЕЗА И НИКЕЛЯ

Номер: RU2011135629A
Принадлежит:

... 1. Сплав на основе железа и никеля, содержащий, в мас.%: от приблизительно 0,06% до приблизительно 0,09% C, от приблизительно 35% до приблизительно 37% Fe, от приблизительно 12,0% до приблизительно 16,5% Cr, от приблизительно 1,0% до приблизительно 2,0% Al, от приблизительно 1,0% до приблизительно 3,0% Ti, от приблизительно 1,5% до приблизительно 3,0% W, до приблизительно 5,0% Мо, до приблизительно 0,75% Nb, до приблизительно 0,2% Mn, до приблизительно 0,1% Si, до приблизительно 0,006% B и остальное в основном Ni.2. Сплав по п.1, включающий от приблизительно 0,07% до приблизительно 0,09% C, от приблизительно 2,0% до приблизительно 3,0% Ti, от приблизительно 2,0% до приблизительно 3,0% W, от приблизительно 3,0% до приблизительно 5,0% Mo и до приблизительно 0,1% Nb.3. Сплав по п.1, включающий от приблизительно 0,07% до приблизительно 0,09% C, от приблизительно 2,0% до приблизительно 3,0% Ti, от приблизительно 1,5% до приблизительно 2,5% W, от приблизительно 3,0% до приблизительно 5,0% Mo ...

Подробнее
10-08-2010 дата публикации

ПРИМЕНЕНИЕ АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ И ЭЛЕКТРОЛИЗЕРА, ИЗГОТОВЛЕННОГО ИЗ ТАКОЙ СТАЛИ

Номер: RU2009102644A
Принадлежит:

... 1. Применение аустенитной нержавеющей стали, содержащей ! 10-31,0 мас.% никеля, ! 10-27,3 мас.% хрома, ! 30-52,8 мас.% железа и ! максимум 17 мас.% другого элемента или элементов, выбранных из N, Mn, Mo, Cu, Nb, Ti, V, Ce, B, W, Si и Co, ! в качестве конструкционного материала в устройстве или структурных компонентах, которые выдерживаться в окружающей среде, содержащей фтористоводородную кислоту и кислород и/или водород. ! 2. Применение аустенитной нержавеющей стали по п.1, где указанная композиция содержит 0,5-2 мас.% меди. ! 3. Применение аустенитной нержавеющей стали по п.1 или 2, где указанная композиция содержит 3-8 мас.% молибдена. ! 4. Применение аустенитной нержавеющей стали по п.1, где указанная композиция содержит максимум 12,5 мас.% другого элемента или элементов. ! 5. Применение аустенитной нержавеющей стали по п.1, где указанная композиция содержит максимум 12 мас.% другого элемента или элементов. ! 6. Применение аустенитной нержавеющей стали по п.1 или 2, где указанная композиция ...

Подробнее
20-06-2016 дата публикации

ПЛАКИРУЮЩИЙ МАТЕРИАЛ ДЛЯ ПЛАКИРОВАННОГО НЕРЖАВЕЮЩЕЙ СТАЛЬЮ СТАЛЬНОГО ЛИСТА, ПЛАКИРОВАННЫЙ НЕРЖАВЕЮЩЕЙ СТАЛЬЮ СТАЛЬНОЙ ЛИСТ, ВКЛЮЧАЮЩИЙ ЕГО, И СПОСОБ ЕГО ПРОИЗВОДСТВА

Номер: RU2014147317A
Принадлежит:

... 1. Плакирующий материал для плакированного нержавеющей сталью стального листа, содержащий 0,03 мас.% или менее углерода, 1,5 мас.% или менее кремния, 2,0 мас.% или менее марганца, 0,04 мас.% или менее фосфора, 0,03 мас.% или менее серы, от 22,0 мас.% до 25,0 мас.% никеля, от 21,0 мас.% до 25,0 мас.% хрома, от 2,0 мас.% до 5,0 мас.% молибдена, от 0,15 мас.% до 0,25 мас.% азота и остальное железо и случайные примеси, у которого критическая температура питтинговой коррозии (CPT) после нормализации, определенная в соответствии с ASTM G48-03 Method Е, составляет 45°C или выше, и потери от коррозии в зоне сварки, определенные посредством коррозионного испытания в соответствии со стандартом NORSOK М-601, составляют 1,0 г/мили менее.2. Плакирующий материал для стального листа, плакированного нержавеющей сталью, по п. 1, который дополнительно содержит от 0,0010 до 0,0055 мас.% бора.3. Плакирующий материал для стального листа, плакированного нержавеющей сталью, по п. 1, в котором осадки, извлеченные ...

Подробнее
28-02-1980 дата публикации

Номер: DE0002707097C3

Подробнее
03-07-1980 дата публикации

Номер: DE0002635947B2

Подробнее
25-03-2021 дата публикации

HOCHTEMPERATURFÄHIGE LÖTANORDNUNG

Номер: DE102020212015A1
Принадлежит:

Die vorliegende Erfindung betrifft einen Artikel umfassend ein Keramiksubstrat (310), umfassend eine Quelle von Zirkoniumoxid; ein metallisches Substrat (320); und eine Lötverbindung, die zwischen dem Keramiksubstrat und dem metallischen Substrat angeordnet ist. Die Lötverbindung umfasst (i) eine goldreiche Phase (330), die mit einer Oberfläche des Keramiksubstrats eine Schnittstelle bildet. Die goldreiche Phase umfasst ein hochschmelzendes Metall, ausgewählt aus der Gruppe bestehend aus Molybdän, Wolfram, Niob, Tantal und Kombinationen davon; und (ii) eine zweite metallische Phase (340), umfassend ein Metall ausgewählt aus der Gruppe bestehend aus Nickel, Eisen, Vanadium, Kobalt, Chrom, Osmium, Tantal oder Kombinationen davon.

Подробнее
15-10-2009 дата публикации

Metallkörper mit metallischer Schutzschicht

Номер: DE102008018539A1
Принадлежит:

Metallkörper, auf den zumindest teilweise eine Metallschicht als thermischer und/oder mechanischer und/oder chemischer Schutz aufgetragen ist, die aus wenigstens drei Teilschichten besteht, von denen die erste als Haftschicht direkt auf der Oberfläche des Metallkörpers aufliegt und darauf wenigstens zwei weitere Schutzschichten aufgebaut sind, wobei wenigstens eine Schutzschicht die Bestandteile Eisen und Kohlenstoff und Silizium und Mangan und Chrom und Molybdän und Nickel und Kobalt enthält.

Подробнее
23-07-1970 дата публикации

Elektrolytkondensator und Verfahren zu seiner Herstellung

Номер: DE0001955396A1
Принадлежит:

Подробнее
16-12-2010 дата публикации

Gleitelement

Номер: DE102010014576A1
Принадлежит:

Ein Gleitelement (1), das ein Basismaterial (2) enthält; eine Zwischenschicht (3), die aus Ag oder Ag-basierter Legierung und einem Zusatzelement mit einer ersten Menge besteht, die über dem Grundmaterial (2) ausgebildet ist; und ein Überzug (4), der Bi oder Bi-basierte Legierung und das Zusatzelement in einer zweiten Menge umfasst, der über der Zwischenschicht (3) ausgebildet ist, wobei das Zusatzelement aus Metall mit niedrigem Schmelzpunkt besteht, wobei die erste Menge fünf mal höher als die zweite Menge ist.

Подробнее
29-11-1935 дата публикации

Edelmetallegierung

Номер: DE0000622474C
Автор:

Подробнее
18-10-2012 дата публикации

Weichmagnetische Legierung auf Eisen-Kobalt-Chrom-Basis sowie Verfahren zu deren Herstellung

Номер: DE102007035773B4

Weichmagnetische Legierung, die im Wesentlichen aus 5 Gew.-% Co 30 Gew.-%, 1 Gew.-% Cr 20 Gew.-%, 0,1 Gew.-% Al 2 Gew.-%, 0 Gew.-% Si 1,5 Gew.-%, 0,017 Gew.-% Mn 0,2 Gew.-%, 0,01 Gew.-% S 0,05 Gew.-%, wobei Mn/S > 1,7, 0 Gew.-% 0 0,0015 Gew.-%, und 0,0003 Gew.-% Ce 0,05 Gew.-%, 0 Gew.-% Ca 0,005 Gew.-%, wobei 0,117 Gew.-% (Al + Si + Mn + V + Mo + W + Nb + Ti + Ni) 5 Gew.-%, Rest Eisen besteht.

Подробнее
17-08-2011 дата публикации

Soft magnetic alloy and method for producing a soft magnetic alloy

Номер: GB0201111242D0
Автор:
Принадлежит:

Подробнее
12-05-2004 дата публикации

Hafnium oxide dispersion hardened nickel-chromium-iron alloys

Номер: GB0002394960A
Принадлежит:

A first hafnium oxide dispersion hardened nickel-chromium-iron alloy comprising (in % by weight): Ni 15-90%, Cr 5-40 %, Hf 0.01-4.5 %, O 0.001-0.7%, C 0.01-0.7%, Si 0.01-3.0%, N 0.001-0.5%, Mn 0-2.5 %, Mo 0-3.0%, Nb 0-2.0%, Ti 0-2.0%, Zr 0-2.0%, Co 0-2.05 %, W 0-4.0 %, Ta 0-2.0 %, Al 0-15 %, wit the balance being Fe and impurities. This alloy contains at least one of Nb, Ti, W, Ta and Zr. A second hafnium oxide dispersion hardened nickel-chromium-iron alloy comprising (in % by weight): Ni 15-50%, Cr 20-40 %, Hf 0.01-4.5 %, C 0.01-0.5 %, Si 0.01-2.5 %, Mn 0-2.5 %, Mo 0-1.0 %, Nb 0-1.7 %, Ti 0-0.5 %, Zr 0-0.5 %, Co 0-2.0 %, W 0-1.0 %, Ta 0-2.0 %, Al 0-15 %, with the balance being Fe and impurities. This alloy contains at least one of Nb, Ti and Zr. The alloy is made by adding hafnium particles to a melt held in a ladle, oxidising the particles in the melt, adding aluminium if present in the alloy and then pouring.

Подробнее
28-06-2006 дата публикации

Dental alloys containing chromium and ruthenium

Номер: GB0002421513A
Принадлежит:

A first alloy is cobalt-, iron- and/or nickel-chromium based and comprises (by weight): 15-30 % chromium, at least 25 % metals selected from ruthenium, platinum, palladium, iridium, osmium, rhodium and gold wherein the major portion of these metals is ruthenium, with a principal balance being selected from iron, nickel and cobalt. The alloy may comprise up to 15 % gallium, up to 5 % silicon, up to 1 % boron, up to 5 % selected from niobium, tantalum and rhenium. A second alloy is cobalt- and/or iron-chromium based and comprises (by weight): 5-10 % chromium, 10-15 % gallium, at least 25 % metals selected from ruthenium, platinum, palladium, iridium, osmium, rhodium and gold wherein 25-35 % of metal in this group is ruthenium, with a principal balance being selected from iron and cobalt. The alloy may comprise up to 5 % silicon, up to 1 % boron, up to 5 % selected from niobium, tantalum and rhenium.

Подробнее
28-02-2007 дата публикации

Single phase tungsten alloy for shaped charge liner

Номер: GB2429463A
Принадлежит:

A single phase metal alloy for forming a shaped charge liner 18 for a penetrating jet or explosively formed penetrator forming warhead consists essentially of from a trace to 90%, by weight, of cobalt, from 10% to 50% by weight, of tungsten, and the balance nickel and inevitable impurities. One preferred composition is, by weight, from 16% to 22%, cobalt, from 35% to 40% tungsten and the balance is nickel and inevitable impurities. The alloy is worked and recrystallized and then formed into a desired product In addition to a shaped charge liner 18, other useful products include a fragmentation warhead, a warhead casing, ammunition, radiation shielding and weighting.

Подробнее
26-03-1986 дата публикации

CORROSION RESISTANT NICKEL-IRON ALLOY

Номер: GB0002117792B
Принадлежит: CABOT CORP, * CABOT CORPORATION

Подробнее
07-01-1981 дата публикации

Nickel-cobalt-chromium base alloy

Номер: GB2050424A
Автор: Dyer, Robert Hugh
Принадлежит:

A nickel-cobalt-chromium base alloy consists of, by weight, from 20 to 47% nickel, from 6 to 33% cobalt, from 18 to 36% chromium, from 0.6 to 2.5% carbon, from 0.5 to 2.5% silicon, up to 10% tungsten, up to 10% molybdenum, up to 7% vanadium, up to 2.5% boron, up to 3% copper, up to 0.5% manganese, up to 1% rare earth elements, balance essentially iron. The nickel content plus the cobalt content is from 42 to 53%. The tungsten content plus the molybdenum content is no more than 15%. The iron content is at least 8% and no more than 35%.

Подробнее
20-08-1969 дата публикации

Nickel-Silicon Alloys

Номер: GB0001161914A
Принадлежит:

... 1,161,914. Nickel base alloys. INTERNATIONAL NICKEL Ltd. April, 24, 1968 [April 24, 1967], No.18796/67. Heading C7A. A quaternary alloy comprises:- Si 5 -8À5% Ti 1 -5% and Mo 3À5-10% or Cr 6 -10% or Fe 20 -30% or Co 25 -40% the balance, apart from impurities, being Ni, and has a 0À1% proof stress of at least 40 tonf/sq. inch in the cast state. The alloys may be modified to contain two or more of Mo, Cr, Fe and Co in which case the appropriate minima are:- Mo 0À5% Cr 0À5% Fe 10% and Co 5% and 2(%Mo) + (%Cr) + 1/3(%Fe) + “(%Co) is at least 6 and (%Mo) + (%Cr) + 1/3(%Fe) + “(%Co) is no greater than 10.

Подробнее
25-11-2009 дата публикации

Golf training device

Номер: GB0000917746D0
Автор:
Принадлежит:

Подробнее
11-04-2018 дата публикации

Panel and method of forming a three-sheet panel

Номер: GB0201802963D0
Автор:
Принадлежит:

Подробнее
26-05-1982 дата публикации

CASTING ALLOY AND DIRECTIONALLY SOLIDIFIED ARTICLE

Номер: GB0002010904B
Автор:
Принадлежит: GEN ELECTRIC, GENERAL ELECTRIC CO

Подробнее
11-11-2020 дата публикации

High temperature capable braze assembly

Номер: GB0202015080D0
Автор:
Принадлежит:

Подробнее
31-12-2010 дата публикации

Alloy "kazakhstanski" for reducing and doping steel.

Номер: AP0201005467D0
Принадлежит:

Подробнее
31-03-2015 дата публикации

Method for producing ferroalloy containing nickel

Номер: AP0000003208A
Принадлежит:

Подробнее
31-08-2011 дата публикации

Method for producing ferroalloy containing nickel .

Номер: AP2011005806A0
Принадлежит:

Подробнее
31-12-2010 дата публикации

Alloy "kazakhstanski" for reducing and doping steel.

Номер: AP2010005467A0
Принадлежит:

Подробнее
31-08-2011 дата публикации

Method for producing ferroalloy containing nickel .

Номер: AP0201105806D0
Принадлежит:

Подробнее
31-12-2010 дата публикации

Alloy "kazakhstanski" for reducing and doping steel.

Номер: AP0201005467A0
Принадлежит:

Подробнее
31-08-2011 дата публикации

Method for producing ferroalloy containing nickel .

Номер: AP0201105806A0
Принадлежит:

Подробнее
29-12-2003 дата публикации

Improved alloy based on noble metals and suitable for low-melting ceramic lining comprises palladium, silver, gold, ruthenium, zinc, tin and indium

Номер: AT0000411324B
Автор:
Принадлежит:

Composition, expressed as a percentage of each metal, is as follows: palladium 18-42; silver 34-48; gold 10-30; ruthenium 0.1-2; zinc 2-6; tin 1-4; indium 1-4. Additional, optional minor constituents are also detailed.

Подробнее
15-06-2006 дата публикации

PROCEDURE FOR THE STEELMAKING

Номер: AT0000325903T
Принадлежит:

Подробнее
15-05-2007 дата публикации

Vaporizing source for gas phase generation comprising Bi alloy containing alkali and/or alkali earth metal useful in production of organic light emitting diodes doped with Na and in photocathode production

Номер: AT0000502678B1
Принадлежит:

Vaporizing source for gas phase generation comprising an alkali and/or alkali earth metal and a device containing the source. The source contains a Bi alloy and at least one alkali or alkali earth metal. The alloy can contain Na, K, Rb or Cs. An independent claim is included for a device containing the source.

Подробнее
15-12-2008 дата публикации

METALLLEGIERUNG, AUS DIESER GEBILDETE HOHLLADUNGSEINLAGE UND VERFAHREN ZU DEREN HERSTELLUNG

Номер: AT0000503771B1
Автор:
Принадлежит:

A single phase metal alloy usually for forming a shaped charge liner for a penetrating jet or explosively formed penetrator forming warhead consists essentially of from a trace to 90%, by weight, of cobalt, from 10% to 50% by weight, of tungsten, and the balance nickel and inevitable impurities. One preferred composition is, by weight, from 16% to 22%, cobalt, from 35% to 40% tungsten and the balance is nickel and inevitable impurities. The alloy is worked and recrystallized and then formed into a desired product. In addition to a shaped charge liner, other useful products include a fragmentation warhead, a warhead casing, ammunition, radiation shielding and weighting.

Подробнее
15-05-2007 дата публикации

ALKALIMETALL- ODER ERDALKALIMETALL- VERDAMPFERQUELLE

Номер: AT0000502678A4
Принадлежит:

Подробнее
15-04-2010 дата публикации

IRON NICKEL ALLOY

Номер: AT0000462021T
Принадлежит:

Подробнее
15-03-1978 дата публикации

VERWENDUNG EINER LEGIERUNG AUF KOBALT-NICKEL-TITAN-EISEN-BASIS ALS MAGNETISCH HALBHARTEN, IN GLAS EINSCHMELZBAREN WERKSTOFF

Номер: ATA608875A
Автор:
Принадлежит:

Подробнее
15-02-1979 дата публикации

KORROSIONSBESTAENDIGE CHROMNICKEL LEGIERUNG

Номер: ATA243277A
Автор:
Принадлежит:

Подробнее
15-05-2012 дата публикации

MAGNESIUM ALLOYS FOR HYDROGEN STORAGE

Номер: AT0000554193T
Принадлежит:

Подробнее
15-03-2007 дата публикации

STENTS CONTAINING A MOLYBDENUM/CRHENIUM ALLOY

Номер: AT0000354383T
Автор: XU YIXIN, XU, YIXIN
Принадлежит:

Подробнее
15-12-1995 дата публикации

HEATPROOF WARM-DUCTILE AUSTENITIC STEEL.

Номер: AT0000130376T
Принадлежит:

Подробнее
15-06-2006 дата публикации

BESCHICHTETES WERKZEUG

Номер: AT0000008346U1
Принадлежит:

A tool comprises a coating formed of >= 2 coating layers having a composition of titanium-aluminum-tantalum nitride and titanium-aluminum-tantalum-(silicon, vanadium or boron) nitride. A tool comprises a base material consisting cemented carbide, cermet, hard material or tool steel; a coating formed of >= 2 coating layers and having a total coating thickness of 0.5-15 mu m, the coating layer having a thickness of 0.0003-5.0 mu m, the coating layer(s) having a composition (TiaAlbTac)N and (TidAlcTafMg)N. a+b+c, d+e+f+g = 1; b = 0.3-0.75; c = 0.001-0.30, preferably 0.01-0.25; e = greater than 0.50, less than 0.70; f = 0-0.25, preferably 0.002-0.10;and M = Si, V, and/or B, where g for Si, V, and B is 0.0005-0.10, preferably 0.001-0.03; 0.001-0.25, preferably 0.10-0.20; and 0.00005-0.01, preferably 0.0001-0.005, respectively. Two Independent claims are also included for a sputtering target for coating the tool in a physical vapor deposition (PVD) process consisting of 30-75 at.% aluminium, ...

Подробнее
15-06-1994 дата публикации

ON IRON, NICKEL AND CHROME BASED ALLOY.

Номер: AT0000106101T
Принадлежит:

Подробнее
15-12-1990 дата публикации

KNEE JOINT PROSTHESIS.

Номер: AT0000058464T
Принадлежит:

Подробнее
15-12-2005 дата публикации

DENTALLEGIERUNG ON PRECIOUS METAL BASIS

Номер: AT0000311167T
Принадлежит:

Подробнее
15-10-1992 дата публикации

METALLEGIERUNG

Номер: ATA28089A
Автор:
Принадлежит:

Подробнее
01-04-2000 дата публикации

Imprоvеd аllоу bаsеd оn nоblе mеtаls аnd suitаblе fоr lоw-mеlting сеrаmiс lining соmprisеs pаllаdium, silvеr, gоld, ruthеnium, zinс, tin аnd indium

Номер: AT00038232758B
Автор:
Принадлежит:

Соmpоsitiоn, ехprеssеd аs а pеrсеntаgе оf еасh mеtаl, is аs fоllоws: pаllаdium 18-42; silvеr 34-48; gоld 10-30; ruthеnium 0.1-2; zinс 2-6; tin 1-4; indium 1-4. Аdditiоnаl, оptiоnаl minоr соnstituеnts аrе аlsо dеtаilеd.

Подробнее
13-05-2000 дата публикации

Imprоvеd аllоу bаsеd оn nоblе mеtаls аnd suitаblе fоr lоw-mеlting сеrаmiс lining соmprisеs pаllаdium, silvеr, gоld, ruthеnium, zinс, tin аnd indium

Номер: AT00032580985B
Автор:
Принадлежит:

Соmpоsitiоn, ехprеssеd аs а pеrсеntаgе оf еасh mеtаl, is аs fоllоws: pаllаdium 18-42; silvеr 34-48; gоld 10-30; ruthеnium 0.1-2; zinс 2-6; tin 1-4; indium 1-4. Аdditiоnаl, оptiоnаl minоr соnstituеnts аrе аlsо dеtаilеd.

Подробнее
03-05-2000 дата публикации

Imprоvеd аllоу bаsеd оn nоblе mеtаls аnd suitаblе fоr lоw-mеlting сеrаmiс lining соmprisеs pаllаdium, silvеr, gоld, ruthеnium, zinс, tin аnd indium

Номер: AT00034869797B
Автор:
Принадлежит:

Соmpоsitiоn, ехprеssеd аs а pеrсеntаgе оf еасh mеtаl, is аs fоllоws: pаllаdium 18-42; silvеr 34-48; gоld 10-30; ruthеnium 0.1-2; zinс 2-6; tin 1-4; indium 1-4. Аdditiоnаl, оptiоnаl minоr соnstituеnts аrе аlsо dеtаilеd.

Подробнее
21-08-2000 дата публикации

Imprоvеd аllоу bаsеd оn nоblе mеtаls аnd suitаblе fоr lоw-mеlting сеrаmiс lining соmprisеs pаllаdium, silvеr, gоld, ruthеnium, zinс, tin аnd indium

Номер: AT00031754301B
Автор:
Принадлежит:

Соmpоsitiоn, ехprеssеd аs а pеrсеntаgе оf еасh mеtаl, is аs fоllоws: pаllаdium 18-42; silvеr 34-48; gоld 10-30; ruthеnium 0.1-2; zinс 2-6; tin 1-4; indium 1-4. Аdditiоnаl, оptiоnаl minоr соnstituеnts аrе аlsо dеtаilеd.

Подробнее
28-07-2000 дата публикации

Imprоvеd аllоу bаsеd оn nоblе mеtаls аnd suitаblе fоr lоw-mеlting сеrаmiс lining соmprisеs pаllаdium, silvеr, gоld, ruthеnium, zinс, tin аnd indium

Номер: AT00038787975B
Автор:
Принадлежит:

Соmpоsitiоn, ехprеssеd аs а pеrсеntаgе оf еасh mеtаl, is аs fоllоws: pаllаdium 18-42; silvеr 34-48; gоld 10-30; ruthеnium 0.1-2; zinс 2-6; tin 1-4; indium 1-4. Аdditiоnаl, оptiоnаl minоr соnstituеnts аrе аlsо dеtаilеd.

