Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 8545. Отображено 200.
25-10-2018 дата публикации

СПОСОБЫ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ ПОРОШКА ПО МЕНЬШЕЙ МЕРЕ ОДНОГО ЭЛЕМЕНТАРНОГО МЕТАЛЛА

Номер: RU2670824C2
Принадлежит: Зе Боинг Компани (US)

Изобретение относится к изготовлению детали из порошка титанового сплава. Способ включает изготовление спеченной преформы, имеющей плотность 80-95% от теоретически максимальной плотности, отделение от спеченной преформы части, имеющей объем, превышающий объем детали, и форму, отличающуюся от близкой к заданной форме детали, термоциклирование упомянутой части спеченной преформы при ее сверхпластической деформации, обеспечение фазового превращения сплава между двумя твердыми фазами α и β с получением детали, имеющей форму, близкую к заданной форме, и плотность, составляющую 99-100% от теоретически максимальной плотности, и обработку детали с получением окончательно заданной формы детали. Обеспечивается изготовление детали из порошка титанового сплава. 17 з.п. ф-лы, 8 ил.

Подробнее
22-06-2020 дата публикации

ТИТАНОВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ТИТАНОВЫЙ МАТЕРИАЛ ДЛЯ ГОРЯЧЕЙ ОБРАБОТКИ ДАВЛЕНИЕМ

Номер: RU2724272C2

Изобретение относится к титановому композиционному материалу, который может быть использован, например, на электростанциях для охлаждаемых морской водой конденсаторов, в теплообменниках для установок опреснения морской воды, в реакторах химических заводов, холодильниках. Титановый композиционный материал 1 включает первый поверхностный слой 2, второй поверхностный слой 3 и внутренний слой 4, причем первый и второй поверхностные слои состоят из титанового сплава, а внутренний слой состоит из технически чистого титана, включающего поры. Толщина по меньшей мере одного из первого и второго поверхностного слоя составляет 2 мкм или больше, доля этой толщины относительно общей толщины титанового композиционного материала составляет 40% или меньше, а пористость в сечении, перпендикулярном направлению по толщине листа, составляет более 0% и не более 30%. Композиционный материал имеет характеристики, эквивалентные характеристикам материала, полностью состоящего из того же титанового сплава, однако ...

Подробнее
16-04-2019 дата публикации

СПОСОБ ПОСЛЕПРОИЗВОДСТВЕННОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ АДДИТИВНО ИЗГОТОВЛЕННЫХ ИЗДЕЛИЙ ИЗ УПРОЧНЕННЫХ ГАММА-ПРИМ-ФАЗОЙ СУПЕРСПЛАВОВ

Номер: RU2684989C2

Изобретение относится к области металлургии, в частности к способам аддитивного изготовления изделий. Способ аддитивного изготовления изделия из упрочненного γ′-фазой суперсплава на основе Ni, и/или Со, и/или Fe, или их сочетания включает обеспечение аддитивно изготовленного изделия и его термическую обработку. Термическую обработку проводят сначала путем нагрева изделия от комнатной температуры (RT) до температуры Tсо скоростью нагрева v, причем температура Tна 50-100°С ниже температуры Tначала снижения коэффициента теплового расширения, и выдержки изделия в течение времени tпри Tдля достижения равномерной температуры изделия. Затем путем нагрева изделия со скоростью нагрева vпо меньшей мере 25°С/мин от Тдо температуры Т≥ 850°С, обеспечивающей исключение или по меньшей мере уменьшение выделения γ′-фазы. Получают изделия без трещин по сравнению со значительным растрескиванием термообработанных традиционным образом изделий. 5