Подробнее
20-04-2000 дата публикации

Imprоvеd аllоу bаsеd оn nоblе mеtаls аnd suitаblе fоr lоw-mеlting сеrаmiс lining соmprisеs pаllаdium, silvеr, gоld, ruthеnium, zinс, tin аnd indium

Номер: AT00032117427B
Автор:
Принадлежит:

Соmpоsitiоn, ехprеssеd аs а pеrсеntаgе оf еасh mеtаl, is аs fоllоws: pаllаdium 18-42; silvеr 34-48; gоld 10-30; ruthеnium 0.1-2; zinс 2-6; tin 1-4; indium 1-4. Аdditiоnаl, оptiоnаl minоr соnstituеnts аrе аlsо dеtаilеd.

Подробнее
25-08-2000 дата публикации

Imprоvеd аllоу bаsеd оn nоblе mеtаls аnd suitаblе fоr lоw-mеlting сеrаmiс lining соmprisеs pаllаdium, silvеr, gоld, ruthеnium, zinс, tin аnd indium

Номер: AT00030365840B
Автор:
Принадлежит:

Соmpоsitiоn, ехprеssеd аs а pеrсеntаgе оf еасh mеtаl, is аs fоllоws: pаllаdium 18-42; silvеr 34-48; gоld 10-30; ruthеnium 0.1-2; zinс 2-6; tin 1-4; indium 1-4. Аdditiоnаl, оptiоnаl minоr соnstituеnts аrе аlsо dеtаilеd.

Подробнее
01-03-2012 дата публикации

Nickel-iron-base alloy and process of forming a nickel-iron-base alloy

Номер: US20120051963A1
Принадлежит: General Electric Co

A nickel-iron-base alloy has by weight about 0.06% to about 0.09% C, about 35% to about 37% Fe, about 12.0% to about 16.5% Cr, about 1.0% to about 2.0% Al, about 1.0% to about 3.0% Ti, about 1.5% to about 3.0% W, up to about 5.0% Mo, up to about 0.75% Nb, up to about 0.2% Mn, up to about 0.1% Si, up to about 0.006% B, and balance essentially Ni. A method for making the nickel-iron-base alloy is also disclosed.

Подробнее
26-04-2012 дата публикации

Alumina forming bimetallic tube and method of making and using

Номер: US20120097289A1
Принадлежит: ExxonMobil Research and Engineering Co

Provided is a bimetallic tube for transport of hydrocarbon feedstocks in a petrochemical process unit and/or refinery process unit, including: i) an outer tube layer being formed from a steam cracker alloy including at least 18.0 wt. % Cr and at least 10.0 wt. % Ni; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 18.0 wt. % to 25.0 wt. % Cr, less than 0.5 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.

Подробнее
13-12-2012 дата публикации

Joining of parts via magnetic heating of metal aluminum powders

Номер: US20120315493A1
Автор: Ian Baker
Принадлежит: Dartmouth College

A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

Подробнее
03-01-2013 дата публикации

Soft magnetic alloy and method for producing a soft magnetic alloy

Номер: US20130000797A1
Принадлежит: Vacuumschmelze GmbH and Co KG

A soft magnetic alloy is provided that consists essentially of 47 weight percent≦Co≦50 weight percent, 1 weight percent≦V≦3 weight percent, 0 weight percent≦Ni≦0.25 weight percent, 0 weight percent≦C≦0.007 weight percent, 0 weight percent≦Mn≦0.1 weight percent, 0 weight percent≦Si≦0.1 weight percent, at least one of niobium and tantalum in amounts of x weight percent of niobium, y weight percent of tantalum, remainder Fe. The alloy includes 0 weight percent≦x<0.15 weight percent, 0 weight percent≦y≦0.3 weight percent and 0.14 weight percent≦(y+2x)≦0.3 weight percent. The soft magnetic alloy has been annealed at a temperature in the range of 730° C. to 880° C. for a time of 1 to 6 hours and comprises a yield strength in the range of 200 MPa to 450 MPa and a coercive field strength of 0.3 A/cm to 1.5 A/cm.

Подробнее
04-04-2013 дата публикации

POWDER-METALLURGICALLY PRODUCED, WEAR-RESISTANT MATERIAL

Номер: US20130084462A1
Принадлежит: KOPPERN ENTWICKLUNGS GMBH & CO. KG

A wear-resistant material comprising an alloy that contains: 1.5-5.5 wt. % carbon, 0.1-2.0 wt. % silicon, max. 2.0 wt. % manganese, 3.5-30.0 wt. % chromium, 0.3-10 wt. % molybdenum, 0-10 wt. % tungsten, 0.1-30 wt. % vanadium, 0-12 wt. % niobium, 0.1-12 wt. % titanium and 1.3-3.5 wt. % nickel, the remainder being comprised of iron and production-related impurities, whereby the carbon content fulfils the following condition: 131.-. (canceled)33. The solid or segmented rings of claim 32 , wherein the solid or segmented rings are arranged on one of solid or hollow roll bodies by being shrunk on.34. The solid or segmented rings of claim 32 , wherein the content of vanadium is from 0.1 wt.% to less than 11.5 wt. %.36. The solid or segmented rings of claim 32 , wherein the nickel content is between 1.5 and 3.0 wt. %.37. The solid or segmented rings of claim 32 , wherein the nickel content is between 1.3 and 2.0 wt. %.38. The solid or segmented rings of claim 32 , wherein the nickel content is between 2.0 and 3.5 wt. %.39. The solid or segmented rings of claim 32 , wherein the alloy additionally has 1-6 wt. % Co. claim 32 , andCAlloy [w %]=S1+S2+S3 is fulfilled, whereinS2K=(Mo+W/2+Cr−b−12)/5. with 612.40. The solid or segmented rings of claim 32 , wherein the content of the vanadium is from 0.1 wt. % to less than 9.5 wt. %.41. The solid or segmented rings of claim 32 , wherein the content of the vanadium is from 0.1 wt. % to less than 6.0 wt. %. The present application claims the benefit of priority of International Patent Application No. PCT/EP2006/004086 filed on May 2, 2006, which application claims priority of German Patent Application No. 10 2005 020 081.8 filed Apr. 29, 2005. The entire text of the priority application is incorporated herein by reference in its entirety.The disclosure relates to a powder-metallurgically produced, wear-resistant material from an alloy, as well as to a method for producing the material, the use of said material and a powder ...

Подробнее
16-05-2013 дата публикации

NON-MAGNETIC COBALT-PALLADIUM DENTAL ALLOY

Номер: US20130121871A1
Принадлежит: The Argen Corporation

A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt.%, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %. 1. A non-magnetic dental alloy comprising cobalt and further comprising:at least 25 wt. % of a first material selected from the group consisting of palladium, iridium, osmium, ruthenium, platinum, rhodium, gold, and combinations thereof;0 to 20 wt. % of a second material selected from the group consisting of molybdenum, tungsten, tantalum, niobium, rhenium, and combinations thereof; and15 wt. % to 35 wt. % chromium;wherein palladium comprises a majority of the first material; andwherein the dental alloy is non-magnetic.2. The dental alloy of claim 1 , wherein the concentration of the second material is dependent on the concentration of chromium in accordance with the following:where chromium is at least 20 wt. % then the second material is from 0 to 20 wt. %, and where chromium is less than 20 wt. % then the sum of chromium and the second material is greater than 20 wt. %.3. The dental alloy of claim 1 , wherein palladium is at least 24 wt. %.4. The dental alloy of claim 1 , comprising 30 wt. % to 60 wt. % cobalt.5. The dental alloy of claim 1 , wherein the alloy further comprises up to about 5 wt. % of at least one additive material selected from the group consisting of aluminum claim 1 , boron claim 1 , cerium claim 1 , gallium claim 1 , germanium claim 1 , silicon claim 1 , and combinations thereof6. The dental alloy of claim 5 , wherein the at least one additive material is selected from the group consisting of up to 2 wt. % gallium claim 5 , up to 3 wt. % silicon claim 5 , up to 1 wt. % boron claim ...

Подробнее
23-05-2013 дата публикации

Tungsten rhenium compounds and composites and methods for forming the same

Номер: US20130125475A1
Принадлежит: Smith International Inc

The present invention relates to tungsten rhenium compounds and composites and to methods of forming the same. Tungsten and rhenium powders are mixed together and sintered at high temperature and high pressure to form a unique compound. An ultra hard material may also be added. The tungsten, rhenium, and ultra hard material are mixed together and then sintered at high temperature and high pressure.

Подробнее
23-05-2013 дата публикации

Method for producing La/Ce/MM/Y base alloys, resulting alloys and battery electrodes

Номер: US20130129564A1

A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing SmOto Sm metal for use in Sm—Co permanent magnets. 1. A method of making a rare earth-based alloy , comprising carbothermically reducing an oxide selected from the group consisting of La-containing oxide , a Ce-containing oxide , MM-containing oxide , and Y-containing oxide in the presence of carbon and a source of a reactant element X wherein X is selected from the group consisting of Si , Ge , Sn , Pb , As , Sb , Bi , and P to form an alloy that comprises a majority of a rare earth element selected from the group consisting of La , Ce , MM , and/or Y and a minor amount of X wherein X is selected from the group consisting of Si , Ge , Sn , Pb , As , Sb , Bi , and P with the reactant element X present in a minor amount of the alloy.2. The method of wherein the oxide comprises LaO.3. The method of wherein the oxide comprises CeO.4. The method of wherein the oxide comprises mischmetal (MM) oxide.5. The method of wherein the oxide comprises YO.6. The method of wherein zirconium oxide also is present and reduced.7. The method of wherein the alloy includes about 5 to about 50 atomic % Si.8. The method of wherein the alloy comprises LaSi.9. The method of wherein the alloy comprises LaX′ claim 2 , where X′ is selected from the group consisting of Ge claim 2 , Sn claim 2 , Pb claim 2 , As claim 2 , Sb claim 2 , Bi claim 2 , and P.10. The method of wherein the ...

Подробнее
30-05-2013 дата публикации

Composite Metal

Номер: US20130133482A1
Принадлежит: AEROSPACE METAL COMPOSITES LIMITED

A metal composite comprising a milled and compacted mixture of powdered aluminium or aluminium alloy and ceramic particles, wherein, on loading of the aluminium with the ceramic particles, the ceramic particles are of an average size of between 0.85 μm and 0.6 μm. 1. A metal composite comprising a milled and compacted mixture of powdered aluminium or aluminium alloy and ceramic particles , wherein , on loading of the aluminium with the ceramic particles , the ceramic particles are of an average size of between 0.85 μm and 0.6 μm.2. A metal composite as claimed in claim 1 , wherein the ceramic particles are of an average size of between 0.75 μm and 0.65 μm.3. A metal composite as claimed in claim 1 , wherein the ceramic particles are of 0.7 μm in size.4. A metal composite as claimed claim 1 , wherein the aluminium is pure aluminium.5. A metal composite as claimed in claim 1 , wherein the aluminium alloy is one having single or joint alloy additions of Cu claim 1 , Mg claim 1 , Mn claim 1 , Li claim 1 , Zn claim 1 , Si claim 1 , Zr claim 1 , Cr claim 1 , Fe claim 1 , Ni claim 1 , Ti.6. A metal composite as claimed in claim 6 , wherein the aluminium alloy is a medium strength alloy including Cu claim 6 , Mg and Mn.7. A metal composite as claimed in claim 7 , wherein the medium strength alloy is AA2124 claim 7 ,8. A metal composite as claimed in claim 6 , wherein the aluminium alloy is a low strength alloy including Mg claim 6 , Si and Cu.9. A metal composite as claimed in claim 6 , wherein the low strength alloy is AA6061.10. A metal composite as claimed in claim 1 , wherein the ceramic particles of silicon carbide claim 1 , boron carbide or aluminium oxide.11. A metal composite as claimed in claim 1 , wherein the volume percentage loading of ceramic particles in the aluminium or aluminium alloy is between 15% and 50%.12. A metal composite as claimed in claim 1 , wherein the volume percentage loading of ceramic particles in the aluminium or aluminium alloy is between ...

Подробнее
06-06-2013 дата публикации

Ultra-High Strength, Corrosion Resistant Wire, a Method of Making Same, and a Method of Using Same

Номер: US20130143042A1
Принадлежит: CRS Holdings LLC

A method of making steel wire includes the step of forming a length of wire from an alloy that preferably contains in weight percent: Carbon 0.03 max. Manganese 0.15 max. Silicon 0.15 max. Phosphorus 0.015 max.  Sulfur 0.010 max.  Chromium 19.00-21.00 Nickel 33.00-37.00 Molybdenum  9.00-10.50 Titanium 1.00 max. Boron 0.010 max.  Iron 1.00 max. The balance is cobalt and usual impurities. The wire is annealed at a combination of temperature and time effective to provide a grain size of about ASTM 6 or finer and is then drawn to provide a reduction in cross-sectional area of about 50 to 80%. The wire is—then heat treated under temperature and time conditions effective to provide the wire with high strength and sufficient wrap ductility that the wire does not crack or break in a standardized wrap test.

Подробнее
27-06-2013 дата публикации

Nickel Based Forged Alloy, Gas Turbine Member Using Said Alloy and Gas Turbine Using Said Member

Номер: US20130160466A1
Принадлежит: Hitachi, Ltd.

It is an objective of the invention to provide an Ni-based forged alloy having good large ingot formability and good hot formability as well as high mechanical strength at high temperature. There is provided an Ni-based forged alloy comprising: 0.001 to 0.1 mass % of C; 0.001 to 0.01 mass % of B; 16 to 22 mass % of Cr; 0.5 to 1.5 mass % of Al; 0.1 to 6.0 mass % of W; 3.5 to 5.5 mass % of Nb; 0.8 to 3.0 mass % of Ti; 16 to 20 mass % of Fe; 2.0 mass % or less of Mo; and the balance including Ni and unavoidable impurities, in which: a segregation parameter Ps defined by a formula of “Ps (mass %)=1.05[Al concentration (mass %)]+0.6[Ti concentration (mass %)]−0.8[Nb concentration (mass %)]−0.3[Mo concentration (mass %)]” satisfies a relationship of “Ps≧−3.0 mass %”; and total amount of W and Mo is 1.75 atomic % or less. 1. An Ni-based forged alloy comprising: 0.001 to 0.1 mass % of C; 0.001 to 0.01 mass % of B; 16 to 22 mass % of Cr; 0.5 to 1.5 mass % of Al; 0.1 to 6.0 mass % of W; 3.5 to 5.5 mass % of Nb; 0.8 to 3.0 mass % of Ti; 16 to 20 mass % of Fe; 2.0 mass % or less of Mo; and the balance including Ni and unavoidable impurities , wherein:a segregation parameter Ps defined by a formula of “Ps (mass %)=1.05[Al concentration (mass %)]+0.6[Ti concentration (mass %)]−0.8[Nb concentration (mass %)]−0.3[Mo concentration (mass %)]” satisfies a relationship of “Ps≧−3.0 mass %”; andtotal amount of W and Mo is 1.75 atomic % or less.2. The Ni-based forged alloy according to claim 1 , further comprising at least one additional element selected from a group consisting of 5 mass % or less of Co claim 1 , 0.1 mass % or less of Mg claim 1 , 0.1 mass % or less of Ca claim 1 , 0.1 mass % or less of Zr claim 1 , 0.5 mass % or less of Mn claim 1 , 0.5 mass % or less of Si claim 1 , 0.5 mass % or less of V claim 1 , 0.5 mass % or less of Ta claim 1 , and 0.5 mass % or less of Re.3. The Ni-based forged alloy according to claim 1 , wherein the content of C is from 0.03 to 0.08 mass %; the ...

Подробнее
04-07-2013 дата публикации

NICKEL ALLOY

Номер: US20130167687A1
Принадлежит:

There is provided a nickel alloy having an excellent creep strength as well as high-temperature oxidation resistance. The nickel alloy of the present invention comprises, by mass percent, Cr in a range of 11.5 to 11.9%, Co in a range of 25 to 29%, Mo in a range of 3.4 to 3.7%, W in a range of 1.9 to 2.1%, Ti in a range of 3.9 to 4.4%, Al in a range of 2.9 to 3.2%, C in a range of 0.02 to 0.03%, B in a range of 0.01 to 0.03%, Zr in a range of 0.04 to 0.06%, Ta in a range of 2.1 to 2.2%, Hf in a range of 0.3 to 0.4%, and Nb in a range of 0.5 to 0.8%, the balance being Ni and unavoidable impurities, and contains carbides and borides precipitating in crystal grains and at grain boundaries. 1. A nickel alloy comprising , with respect to the total quantity , Cr in a range of 11.5 to 11.9% by mass , Co in a range of 25 to 29% by mass , Mo in a range of 3.4 to 3.7% by mass , W in a range of 1.9 to 2.1% by mass , Ti in a range of 3.9 to 4.4% by mass , Al in a range of 2.9 to 3.2% by mass , C in a range of 0.02 to 0.03% by mass , B in a range of 0.01 to 0.03% by mass , Zr in a range of 0.04 to 0.06% by mass , Ta in a range of 2.1 to 2.2% by mass , Hf in a range of 0.3 to 0.4% by mass , and Nb in a range of 0.5 to 0.8% by mass , the balance being Ni and unavoidable impurities , wherein the nickel alloy comprises carbides and borides precipitating in crystal grains and at grain boundaries.2. The nickel alloy according to claim 1 , wherein the nickel alloy is manufactured by powder metallurgy. The present invention relates to a nickel alloy.Conventionally, nickel alloys have been used for heat-resistant members of aircraft engines, gas turbines for power generation, and the like, especially for turbine discs. The heat-resistant members such as the turbine discs are required to have high-temperature oxidation resistance and also be excellent in strength such as creep strength and fatigue strength.To meet this requirement, a nickel alloy with high-temperature oxidation resistance ...

Подробнее
11-07-2013 дата публикации

ALLOY HAVING REDUCED INCLUSIONS

Номер: US20130177470A1
Принадлежит: Heraeus Precious Metals GmbH & Co. KG

One aspect is an alloy consisting of niobium, zirconium, tantalum, and tungsten. The alloy is formed with a melt metallurgical route such that all four metals solidify as a homogeneous alloy having no inclusions more than 10 μm in size. 1. An alloy consisting of niobium , zirconium , tantalum , and tungsten , wherein the alloy is formed with a melt metallurgical route such that all four metals solidify as a homogeneous alloy having no inclusions more than 10 μm in size.2. The alloy of characterized in that formation of the alloy employs the powder metallurgical and melt metallurgical routes sequentially such that the alloy has no inclusions more than 4 μm in size.3. The alloy of characterized in that the alloy comprises no mono-elemental inclusions.4. The alloy of characterized in that formation of the alloy employs melting the alloy by means of the melt metallurgical route at least three times such that the alloy has no inclusions more than 0.2 μm in size such that the inclusion have negligible influence on fatigue resistance of the alloy.5. The alloy of characterized in that formation of the alloy employs grinding of each of the niobium claim 1 , zirconium claim 1 , tantalum claim 1 , and tungsten such that all inclusions of the niobium claim 1 , zirconium claim 1 , tantalum claim 1 , and tungsten in the alloy are between 10 μm and 10 nm.6. The alloy of characterized in that formation of the alloy employs multiple melt metallurgical routes such that all inclusions of the niobium claim 1 , zirconium claim 1 , tantalum claim 1 , and tungsten in the alloy are between 10 μm and 10 nm.7. The alloy of characterized in that formation of the alloy employs multiple melt metallurgical routes such that all inclusions of the niobium claim 6 , zirconium claim 6 , tantalum claim 6 , and tungsten in the alloy are less than 0.1 μm.8. The alloy of characterized by the alloy comprising the following fractions of the metals:0.5 wt-% to 10 wt-% zirconium,0.5 wt-% to 9 wt-% tungsten, ...

Подробнее
18-07-2013 дата публикации

MIXTURE OF POWDERS FOR PREPARING A SINTERED NICKEL-TITANIUM-RARE EARTH METAL (Ni-Ti-RE) ALLOY

Номер: US20130183188A1
Принадлежит:

A mixture of powders for preparing a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy includes Ni—Ti alloy powders comprising from about 55 wt. % Ni to about 61 wt. % Ni and from about 39 wt. % Ti to about 45 wt. % Ti, and RE alloy powders comprising a RE element. 1. A mixture of powders for preparing a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy , the mixture comprising:Ni—Ti alloy powders comprising from about 55 wt. % Ni to about 61 wt. % Ni and from about 39 wt. % Ti to about 45 wt. % Ti;RE alloy powders comprising a RE element.2. The mixture of claim 1 , wherein the Ni—Ti alloy powders comprise a mixture of first binary alloy powders and second binary alloy powders claim 1 , the first binary alloy powders comprising about 56 wt. % Ni and about 44 wt. % Ti and the second binary alloy powders comprising about 60 wt. % Ni and about 40 wt. % Ti.3. The mixture of claim 1 , wherein a weight ratio of the first binary alloy powders to the second binary alloy powders is from about 70:30 to about 30:70.4. The mixture of claim 3 , wherein a weight ratio of the first binary alloy powders to the second binary alloy powders is about 40:60 to about 50:50.5. The mixture of claim 1 , wherein the RE alloy powders comprise at least one additional element.6. The mixture of claim 5 , wherein the at least one additional element is a dopant element or an additional alloying element selected from the group consisting of: B claim 5 , Al claim 5 , Cr claim 5 , Mn claim 5 , Fe claim 5 , Ni claim 5 , Co claim 5 , Cu claim 5 , Zn claim 5 , Ga claim 5 , Ge claim 5 , Zr claim 5 , Nb claim 5 , Mo claim 5 , Tc claim 5 , Ru claim 5 , Rh claim 5 , Pd claim 5 , Ag claim 5 , Cd claim 5 , In claim 5 , Sn claim 5 , Sb claim 5 , Hf claim 5 , Ta claim 5 , W claim 5 , Re claim 5 , Os claim 5 , Ir claim 5 , Pt claim 5 , Au claim 5 , Hg claim 5 , TI claim 5 , Pb claim 5 , Bi claim 5 , Po claim 5 , V claim 5 , other rare earth elements claim 5 , and Y.7. The mixture of claim 6 , wherein the ...

Подробнее
15-08-2013 дата публикации

CO-BASED ALLOY

Номер: US20130206287A1
Принадлежит:

A Co-based alloy containing not less than 0.001 mass % and less than 0.100 mass % of C, not less than 9.0 mass % and less than 20.0 mass % of Cr, not less than 2.0 mass % and less than 5.0 mass % of Al, not less than 13.0 mass % and less than 20.0 mass % of W, and not less than 39.0 mass % and less than 55.0 mass % of Ni, with the remainder being made up by Co and unavoidable impurities, wherein the contents of Mo, Nb, Ti and Ta which are included in the unavoidable impurities are as follows: Mo<0.010 mass %, Nb<0.010 mass %, Ti<0.010 mass %, and Ta<0.010 mass %. 1. A Co-based alloy comprising:not less than 0.001 and less than 0.100 mass % of C;not less than 9.0 and less than 20.0 mass % of Cr;not less than 2.0 and less than 5.0 mass % of Al;not less than 13.0 and less than 20.0 mass % of W;not less than 39.0 and less than 55.0 mass % of Ni; andthe balance being Co and inevitable impurities, wherein the impurities includeless than 0.010 mass % of Mo,less than 0.010 mass % of Nb,less than 0.010 mass % of Ti, andless than 0.010 mass % of Ta.2. The Co-based alloy according to claim 1 , further comprising at least one ofnot less than 0.0001 and less than 0.020 mass % of B andnot less than 0.0001 and less than 0.10 mass % of Zr.3. The Co-based alloy according to claim 1 , further comprising at least one ofnot less than 0.0001 and less than 0.10 mass % of Mg andnot less than 0.0001 and less than 0.20 mass % of Ca.4. The Co-based alloy according to claim 1 , produced through hot working claim 1 , solution treatment and aging treatment claim 1 , the alloy{'sub': '2', 'comprising a γ phase matrix, carbide precipitated in the matrix, and a γ′ phase composed of an L1-type intermetallic compound.'} The present invention relates to a Co-based alloy suitable for various components required to have a high strength in a high-temperature environment, such as for a gas turbine, an aircraft engine, a chemical plant, a vehicle engine and a high-temperature furnace. In particular, it ...

Подробнее
22-08-2013 дата публикации

Reduced beryllium casting alloy

Номер: US20130216424A1
Автор: Randolf S. Beals
Принадлежит: Materion Brush Beryllium and Composites

The beryllium content of beryllium aluminum alloys suitable for investment casting which contain a small but suitable amount of silver can be significantly reduced without adversely affecting their thermal or investment casting properties by including significantly more silicon in the alloy than done in the past.

Подробнее
19-09-2013 дата публикации

METALLIC BONDCOAT OR ALLOY WITH A HIGH GAMMA/GAMMA' TRANSITION TEMPERATURE AND A COMPONENT

Номер: US20130243642A1
Принадлежит:

A metallic coating or alloy is provided, which is nickel based, and includes at least γ and γ′ phases. The metallic coating or the alloy further includes tantalum (Ta) in the range of between 4 wt % to 7.5 wt %. The metallic coating or the alloy also includes cobalt (Co) in the range between 11 wt %-14.5 wt %. 115-. (canceled)16. A metallic coating or alloy ,wherein the metallic coating or alloy is nickel based,wherein the metallic coating or alloy comprises at least γ and γ′ phases,wherein the metallic coating or the alloy further comprises tantalum (Ta) in the range of between 4 wt % to 7.5 wt %,wherein the metallic coating or the alloy further comprises cobalt (Co) in the range between 11 wt %-14.5 wt %.17. The metallic coating or alloy according to claim 16 , wherein the amount of tantalum (Ta) is in the range between 5 wt % and 6.8 wt %.18. The metallic coating or alloy according to claim 17 , wherein the amount of tantalum (Ta) is 6 wt %.19. The metallic coating or alloy according to claim 16 , wherein the amount of cobalt (Co) is in the range between 12 wt %-14 wt %.20. The metallic coating or alloy according to claim 19 , wherein the amount of cobalt (Co) is 13 wt %.21. The metallic coating or alloy according to claim 16 , wherein the metallic coating or alloy contains no Yttrium (Y) and/or no platinum (Pt) and/or no melting depressant.22. The metallic coating or alloy according to claim 16 , further comprising chromium (Cr) claim 16 , wherein the amount of chromium (Cr) is between 14 t %-16 wt %.23. The metallic coating or alloy according to claim 16 , further comprising aluminum claim 16 , wherein the amount of aluminum (Al) is between 9 wt %-13 wt %.24. The metallic coating or alloy according to claim 16 , further comprising yttrium claim 16 , wherein the amount of yttrium (Y) is between 0 claim 16 ,1 wt %-0 claim 16 ,7 wt %.25. The metallic coating or alloy according to claim 16 , wherein the metallic coating or the alloy contains no rhenium (Re).26. The ...

Подробнее
26-09-2013 дата публикации

SINTERED ALLOY AND PRODUCTION METHOD THEREFOR

Номер: US20130251585A1
Принадлежит: HITACHI POWDERED METALS CO., LTD.

A sintered alloy has an overall composition consisting of, by mass %, 13.05 to 29.62% of Cr, 6.09 to 23.70% of Ni, 0.44 to 2.96% of Si, 0.2 to 1.0% of P, 0.6 to 3.0% of C, and the balance of Fe and inevitable impurities; a metallic structure in which carbides are precipitated and uniformly dispersed in an iron alloy matrix having dispersed pores; and a density of 6.8 to 7.4 Mg/m. The carbides include specific carbides having maximum diameter of 1 to 10 μm and area ratio of 90% or more with respect to the total carbides. 1. A sintered alloy comprising:an overall composition consisting of, by mass %, 13.05 to 29.62% of Cr, 6.09 to 23.70% of Ni, 0.44 to 2.96% of Si, 0.2 to 1.0% of P, 0.6 to 3.0% of C, and the balance of Fe and inevitable impurities;a metallic structure in which carbides are precipitated and uniformly dispersed in an iron alloy matrix having dispersed pores; and{'sup': '3', 'a density of 6.8 to 7.4 Mg/m,'}wherein the carbides include specific carbides having a maximum diameter of 1 to 10 μm, the specific carbides have an area ratio of 90% or more with respect to that of the total carbides.2. A sintered alloy comprising:an overall composition consisting of, by mass %, 13.05 to 29.62% of Cr, 6.09 to 23.70% of Ni, 0.44 to 2.96% of Si, 0.2 to 1.0% of P, 0.6 to 3.0% of C, 2.96% or less of at least one of Mo, V, W, Nb, and Ti, and the balance of Fe and inevitable impurities;a metallic structure in which carbides are precipitated and uniformly dispersed in an iron alloy matrix having dispersed pores; and{'sup': '3', 'a density of 6.8 to 7.4 Mg/m,'}wherein the carbides include specific carbides having maximum diameter of 1 to 10 μm, the specific carbides having an area ratio of 90% or more with respect to that of the total carbides.3. The sintered alloy according to claim 1 , wherein nitrides are formed on a surface of the sintered alloy and inner surfaces of the pores.4. The sintered alloy according to claim 2 , wherein nitrides are formed on a surface of the ...

Подробнее
31-10-2013 дата публикации

ALLOY, PROTECTIVE LAYER AND COMPONENT

Номер: US20130288072A1
Принадлежит:

An alloy to a protective layer for protecting a component against corrosion and/or oxidation, in particular at high temperatures is proposed. Known protective layers with a high Cr content and in addition silicon form brittle phases which additionally embrittle during use under the influence of carbon. The proposed protective layer has the composition of from 24% to 26% cobalt, from 10% to 12% aluminum, from 0.2% to 0.5% yttrium, from 12% to 14% chromium, from 0.3% to 5.0% tantalum, nickel. 17.-. (canceled)8. An alloy , comprising (data in wt %):24%-26% cobalt,12%-14% chromium,10%-12% aluminum,0.2%-0.5% of at least one element from the group comprising scandium and rare earth elements,0.3%-3% tantalum, andnickel.9. The alloy as claimed in claim 8 , comprising:25% cobalt,13% chromium,11% aluminum0.3% of the at least one element from the group comprising scandium and rare earth elements,0.5%-2.0% tantalum, andremainder nickel10. The alloy as claimed in claim 8 , wherein the at least one element from the group comprising scandium and rare earth elements is yttrium.11. The alloy as claimed in claim 8 , wherein the alloy does not contain rhenium.12. The alloy as claimed in claim 8 , wherein the alloy does not contain silicon.13. The alloy as claimed in claim 8 , wherein the alloy does not contain zirconium and/or not contain titanium and/or not contain gallium and/or not contain germanium.14. The alloy as claimed in claim 8 , wherein the alloy consists of cobalt claim 8 , chromium claim 8 , aluminum claim 8 , yttrium claim 8 , tantalum claim 8 , and nickel.15. A protective layer for protecting a component against corrosion and/or oxidation at a high temperature claim 8 , comprising:{'claim-ref': {'@idref': 'CLM-00008', 'claim 8'}, 'an alloy as claimed in .'}16. The protective layer as claimed in claim 15 , wherein the protective layer is a single layer.17. A component of a gas turbine claim 15 , comprising:a nickel-based or cobalt-based substrate; and{'claim-ref': {'@ ...

Подробнее
07-11-2013 дата публикации

WELDABLE OXIDATION RESISTANT NICKEL-IRON-CHROMIUM ALUMINUM ALLOY

Номер: US20130294964A1
Принадлежит: HAYNES INTERNATIONAL, INC.

A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.43% silicon, up to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8. 1. A weldable , high temperature , oxidation resistant alloy consisting essentially of , by weight percent , 25% to 32% iron , 18% to 25% chromium , 3.0% to 4.5% aluminum , 0.2% to 0.6% titanium , 0.2% to 0.43% silicon , up to 0.5% manganese , up to 2.0% cobalt , up to 0.5% molybdenum , up to 0.5% tungsten , up to 0.01% magnesium , up to 0.25% carbon , up to 0.025% zirconium , up to 0.01% yttrium , up to 0.01% cerium , up to 0.01% lanthanum , up to 0.004 boron and the balance nickel plus impurities , Al+Ti content is from 3.4% to 4.22% and chromium and aluminum are present in amounts so that a Cr/Al ratio is from 4.5 to 8.2. The alloy of wherein the Al+Ti content is from 3.8% to 4.2%.3. The alloy of wherein the Al+Ti content is from 3.9% to 4.1%.4. The alloy of having a Cr/Al ratio from 5.0 to 7.05. The alloy of having a Cr/Al ratio from 5.2 to 7.06. The alloy of wherein niobium is present as an impurity in an amount not greater than 0.15%.7. The alloy of wherein manganese is present in an amount of 0.2 to 0.5%.8. The alloy of wherein the alloy contains 26.8% to 31.8% iron9. The alloy of wherein the alloy contains 18.9% to 24.3% chromium claim 1 ,10. The alloy of wherein the alloy contains 3.1% to 3.9% aluminum claim 1 ,11. The alloy of wherein the alloy contains 0.26% to 0.48% titanium.12. The alloy of wherein the alloy contains 0.25% to 0.41% silicon.13. The alloy of wherein the alloy possesses oxidation resistance of not more than 0.3 mils average metal affected when tested in flowing air at 1800° F. for at least 1000 hours ...

Подробнее
07-11-2013 дата публикации

Nano-Composite Stainless Steel

Номер: US20130294966A1
Принадлежит: UT Battelle LLC

A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 0; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

Подробнее
14-11-2013 дата публикации

ALLOY, PROTECTIVE LAYER AND COMPONENT

Номер: US20130302638A1
Принадлежит:

Known protective layers with a high Cr content and additionally silicon form brittle phases which additionally embrittle during use under the influence of carbon. A protective layer including the composition of from 24% to 26% cobalt, from 10% to 12% aluminium, from 0.2% to 0.5T yttrium, from 12% to 14% chromium, remainder nickel is provided. 17-. (canceled)8. An alloy , comprising (data in wt %):24%-26% cobalt;12%-14% chromium;10%-12% aluminum;0.2%-0.5%, of at least one element from the group consisting of scandium and the rare earth elements;and remainder nickel,wherein the alloy does not comprise tantalum,wherein the alloy does not comprise rhenium, andwherein the alloy does not comprise silicon.9. The alloy as claimed in claim 8 ,wherein the alloy does not include any of the elements selected from the group consisting of zirconium, titanium, gallium, germanium, or combinations thereof.10. The alloy as claimed in claim 8 ,consisting of cobalt, chromium, aluminum, yttrium, and nickel.11. A protective layer for protecting a component against corrosion and/or oxidation claim 8 ,{'claim-ref': {'@idref': 'CLM-00008', 'claim 8'}, 'wherein the composition of the alloy is as claimed in , and'}wherein the alloy is present as a single layer.12. A component claim 8 , comprising:{'claim-ref': {'@idref': 'CLM-00011', 'claim 11'}, 'a protective layer as claimed in in order to protect against corrosion and oxidation at high temperatures;'}a ceramic thermal barrier layer applied onto the protective layer,wherein the component is a component of a gas turbine,wherein a substrate of the component is nickel-based or cobalt-based,wherein the component comprises only one metal protective layer. This application is the US National Stage of International Application No. PCT/EP2011/071200 filed Nov. 28, 2011 and claims benefit thereof, the entire content of which is hereby incorporated herein by reference. The International Application claims priority to the European Patent Office ...

Подробнее
21-11-2013 дата публикации

Sputtering Target for Magnetic Recording Film

Номер: US20130306470A1
Принадлежит: JX Nippon Mining and Metals Corp

A sputtering target for a magnetic recording film which contains carbon, the sputtering target is characterized in that the ratio (I G /I D ) of peak intensities of the G-band to the D-band in Raman scattering spectrometry is 5.0 or less. The sputtering target for a magnetic recording film, which contains carbon powders dispersed therein, makes it possible to produce a magnetic thin film having a granular structure without using an expensive apparatus for co-sputtering; and in particular, the target is an Fe—Pt-based sputtering target. Carbon is a material which is difficult to sinter and has a problem that carbon particles are apt to form agglomerates. There is hence a problem that carbon masses are readily detached during sputtering to generate a large number of particles on the film after sputtering. The high-density sputtering target can solve these problems.

Подробнее
19-12-2013 дата публикации

ALLOY, PROTECTIVE COATING, AND COMPONENT

Номер: US20130337286A1
Принадлежит:

Known protective coatings having a high Cr content, as well as silicon, have brittle phases that become additionally brittle under the influence of carbon during use. A protective coating is provided. The protective coating includes the composition of 24% to 26% cobalt, 10% to 12% aluminum, 0.2% to 0.5% yttrium, 12% to 14% chromium, and the remainder nickel. 17-. (canceled)8. An alloy , comprising (data in wt %):24%-26% cobalt;12%-14% chromium;10%-12% aluminum;0.2%-0.5% of at least one element from the group consisting of scandium and the rare earth elements; andremainder nickel.9. The alloy as claimed in claim 8 , wherein the rare earth element is yttrium.10. The alloy as claimed in claim 8 ,wherein the alloy does not comprise rhenium.11. The alloy as claimed in claim 8 ,wherein the alloy does not comprise silicon.12. The alloy as claimed in claim 8 ,wherein the alloy does not comprise zirconium.13. The alloy as claimed in claim 12 ,wherein the alloy does not comprise titanium.14. The alloy as claimed in claim 13 ,wherein the alloy does not comprise gallium.15. The alloy as claimed in claim 14 ,wherein the alloy does not comprise germanium.16. The alloy as claimed in claim 8 ,consisting of cobalt, chromium, aluminum, yttrium, and nickel.17. A protective layer for protecting a component against corrosion and/or oxidation claim 8 , comprising:{'claim-ref': {'@idref': 'CLM-00008', 'claim 8'}, 'an alloy as claimed in ;'}wherein the protective layer protects the component against corrosion and/or oxidation at high temperatures, andwherein the layer is present as a single layer. This application is the US National Stage of International Application No. PCT/EP2011/068215 filed Oct. 19, 2011 and claims benefit thereof, the entire content of which is hereby incorporated herein by reference. The International Application claims priority to the European Patent Office application No. 10189677.7 EP filed Nov. 2, 2010, the entire contents of which is hereby incorporated herein ...

Подробнее
02-01-2014 дата публикации

Negative electrode active material for electric device, negative electrode for electric device and electric device

Номер: US20140001401A1
Принадлежит: Nissan Motor Co Ltd

A negative electrode active material for an electric device includes an alloy containing silicon in a range from 27% by mass to 100% by mass exclusive, aluminum in a range from 0% by mass to 73% by mass exclusive, niobium in a range from 0% by mass to 58% by mass exclusive, and inevitable impurities as a residue. The negative electrode active material can be obtained with a multi DC magnetron sputtering apparatus by use of, for example, silicon, aluminum and niobium as targets. An electric device using the negative electrode active material can achieve a high cycle property while keeping a high discharge property.

Подробнее
09-01-2014 дата публикации

TITANIUM ALUMINIDE ALLOYS

Номер: US20140010701A1
Принадлежит: GKSS-Forschungszentrum Geesthacht GmbH

Alloys based on titanium aluminides, such as γ (TiAl) which may be made through the use of casting or powder metallurgical processes and heat treatments. The alloys contain titanium, 38 to 46 atom % aluminum, and 5 to 10 atom % niobium, and they contain composite lamella structures with B19 phase and β phase there in a volume ratio of the B19 phase to β phase 0.05:1 and 20:1. 1. An alloy comprising titanium , 38 to 46 at % aluminum , and 5 to 10 at % niobium , and comprising composite lamella that contain a B19 phase and a β phase in a volume ratio of B19:13 of 0.05:1 to 20:1.2. The alloy of claim 1 , comprising/containing 38 to 42 at % aluminum.3. The alloy of claim 1 , comprising 38.5 to 42.5 at % aluminum claim 1 , and 0.5 to 5 at % chromium.4. The alloy of claim 1 , comprising 39 to 43 at % aluminum claim 1 , and 0.5 to 5 at % zirconium.5. The alloy of claim 1 , comprising 41 to 45 at % aluminum claim 1 , and 0.5 to 5 at % tantalum.6. The alloy of claim 1 , comprising 41 to 45 at % aluminum claim 1 , and 0.1 to 1 at % lanthanum claim 1 , scandium or yttrium.7. The alloy of claim 1 , comprising 41 to 45 at % aluminum claim 1 , and 0.5 to 5 at % vanadium.8. The alloy of claim 1 , comprising 41 to 44.5 at % aluminum claim 1 , and 0.5 to 5 at % iron or molybdenum.9. The alloy of claim 1 , comprising 41 to 46 at % aluminum claim 1 , and 0.5 to 5 at % tungsten.10. The alloy of claim 1 , comprising 41 to 46 at % aluminum claim 1 , and 0.5 to 5 at % manganese.11. The alloy of claim 1 , comprising 0.1 to 1 at % boron claim 1 , or 0.1 to 1 at % carbon claim 1 , or both 0.1 to 1 at % boron and 0.1 to 1 at % carbon.12. The alloy of claim 1 , the alloy containing composite lamella structures that include B19 phase and β phase in a volume ratio between 0.2:1 and 5:1.13. The alloy of claim 1 , the alloy containing composite lamella structures that include B19 phase and β phase in a volume ratio between 1:3 and 3:1.14. The alloy of claim 1 , the alloy containing composite ...

Подробнее
09-01-2014 дата публикации

Layer system comprising an nicocraly double protective layer with differing chromium content and alloy

Номер: US20140011049A1
Автор: Werner Stamm
Принадлежит: SIEMENS AG

A two-layered NiCoCrAlY layer is provided. The layer includes a bottom and a top layer. Through the use of a two-layered NiCoCrAlY layer, it is possible to reduce the formation of cracks in the thermally grown oxide layer as forms on account of the protective action of the NiCoCrAlY layers.

Подробнее
27-02-2014 дата публикации

Weldable, crack-resistant co-based alloy and overlay method

Номер: US20140057122A1
Принадлежит: Kennametal Inc

An alloy for imparting wear- and corrosion-resistance to a metal component wherein the alloy comprises between about 0.12 wt % and about 0.7 wt % C, between about 20 wt % and about 30 wt % Cr, between about 10 wt % and about 15 wt % Mo, between about 1 wt % and about 4 wt % Ni, and balance of Co.

Подробнее
27-03-2014 дата публикации

Negative electrode active material for electric device

Номер: US20140086792A1
Принадлежит: Nissan Motor Co Ltd

The negative electrode active material for an electric device of the present invention has an alloy containing Si in a range from 12% by mass or more to less than 100% by mass, Sn in a range from more than 0% by mass to 45% by mass or less, Al in a range from more than 0% by mass to 43% by mass or less, and indispensable impurities as remains. The negative electrode active material can be obtained, for example, using a multiple DC magnetron sputtering apparatus with Si, Sn and Al as targets. Electric devices to which the negative electrode active material of the present invention is applied have an improved cycle life and are excellent in the capacity and cycle durability.

Подробнее
07-01-2016 дата публикации

GUIDE WIRE UTILIZING A COLD WORKED NICKEL-TITANUIM-NIOBIUM TERNARY ALLOY

Номер: US20160001047A1
Принадлежит:

Guide wire devices fabricated from a linear pseudo-elastic Ni—Ti alloy and methods for their manufacture. The Ni—Ti alloy that includes nickel, titanium, and about 3 atomic % (at %) to about 30 at % niobium (Nb). Cold working the Ni—Ti alloy stabilizes the alloy's martensitic phase and yields a linear pseudo-elastic microstructure where reversion to the austenite phase is retarded or altogether blocked. The martensitic phase of cold worked, linear pseudo-elastic Ni—Ti—Nb alloy has an elastic modulus that is considerably higher than the comparable cold worked, linear pseudoelastic binary Ni—Ti alloy. This yields a guide wire device that has better torque response and steerability as compared to cold worked, linear pseudoelastic binary Ni—Ti alloy or superelastic binary Ni—Ti alloy. 1. A guide wire device , comprising:an elongated shaft member having a proximal section and a distal section; wherein Nb is present in the cold worked Ni—Ti alloy in an amount ranging from about 3 at % to about 30 at %, and Ni is present in the cold worked Ni—Ti alloy in an amount about 2 at % to 4 at % higher than the amount of Ti, and', 'wherein the cold worked Ni—Ti alloy exhibits linear pseudoelastic behavior., 'at least a portion of the elongated shaft member being fabricated from a cold worked nickel-titanium (Ni—Ti) alloy comprising nickel (Ni), titanium (Ti), and niobium (Nb),'}2. The guide wire device of claim 1 , wherein Ni is present in the cold worked Ni—Ti alloy in an amount about 3 at % higher than the amount of Ti.3. The guide wire device of claim 1 , wherein the cold worked Ni—Ti alloy comprises about 36.5 atomic % (at %) to about 50 at % Ni claim 1 , about 33.5 at % to about 47 at % Ti claim 1 , and about 3 at % to about 30 at % Nb.4. The guide wire device of claim 1 , wherein the cold worked Ni—Ti alloy comprises about 38 at % to about 47 at % Ni claim 1 , about 35 at % to about 44 at % Ti claim 1 , and about 9 at % to about 27 at % Nb.5. The guide wire device of claim 1 ...

Подробнее
05-01-2017 дата публикации

METHODS FOR MANUFACTURING A GUIDE WIRE UTILIZING A COLD WORKED NICKEL-TITANIUM-NIOBIUM TERNARY ALLOY

Номер: US20170000985A1
Принадлежит:

Guide wire devices fabricated from a linear pseudo-elastic Ni—Ti alloy and methods for their manufacture. The Ni—Ti alloy that includes nickel, titanium, and about 3 atomic % (at %) to about 30 at % niobium (Nb). Cold working the Ni—Ti alloy stabilizes the alloy's martensitic phase and yields a linear pseudo-elastic microstructure where reversion to the austenite phase is retarded or altogether blocked. The martensitic phase of cold worked, linear pseudo-elastic Ni—Ti—Nb alloy has an elastic modulus that is considerably higher than the comparable cold worked, linear pseudoelastic binary Ni—Ti alloy. This yields a guide wire device that has better torque response and steerability as compared to cold worked, linear pseudoelastic binary Ni—Ti alloy or superelastic binary Ni—Ti alloy. 1. A method for fabricating a guide wire device , comprising:providing an elongated shaft member that includes a proximal section and a distal section, wherein at least a portion of the elongated shaft member comprises a nickel-titanium (Ni—Ti) alloy comprising nickel (Ni), titanium (Ti), and niobium (Nb); andcold working at least the Ni—Ti alloy to yield a Ni—Ti alloy that exhibits linear pseudoelastic behavior and that displays a martensitic phase.2. The method of claim 1 , wherein the Ni—Ti alloy comprises about 3 at % Nb to about 30 at % Nb and Ni is present in an amount about 2 at % to about 4 at % higher than an at % of Ti.3. The method of claim 2 , wherein Ni is present in an amount about 3 at % higher than an at % of Ti.4. The method of claim 3 , wherein the Ni—Ti alloy comprises about 47 at % Ni claim 3 , about 44 at % Ti claim 3 , and about 9 at % Nb.5. The method of claim 1 , wherein providing the elongated shaft member includes fabricating the elongated shaft member by at least one of drawing or grinding.6. The method of claim 1 , wherein the cold working includes at least one of high force flattening claim 1 , drawing claim 1 , stamping claim 1 , rolling claim 1 , or swaging.7 ...

Подробнее
07-01-2016 дата публикации

METHOD FOR PRODUCING SPRAY POWDERS CONTAINING CHROMIUM NITRIDE

Номер: US20160001368A1
Принадлежит:

A process for producing a sintered spraying powder comprising chromium nitride includes producing a powder mixture comprising a first powder and a second powder, and sintering the powder mixture to the sintered spraying powder at a nitrogen partial pressure of >1 bar so as to maintain or increase a chemically bound nitrogen in the sintered spraying powder compared to a chemically bound nitrogen in the first powder mixture. The first powder comprises at least one constituent selected from the group consisting of Cr, CrN and CrN. The second powder comprises at least one constituent selected from the group consisting of nickel, cobalt, nickel alloys, cobalt alloys and iron alloys. 119-. (canceled)20: A process for producing a sintered spraying powder comprising chromium nitride , the process comprising: [{'sub': '2', 'a first powder comprising at least one constituent selected from the group consisting of Cr, CrN and CrN, and'}, 'a second powder comprising at least one constituent selected from the group consisting of nickel, cobalt, nickel alloys, cobalt alloys and iron alloys; and, 'producing a powder mixture comprisingsintering the powder mixture to the sintered spraying powder at a nitrogen partial pressure of >1 bar so as to maintain or increase a chemically bound nitrogen in the sintered spraying powder compared to a chemically bound nitrogen in the first powder mixture.21: The process as recited in claim 20 , wherein the powder mixture comprises at least one of CrN and CrN.22: The process as recited in claim 20 , wherein the powder mixture comprises at least one of a nickel powder and a NiCr alloy powder.23: The process as recited in claim 22 , wherein the at least one of a nickel powder and a NiCr alloy powder is a cobalt base alloy claim 22 , a nickel base alloy claim 22 , or an iron base alloy.24: The process as recited in claim 23 , wherein the cobalt base alloy claim 23 , the nickel base alloy claim 23 , or the iron base alloy comprises at least one ...

Подробнее
07-01-2021 дата публикации

Oxidation-Resistant Coated Superalloy

Номер: US20210001603A1
Принадлежит: PRATT & WHITNEY CANADA CORP.

A coating-substrate combination includes: a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; and a coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr; 3.0-13.5 Co; up to 6.0 Ta, if any; up to 6.2 W, if any; up to 2.4 Mo, if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y, if any; up to 0.4 Zr, if any; up to 1.0 Re, if any. 1. An article comprising:a Ni-based superalloy substrate comprising, by weight percent: 2.0-5.1 Cr; 0.9-3.3 Mo; 3.9-9.8 W; 2.2-6.8 Ta; 5.4-6.5 Al; 1.8-12.8 Co; 2.8-5.8 Re; 2.8-7.2 Ru; anda coating comprising, exclusive of Pt group elements, by weight percent: Ni as a largest content; 5.8-9.3 Al; 4.4-25 Cr;3. 0-13.5 Co; up to 6.0 Ta , if any; up to 6.2 W , if any; up to 2.4 Mo , if any; 0.3-0.6 Hf; 0.1-0.4 Si; up to 0.6 Y , if any; up to 0.4 Zr , if any; up to 1.0 Re , if any.2. The article of wherein:the substrate comprises 0.05-0.7 weight percent Hf.3. The article of wherein:the substrate has a 1800° F. & 45 ksi (982° C. & 310 MPa) rupture life of at least 120 hours.4. The article of wherein:the coating comprises exclusive of Pt group elements, by weight percent: 0.4-0.6 said Hf; 0.2-0.4 said Si.5. The article of wherein:the coating has less than 1.0 weight percent overall said Pt group elements combined.6. The article of wherein:in weight percent exclusive of Pt group elements, the coating has less than 1.0 weight percent individually elements other than said Ni, Al, Cr, Co, Ta, W, Mo, Hf, Si, Y, Zr, Re, and Pt group elements, if any.7. The article of wherein:the substrate also falls within one of the broader ranges of Table VI; andthe coating also falls within the associated broader range of Table VII.8. The article of wherein:the coating and substrate fall within the narrower associated ranges.9. The article of wherein:in weight percent the coating has 6.0≤W+Ta≤13.0 or Ta+W≤0.05 ...

Подробнее
05-01-2017 дата публикации

Precipitation hardening nickel-base alloy, part made of said alloy, and manufacturing method thereof

Номер: US20170002449A1
Принадлежит: Aubert and Duval SA

A precipitation hardened nickel-base alloy, characterized in that its composition is, in weight percentages: 18%≦Cr≦22%, preferably 18%≦Cr≦20%; 18%≦Co≦22%, preferably 19%≦Co≦21%; 4%≦Mo+W≦8%, preferably 5.5%≦Mo+W≦7.5%; trace amounts≦Zr≦0.06%; trace amounts≦B≦0.03%. preferably trace amounts≦B≦0.01%; trace amounts≦C≦0.1%, preferably trace amounts≦C≦0.06%; trace amounts≦Fe≦1%; trace amounts≦Nb≦0.01%; trace amounts≦Ta≦0.01%; trace amounts≦S≦0.008%; trace amounts≦P≦0.015%; trace amounts≦Mn≦0.3%; trace amounts≦Si≦0.15%; trace amounts≦O≦0.0025%; trace amounts≦N≦0.0030%; the remainder being nickel and impurities resulting from the elaboration, the Al and Ti contents further satisfying the conditions: Ti/Al≦3;  (1) Al+1.2 Ti≧2%;  (2) (0.2 Al−1.25) 2 −0.5 Ti≧0%;  (3) Ti+1.5 Al≦4.5%.  (4) Part made in this alloy and its manufacturing method.

Подробнее
01-01-2015 дата публикации

METHOD FOR COATING A SUBSTRATE SURFACE AND COATED PRODUCT

Номер: US20150004337A1
Принадлежит:

The present invention provides a cold sprayed layer of tungsten, molybdenum, titanium, zirconium, or of mixtures of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of tungsten, molybdenum, titanium, zirconium with other metals, wherein the cold spayed layer has an oxygen content of below 1,000 ppm. 1. A cold sprayed layer of tungsten , molybdenum , titanium , zirconium , or of mixtures of two or more of tungsten , molybdenum , titanium and zirconium , or of alloys of two or more of tungsten , molybdenum , titanium and zirconium , or of alloys of tungsten , molybdenum , titanium , zirconium with other metals , wherein the cold spayed layer has an oxygen content of below 1 ,000 ppm.2. The cold sprayed layer as recited in claim 1 , wherein the cold sprayed layer has a density of at least 97% of a density of a bulk material.3. The cold sprayed layer as recited in claim 1 , wherein the cold sprayed layer is made of tantalum or niobium.4. The cold sprayed layer as recited in claim 1 , wherein the cold sprayed layer is obtained by a method comprising applying coatings to surfaces claim 1 ,wherein a gas flow is sprayed at a supersonic speed onto a surface of an object, the gas flow comprising a mixture of a gas and a powder of a material selected from the group consisting of niobium, tantalum, tungsten, molybdenum, titanium and zirconium, alloys of nobium, tantalum, tungsten, molybdenum, titanium and zirconium, mixtures of nobium, tantalum, tungsten, molybdenum, titanium and zirconium, and alloys of nobium, tantalum, tungsten, molybdenum, titanium and zirconium with other metals, andwherein the powder has a particle size of from 0.5 to 150 μm and an oxygen content of less than 1,000 ppm.5. A coated object comprising at least one cold sprayed layer as recited in .6. The coated object as recited in claim 5 , wherein the cold sprayed layer is obtained by a method comprising ...

Подробнее
03-01-2019 дата публикации

WASTEGATE COMPONENT COMPRISING A NOVEL ALLOY

Номер: US20190003020A1
Принадлежит:

The present invention relates to a waste gate component for a turbo charger comprising an alloy comprising about 30 to about 42 wt.-% Ni, about 15 to about 28 wt.-% Cr, about 1 to about 5 wt.-% Cr, about 1 to about 4 wt.-% Ti, and at least about 20 wt.-% Fe, and to processes for preparing such a waste gate component. 2. Waste gate component according to claim 1 , wherein the alloy comprises Nb in an amount of 1 to 4 wt.-% Nb claim 1 , and/or Win an amount of 0.1 to 3 wt.-% claim 1 , and/or Mo in an amount of 0.5 to 4 wt.-% claim 1 , and C in the alloy is less than 0.1 wt.-%.3. Waste gate component according to claim 1 , wherein the alloy comprises between 1 and 10 wt.-% of one or more elements selected from Mn claim 1 , Al claim 1 , and Si.4. Waste gate component according to claim 3 , wherein the alloy comprises 0.5-4 wt.-% Mo claim 3 , 0.1 to 2 wt.-% Al claim 3 , and 0.1 to 3 wt.-% W.5. Waste gate component according to claim 1 , wherein the alloy comprises 0.5-4 wt.-% Mo claim 1 , 0.1 to 2 wt.-% Al claim 1 , 0.1 to 3 wt.-% Mn claim 1 , 0.1 to 3 wt.-% W claim 1 , 0.5 to 4 wt.-% Si claim 1 , and 1 to 4 wt.-% Nb.7. Waste gate component according to claim 1 , wherein the alloy comprises 1.0 to 3.0 wt.-% Mo claim 1 , 0.3 to 0.8 wt.-% Al claim 1 , 0.5 to 2.5 wt.-% Mn claim 1 , 0.5 to 2.5 wt.-% W claim 1 , 0.6 to 2.4 wt.-% Si claim 1 , and 1.7 to 2.5 wt.-% Nb.8. Waste gate component according to claim 1 , wherein the alloy comprises less than 0.1 wt.-% claim 1 , less than 0.05 wt.-% P claim 1 , less than 0.05 wt.-% S claim 1 , and less than 300 ppm claim 1 , by weight claim 1 , of N.9. Waste gate component according to claim 1 , wherein the alloy has been subjected to solution heat treatment claim 1 , precipitation hardening claim 1 , or both.10. Waste gate component according to claim 1 , wherein the alloy has an austenitic microstructure and comprises second phase particles or aggregates of said second phase particles claim 1 , wherein said particles have an average ...

Подробнее
20-01-2022 дата публикации

Erosion Resistant Alloy for Thermal Cracking Reactors

Номер: US20220017827A1
Принадлежит:

Reactor components formed using an erosion resistant alloy having desirable high temperature mechanical strength are provided. The erosion resistant components can include, but are not limited to, tubes, re-actors walls, fittings, and/or other components having surfaces that can be exposed to a high temperature reaction environment in the presence of hydrocarbons and/or that can provide pressure containment functionality in processes for upgrading hydrocarbons in a high temperature reaction environment. The erosion resistant alloy used for forming the erosion resistant component can include 42.0 to 46.0 wt. % nickel; 32.1 to 35.2 wt. % um; 0.5 to 2.9 wt. % carbon; 0 to 2.0 wt. % titanium; 0 to 4.0 wt. % tungsten, and iron, with at least one of titanium and tungsten is present in an amount of wt. % or more. The iron can correspond to the balance of the composition. Optionally, the erosion resistant alloy can provide further improved properties based on the presence of at least one strengthening mechanism within the alloy, such as a carbide strengthening mechanism, a solid solution strengthening mechanism, a gamma prime strengthening mechanism, or a combination thereof. 1. A furnace component composed of an erosion resistant alloy , the erosion resistant alloy comprising a) 42.0 to 46.0 wt. % nickel (Ni); b) 32.1 to 35.2 wt. % chromium (Cr); c) 0.5 to 2.9 wt. % carbon (C); d) 0 to 2.0 wt. % titanium (Ti); e) 0 to 4.0 wt. % tungsten (W); 0 balance iron (Fe) , wherein the erosion resistant alloy comprises 1.0 wt. % or more of at least one of Ti and W.2. The furnace component of claim 1 , wherein the erosion resistant alloy comprises at least one strengthening mechanism claim 1 , the at least one strengthening mechanism comprising:(i) a carbides strengthening mechanism, wherein the erosion resistant alloy comprises carbides of at least one of titanium, tungsten, and chromium;{'sub': '3', '(ii) a gamma prime (γ′) strengthening mechanism, wherein the erosion resistant ...

Подробнее
12-01-2017 дата публикации

Brazing and soldering alloy wires

Номер: US20170008130A1
Принадлежит: Morgan Advanced Ceramics Inc

Brazing alloy wire formed from a composite comprising a sheath of at least one ductile first phase and a core comprising particles of a different composition to the sheath, in which: the sheath has an annealing temperature in degrees K the particles have a melting point at least 20% above the annealing temperature of the sheath the particles have a size distribution in which 25% by weight or less comprise particles less than 25 μm in size the particles are discrete

Подробнее
08-01-2015 дата публикации

ALLOY

Номер: US20150010428A1
Принадлежит:

A cobalt-nickel alloy composition comprising by weight: about 29 to 37 percent cobalt; about 29 to 37 percent nickel; about 10 to 16 percent chromium; about 4 to 6 percent aluminium; at least one of Nb, Ti and Ta; at least one of W, Ta and Nb; the cobalt and nickel being present in a ratio between about 0.9 and 1.1. 1. A cobalt-nickel alloy composition comprising by weight (wt):29.2 to 37 percent Co;29.2 to 37 percent Ni;10 to 16 percent Cr;4 to 6 percent Al;at least one of W, Nb, Ti and Ta;the Co and Ni being present in a ratio between about 0.9 and 1.1.2. An alloy according to claim 1 , wherein the Co and Ni are present in the ratio between 0.95 and 1.05.3. An alloy according to claim 1 , wherein the alloy comprises 5 to 10 wt % W.4. An alloy according to claim 3 , wherein the alloy comprises 9 to 10 wt % W.5. An alloy according to claim 3 , wherein the alloy comprises 6 to 6.5 wt % W.6. An alloy according to claim 3 , wherein the alloy further comprises one or more of Si or Mn in a respective amount up to 0.6 wt % of the alloy.7. An alloy according to claim 3 , wherein the alloy comprises Ti in an amount up to 1.0 wt % of the alloy.8. An alloy according to claim 3 , wherein the alloy comprises Nb in an amount up to 1.8 wt % of the alloy.9. An alloy according to claim 3 , wherein the alloy comprises Mo in an amount up to 5 wt % of the alloy.10. An alloy according to claim 3 , wherein the alloy further comprises Hf in an amount up to 0.5 wt % of the alloy.11. An alloy according to claim 3 , wherein the alloy further comprises C in an amount from 0.02 to 0.04 wt % of the alloy.12. An alloy according to claim 3 , wherein the alloy further comprises B in an amount from 0.015 to 0.035 wt % of the alloy.13. An alloy according to claim 3 , wherein the alloy further comprises Zr in an amount from 0.04 to 0.07 wt % of the alloy.14. An alloy according to claim 1 , wherein the alloy further comprises Fe in an amount up to 8.0 wt % of the alloy.15. An alloy according to claim ...

Подробнее
14-01-2016 дата публикации

Al-RICH HIGH-TEMPERATURE TiAl ALLOY

Номер: US20160010184A1
Принадлежит:

The present invention relates to a TiAl alloy for use at high temperatures which has aluminum and titanium as main constituents. The TiAl alloy has an aluminum content of greater than or equal to 50 at. % and a matrix of γ-TiAl and at least one phase of Al and Ti incorporated in the γ-TiAl matrix which is different from γ-TiAl, as well as depositions of oxides and/or carbides and/or silicides. In addition, the invention relates to a method for producing the alloy and to the use of the alloy for components of turbo-machines, in particular aircraft engines. 1. A TiAl alloy for use at high temperatures , wherein the alloy comprises aluminum and titanium as main constituents , has an aluminum content of greater than or equal to 50 at. % , and comprises a matrix of γ-TiAl and at least one phase of Al and Ti incorporated in the γ-TiAl matrix which is different from γ-TiAl and comprises Al and Ti , as well as depositions of oxides and/or carbides and/or silicides.2. The TiAl alloy of claim 1 , wherein the alloy comprises up to 75 at. % of aluminum.3. The TiAl alloy of claim 1 , wherein the alloy comprises up to 65 at. % of aluminum.4. The TiAl alloy of claim 1 , wherein the alloy comprises up to 60 at. % of aluminum.5. The TiAl alloy of claim 1 , wherein the γ-TiAl matrix occupies at least 50 vol. % of a microstructure of the alloy.6. The TiAl alloy of claim 1 , wherein the γ-TiAl matrix has a closed or net-like or globular structure.7. The TiAl alloy of claim 1 , wherein the phases of Al and Ti which are different from γ-TiAl comprise β-phase and/or one or more Al-rich intermetallic phases.8. The TiAl alloy of claim 7 , wherein the Al-rich intermetallic phases comprise at least one of AlTi and AlTi.9. The TiAl alloy of claim 1 , wherein the depositions comprise at least ZrOand/or YO.10. The TiAl alloy of claim 1 , wherein the alloy comprises one or more of Nb claim 1 , Mo claim 1 , W claim 1 , Co claim 1 , Cr claim 1 , V claim 1 , Zr claim 1 , Si claim 1 , C claim 1 , Er ...

Подробнее
11-01-2018 дата публикации

NICKEL-CHROMIUM-IRON ALLOYS WITH IMPROVED RESISTANCE TO STRESS CORROSION CRACKING IN NUCLEAR ENVIRONMENTS

Номер: US20180010222A1
Принадлежит:

A Ni—Cr—Fe alloy with improved resistance to stress corrosion cracking in nuclear environments, the alloy comprising 23-28 wt % Cr, 25-35 wt % Ni, <0.03 wt % C, <0.70 wt % Si, <1.0 wt % Mn, <0.015 wt % S, >0.35 wt % Ti, 0.15-0.45 wt % Al, <0.75 wt % Cu, and balance Fe and incidental impurities. The alloy may be used in steam generator tubing of a nuclear reactor. A method of producing an article includes: providing the alloy as disclosed herein; forming the alloy into the article by cold working the alloy to 20%; and heat treating the article. 1. A Ni—Cr—Fe alloy with improved resistance to stress corrosion cracking in nuclear environments , wherein the alloy has between about 23 and 28 wt % Cr.2. The alloy of claim 1 , wherein the alloy has between about 24 to 27 wt % Cr.3. The alloy of claim 1 , wherein the alloy has about 25 wt % Cr.4. The alloy of claim 1 , wherein the alloy has between about 25 and 35 wt % Ni.5. The alloy of claim 1 , wherein the alloy has between about 32 and 35 wt % Ni.6. The alloy of claim 1 , wherein the alloy has about 32 wt % Ni and about 25 wt % Cr.7. The alloy of claim 1 , wherein the alloy has about 25 wt % Ni and about 25 wt % Cr.8. The alloy of claim 1 , wherein the alloy has about 35 wt % Ni and about 25 wt % Cr.9. The alloy of claim 1 , wherein the alloy has about 32 wt % Ni and about 27 wt % Cr.10. The alloy of claim 1 , wherein the alloy has:<0.03 wt % C;<0.70 wt % Si;<1.0 wt % Mn;<0.015 wt % S;>0.35 wt % Ti;between 0.15 and 0.45 wt % Al;<0.75 wt % Cu;<0.03 wt % N;>12 Ti/C; andbalance substantially Fe and incidental impurities.11. Use of the alloy of in a nuclear reactor.12. Use of the alloy of in steam generator tubing of a nuclear reactor.13. A method of producing an article claim 1 , the method comprising:providing a Ni—Cr—Fe alloy with improved resistance to stress corrosion cracking in nuclear environments, wherein the alloy has between about 23 and 27 wt % Cr and between about 25 and 35 wt %;forming the alloy into the ...

Подробнее
14-01-2021 дата публикации

Iambda/4 TYPE RADIO WAVE ABSORBER

Номер: US20210010107A1
Принадлежит: Sekisui Chemical Co., Ltd.

The present invention aims to provide a λ/4 type radio wave absorber having excellent durability. Provided is a λ/4 type radio wave absorber including: a resistive film containing molybdenum; a resistive film; a dielectric layer; and a reflective layer, in the stated order. 1. A λ/4 type radio wave absorber comprising:a resistive film containing molybdenum;a dielectric layer; anda reflective layer, in the stated order.2. The λ/4 type radio wave absorber according to claim 1 ,wherein the resistive film comprises a barrier layer on at least one surface.3. The λ/4 type radio wave absorber according to claim 2 ,wherein the barrier layer has a thickness of 9 nm or less.4. The λ/4 type radio wave absorber according to claim 2 ,wherein the barrier layer contains an oxide or nitride of silicon, titanium, and copper.5. The λ/4 type radio wave absorber according to claim 1 ,wherein the resistive film further contains nickel and chromium.6. The λ/4 type radio wave absorber according to claim 5 ,wherein the resistive film contains molybdenum in an amount of 5% by weight or more, nickel in an amount of 40% by weight or more, and chromium in an amount of 1% by weight or more.7. The λ/4 type radio wave absorber according to claim 3 ,wherein the barrier layer contains an oxide or nitride of silicon, titanium, and copper.8. The λ/4 type radio wave absorber according to claim 2 ,wherein the resistive film further contains nickel and chromium.9. The λ/4 type radio wave absorber according to claim 3 ,wherein the resistive film further contains nickel and chromium.10. The λ/4 type radio wave absorber according to claim 7 ,wherein the resistive film further contains nickel and chromium.11. The λ/4 type radio wave absorber according to claim 4 ,wherein the resistive film further contains nickel and chromium.12. The λ/4 type radio wave absorber according to claim 8 ,wherein the resistive film contains molybdenum in an amount of 5% by weight or more, nickel in an amount of 40% by weight or ...

Подробнее
14-01-2021 дата публикации

HARD PARTICLES AND SINTERED SLIDING MEMBER USING THE SAME

Номер: US20210010112A1
Принадлежит:

The present disclosure provides hard particles having improved wear resistance and a sintered sliding member using the hard particles. The present disclosure relates to a hard particle consisting of: 1% to 7% by mass of La, 30% to 50% by mass of Mo, 10% to 30% by mass of Ni, 10% by mass or less of Mn, 1.0% by mass or less of C, with the balance being unavoidable impurities and Co, and to a sintered sliding member using the hard particles. 1. A hard particle consisting of: 1% to 7% by mass of La , 30% to 50% by mass of Mo , 10% to 30% by mass of Ni , 10% by mass or less of Mn , 1.0% by mass or less of C , with the balance being unavoidable impurities and Co.2. A sintered sliding member comprising:an iron-based base material; and{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the hard particles according to dispersed in the iron-based base material.'}3. The sintered sliding member according to claim 2 , wherein the sintered sliding member is a valve seat or a valve guide. The present application claims priority from Japanese patent application JP 2019-130219 filed on Jul. 12, 2019, the entire content of which is hereby incorporated by reference into this application.The present disclosure relates to hard particles, in particular, hard particles appropriate for improving wear resistance of a sintered sliding member, and to a sintered sliding member using the hard particles.In an automobile, sliding members are used for various equipment, such as an engine and a transmission. In such sliding members, a valve seat and a valve guide for an engine are exposed to a severely sliding environment, such as a high temperature and low oxidation environment caused in association with a recent improvement of engine performance, thereby being required to have high wear resistance.As the sintered sliding members, such as the valve seat and the valve guide, a sintered sliding member in which hard particles excellent in wear resistance are dispersed in an iron-based base material ...

Подробнее
10-01-2019 дата публикации

NICKEL-IRON-COBALT BASED ALLOYS AND ARTICLES AND METHODS FOR FORMING ARTICLES INCLUDING NICKEL-IRON-COBALT BASED ALLOYS

Номер: US20190010584A1
Принадлежит:

Nickel-iron-cobalt based alloys are disclosed having sufficient castability for centrifugal casting essentially free from casting defects, cracking, and microstructure variability, and coefficients of thermal expansion up to about 9×10/° C. for about 100-400° C. and increasing from about 400-500° C. to up to about 10×10/° C., or up to about 6×10/° C. between about 100-300° C. and increasing from about 300-500° C. to up to about 10×10/° C. Articles are disclosed including unitary cast structures free of internal welds, brazing, and bolting, essentially annular conformations, diameters of at least about 500 mm, cross-sectional wall areas of at least about 2,000 mm, and compositions including nickel-iron-cobalt based alloys. Methods for forming the articles are disclosed including rotating centrifugal molds with the compositions in molten states, forming the articles in near net shape. 1. A nickel-iron-cobalt based alloy , comprising , by weight:about 36.0-40.0% nickel;about 13.0-17.0% cobalt;about 2.0-2.8% niobium;about 0.5-1.15% aluminum;about 1.0-1.8% titanium;about 0.1-0.4% tantalum;up to about 0.5% silicon; anda balance of iron of about 36.0-45.0%, sufficient castability for centrifugal casting essentially free from casting defects, cracking, and microstructure variability; and', {'sup': −6', '−6, 'a coefficient of thermal expansion up to about 9×10/° C. for temperatures between about 100° C. to about 400° C., and increasing from about 400° C. to about 500° C. to up to about 10×10/° C.'}], 'wherein the nickel-iron-cobalt based alloy has2. The nickel-iron-cobalt based alloy of claim 1 , wherein the nickel-iron-cobalt alloy consists of claim 1 , by weight:about 36.0-40.0% nickel;about 13.0-17.0% cobalt;about 2.0-2.8% niobium;about 0.5-1.15% aluminum;about 1.0-1.8% titanium;about 0.1-0.4% tantalum;up to about 0.5% silicon;up to about 2% incidental impurities; andthe balance of iron of about 36.0-45.0%.3. A nickel-iron-cobalt based alloy claim 1 , comprising claim 1 , ...

Подробнее
10-01-2019 дата публикации

R-T-B-Ga-BASED MAGNET MATERIAL ALLOY AND METHOD OF PRODUCING THE SAME

Номер: US20190013122A1
Принадлежит:

Disclosed is an R-T-B—Ga-based magnet material ahoy where R is at least one element selected from rare earth metals including Y and excluding Gd, Tb, Dy, Ho, Er, TM, Yb, and Lu, and Tis one or more transition metals with Fe being an essential element. The R-T-B—Ga-based magnet material alloy includes: an RTB phase which is a principal phase, and an R-rich phase ( and ) which is a phase enriched with the R, wherein a non-crystalline phase in the R-rich phase has a Ga content (mass %) that is higher than a Ga content (mass %) of a crystalline phase in the R-rich phase. With this, it is possible to enhance the magnetic properties of rare earth magnets that are manufactured from the alloy and reduce variations in the magnetic properties thereof. 1. An R-T-B—Ga-based magnet material alloy (where R is at least one element selected from rare earth metals including Y and excluding Gd , Tb , Dy , Ho , Er , Tm , Yb , and Lu , and Tis one or more transition metals with Fe being n essential element) , the R-T-B—Ga-based magnet material alloy , comprising:{'sub': 2', '14, 'an RTB phase which is a principal phase; and'}an R-rich phase which is a phase enriched with the R, the R-rich phase including a on-crystalline phase and a crystalline phase, the non-crystalline phase having a Ga content in mass % that is higher than a Ga content in mass % of the crystalline phase.2. The R-T-B—Ga-based magnet material alloy according to claim 1 , wherein the R-T-B—Ga-based magnet material alloy has an average claim 1 , thickness in a range of 0.1 mm to 1.0 mm. The present invention relates to an alloy for use as a rare earth magnet material and a method of producing the same. More particularly, the present invention relates to an R-T-B—Ga-based magnet material alloy and a method of producing the same capable of enhancing the magnetic properties of rare earth magnets that are manufactured from the alloy and reducing variations in the magnetic properties thereof.R-T-B-based alloys, which exhibit ...

Подробнее
03-02-2022 дата публикации

CALCIUM, ALUMINUM AND SILICON ALLOY, AS WELL AS A PROCESS FOR THE PRODUCTION OF THE SAME

Номер: US20220033938A1
Принадлежит:

A calcium, aluminum, and silicon alloy is provided. The alloy includes about 15 to 45% calcium, 20 to 40% aluminum, and 20 to 40% silicon. 1. A calcium , aluminum , and silicon alloy comprising about 15 to 45% calcium , 20 to 40% aluminum , and 20 to 40% silicon.2. The calcium claim 1 , aluminum claim 1 , and silicon alloy according to claim 1 , wherein the calcium claim 1 , aluminum claim 1 , and silicon are chemically bonded.3. The calcium claim 2 , aluminum claim 2 , and silicon alloy according to claim 2 , wherein the alloy has a synergistic deoxidizing effect resulting from the chemical bonding between calcium claim 2 , aluminum claim 2 , and silicon.4. The calcium claim 1 , aluminum claim 1 , and silicon alloy according to claim 1 , wherein sources of calcium are virgin lime claim 1 , hydrated lime claim 1 , limestone claim 1 , and other calcium carbonates.5. The calcium claim 1 , aluminum claim 1 , and silicon alloy according to claim 1 , wherein sources of aluminum sources are bauxites and aluminum silicates.6. The calcium claim 1 , aluminum claim 1 , and silicon alloy according to claim 1 , wherein silicon sources are quartz claim 1 , quartzite claim 1 , and aluminum silicates.7. The calcium claim 1 , aluminum claim 1 , and silicon alloy according to claim 1 , wherein the alloy comprises small proportions of at least one of iron claim 1 , titanium claim 1 , or manganese.8. (canceled)9. The calcium claim 1 , aluminum claim 1 , and silicon alloy according to claim 1 , wherein sources of calcium claim 1 , aluminum claim 1 , and silicon are slag claim 1 , furnace filter powders claim 1 , and other alloys of calcium claim 1 , aluminum claim 1 , and silicon. The present application is a national phase entry of PCT/US2019/040514, filed on Jul. 3, 2019, which claims the benefit of priority of Brazilian Patent Application No. BR 10 2018 013644 5 filed on Jul. 3, 2018, the contents of which are incorporated herein by reference in their entirety for all purposes.The ...

Подробнее
03-02-2022 дата публикации

CONGRUENTLY MELTING HIGH PURITY TITANIUM ALLOY FOR OPTICAL MOUNTS, FLEXURES, AND STRUCTURAL ELEMENTS REQUIRING COMPLIANCE

Номер: US20220035123A1
Принадлежит:

A flexure including a bipod strut pair extending from a base and a titanium-zirconium-niobium alloy, which includes titanium, about 13.5 to about 14.5 wt. % zirconium, and about 18 to about 19 weight % (wt. %) niobium. The titanium-zirconium-niobium alloy has a congruent melting temperature of about 1750 to about 1800° Celsius (° C.). 1. A flexure comprising:a bipod strut pair extending from a base;wherein the flexure includes a titanium-zirconium-niobium alloy comprising titanium, about 13.5 to about 14.5 wt. % zirconium, and about 18 to about 19 weight % (wt. %) niobium, the titanium-zirconium-niobium alloy having a congruent melting temperature of about 1750 to about 1800° Celsius (° C.).2. The flexure of claim 1 , wherein the flexure is coupled to a support structure claim 1 , and the support structure is further coupled to one or more flexures.3. The flexure of claim 2 , wherein the support base is coupled to a mirror.4. The flexure of claim 1 , wherein the titanium-zirconium-niobium alloy has an elastic modulus of about 7 to about 12 Megapounds per square inch (Msi).5. The flexure of claim 1 , wherein the titanium-zirconium-niobium alloy has an elongation at break of about 8% to about 30%.6. The flexure of claim 1 , wherein the titanium-zirconium-niobium alloy has an ultimate strength of about 115 to about 120 Kilopounds per square inch (Ksi) claim 1 , and an elastic modulus of about 9.6 to about 9.7 Msi.7. A flexure comprising:a circular body; anda plurality of attachment arms arranged on the circular body to couple the flexure to an optical element;wherein the flexure includes a titanium-zirconium-niobium alloy comprising titanium, about 13.5 to about 14.5 wt. % zirconium, and about 18 to about 19 weight % (wt. %) niobium, the titanium-zirconium-niobium alloy having a congruent melting temperature of about 1750 to about 1800° C.8. The flexure of claim 7 , wherein the circular body of the flexure has a diameter of about 5 to about 8 inches.9. The flexure of ...

Подробнее
21-01-2016 дата публикации

MULTICALORIC MnNiSi ALLOYS

Номер: US20160017462A1

A multicaloric alloy material combines two isostructural compounds, the first compound being MnNiSi and the second compound being either MnFeGe or CoFeGe, each such compound having extremely different magnetic and thermo-structural properties. The resulting alloy material (MnNiSi) 1-x (MnFeGe) x or (MnNiSi) 1-x (CoFeGe) x possesses extraordinary magnetocaloric and/or barocaloric properties with an acute sensitivity to applied pressure and no appreciable magnetic hysteresis losses.

Подробнее
16-01-2020 дата публикации

Coated steel sheet

Номер: US20200017937A1
Автор: Takuya Mitsunobu
Принадлежит: Nippon Steel Corp

A coated steel sheet including a steel sheet and a coating layer provided on at least part of the surface of the steel sheet, in which the coating layer has a predetermined chemical composition in terms of % by mass; in which the coating layer has a laminar Mg2Sn phase-containing structure in an area fraction of from 5 to 65%, and a structure containing a solid solution of Zn and Al; and the laminar Mg2Sn phase-containing structure is a structure constituted with a Zn phase and a laminar Mg2Sn phase having a thickness of less than 1 μm, and in which the laminar Mg2Sn phase exists dividing the Zn phase into plural regions.

Подробнее
19-01-2017 дата публикации

BCC METAL HYDRIDE ALLOYS FOR ELECTROCHEMICAL APPLICATIONS

Номер: US20170018769A1
Принадлежит:

BCC metal hydride alloys historically have limited electrochemical capabilities. Provided are a new examples of these alloys useful as electrode active materials. BCC metal hydride alloys provided include a disordered structure that is formed of a BCC primary phase and three or more electrochemically active secondary phases that are induced to create structural disorder in the system. The structurally disordered hydrogen storage alloys possess unexpectedly superior electrochemical characteristics relative to compositionally similar materials. 1. A structurally disordered hydrogen storage alloy capable of reversibly charging and discharging hydrogen electrochemically , said alloy comprising:a primary phase and three or more electrochemically active secondary phases, said primary phase having a crystal structure of BCC, said secondary phases creating structural disorder in said alloy.2. The alloy of wherein said wherein said alloy has an electrochemical discharge capacity of 350 milliAmperehours per gram or greater at a discharge rate of 100 milliAmperehours per gram.3. The alloy of wherein one or more of said secondary phases is a C14 claim 1 , TiNi claim 1 , or TiNi phase.4. The alloy of wherein one of said secondary phases is an electrochemically active TiNi secondary phase.5. The alloy of wherein said TiNi secondary phase is present at 2 weight percent or greater relative phase abundance.6. The alloy of comprising four electrochemically active phases.7. The alloy of comprising an electrochemically active TiNi secondary phase.8. The alloy of comprising greater than 50 weight percent BCC phase.9. The alloy of with an elemental composition of Formula I:{'br': None, 'sub': w', 'x', 'y', 'z, 'TiVCrM\u2003\u2003(I)'}where w+x+y+z=1, 0.1≦w≦0.6, 0.1≦x≦0.6, 0.01≦y≦0.6, and M is selected from the group consisting of B, Al, Si, Sn and transition metals.10. The alloy of having an electrochemical discharge capacity of 350 milliAmperehours per gram or greater at a discharge ...

Подробнее
17-01-2019 дата публикации

THERMOELECTRIC MATERIAL AND PRODUCTION METHOD THEREFOR

Номер: US20190019935A1
Принадлежит: Hitachi, Ltd.

A thermoelectric material includes the crystal grains of a primary phase silicide and a secondary phase silicide. The average grain sizes of the primary phase silicide and the secondary phase silicide are larger than 0 nm and equal or smaller than 100 nm. The primary phase silicide includes: one kind of elements selected from Mn elements, Fe elements, and Cr elements; and Si elements, or one kind of elements selected from Mn elements, Fe elements and Cr elements; Si elements; and one or more kinds of elements selected from Al elements, Ga elements, and In elements. The secondary phase silicide includes: one kind of elements selected from Mn elements, Fe elements, and Cr elements; Si elements; and one or more kinds of metal elements selected from Al elements, Ga elements, and In elements. The crystal grains of the primary phase silicide and the secondary phase silicide are respectively oriented. 1. A thermoelectric material comprising:the crystal grains of a primary phase silicide; andthe crystal grains of a secondary phase silicide,wherein the primary phase silicide includes: one kind of transition metal elements selected from an element group composed of Mn elements, Fe elements, and Cr elements; and Si elements, or one kind of transition metal elements selected from an element group composed of Mn elements, Fe elements, and Cr elements; Si elements; and one or more kinds of metal elements selected from an element group composed of Al elements, Ga elements, and In elements, andthe secondary phase silicide includes: one kind of transition metal elements selected from an element group composed of Mn elements, Fe elements, and Cr elements; Si elements; and one or more kinds of metal elements selected from an element group composed of Al elements, Ga elements, and In elements,wherein the average grain sizes of the primary phase silicide and the secondary phase silicide are larger than 0 nm and equal to or smaller than 100 nm respectively, andthe crystal grains of the ...

Подробнее
26-01-2017 дата публикации

HIGH TEMPERATURE NICKEL-BASE SUPERALLOY FOR USE IN POWDER BASED MANUFACTURING PROCESS

Номер: US20170021415A1
Принадлежит: ANSALDO ENERGIA IP UK LIMITED

The application relates to the technology of producing three-dimensional articles by means of powder-based additive manufacturing, such as selective laser melting or electron beam melting. Especially, it refers to a Nickel-base superalloy powder on basis of Hastelloy X consisting of the following chemical composition: 20.5-23.0 Cr, 17.0-20.0 Fe, 8.0-10.0 Mo, 0.50-2.50 Co, 0.20-1.00 W, 0.04-0.10 C, 0-0.5 Si, 0-0.5 Mn, 0-0.008 B, remainder Ni and unavoidable residual elements and wherein the powder has a powder size distribution between 10 and 100 μm and a spherical morphology and the ratio of the content of alloying elements C/B is at least 5 or more. 1. Nickel-base superalloy powder for additive manufacturing of three-dimensional articles consisting of the following chemical composition (in wt.-%): 20.5-23.0 Cr , 17.0-20.0 Fe , 8.0-10.0 Mo , 0.50-2.50 Co , 0.20-1.00 W , 0.04-0.10 C , 0-0.5 Si , 0-0.5 Mn , 0-0.008 B , remainder Ni and unavoidable residual elements and wherein the powder has a powder size distribution between 10 and 100 μm and a spherical morphology and the ratio of a content (in wt.-%) of alloying elements C/B is at least 5 or more.2. Nickel-base superalloy powder according to claim 1 , wherein the C content of the powder is 0.05-0.09 wt.%.3. Nickel-base superalloy powder according to claim 2 , wherein the C content is 0.05-0.08 wt.-%.4. Nickel-base superalloy powder according to claim 1 , wherein the Si content is max. 0.2 wt.-%.5. Nickel-base superalloy powder according to claim 4 , wherein the Si content is max. 0.1 wt.-%.6. Nickel-base superalloy powder according to claim 1 , wherein the Mn content is max. 0.3 wt.-%.7. Nickel-base superalloy powder according to claim 6 , wherein the Mn content is max.0.1 wt.-%.8. Nickel-base superalloy powder according to claim 1 , wherein the B content is 0.002-0.008 wt.-%.9. Nickel-base superalloy powder according to claim 1 , wherein the B content is 5. 0.007 wt.-%.10. Nickel-base superalloy powder according ...

Подробнее
25-01-2018 дата публикации

Nickel based alloy with high melting range suitable for brazing super austenitic steel

Номер: US20180021894A1
Автор: Owe Mårs, Ulrika Persson
Принадлежит: HOGANAS AB

The invention discloses a nickel based brazing filler metal in form of an alloy containing or consisting of between 20 wt % and 35 wt % chromium, between 7 wt % and 15 wt % iron and between 2.5 wt % and 9 wt % silicon, between 0 wt % and 15 wt % molybdenum, unavoidable impurities and the balance being nickel. The solidus temperature of the brazing filler shall be between 1140° C. and 1240° C. The brazing filler metal is suitable for production of catalytic converters and heat exchangers. The invention also discloses a brazing method.

Подробнее
28-01-2016 дата публикации

LAVES PHASE-RELATED BCC METAL HYDRIDE ALLOYS FOR ELECTROCHEMICAL APPLICATIONS

Номер: US20160024620A1
Принадлежит:

Laves phase-related BCC metal hydride alloys historically have limited electrochemical capabilities. Provided are a new examples of these alloys useful as electrode active materials. Alloys include a composition defined by Formula I: TiVCrM(I) where w+x+y+z=1, 0.1≦w≦0.6, 0.1≦x≦0.6, 0.01≦y≦0.6 and M is selected from the group consisting of B, Al, Si, Sn and one or more transition metals that achieve discharge capacities of 350 mAh/g or greater for cycles of 10 or more. 2. The alloy of having a capacity of 400 milliamperes per gram or greater.3. The alloy of having a capacity of 420 milliamperes per gram or greater.4. The alloy of comprising less than 24% C14 phase.5. The alloy of wherein said metal hydride alloy is predominantly a combination of BCC phase and Laves phase claim 1 , said BCC phase in abundance of greater than 5% and less than 95% claim 1 , said Laves phase in abundance of greater than 5% and less than 95%.6. The alloy of comprising a BCC phase crystallite size of less than 400 angstroms.7. The alloy of comprising a BCC phase crystallite size of less than 200 angstroms.8. The alloy of comprising a B/A ratio of 1.20 to 1.31.9. The alloy of where x/y is from 1 to 3.11. The alloy of where x is 2 claim 10 , 4 claim 10 , 6 claim 10 , 8 claim 10 , 10 or 12.12. The alloy of where x is 2 or 4. This invention was made with government support under contract no. DE-FOA-0000869 and control no. 0869-1630 awarded by United States Department of Energy. The government has certain rights in the invention.This invention relates to alloy materials and methods for their fabrication. In particular, the invention relates to metal hydride alloy materials that are capable of absorbing and desorbing hydrogen. Activated metal hydride alloys with a laves phase-related body centered cubic (BCC) structure are provided that have unique electrochemical properties including high capacity for use in electrochemical applications.Certain metal hydride (MH) alloy materials are capable of ...

Подробнее
24-01-2019 дата публикации

NICKEL-IRON-ALUMINUM-CHROMIUM BASED ALLOYS, AND PRODUCTS MADE THEREFROM

Номер: US20190024225A1
Принадлежит:

The present disclosure relates to new nickel-iron-aluminum-chromium based alloys. Generally, the new alloys contain 20-40 at. % Ni, 15-40 at. % Fe, 5-20 at % Al, and 5-26 at. % Cr, the balance being optional incidental elements and unavoidable impurities. Generally, methods for producing the new alloys include one or more of heating a mixture above its liquidus temperature, then cooling the mixture below its solidus temperature, optionally hot and/or cold working the solid material into a final product form, then heating and quenching the solid material, and precipitation hardening the solid material. 1. A method comprising: (i) 20-40 at. % Ni;', '(ii) 15-40 at. % Fe;', '(iii) 5-20 at % Al; and', '(iv) 5-26 at. % Cr;, '(a) heating a mixture above its liquidus temperature, wherein the mixture comprises(b) cooling the mixture below its solidus temperature, thereby forming a solid material having a mixed fcc+bcc crystalline structure, wherein the mixture includes a sufficient amount of the Ni, the Fe, the Al and the Cr to realize the mixed fcc+bcc crystalline structure;(c) optionally hot and/or cold working the solid material into a final product form;(d) heating the solid material, thereby dissolving at least some second phase particles within the solid material;(e) quenching the solid material; and(f) precipitation hardening the solid material, thereby forming precipitates within the mixed fcc+bcc crystalline structure of the solid material.2. The method of claim 1 , wherein the mixture comprises 60-77 at. % Ni+Fe.3. The method of claim 2 , wherein the mixture comprises 23-40 at. % Al+Cr.4. The method of claim 3 , wherein the mixture includes 27.5-40 at. % Ni.5. The method of claim 4 , wherein the mixture includes 25-40 at. % Fe.6. The method of claim 5 , wherein the mixture includes at least 12 at. % Cr.7. The method of claim 6 , wherein the mixture includes not greater than 16 at. % Al.8. The method of claim 1 , wherein the balance of the solid material is optional ...

Подробнее
23-01-2020 дата публикации

MM'X-Y METAL COMPOSITE FUNCTIONAL MATERIAL AND PREPARATION METHOD THEREOF

Номер: US20200024693A1
Автор: LONG Kewen, Tao Kun, Zhang Hu
Принадлежит:

An MM′X—Y metal composite functional material and a preparation method thereof; an MM′X—Y metal composite functional material, comprising the following components in percentage by volume: A% of MM′Xand B% of Y, wherein each of M and M′ is any one element of a transition group or an alloy of more than one element, X is any one element of IIIA group or IVA group or an alloy of more than one element, and Y is any one element of IB group, IIB group, IIA group or IVA group, or an alloy of more than one element, wherein the value range of a, b and c is 0.8-1.2, and the sum of A% and B% is 100%; the material is prepared through smelting, annealing, crushing, mixing, pressing and curing, etc.; the mechanical performance of the MM′X—Y metal composite functional material prepared according to the present invention is far higher than the traditional MM′X material; the prepared MM′X—Y metal composite functional material has an ideal magnetothermal effect, thus can be used as a magnetic refrigeration material; the method can prepare MM′X—Y metal composite functional materials with any size and shape according to actual requirements; the method is simple, and can be easily operated and realized. 1. An MM′X—Y metal composite functional material , comprising the following components in percentage by volume:{'sub': a', 'b', 'c, 'A% of MM′Xand B% of Y, wherein'}each of M and M′ is any one element of a transition group or an alloy of more than one element, X is any one element of IIIA group or IVA group or an alloy of more than one element, and Y is any one element of IB group, IIB group, IIA group or IVA group, or an alloy of more than one element, wherein the value range of a, b and c is 0.8-1.2, and the sum of A% and B% is 100%.2. The MM′X—Y metal composite functional material of claim 1 , wherein A% is 50%-95% claim 1 , and B% is 5%-50%.3. The MM′X—Y metal composite functional material of claim 1 , wherein A% is 60%-90% claim 1 , and B% is 10%-40%.4. A preparation method of the MM ...

Подробнее
23-01-2020 дата публикации

THERMOELECTRIC COMPOSITIONS AND METHODS OF FABRICATING HIGH THERMOELECTRIC PERFORMANCE MgAgSb-BASED MATERIALS

Номер: US20200024701A1
Принадлежит: UNIVERSITY OF HOUSTON SYSTEM

Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications. 1. A method of manufacturing a thermoelectric material comprising:ball-milling a plurality of components to form at least one powder;forming a pressed component by hot-pressing the at least one powder; andannealing the pressed component, wherein the pressed component comprises a ZT value of at least 0.85 at room temperature.2. The method of claim 1 , wherein a first component of the plurality of components comprises magnesium (Mg) claim 1 , silver (Ag) claim 1 , antimony (Sb) claim 1 , copper (Cu) claim 1 , or nickel (Ni) claim 1 , wherein a second component of the plurality of components is one of magnesium (Mg) claim 1 , silver (Ag) claim 1 , antimony (Sb) claim 1 , copper (Cu) claim 1 , or nickel (Ni) claim 1 , and wherein the second component is not the same as the first component.3. The method of claim 1 , wherein a third component of the plurality of components comprises magnesium (Mg) claim 1 , silver (Ag) claim 1 , antimony (Sb) claim 1 , copper (Cu) claim 1 , or nickel (Ni) claim 1 , wherein the third component different than the first component and the second component claim 1 , wherein a fourth component of the plurality of components magnesium (Mg) claim 1 , silver (Ag) claim 1 , antimony (Sb) claim 1 , copper (Cu) claim 1 , chromium (Cr) claim 1 , zinc (Zn) claim 1 , or nickel (Ni) claim 1 , and wherein the fourth component different than the first component claim 1 , the second component claim 1 , and the third component.4. The method of claim 1 , wherein hot-pressing the powder comprises holding the second mixture at a temperature from about 125° C. to about 300° C. for a period of about 0.5 minutes to about 20 ...

Подробнее
23-01-2020 дата публикации

NICKEL AND CHROME BASED IRON ALLOY HAVING ENHANCED HIGH TEMPERATURE OXIDATION RESISTANCE

Номер: US20200024703A1
Принадлежит:

A nickel- and chrome-rich highly heat-resistant, austenitic iron based alloy. The alloy exhibits an improved fine dendritic carbide structure and can withstand repeated thermal elongation and strain which is particularly important for an exhaust-gas turbocharger component exposed to exhaust gas flow, such as a turbine housing. The alloy also guarantees very good thermo-mechanical fatigue (TMF) loading performance. A thermal cracking problem of the component is significantly reduced. The alloy is influenced by the relationship between the elements nickel, niobium, cerium and vanadium. The invention further concerns a method for prevention of crack formation and for minimizing oxidization in a turbocharger turbine housing. 1. An iron-based alloy having an austenitic base structure comprising a carbide structure , consisting of the following elements;C: 0.3 to 0.6% by weight,Cr: 24 to 27% by weight,Mn: up to and including 2.0% by weight,Si: 1.5 to 2.4% by weight,Nb: 0.7 to 1.0% by weight,Ni: 27.5 to 30% by weight,V: 0.4-0.6% by weight,N: 0.05-0.25% by weight,Ce: up to 0.4Mn: up to 2.0Al: up to 0.7B: up to 0.05Fe: balance to make 100% by weight.2. The iron-based alloy as claimed in claim 1 , wherein the nitrogen content is from 0.08-0.12% by weight.3. The iron-based alloy as claimed in claim 1 , wherein the nitrogen content is from 0.1-0.2% by weight.4. An iron-based alloy having an austenitic base structure comprising a carbide structure claim 1 , consisting of the following elements;C: 0.3 to 0.6% by weight,Cr: 24 to 27% by weight,Mn: up to and including 2.0% by weight,Si: 1.5 to 2.4% by weight,Nb: 0.7 to 1.0% by weight,Ni: 27.5 to 30% by weight,V: 0.4-0.6% by weight,N: 0.08-2.0% by weight,Ce: up to 0.4Mn: up to 2.0Al: up to 0.7B: up to 0.05Fe: balance to make 100% by weight.5. The iron-based alloy as claimed in claim 1 , wherein iron-based alloy is substantially free of sigma phases.6. An exhaust gas turbocharger having an exhaust gas turbine of which the housing is ...

Подробнее
24-01-2019 дата публикации

Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME

Номер: US20190027283A1
Принадлежит: TODA KOGYO CORP.

A Mn—Bi-based magnetic powder, which contains a hexagonal Mn—Bi-based magnetic phase containing Sn and has a Sn content of 0.2 to 5 at % with respect to a sum of Mn, Bi and Sn, is provided. In addition, a bond magnet containing a kneaded product of this Mn—Bi-based magnetic powder with a resin binder is provided. Furthermore, a Mn—Bi-based metal magnet, which contains a hexagonal Mn—Bi-based magnetic phase containing Sn and has a Sn content of 0.2 to 5 at % with respect to a sum of Mn, Bi and Sn, is provided. 1. A Mn—Bi-based magnetic powder comprising a hexagonal Mn—Bi-based magnetic phase containing Sn , whereina content of Sn is 0.2 to 5 at % with respect to a sum of Mn, Bi and Sn.2. The Mn—Bi-based magnetic powder according to claim 1 , wherein the hexagonal Mn—Bi-based magnetic phase contains Zn claim 1 , anda total content of Sn and Zn is 5 at % or less with respect to a sum of Mn, Bi, Sn and Zn.3. A method for producing a Mn—Bi-based magnetic powder claim 1 , the method comprising a step of generating a hexagonal Mn—Bi-based magnetic phase containing Sn by heating an alloy containing Mn claim 1 , Bi and Sn and obtaining a Mn—Bi-based magnetic powder having a Sn content of 0.2 to 5 at % with respect to a sum of Mn claim 1 , Bi and Sn.4. The method for producing a Mn—Bi-based magnetic powder according to claim 3 , wherein the alloy is heated in an inert atmosphere.5. The method for producing a Mn—Bi-based magnetic powder according to claim 3 , wherein the alloy is an alloy powder and the Mn—Bi-based magnetic powder having a total content of Sn and Zn of 5 at % or less with respect to a sum of Mn claim 3 , Bi claim 3 , Sn and Zn is obtained by mixing the alloy powder with a Zn powder claim 3 , heating a mixed powder containing the alloy powder and the Zn powder claim 3 , and generating a hexagonal Mn—Bi-based magnetic phase containing Sn and Zn.6. The method for producing a Mn—Bi-based magnetic powder according to claim 5 , wherein the mixed powder is heated in ...

Подробнее
29-01-2015 дата публикации

COATING SYSTEM WITH NICOCRALY DOUBLE PROTECTIVE COATING HAVING DIFFERING CHROMIUM CONTENT AND ALLOY

Номер: US20150030876A1
Автор: Stamm Werner
Принадлежит:

By using a two-layer NiCoCraly coating, the formation of cracks in a thermally grown oxide coating, such as is formed on the basis of the protective effect of the NiCoCraly coating, can be reduced. 1. A layer system , which comprises:a substrate;a two-layered NiCoCrAlY layer on the substrate and comprising:a bottom NiCoCrAlY layer toward the substrate and an outer NiCoCrAlY layer on the bottom layer;a chromium (Cr) content of the bottom NiCoCrAlY layer is lower, than a chromium (Cr) content of the outer NiCoCrAlY layer; anda cobalt (Co) content of the bottom NiCoCrAlY layer is the same as or approximately the same as cobalt (Co) content of the outer NiCoCrAlY layer.2. (canceled)3. The layer system as claimed in claim 1 , in which the difference in the content of chromium (Cr) of the bottom layer is less 3% by weight to 13% by weight than in the content of chromium of the top layer.4. The layer system as claimed in claim 1 , wherein an aluminum (Al) content of the bottom NiCoCrAlY layer is the same as or approximately the same as an aluminum (Al) content of the outer NiCoCrAlY layer.5. The layer system as claimed in claim 1 , wherein an yttrium (Y) content of the bottom NiCoCrAlY layer is the same as or approximately the same as an yttrium (Y) content of the outer NiCoCrAlY layer.6. The layer system as claimed in claim 1 , consisting of: the bottom NiCoCrAlY layer has a composition (in % by weight):cobalt (Co): 22%-26%,chromium (Cr): 11%-16%,aluminum (Al): 10.5%-12.0%,yttrium (Y): 0.2%-0.6%, andnickel.7. The layer system as claimed in claim 1 , consisting of: the top NiCoCrAlY layer has a composition (in % by weight):cobalt (Co): 22%-26%,chromium (Cr): 23%-25%,aluminum (Al): 10.5%-12.0%,yttrium (Y): 0.2%-0.6%, andnickel.8. The layer system as claimed in claim 1 , which has no gradients in the chromium (Cr) content in the outer NiCoCrAlY layer claim 1 ,9. The layer system as claimed in claim 1 , further comprising a thermally grown oxide layer is formed or is present ...

Подробнее
01-02-2018 дата публикации

Two stage melting and casting system and method

Номер: US20180029110A1
Принадлежит: Arconic Inc

A system for two stage casting of a metal alloy is disclosed that dispenses multiple feedstock metals into an arc melting crucible via a pressurized inert gas or metal vapor chamber to lower the volatilization rate of metals in an arc melting crucible at a rate proportional to the composition of the final desired alloy. The melt from the melting crucible enters a second stage cold wall crucible through a passage, where the melt cools and solidifies. A casting piston is used to slowly and progressively withdraw the solidified alloy from the cold wall crucible as it cools.

Подробнее
02-02-2017 дата публикации

Method for manufacturing a strip having a variable thickness and associated strip

Номер: US20170029918A1
Принадлежит: Aperam SA

A method for manufacturing a strip having a variable thickness along its length, comprising the steps: an initial strip of constant thickness is provided; homogeneous cold rolling of the initial strip along its length in order to obtain an intermediate strip of constant thickness along the rolling direction; flexible cold rolling of the intermediate strip along its length in order to obtain a variable thickness strip, having, along its length, first areas with a first thickness (e+s) and second areas with a second thickness (e), less than the first thickness (e+s), continuous annealing of the strip. The plastic deformation ratio generated, after an optional intermediate recrystallization annealing, by the homogeneous cold rolling and the flexible cold rolling steps in the first areas is greater than or equal to 30%.

Подробнее
17-02-2022 дата публикации

METAL ALLOYS FOR MEDICAL DEVICES

Номер: US20220047782A1
Автор: Patel Udayan, Roth Noah
Принадлежит:

A medical device and a method and process for at least partially forming a medical device, which medical device has improved physical properties. 130-. (canceled)31. A method for forming a medical device comprising the steps of:a) providing a metal alloy; said metal alloy including at least about 55 wt. % of a solid solution of rhenium and molybdenum alloy; said metal alloy including at least about 20 wt. % rhenium and at least about 20 wt. % molybdenum; said metal alloy including about 0.01-35 wt. % of an additional metal additive; said additional metal additive includes i) one or more metals selected from the group consisting of hafnium and technetium, or ii) two or more different metals selected from the group consisting of hafnium, osmium, technetium, vanadium, and titanium; and,b) forming said metal alloy so as to form at least a portion of said medical device.32. The method as defined in claim 31 , wherein said metal alloy is in the form of a rod or tube claim 31 , and further including the steps of:drawing down said outer cross-sectional area of said rod or tube by a reducing mechanism;annealing said rod or tube at an annealing temperature in an oxygen reducing environment or inert environment after said rod or tube has been drawn down; and,cooling said annealed rod or tube.33. The method as defined in claim 31 , wherein said additional additive includes hafnium claim 31 , or technetium.34. The method as defined in claim 31 , wherein said metal alloy has a controlled amount of nitrogen claim 31 , oxygen and carbon so as to reduce micro-cracking in said metal alloy claim 31 , a nitrogen content in said metal alloy is less than a combined content of oxygen and carbon in said metal alloy claim 31 , said metal alloy has an oxygen to nitrogen atomic ratio of at least about 1.2:1 claim 31 , said metal alloy has a carbon to nitrogen atomic ratio of at least about 2:1.35. The method as defined in claim 31 , wherein said metal alloy includes less than about 0.2 wt. % ...

Подробнее
17-02-2022 дата публикации

ALLOY COMPOSITION, METHOD FOR PRODUCING ALLOY COMPOSITION, AND DIE

Номер: US20220049329A1
Принадлежит:

An object is to provide an alloy composition that has a sufficient melting point for casting of an aluminum alloy, also has high hardness, and can suppress an occurrence of galling. The alloy composition of the present invention includes: a Mo—Cr-based dendritic structure ; and a Ni—Al-based interdendritic structure that fills a periphery of the Mo—Cr-based dendritic structure . The alloy composition of the present invention can adopt a chemical composition I in which when Mo+Cr+Ni+Al=100 at. % holds, Ni+Al=15 to 50 at. % and Mo+Cr=50 to 85 at. % hold; or a chemical composition II in which Ni+Al=40 to 70 at. % and Mo+Cr=30 to 60 at. % hold. 1. An alloy composition comprising:a Mo—Cr-based dendritic structure; anda Ni—Al-based interdendritic structure that fills a periphery of the Mo—Cr-based dendritic structure, whereinwhen Mo+Cr+Ni+Al=100 at. % holds,Ni+Al=15 to 50 at. %, and Mo+Cr=50 to 85 at. % hold.2. An alloy composition comprising:a Mo—Cr-based dendritic structure; anda Ni—Al-based interdendritic structure that fills a periphery of the Mo—Cr-based dendritic structure, whereinwhen Mo+Cr+Ni+Al=100 at. % holds,Ni+Al=40 to 70 at. %, and Mo+Cr=30 to 60 at. % hold.3. The alloy composition according to claim 1 , whereina percentage of an area of the dendritic structure, which the Mo—Cr-based dendritic structure occupies in the whole of the structures, is 50 to 85%.4. The alloy composition according to claim 2 , whereina percentage of an area of the dendritic structure, which the Mo—Cr-based dendritic structure occupies in the whole of the structures, is 50 to 65%.5. The alloy composition according to claim 1 , wherein Ni+Al=40 to 50 at. % claim 1 , and Mo+Cr=50 to 60 at. % hold.6. The alloy composition according to claim 1 , whereina region where a Cr/Mo ratio is different exists in the Mo—Cr-based dendritic structure.7. The alloy composition according to claim 6 , whereinthe Cr/Mo ratio in the Mo—Cr-based dendritic structure is high in an edge portion of a dendrite ...

Подробнее
30-01-2020 дата публикации

NOVEL HIGH-ENTROPY ALLOY COMPOSITIONS

Номер: US20200030922A1
Принадлежит:

Novel high-entropy alloy (HEA) compositions are particularly suited to welding applications. The mixtures contain at least the elements nickel, manganese, cobalt, chromium, vanadium, molybdenum, and iron. The % weight of the constituents varies in accordance with the detailed description contained herein, with tolerances in the range of +/−2% and, in some cases, +/−1%. The mixture may also contain a small amount of aluminum with a tolerance in the range of +/−1% or, more preferably, +/−0.5% In accordance with the invention, the compositions above may be integrated into HEA welding products using cored wire and welding electrode manufacturing techniques, preferably starting with vacuum melted rolled alloys. One manufacturing process uses the compositions as an alloyed strip formed around the appropriate ground/crushed alloys to make commercially viable fabricated welding products. 1. A high-entropy alloy for welding applications , comprising: nickel,', 'manganese,', 'cobalt,', 'chromium,', 'vanadium,', 'molybdenum, and', 'iron., 'a mixture containing at least the following elements6. The high-entropy alloy of claim 1 , further including 0.11 to 0.12% aluminum with a tolerance in the range of +/−05%:12. The high-entropy alloy of claim 1 , wherein the welding product is fabricated using a cored-wire manufacturing process.13. The high-entropy alloy of claim 12 , wherein the cored-wire manufacturing process comprises an alloyed strip formed around the high-entropy alloy in ground or crushed form. This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/703,047, filed Jul. 25, 2019, the entire content of which is incorporated herein by reference.This invention relates generally to high-entropy alloys and, more particularly, to novel alloy compositions applicable to welding and other uses.There is no universally agreed-upon definition of a “high-entropy alloy” or HEA. Basically, a HEA is an alloy with multiple elements (typically 5 or more) ...

Подробнее
04-02-2016 дата публикации

TUNGSTEN GATES FOR NON-PLANAR TRANSISTORS

Номер: US20160035724A1
Принадлежит: Intel Corporation

The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of gates within non-planar NMOS transistors, wherein an NMOS work-function material, such as a composition of aluminum, titanium, and carbon, may be used in conjunction with a titanium-containing gate fill barrier to facilitate the use of a tungsten-containing conductive material in the formation of a gate electrode of the non-planar NMOS transistor gate. 1. A device , comprising:a substrate, wherein the substrate comprises a silicon fin;a first dielectric layer on the substrate, wherein the first dielectric layer comprises silicon and oxygen;a second dielectric layer on the first dielectric layer, wherein the second dielectric layer comprises hafnium and oxygen;a pair of gate spacers on the substrate, wherein the gate spacers comprise a dielectric material; a first metal layer proximate the pair of gate spacers and above the second dielectric layer, wherein the first metal layer comprises aluminum, titanium and carbon;', 'a second metal layer on the first metal layer, wherein the second metal layer comprises titanium and nitrogen;, 'an NMOS metal gate electrode above the second dielectric material and between the pair of gate spacers, wherein the NMOS metal gate electrode comprisesa source region proximate to one of the pair of gate spacers, and a drain region proximate the other one of the pair of gate spacers, wherein the source region and the drain region comprise an n-type dopant;a first contact coupled to the source region, wherein the first contact comprises a tungsten material above a first barrier layer; anda second contact coupled to the drain region, wherein the second contact comprises a tungsten material above a second barrier layer.2. The device of claim 1 , wherein the NMOS metal gate electrode is non-planar.3. The device of claim 1 , wherein the NMOS work function material ...

Подробнее
04-02-2016 дата публикации

TUNGSTEN GATES FOR NON-PLANAR TRANSISTORS

Номер: US20160035725A1
Принадлежит: Intel Corporation

The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of gates within non-planar NMOS transistors, wherein an NMOS work-function material, such as a composition of aluminum, titanium, and carbon, may be used in conjunction with a titanium-containing gate fill barrier to facilitate the use of a tungsten-containing conductive material in the formation of a gate electrode of the non-planar NMOS transistor gate. 1. A device , comprising:a substrate, wherein the substrate comprises a silicon fin;a first dielectric layer on the substrate, wherein the first dielectric layer comprises silicon and oxygen;a second dielectric layer on the first dielectric layer, wherein the second dielectric layer comprises hafnium and oxygen;a pair of gate spacers on the substrate, wherein the gate spacers comprise a dielectric material; a first metal layer proximate the pair of gate spacers and above the second dielectric layer, wherein the first metal layer comprises titanium and nitrogen; and', 'a second metal layer on the first metal layer, wherein the second metal layer comprises tungsten;, 'an NMOS metal gate electrode above the second dielectric layer and between the pair of gate spacers, wherein the NMOS metal gate electrode comprisesa source region proximate to one of the pair of gate spacers, and a drain region proximate the other one of the pair of gate spacers, wherein the source region and the drain region comprise an n-type dopant;a first contact coupled to the source region, wherein the first contact comprises a tungsten material above a first barrier layer; anda second contact coupled to the drain region, wherein the second contact comprises a tungsten material above a second barrier layer.2. The device of claim 1 , wherein the NMOS metal gate electrode is non-planar.3. The device of claim 1 , wherein the NMOS work function material comprises between ...

Подробнее
04-02-2021 дата публикации

Cobalt Based Platinum-Containing Noble Dental Alloys

Номер: US20210032729A1
Автор: Cascone Paul
Принадлежит: The Argen Corporation

A family of cobalt based dental alloys suitable for PFM and SLM applications that do not exhibit ferromagnetism and that are capable of meeting the ADA requirements for a “noble” alloy are provided. The dental alloys comprise at least 25 wt. % of noble metals selected from either platinum alone or a combination of platinum and ruthenium, and from 23 to 32 wt. % chromium. Additional additive materials may be included in concentrations up to 3 wt. %. The ruthenium optionally comprises up to 8 wt. %, and in some embodiments from at least 5 wt. % to 8 wt. % of the noble metals such that the dental alloys are capable of meeting the ADA requirements for a “noble” alloy. 1. A non-magnetic cobalt based dental alloy consisting of:40 wt. % to 50 wt. % Co;19 wt. % to 27 wt. % Pt;up to 8 wt. % Ru; and23 wt. % to 32 wt. % Cr;wherein the Pt comprises or combination of Pt and Ru comprise from 25 wt. % to 35 wt. % of the dental alloy composition; and{'sup': −6', '−1, 'wherein the alloy is non-magnetic and has a coefficient of thermal expansion between 13.9 to 15.2×10Kat 500° C.'}2. The non-magnetic cobalt based dental alloy of claim 1 , wherein the alloy further consists of up to about 3 wt. % of at least one additive material selected from the group consisting of molybdenum claim 1 , manganese claim 1 , aluminum claim 1 , boron claim 1 , cerium claim 1 , gallium claim 1 , germanium and silicon.3. The non-magnetic cobalt based dental alloy of claim 2 , wherein the alloy consists of from about 5 wt. % to 8 wt. % ruthenium.4. The non-magnetic cobalt based dental alloy of claim 1 , wherein the alloy further consists of less than 5 wt. % of at least one trace additive selected from the group consisting of copper claim 1 , nickel and iron.5. The non-magnetic cobalt based dental alloy of claim 1 , wherein the sum of Pt and Ru is 25 wt. %.6. The non-magnetic cobalt based dental alloy of claim 1 , wherein the alloy composition consists of 45.0 wt. % cobalt claim 1 , 29.3 wt. % chromium ...

Подробнее
08-02-2018 дата публикации

MULTI-MATERIAL COMPONENT AND METHODS OF MAKING THEREOF

Номер: US20180036840A1
Автор: Hu Jianxun, Walker Eric
Принадлежит:

A multi-material component joined by a high entropy alloy is provided, as well as methods of making a multi-material component by joining dissimilar materials with high entropy alloys. 1. A multi-material component comprising:a first member comprising a metal or a metal alloy;a second member comprising a metal or a metal alloy that is different than the metal or the metal alloy of the first member; anda third member joining the first member to the second member, the third member comprising a high entropy alloy.2. The multi-material component of claim 1 , wherein the high entropy alloy comprises at least four principal elements claim 1 , and wherein each of the at least four principal elements comprises from 5 to 35 atomic % of the high entropy alloy.3. The multi-material component of claim 2 , wherein relative amounts of each of the at least four principal elements vary by no more than 5 atomic percent %.4. The multi-material component of claim 2 , wherein the high entropy alloy comprises Fe claim 2 , Ni claim 2 , and Cr as principal elements.5. The multi-material component of claim 2 , wherein the high entropy alloy comprises at least one minor element selected from the group consisting of Fe claim 2 , Co claim 2 , Ni claim 2 , Hf claim 2 , Si claim 2 , B claim 2 , Cu claim 2 , Al claim 2 , Mg claim 2 , W claim 2 , Ta claim 2 , Nb claim 2 , Cr claim 2 , Sn claim 2 , Zr claim 2 , Ti claim 2 , Pd claim 2 , Au claim 2 , Pt claim 2 , Ag claim 2 , Ru claim 2 , Mo claim 2 , V claim 2 , Re claim 2 , Bi claim 2 , Cd claim 2 , Pb claim 2 , Ge claim 2 , Sb claim 2 , Zn and Mn claim 2 , and wherein the at least one minor element comprises 0.1 to 5 atomic % of the high entropy alloy.6. The multi-material component of claim 1 , wherein the high entropy alloy consists of a single phase solid solution claim 1 , and wherein the high entropy alloy is an FCC structure.7. The multi-material component of claim 1 , wherein the third member is at least partially positioned between the ...

Подробнее
11-02-2016 дата публикации

HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME

Номер: US20160040276A1
Принадлежит:

The present invention is a heat-resistant Ni-base alloy including a Ni—Ir—Al—W alloy having essential additive elements of Ir, Al, and W added to Ni, wherein the heat-resistant Ni-base alloy includes Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, and W: 5.0 to 20.0 mass %, the balance being Ni, and a γ′ phase having an L1structure disperses in a matrix as an essential strengthening phase. The heat-resistant material including the Ni-base alloy may contain one or more additive elements selected from B: 0.001 to 0.1 mass %, Co: 5.0 to 20.0 mass %, Cr: 1.0 to 25.0 mass %, Ta: 1.0 to 10.0 mass %, Nb: 1.0 to 5.0 mass %, Ti: 1.0 to 5.0 mass %, V: 1.0 to 5.0 mass %, and Mo: 1.0 to 5.0 mass %, or 0.001 to 0.5 mass % of C. 1. A heat-resistant Ni-base alloy comprising a Ni—Ir—Al—W alloy having essential additive elements of Ir , Al , and W added to Ni , wherein the heat-resistant Ni-base alloy contains Ir: 5.0 to 50.0 mass % , Al: 1.0 to 8.0 mass % , and W: 5.0 to 20.0 mass % , the balance being Ni , and{'sub': '2', 'a γ′ phase having an L1structure precipitates and disperses in a matrix as an essential strengthening phase.'}2. The heat-resistant Ni-base alloy according to claim 1 , wherein the alloy contains one or more additive elements selected from the following Group I:Group I:B: 0.001 to 0.1 mass %,Co: 5.0 to 20.0 mass %,Cr: 1.0 to 25.0 mass %,Ta: 1.0 to 10.0 mass %,Nb: 1.0 to 5.0 mass %,Ti: 1.0 to 5.0 mass %,V: 1.0 to 5.0 mass %, andMo: 1.0 to 5.0 mass %.3. The heat-resistant Ni-base alloy according to claim 1 , wherein the alloy further contains 0.001 to 0.5 mass % of C and carbides are precipitate and disperse.4. A method of producing a heat-resistant Ni-base alloy claim 1 , comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'performing an aging heat treatment on the Ni-base alloy having the composition according to , at a temperature range of 700 to 1300° C.; and'}{'sub': '2', 'precipitating at least a γ′ phase having an L1structure as precipitates.'}5. ...

Подробнее
12-02-2015 дата публикации

Negative active material for secondary battery and method of manufacturing the same

Номер: US20150041707A1
Принадлежит: MK Electron Co Ltd

A negative active material for a secondary battery that provides high capacity, high efficiency charging and discharging characteristics includes: a silicon single phase; and a silicon-metal alloy phase by which the silicon single phase is bounded, wherein the negative active material comprises 5 to 30 wt % of nickel, 5 to 30 wt % of titanium, and 40 to 90 wt % of silicon, the negative active material has a first peak of the silicon-metal alloy phase in an X-ray diffraction analysis spectrum, the silicon single phase is finely distributed in the silicon-metal single phase by mechanical alloying, and the first peak resulting from the (501) surface of the silicon-metal alloy phase has a greater value than the first peak resulting from the (501) surface of the silicon-metal alloy phase that is not subjected to the mechanical alloying, by 0.6° to 0.9°.

Подробнее
24-02-2022 дата публикации

STEEL SHEET FOR HOT PRESS FORMED MEMBER HAVING EXCELLENT COATING ADHESION AND MANUFACTURING METHOD FOR THE SAME

Номер: US20220055342A1
Принадлежит: POSCO

The present invention relates to a steel sheet for a hot press formed member having excellent coating adhesion, and a method for manufacturing the same. A steel sheet for hot press forming according to one aspect of the present invention is an aluminum alloy plated steel sheet, wherein an average Fe content in a plating layer may be 40 wt % or more, and a concentration gradient of a section having a Fe content of 45 wt % to 80 wt % in the plating layer may 7 wt %/μm or less of a concentration gradient at a section having an Fe content of 45% to 80% in the plating layer in a thickness direction from a surface of the plating layer according to a result of GDS analysis. 1. A hot press formed member , comprising:a steel sheet; anda plating layer on the steel sheet,{'sup': '2', 'wherein a number of voids per 1000 μmof an area from an interface between the player layer and the steel sheet to 15 μm is zero.'}2. A hot press formed member of claim 1 ,wherein a concentration gradient at a section having an Fe content of 45% to 80% in the plating layer in a thickness direction from a surface of the plating layer according to a result of GDS analysis is 7 wt %/μm or less.3. A hot press formed member of claim 2 ,wherein the concentration gradient is 5 wt %/μm or less4. A hot press formed member of claim 3 ,wherein an average content of Fe of the plating layer is 40 wt % or more.5. A hot press formed member of claim 4 ,wherein an average content of Fe of the plating layer is 50 wt % or more.6. A hot press formed member of claim 1 ,wherein the steel sheet comprises a composition comprising, by wt %, carbon (C): 0.04% to 0.5%, silicon (Si): 0.01% to 2%, manganese (Mn): 0.01% to 10%, aluminum (Al): 0.001% to 1.0%, phosphorus (P): 0.05% or less, sulfur (S): 0.02% or less, nitrogen (N): 0.02% or less, and residual iron (Fe) and inevitable impurities.7. A hot press formed member of claim 6 ,wherein the composition of the base steel sheet further comprises, by wt %, one or more among a ...

Подробнее
11-02-2016 дата публикации

ELECTRONIC INTERCONNECTS AND DEVICES WITH TOPOLOGICAL SURFACE STATES AND METHODS FOR FABRICATING SAME

Номер: US20160043033A1
Принадлежит: THE TRUSTEES OF PRINCETON UNIVERSITY

An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states. 1. An interconnect comprising a material configured with an essentially insulating bulk portion having topological surface states occupied with charge carriers , wherein the topological surface states and the essentially insulating bulk portion each have an electrical mobility , the electrical mobility of the topological surface states being at least 12 times greater than the electrical mobility of the essentially insulating bulk portion.2. The interconnect of claim 1 , wherein the material has a mobility for the charge carriers of at least 9000 centimeter-squared per volt-second (cm/V-s).3. The interconnect of claim 1 , wherein the material comprises a non-stoichiometric material.4. The interconnect of claim 1 , wherein the material comprises an element from column 15 of the periodic table.5. The interconnect of claim 1 , wherein the material comprises an element from column 16 of the periodic table.6. The interconnect of claim 1 , wherein the material comprises an element from column 13 of the periodic table.7. The interconnect of claim 1 , wherein the material comprises an element from column 14 of the periodic table.8. The interconnect of claim 1 , wherein the material comprises a solid solution alloy.9. The interconnect of claim 1 , wherein the material has an atomic composition BiSb claim 1 , where 0.07≦x≦1.10. The interconnect of claim 1 , wherein the material has an atomic composition BiSbSeTewhere 0≦x≦1 and 0≦y≦1.11. The interconnect of claim 1 , wherein the material has an atomic composition TlBiSeTe claim 1 , where 0≦x≦1.12. ...

Подробнее
07-02-2019 дата публикации

Pre-sintered preform and process

Номер: US20190039141A1
Принадлежит: General Electric Co

A process includes placing a powder composition of a first metal powder of a first alloy and a second metal powder of a second alloy in a ceramic die and sintering the powder composition in the ceramic die to form a sintered rod in the ceramic die. The process also includes removing the sintered rod from the ceramic die and slicing the sintered rod into a plurality of pre-sintered preforms.

Подробнее
08-02-2018 дата публикации

Thin Film Resistor

Номер: US20180040396A1
Автор: Ying-Chieh Lee

A thin film resistor includes 38-60 at.% of nickel, 10-25 at.% of chromium, 3-10 at.% of manganese, 4-18 at.% of yttrium, and 1-36 at.% of dysprosium. The thin film resistor can greatly increase the resistivity with a low temperature coefficient of resistance to broaden the applications of the thin film resistor.

Подробнее
24-02-2022 дата публикации

STEEL, PRODUCT MADE OF SAID STEEL, AND MANUFACTURING METHOD THEREOF

Номер: US20220056545A1
Принадлежит:

Disclosed is a steel composition including specified ranges of Ni; Mo; Co; Mo+Co+Si+Mn+Cu+W+V+Nb+Zr+Ta+Cr+C; Co+Mo; Ni+Co+Mo; and traces of Al; Ti; N; Si; Mn; C; S; P; B; H; O; Cr; Cu; W; Zr; Ca; Mg; Nb; V; and Ta in specified ranges; the remainder being iron and impurities. The inclusion population, as observed by image analysis over a polished surface measuring 650 mmif hot-formed or hot-rolled; and measuring 800 mmif cold-rolled, does not contain non-metallic inclusions of diameter >10 μm, and, in the case of a hot-rolled sheet, does not contain more than four non-metallic inclusions of diameter 5-10 μm over 100 mm, the observation being performed by image analysis over a polished surface measuring 650 mm. 1. Steel , characterised in that its composition , in percentages by weight is as follows:10.0%≤Ni≤24.5%, preferably 12.0%≤Ni≤24.5%;1.0%≤Mo≤12.0%, preferably 2.5%≤Mo≤9.0%;1.0%≤Co≤25.0%;20.0%≤Mo+Co+Si+Mn+Cu+W+V+Nb+Zr+Ta+Cr+C≤29.0%, preferably 22.0%≤Mo+Co+Si+Mn+Cu+W+V+Nb+Zr+Ta+Cr+C≤29.0%, more preferably 22.5%≤Mo+Co+Si+Mn+Cu+W+V+Nb+Zr+Ta+Cr+C≤29.0%;Co+Mo≥20.0%; preferably Co+Mo≥21.0%; more preferably Co+Mo≥22.0%;Ni+Co+Mo≥29%; preferably Ni+Co+Mo≥41.0%;traces ≤Al≤4.0%, preferably 0.01%≤Al≤1.0%;traces ≤Ti≤0.1%;traces ≤N≤0.0050%;traces ≤Si≤2.0%; preferably 0.04%≤Si≤2.0%;traces ≤Mn≤4.0%;traces ≤C≤0.03%;traces ≤S≤0.0020%, preferably traces ≤S≤0.0010%;traces ≤P≤0.005%;traces ≤B≤0.01%;traces ≤H≤0.0005%;traces ≤O≤0.0025%;traces ≤Cr≤5.0%;traces ≤Cu≤2.0%;traces ≤W≤4.0%;traces ≤Zr≤4.0%;traces ≤Ca≤0.1%;traces ≤Mg≤0.1%;traces ≤Nb≤4.0%;traces ≤V≤4.0%;traces ≤Ta≤4.0%;with the remainder being iron and impurities resulting from the smelting and manufacturing process;{'sup': 2', '2', '2', '2, 'and in that the inclusion population, as observed by means of image analysis over a polished surface measuring 650 mmif the steel is in the form of a component part/work piece that is hot-formed or a hot-rolled sheet; and measuring 800 mmif the steel is in the form of a cold-rolled sheet, ...

Подробнее
24-02-2022 дата публикации

HIGH ENTROPY ALLOY STRUCTURE AND A METHOD OF PREPARING THE SAME

Номер: US20220056567A1
Принадлежит:

A method for preparing a high entropy alloy (HEA) structure includes the steps of: preparing an alloy by arc melting raw materials comprising five or more elements; drop casting the melted alloy into a cooled mold to form a bulk alloy; applying an external force against the bulk alloy to reshape the bulk alloy; and heat-treating the reshaped bulk alloy, wherein the bulk alloy is reshaped and/or heat-treated for manipulating the distribution of the microstructure therein. The present invention also relates to a high entropy alloy structure prepared by the method. 1. A method of preparing a high entropy alloy structure comprising the steps of:A. preparing an alloy by arc melting raw materials comprising five or more elements;B. drop casting the melted alloy into a cooled mold to form a bulk alloy;C. applying an external force against the bulk alloy to reshape the bulk alloy; andD. heat-treating the reshaped bulk alloy;wherein the bulk alloy is reshaped and/or heat-treated for manipulating the distribution of the microstructure therein.2. The method according to claim 1 , wherein step C includes step Cl of rolling the bulk alloy along a first direction to reduce the thickness of the bulk alloy.3. The method according to claim 2 , wherein step Cl of rolling is carried out along a longitudinal direction of the bulk alloy.4. The method according to claim 2 , wherein the thickness of the rolled bulk alloy is reduced by 70%.5. The method according to claim 1 , wherein the crystals in the microstructure are deformed during the heat treatment in step D to form a plurality of twins.6. The method according to claim 1 , wherein step D includes step D1 of heating the bulk alloy to facilitate the movement of the microstructures.7. The method according to claim 1 , wherein each of the elements is provided in an atomic percentage of 10% to 30%.8. The method according to claim 1 , wherein the elements are Cobalt claim 1 , Nickel claim 1 , Chromium claim 1 , Iron and Aluminum.9. The ...

Подробнее
24-02-2022 дата публикации

METHOD OF PRODUCING A CoFe ALLOY STRIP

Номер: US20220056568A1
Принадлежит:

A method of producing a CoFe alloy strip is provided. The method comprises hot rolling a CoFe alloy to form a hot rolled strip, followed by quenching the strip from a temperature above 700° C. to a temperature of 200° C. The CoFe alloy comprises an order/disorder temperature Tand a ferritic/austenitic transformation temperature T, wherein T>T. The method further comprises cold rolling the hot rolled strip, after cold rolling, continuous annealing the strip at a maximum temperature T, wherein 500° C.T,'}cold rolling the quenched hot rolled strip,{'sub': 1', '1', 'o/d', '1', '1, 'after cold rolling, continuous annealing the strip at a maximum temperature T, wherein 500° C. Подробнее

12-02-2015 дата публикации

METHOD OF FORMING A BLACK TANTALUM ALLOY, A TANTALUM ALLOY, AND ARTICLES FORMED THEREFROM

Номер: US20150044491A1
Автор: PISCITELLI Daniel S.
Принадлежит:

The invention provides tantalum alloys, methods for forming tantalum alloys having a luminous, black, ceramic surface, and articles, such as, but not limited to, jewelry and watches, formed from the tantalum alloys. 1. A composition including a homogeneous mixture , the composition comprising:between about 45% and about 75% by weight of tantalum;between about 20% and about 45% by weight of zirconium;between about 0% and about 35% by weight of niobium; and a balance by weight of a metal selected from the group consisting of titanium, molybdenum, hafnium, vanadium, silicone, chromium, and combinations thereof.2. The composition according to claim 1 , wherein the homogeneous mixture is a mixture of metal bars that has been melted in a vacuum to form a solid homogeneous mixture of metals.3. The composition according to claim 2 , wherein there is between about 10% and about 35% by weight of niobium.4. The composition according to claim 2 , wherein the composition has a luminous claim 2 , black claim 2 , ceramic surface.5. The composition according to claim 2 , wherein the composition is formed into a shape selected from the group consisting of bars claim 2 , rods claim 2 , wire claim 2 , tubing claim 2 , pipes claim 2 , sheets claim 2 , and rings.6. A jewelry work piece formed from the composition of .7. The composition according to claim 1 , wherein the homogeneous mixture is a mixture of metal powders that has been mixed in ambient air and melted in a vacuum to form a solid metal form.8. The composition according to claim 7 , wherein particles of the metal powders range in size from about 0.3 μm to about 10 μm.9. The composition according to claim 7 , wherein the solid metal form has a luminous claim 7 , black claim 7 , ceramic surface.10. The composition according to claim 7 , wherein there is between about 10% and about 35% by weight of niobium.11. A jewelry work piece formed from the composition of .12. A method for forming the composition of claim 1 , the method ...

Подробнее
07-02-2019 дата публикации

BI-CONTINUOUS COMPOSITE OF REFRACTORY ALLOY AND COPPER AND METHOD FOR MANUFACTURING THE SAME

Номер: US20190040495A1
Принадлежит:

A bi-continuous composite of a refractory alloy and copper, and a method for manufacturing the same, are provided. The method for manufacturing a bi-continuous composite of a refractory alloy and copper includes: providing an alloy melt swapping (AMS) precursor; providing a copper melt with a temperature in a range of 1085° C. to 3410° C.; immersing the AMS precursor into the copper melt; and removing the AMS precursor from the copper melt. The AMS precursor includes elements having positive and negative mixing enthalpy with copper, respectively. The AMS precursor into which the copper melt is diffused becomes a bi-continuous composite with a first phase formed from the copper and a second phase formed from the AMS precursor. 1. A method for manufacturing a bi-continuous composite of a refractory alloy and copper , the method comprising:providing an alloy melt swapping (AMS) precursor, the AMS precursor comprising elements having positive and negative mixing enthalpy with copper, respectively;providing a copper melt with a temperature in a range of 1085° C. to 3410° C.;immersing the AMS precursor into the copper melt, the AMS precursor into which the copper melt diffused becoming a bi-continuous composite with a first phase formed from the copper and a second phase formed from the AMS precursor; andremoving the bi-continuous composite from the copper melt.2. The method of claim 1 , wherein in the providing of the AMS precursor claim 1 , the AMS precursor has a chemical composition of AB(where A is at least one metal selected from a group of elements I comprising Ti claim 1 , Zr claim 1 , and Hf claim 1 , while B is at least one metal selected from a group of elements II comprising V claim 1 , Cr claim 1 , Mo claim 1 , Nb claim 1 , Ta claim 1 , and W claim 1 , and 5 at %≤x≤95 at %).3. The method of claim 2 , wherein in the immersing of the AMS precursor into the copper melt claim 2 , the second phase is formed from the B.4. The method of claim 3 , wherein in the ...

Подробнее
07-02-2019 дата публикации

Precipitation strengthened high-entropy superalloy

Номер: US20190040500A1
Автор: An-Chou Yeh, Te-Kang Tsao
Принадлежит: National Tsing Hua University NTHU

The present invention discloses a new alloy design of precipitation strengthened high entropy superalloy (HESA), which is composed of at least one principal element, a plurality of base element, and at least one precipitation strengthening element for controlling the elemental segregation between the high-entropy matrix and ordered precipitate. Through the addition of the precipitation strengthening element, while substituting the same amount of the principle element, not only the ordering energy and the volume fraction of strengthening precipitates, but also the mechanical strength of the alloy can be apparently elevated. Therefore, this newly-developed precipitation strengthened HESA can further improve the thermal capability and mechanical properties from the previously proposed high-entropy alloys.

Подробнее
07-02-2019 дата публикации

NICKEL-COBALT ALLOY

Номер: US20190040501A1
Принадлежит: VDM Metals International GmbH

A Ni—Co alloy includes 30 to 65 wt % Ni, >0 to max. 10 wt % Fe, >12 to <35 wt % Co, 13 to 23 wt % Cr, 1 to 6 wt % Mo, 4 to 6 wt % Nb+Ta, >0 to <3 wt % Al, >0 to <2 wt % Ti, >0 to max. 0.1 wt % C, >0 to max. 0.03 wt % P, >0 to max. 0.01 wt % Mg, >0 to max. 0.02 wt % B, >0 to max. 0.1 wt % Zr, which fulfils the following requirements and criteria: a) 900° C.<γ′ solvus temperature<1030° C. with 3 at %5 (on the basis of the contents in at %). 1. A component of an aircraft turbine comprising an Ni—Co alloy with 30 to 65 wt % Ni , >0 to max. 10 wt % Fe , >12 to <35 wt % Co , 13 to 23 wt % Cr , 1 to 6 wt % Mo , 4 to 6 wt % Nb+Ta , >0 to <3 wt % Al , >0 to <2 wt % Ti , >0 to max. 0.1 wt % C , >0 to max. 0.03 wt % P , >0 to max. 0.01 wt % Mg , >0 to max. 0.02 wt % B , >0 to max. 0.1 wt % Zr , 0 to 0.5 wt % Cu , 0 to 0.015 wt % S , 0 to 1.0 wt % Mn , 0 to 1.0 wt % Si , 0 to 0.01 wt % Ca , 0 to 0.03 wt % N , 0 to 0.02 wt % 0 , 0 to 4 wt % V , and 0 to 4 wt % W , wherein the alloy satisfies the requirements and criteria listed below:a) 900° C.≤γ′-solvus temperature≤1030° C. at 3 at %≤Al+Ti (at %)≤5.6 at % as well as 11.5 at %≤Co≤35 at %;b) stable microstructure after 500 h of aging annealing at 800° C. and an Al/Ti ratio≥5 (on the basis of the contents in at %).2. The component according to claim 1 , wherein the alloy satisfies the requirement “945° C.≤γ′-solvus temperature≤1000° C.”.3. The component according to claim 1 , wherein the alloy has ΔT (δ-γ′) 80 K and Al+Ti≤4.7 at % as well as Co contents≥11.5 at % and ≤35 at %.4. The component according to claim 1 , wherein the alloy has a temperature interval between δ-solvus and γ′-solvus temperatures equal to or greater than 140 K and a Co content ≥15 at % and ≤35 at %.5. The component according to claim 1 , wherein the alloy has a Ti content of ≤0.8 at %.6. The component according to claim 1 , ...

Подробнее
19-02-2015 дата публикации

METHOD FOR HEAT TREATING A METAL TUBE OR PIPE, METAL TUBE OR PIPE, AND HEAT TREATMENT FURNACE

Номер: US20150047735A1
Принадлежит:

A method for heat treating a metal tube or pipe is provided to perform heat treatment in such a manner that metal tubes or pipes () to be accommodated in a heat treatment furnace are laid down on a plurality of cross beams () arranged along a longitudinal direction of the metal tubes or pipes with the distance between adjacent cross beams being in a range of 200 to 2500 mm. This makes it possible to inhibit bending and scratches of the metal tubes or pipes without causing discoloration and deterioration of the manufacturing efficiency for the metal tubes or pipes. When the metal tubes or pipes () are laid down on the cross beams (), spacers may be interposed between the metal tubes or pipes () and the cross beams () on which they are laid down. 1. A method for heat treating a metal tube or pipe , comprising:heat treating a metal tube or pipe which is accommodated in a heat treatment furnace, the metal tube or pipe being laid down on a plurality of cross beams, the plurality of cross beams being arranged along a longitudinal direction of the metal tube or pipe such that the distance between adjacent ones of the cross beams is in a range of 200 to 2500 mm.2. The method for heat treating a metal tube or pipe according to claim 1 , wherein claim 1 , as the cross beams claim 1 , cross beams having a convex top surface are used.3. The method for heat treating a metal tube or pipe according to claim 1 , wherein claim 1 , when the metal tube or pipe is laid down on the cross beams claim 1 , the metal tube or pipe is laid down on the cross beams with a spacer having a convex top surface interposed therebetween.4. The method for heat treating a metal tube or pipe according to claim 1 , wherein the metal tube or pipe has a composition consisting of claim 1 , in mass % claim 1 , C: 0.15% or less claim 1 , Si: 1.00% or less claim 1 , Mn: 2.0% or less claim 1 , P: 0.030% or less claim 1 , S: 0.030% or less claim 1 , Cr: 10.0% to 40.0% claim 1 , Ni: 8.0% to 80.0% claim 1 , Ti: 0.5 ...

Подробнее
16-02-2017 дата публикации

CO3W3C Fishbone-Like Hard Phase-Reinforced Fe-Based Wear-Resistant Coating and Preparation Thereof

Номер: US20170044673A1

A CoWC fishbone-like hard phase-reinforced Fe-based wear-resistant coating and the preparation thereof, which belongs to the field of a wear-resistant coating on the surface of a material and a preparation method thereof. The wear-resistant coating comprises: 1.89-3.77% of C, 5.4-11.7% of Cr, 3.3-7.15% of Ni, 28.81-57.83% of W, 4.2-8.4% of Co, 0.03-0.065% of Si and the balance of Fe. The preparation process of the wear-resistant coating comprises: (1) before plasma cladding, pretreating a matrix; (2) pretreating an iron-based alloy powder; and (3) adjusting the process parameters of plasma cladding, preparing a cladding layer with a predetermined width and a predetermined thickness, and naturally cooling same down in air. The wear-resistant coating is simple in process; the prepared cladding layer has a strong metallurgical bonding property with the matrix structure, so that the best performance matching between the ceramic phase of the cladding layer and the matrix can be achieved; a fishbone-like hard phase CoWC has a very high hardness value and plays the role of a framework in the frictional process to reduce the wear of the matrix structure, thereby achieving an excellent wear resistance; plasma cladding is convenient to operate, and can be automatized; and the prepared wear-resistant layer is high in size precision and can be widely applied to surface modification of mechanical parts. 1. A CoWC fish-bone-shape hard-phase reinforced Fe-based wear-resistant coating , characterized in that: the wear-resistant coating consists of the following alloy powder elements in weight percentage: C: 1.89-3.77% , Cr: 5.4-11.7% , Ni: 3.3-7.15% , W: 28.81-57.83% , Co: 4.2-8.4% , Si: 0.03-0.065% , and the remaining is Fe.2. A method for preparing the CoWC fish-bone-shape hard-phase reinforced Fe-based wear-resistant coating according to claim 1 , characterized in that: a plasma cladding process is used to clad the Fe-based WC alloy powder on a surface of a metal matrix to form ...

Подробнее
15-02-2018 дата публикации

FORMING HIGH-STRENGTH, LIGHTWEIGHT ALLOYS

Номер: US20180044765A1
Принадлежит:

In an example of a method for forming a high-strength, lightweight alloy, starting materials are provided. The starting materials include aluminum, iron, and silicon. The starting materials are ball milled to generate the high-strength, lightweight alloy of a stable AlFeSiphase, wherein x ranges from about 3 to about 5, y ranges from about 1.5 to about 2.2, and z is about 1. 1. A method for forming a high-strength , lightweight alloy , comprising:{'sub': x', 'y', 'z, 'ball milling starting materials including aluminum, iron, and silicon, to generate the high-strength, lightweight alloy of a stable AlFeSiphase, wherein x ranges from about 3 to about 5, y ranges from about 1.5 to about 2.2, and z is about 1.'}2. The method as defined in claim 1 , further comprising performing the ball milling in the presence of an anhydrous liquid medium.3. The method as defined in wherein a ratio of total starting materials to the anhydrous liquid medium ranges from 1:5 to 1:10 by volume.4. The method as defined in wherein the anhydrous liquid medium is an anhydrous hydrocarbon.5. The method as defined in wherein the anhydrous hydrocarbon is selected from the group consisting of pentane claim 4 , hexane claim 4 , heptane claim 4 , and combinations thereof.6. The method as defined in wherein the stable AlFeSiphase has x equal to 3 claim 1 , y equal to 2 claim 1 , and z equal to 1 claim 1 , and wherein the starting materials include:from about 36 wt % to about 37 wt % aluminum based on a total wt % of the starting materials;from about 50 wt % to about 51 wt % iron based on the total wt % of the starting materials; andfrom about 12 wt % to about 13 wt % silicon based on the total wt % of the starting materials.7. The method as defined in wherein the stable AlFeSiphase has x ranging from 4 to 5 claim 1 , y equal to 2 claim 1 , and z equal to 1 claim 1 , and wherein the starting materials include:from about 41 wt % to about 55 wt % aluminum based on a total wt % of the starting materials; ...

Подробнее
15-02-2018 дата публикации

FeNi ALLOY COMPOSITION COMPRISING L10-TYPE FeNi ORDERED PHASE, METHOD OF MANUFACTURING FeNi ALLOY COMPOSITION COMPRISING L10-TYPE FeNi ORDERED PHASE, FeNi ALLOY COMPOSITION COMPRISING AMORPHOUS MAIN PHASE, MOTHER ALLOY OF AMORPHOUS MATERIAL, AMORPHOUS MATERIAL, MAGNETIC MATERIAL, AND METHOD OF MANUFACTURING MAGNETIC MATERIAL

Номер: US20180044768A1
Автор: MAKINO Akihiro
Принадлежит: TOHOKU UNIVERSITY

An FeNi alloy composition comprising an L1-type FeNi ordered phase is provided, which satisfies at least one of the conditions that the sum of the content of Fe and the content of Ni is 90 at. % or less and that the FeNi alloy composition contains Si, and preferably satisfies at least one of the conditions that the ratio of the content of Fe to the content of Ni is 0.3 or more and 5 or less and that the sum of the content of Fe and the content of Ni is 65 at. % or more. 1. An FeNi alloy composition comprising an L1-type FeNi ordered phase ,wherein a sum of a content of Fe and a content of Ni is 90 at. % or less.2. The FeNi alloy composition comprising an L1-type FeNi ordered phase as recited in claim 1 , wherein the FeNi alloy composition contains an amorphization element.3. The FeNi alloy composition comprising an L1-type FeNi ordered phase as recited in claim 2 , wherein the amorphization element comprises one or more selected from the group consisting of Si claim 2 , B claim 2 , and P.4. The FeNi alloy composition comprising an L1-type FeNi ordered phase as recited in claim 2 , wherein a sum of a content of the amorphization element is 35 at. % or less.5. The FeNi alloy composition comprising an L1-type FeNi ordered phase as recited in claim 1 , wherein a ratio of a content of Fe to a content of Ni is 0.3 or more and 5 or less.6. The FeNi alloy composition comprising an L1-type FeNi ordered phase as recited in claim 1 , wherein the FeNi alloy composition further comprises a crystallization element.7. The FeNi alloy composition comprising an L1-type FeNi ordered phase as recited in claim 1 , wherein the FeNi alloy composition further contains one or more selected from the group consisting of Cu claim 1 , Co claim 1 , Ti claim 1 , Zr claim 1 , Hf claim 1 , V claim 1 , Nb claim 1 , Ta claim 1 , Cr claim 1 , Mo claim 1 , W claim 1 , Mn claim 1 , Re claim 1 , platinum group elements claim 1 , Au claim 1 , Ag claim 1 , Zn claim 1 , In claim 1 , Sn claim 1 , As claim 1 ...

Подробнее
06-02-2020 дата публикации

ALLOY, SINTERED ARTICLE, THERMOELECTRIC MODULE AND METHOD FOR THE PRODUCTION OF A SINTERED ARTICLE

Номер: US20200044132A1
Автор: MULLER Michael
Принадлежит:

An alloy is provided that consists essentially of 1. An alloy consisting essentially of{'br': None, 'sub': x', 'y', 'z', 'c', '1-x-y-z-c', '1-d', 'd', 'a', '1-e', 'e', 'b, '(TiTaVANb)(FeMn)(SbSn),'}wherein0.06≤x≤0.24,0.01≤y≤0.06,0.05≤z≤0.4,0.9≤(a, b)≤1.1,0≤c≤0.05,0≤d≤0.05,0≤e≤0.1,Wherein A is one or more of the elements in the group consisting of Zr, Hf, Sc, Y, La, and up to 5 atom % impurities.2. An alloy according to claim 1 , wherein the alloy has a positive Seebeck coefficient.3. An alloy according to claim 1 , wherein the alloy has a Half-Heusler structure.4. An alloy according to claim 1 , wherein the alloy has a maximum thermoelectric figure of merit ZTof ≥0.8.5. An alloy according to claim 4 , wherein the alloy has a thermoelectric figure of merit ZT of ZT≥0.8 claim 4 , where T=500° C.6. An alloy according to claim 1 , wherein 0.01≤y≤0.045.7. An alloy according to claim 1 , wherein 0.075≤z≤0.3.8. An alloy according to claim 1 , wherein c=0 claim 1 , d=0 and e=0.9. A sintered article comprising an alloy according to .10. A sintered article according to claim 9 , wherein the sintered article has an average grain size of greater than 1.25 μm.11. A sintered article according to claim 9 , wherein the sintered article has a density D claim 9 , D being ≥90% of the theoretic density D.12. A thermoelectric module comprising at least one thermoelectric element made of an alloy according to and having at least one thermoelectric element made of an N-type alloy.13. A thermoelectric module comprising at least one thermoelectric element comprising a sintered article according to and having at least one thermoelectric element made of an N-type thermoelectric alloy.14. A method for the production of a sintered article claim 9 , comprising: {'br': None, 'sub': x', 'y', 'z', 'c', '1-x-y-z-c', '1-d', 'd', 'a', '1-e', 'e', 'b, '(TiTaVANb)(FeMn)(SbSn),'}, 'providing a starting material consisting essentially of'}wherein0.06≤x≤0.24,0.01≤y≤0.06,0.05≤z≤0.4,0.9≤(a, b)≤1.1,0≤c≤0.05,0 ...

Подробнее
08-05-2014 дата публикации

Fsw tool with graduated composition change

Номер: US20140124563A1
Принадлежит: Chris Obaditch, Glenn J. Grant

A friction stir welding (FSW) tool tip is described. The tool tip comprises a pin portion and a body portion that meet to form a shoulder. The tool tip has a graduated change in composition along its length. In some embodiments, the alloy composition near the end of the pin differs from the alloy composition of the body by at least 0.5% by wt of at least one element. A method of manufacturing a FSW tool tip having a gradual compositional change is also described.

Подробнее
03-03-2022 дата публикации

NICKEL-BASED SUPERALLOY FOR 3D PRINTING AND POWDER PREPARATION METHOD THEREOF

Номер: US20220062992A1
Принадлежит: CENTRAL SOUTH UNIVERSITY

A nickel-based superalloy for three-dimension (3D) printing and a powder preparation method thereof are provided. The method of preparing the nickel-based superalloy and its powder includes: RE microalloying combined with vacuum melting, degassing, refining, atomization with reasonable parameters, and a sieving process. The new method significantly reduces the cracking sensitivity of the “non-weldable” PM nickel-based superalloys, and broadens the 3D printing process window. The as-printed part has no cracks, and good mechanical properties. In addition, the powder prepared by the new method has higher sphericity and better flowability, and less irregular powders. The yield of fine powders with a particle size of 15-53 μm and medium-sized powders with a particle size of 53-106 μm that are required for 3D printing is greatly improved, which meet the requirements for 3D printing of high-quality, low-cost nickel-based superalloy powder. 1. A nickel-based superalloy for three-dimension (3D) printing , comprising the following components in percentage by mass:Co: 14-23 wt %;Cr: 11-15 wt %;Al: 2-5 wt %;Ti: 3-6 wt %;Mo: 2.7-5 wt %;W: 0.5-3 wt %;Ta: 0.5-4 wt %;Nb: 0.25-3 wt %;Zr: 0.02-0.06 wt %;B: 0.01-0.05 wt %;C: 0.0015-0.1 wt %;RE: 0.05-0.18 wt %; andNi: the balance;or another non-weldable nickel-based superalloy is used as a matrix, and 0.05-0.18 wt % of RE is added to the matrix, whereinthe another non-weldable nickel-based superalloy is one selected from the group consisting of IN738LC, CM247LC, CMSX-4, René 142, and Hastelloy X; or one selected from the group consisting of nickel-based superalloys IN718 and IN625 is used as the matrix, and 0.05-0.18 wt % of RE is added to the matrix.2. The nickel-based superalloy according to claim 1 , comprising the following components in percentage by mass:Co: 20.6 wt %;Cr: 13 wt %;Al: 3.4 wt %;Ti: 3.9 wt %;Mo: 3.8 wt %;W: 2.1 wt %;Ta: 2.4 wt %;Nb: 0.9 wt %;Zr: 0.05 wt %;B: 0.03 wt %;C: 0.04 wt %;RE: 0.06-0.18 wt %; andNi: the ...

Подробнее
03-03-2022 дата публикации

PROCESSING OF IRON COBALT LAMINATION MATERIAL FOR HYBRID TURBO-ELECTRIC COMPONENTS

Номер: US20220064772A1
Принадлежит:

Methods for processing an iron cobalt alloy, along with components formed therefrom, are provided. The method may include: pre-annealing a sheet of an iron cobalt alloy at a pre-anneal temperature (e.g., about 770° C. to about 805° C.); thereafter, cutting a component from the sheet; thereafter, heat-treat annealing the component at a treatment temperature (e.g., about 845° C. to about 870° C.) for a treatment period (e.g., about 1 minute to about 10 minutes); and thereafter, exposing the component to oxygen at an oxidizing temperature to form an insulation layer on a surface of the component.

Подробнее
03-03-2022 дата публикации

Seals and methods of making seals

Номер: US20220065122A1
Принадлежит: Raytheon Technologies Corp

A tribological and creep resistant system configured to operate at temperatures in excess of 700° C. A seal body extends between a leading edge and a trailing edge. A first component contact surface is adjacent the leading edge and a second component contact surface is adjacent the trailing edge. The seal body is formed from a high entropy alloy.

Подробнее
14-02-2019 дата публикации

ALLOY ARTICLE, METHOD FOR MANUFACTURING SAME, AND PRODUCT USING SAME

Номер: US20190047049A1
Принадлежит: HITACHI METALS, LTD.

An object of the invention is to provide: an alloy article that has excellent homogeneity in the alloy composition and microstructure as well as significant shape controllability, using an HEA with significant mechanical strength and high corrosion resistance; a method for manufacturing the alloy article; and a product using the alloy article. There is provided an alloy article comprising: Co, Cr, Fe, Ni, and Ti elements, each element in content of 5 to 35 atomic %; more than 0 atomic % to 8 atomic % of Mo %; and remainder substances of unavoidable impurities. And, ultrafine particles with an average diameter of 40 nm or less are dispersedly precipitated in matrix phase crystals of the alloy article. 1. An alloy article , comprisingCo, Cr, Fe, Ni, and Ti elements, each element in content of 5 atomic percent to 35 atomic percent,more than 0 atomic percent but not more than 8 atomic percent of Mo, andremainder substances of unavoidable impurities,wherein ultrafine particles with an average diameter of 40 nm or less are dispersedly precipitated in matrix phase crystals of the alloy article.2. The alloy article according to claim 1 , whereinthe ultrafine particles are crystalline particles in which the Ni component and the Ti component are more concentrated than in the matrix phase crystals.3. The alloy article according to claim 1 , wherein chemical composition of the alloy comprises20 atomic percent to 35 atomic percent of Co,10 atomic percent to 25 atomic percent of Cr,10 atomic percent to 25 atomic percent of Fe,15 atomic percent to 30 atomic percent of Ni, and5 atomic percent to 15 atomic percent of Ti.4. The alloy article according to claim 1 , wherein chemical composition of the alloy comprises25 atomic percent to 33 atomic percent of Co,15 atomic percent to 23 atomic percent of Cr,15 atomic percent to 23 atomic percent of Fe,17 atomic percent to 28 atomic percent of Ni,5 atomic percent to 10 atomic percent of Ti, and1 atomic percent to 7 atomic percent of Mo.5. ...

Подробнее
14-02-2019 дата публикации

STAINLESS STEEL ALLOYS AND TURBOCHARGER KINEMATIC COMPONENTS FORMED FROM STAINLESS STEEL ALLOYS

Номер: US20190048441A1
Принадлежит: HONEYWELL INTERNATIONAL INC.

Stainless steel alloys, and turbocharger kinematic components fabricated from such alloys (for example by sintering), are provided. A stainless steel alloy, or component fabricated therefrom, includes, by weight, about 20% to about 35% chromium, about 10% to about 15% nickel, about 10% to about 15% cobalt, about 10% to about 15% molybdenum, about 2.0% to about 4.0% carbon, about 0.4% to about 2.5% silicon, about 0.0% to about 1.0% niobium, and a balance of iron and other inevitable/unavoidable impurities. 1. A stainless steel alloy , comprising , by weight:about 20% to about 35% chromium;about 10% to about 15% nickel;about 10% to about 15% cobalt;about 10% to about 15% molybdenum;about 2.0% to about 4.0% carbon;about 0.4% to about 2.5% silicon;about 0.0% to about 1.0% niobium; anda balance of iron.2. The stainless steel alloy of comprising about 22% to about 33% chromium.3. The stainless steel alloy of comprising about 24% to about 31% chromium.4. The stainless steel alloy of comprising about 26% to about 29% chromium.5. The stainless steel alloy of comprising about 11% to about 14% nickel.6. The stainless steel alloy of comprising about 12% to about 13% nickel.7. The stainless steel alloy of comprising about 11% to about 14% cobalt.8. The stainless steel alloy of comprising about 12% to about 13% cobalt.9. The stainless steel alloy of comprising about 11% to about 14% molybdenum.10. The stainless steel alloy of comprising about 12% to about 13% molybdenum.11. The stainless steel alloy of comprising about 1.0% to about 2.0% silicon.12. The stainless steel alloy of comprising about 2.5% to about 3.5% carbon.13. The stainless steel alloy of comprising about 0.3% to about 0.7% niobium.14. A turbocharger kinematic component comprising:a sintered stainless steel alloy, wherein the sintered stainless steel alloy comprises, by weight:about 20% to about 35% chromium;about 10% to about 15% nickel;about 10% to about 15% cobalt;about 10% to about 15% molybdenum;about 2.0% to ...

Подробнее
14-02-2019 дата публикации

Samarium-Containing Soft Magnetic Alloys

Номер: US20190048442A1
Принадлежит: TAIWAN POWDER TECHNOLOGIES Co Ltd

The present teaching is generally directed to soft magnetic alloys. In particular, the present teaching is directed to soft magnetic alloys including Samarium (“Sm”). In a non-limiting embodiment, an Sm-containing magnetic alloy is described including 15 wt % to 55 wt % of Cobalt (“Co”), less than 2.5 wt % of Sm, and 35 wt % to 75 wt % of Iron (“Fe”). The Sm-containing magnetic alloy may further include at least one element X, selected from a group including Vanadium (“V”), Boron (“B”), Carbon (“C”), Chromium (“Cr”), Manganese (“Mn”), Molybdenum (“Mo”), Niobium (“Nb”), Nickel (“Ni”), Titanium (“Ti”), Tungsten (“W”), and Silicon (“Si”). The Sm-containing magnetic alloy may further have a magnetic flux density of at least 2.5 Tesla.

Подробнее
22-02-2018 дата публикации

Aluminum-Titanium-Vanadium-Zirconium-Niobium Alloy Composition for High Temperature Applications

Номер: US20180051361A1
Принадлежит: Boeing Co

An alloy composition that includes about 1 to about 9 atomic percent aluminum (Al), about 25 to about 33 atomic percent titanium (Ti), about 10 to about 33 atomic percent vanadium (V), about 5 to about 10 atomic percent zirconium (Zr) and about 25 to about 33 atomic percent niobium (Nb).

Подробнее
23-02-2017 дата публикации

SPARK PLUG

Номер: US20170054274A1
Принадлежит:

An object of the present invention is to provide a spark plug which includes, at at least one of a center electrode and a ground electrode, a tip having excellent spark wear resistance in a high temperature environment, thereby having excellent durability. A spark plug includes a center electrode and a ground electrode disposed with a gap provided between the center electrode and the ground electrode. At least one of the center electrode and the ground electrode includes a tip which defines the gap. The tip includes a metal base material containing Ir as a main component, and oxide particles containing at least one of oxides having a perovskite structure represented by general formula ABO(A is at least one element selected from elements in group 2 in a periodic table, and B is at least one element selected from metal elements). When a cross section of the tip is observed, an area proportion of the oxide particles is not lower than 1% and not higher than 13%. 1. A spark plug comprising a center electrode and a ground electrode disposed with a gap provided between the center electrode and the ground electrode ,wherein at least one of the center electrode and the ground electrode includes a tip which defines the gap,the tip includes a metal base material containing Ir as a main component, and oxide particles containing at least one of oxides having a perovskite structure represented by general formula ABO3 (A is at least one element selected from elements in group 2 in a periodic table, and B is at least one element selected from metal elements), andwhen a cross section of the tip is observed, an area proportion of the oxide particles is not lower than 1% and not higher than 13%.2. A spark plug according to claim 1 , whereinthe metal base material contains Rh, anda ratio (M/N) of a number M of the oxide particles present on a crystal grain boundary of the metal base material relative to a total number N of the oxide particles contained in the tip is equal to or lower ...

Подробнее
10-03-2022 дата публикации

Methods of making corrosion resistant nickel-based alloys

Номер: US20220074025A1
Принадлежит: ATI Properties LLC

Nickel-based alloys having improved localized corrosion resistance, improved stress-corrosion cracking (SCC) resistance and impact strength are disclosed. The improvements come from the provision of compositions that are resistant to deleterious phase formation and from the addition of alloying elements that improve corrosion resistance, impact strength, and SCC resistance. The nickel-based alloys of the present invention have controlled amounts of Ni, Cr, Fe, Mo, Co, Cu, Mn, C, N, Si, Ti, Nb, Al, and B. When subjected to post-cladding heat treatments or welding, the nickel-based alloys retain their corrosion resistance and possess desirable impact strengths.

Подробнее
21-02-2019 дата публикации

Ni-Based Super Alloy Powder for Laminate Molding

Номер: US20190055627A1
Принадлежит:

The present invention provides a Ni-based superalloy powder for use in additive manufacturing, including, on the basis of mass %: 0 to 0.2% C; 0.05 to 1.0% Si; 0.05 to 1.0% Mn; 10.0 to 25.0% Cr; 0.01 to 10% Fe; 0.1 to 8.0% Al; 0.1 to 8.0% Ti; 0.002% or less S and/or 0.10% or less N; and the balance being Ni and incidental impurities. The Ni-based superalloy powder of the invention allows production of a good sintered body even during sintering by a rapid melting-rapid solidification process, such as additive manufacturing. 1. Ni-based superalloy powder for use in additive manufacturing , comprising , on the basis of mass %:0 to 0.2% C;0.05 to 1.0% Si;0.05 to 1.0% Mn;10.0 to 25.0% Cr;0.01 to 10% Fe;0.1 to 8.0% Al;0.1 to 8.0% Ti;0.002% or less S and/or 0.10% or less N; andthe balance being Ni and incidental impurities.2. The Ni-based superalloy powder for use in additive manufacturing according to claim 1 , wherein the C content is 0.001 to 0.2% on the basis of mass %.3. The Ni-based superalloy powder for use in additive manufacturing according to claim 1 , further comprising at least one element selected from the group consisting of claim 1 , on the basis of mass (%):0.1 to 12% Mo;0.1 to 10% W;0.1 to 10% Cu;0.1 to 20% Co;0.01 to 0.2% Zr;0.1 to 6.0% Nb;0.1 to 6.0% Ta;0.001 to 0.01% B; and0.1 to 2.0% Hf.4. The Ni-based superalloy powder for use in additive manufacturing according to claim 1 , wherein the powder has a mean particle size (D50) of 10 to 100 μm and a D90 of 150 μm or less.5. The Ni-based superalloy powder for use in additive manufacturing according to claim 2 , further comprising at least one element selected from the group consisting of claim 2 , on the basis of mass (%):0.1 to 12% Mo;0.1 to 10% W;0.1 to 10% Cu;0.1 to 20% Co;0.01 to 0.2% Zr;0.1 to 6.0% Nb;0.1 to 6.0% Ta;0.001 to 0.01% B; and0.1 to 2.0% Hf.6. The Ni-based superalloy powder for use in additive manufacturing according to claim 2 , wherein the powder has a mean particle size (D50) of 10 to ...

Подробнее
21-02-2019 дата публикации

Cr-Fe-Mn-Ni-V-BASED HIGH-ENTROPY ALLOY

Номер: US20190055630A1
Принадлежит:

The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Cr: 3-18 at %; Fe: 3-60 at %; Mn: 3-40 at% ; Ni: 20-80 at %: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less. 1. A high-entropy alloy comprising:Cr: 3-18 at %; Fe: 3-60 at %; Mn: 3-40 at %; Ni: 20-80 at %; V: 3-12 at %; and unavoidable impurities, whereinthe ratio of the V content to the Ni content (V/Ni) is 0.5 or less.2. The high-entropy alloy of claim 1 , wherein the alloy is a single phase of a face centered cubic structure.3. The high-entropy alloy of claim 1 , wherein the sum of the Fe content and the Mn content is less than 50 at %.4. The high-entropy alloy of claim 1 , wherein the alloy has tensile strength of 1000 MPa or greater and elongation of 30% or greater at an ultra-low temperature (77K).5. The high-entropy alloy of claim 1 , wherein the alloy has tensile strength of 1000 MPa or greater and elongation of 60% or greater at an ultra-low temperature (77K).6. The high-entropy alloy of claim 1 , wherein the alloy has tensile strength of 800 MPa or greater and elongation of 30% or greater at room temperature (298K). The present invention relates to a high-entropy alloy, which is designed using thermodynamic calculations among computational simulation techniques, and more particularly to, a Cr—Fe—Mn—Ni—V-based high-entropy alloy having excellent low temperature tensile strength and elongation by setting up an alloy composition region having a single-phase microstructure of a face centered cubic (FCC) at 700° C. or higher through ...

Подробнее
01-03-2018 дата публикации

GRAIN REFINEMENT IN IN706 USING LAVES PHASE PRECIPITATION

Номер: US20180057920A1
Принадлежит: GENERAL ELECTRIC COMPANY

Provided is a method of fabricating an article, including deforming an ingot of a nickel-based superalloy to form an intermediate article, forming a substantially homogeneous dispersion of Laves phase precipitates within the intermediate article, wherein the Laves phase precipitates are present at a concentration of at least about 0.05% by volume and the precipitates have a mean diameter of less than one micron. Also provided is a nickel-based superalloy including a substantially homogeneous dispersion of Laves phase precipitates, wherein the intergranular and transgranular Laves phase precipitates are present at a concentration of at least about 0.1% by volume and wherein the precipitates have a mean diameter of less than one micron. Precipitation of Laves phase may control microstructure during Thermo-mechanical processing and produce superalloys with refined grain size. 1. A method of fabricating an article , the method comprising:deforming an ingot comprising a nickel-based superalloy to form an intermediate article;forming a substantially homogeneous dispersion of Laves phase precipitates within the intermediate article, wherein the Laves phase precipitates are present in the intermediate article at a concentration of at least about 0.05% by volume and wherein the precipitates have a mean diameter of less than one micron.2. The method of claim 1 , wherein the Laves phase precipitates are present in the intermediate article at a concentration of at least about 0.075% by volume.3. The method of claim 2 , wherein the Laves phase precipitates are present in the intermediate article at a concentration of at least about 0.1% by volume.4. The method of claim 1 , wherein forming comprises holding a temperature range to which the intermediate article is exposed to between 700° C. and 1000° C. for at least one hour.5. The method of claim 1 , wherein forming comprises cooling the intermediate article at or below a cooling rate such that the intermediate article is exposed ...

Подробнее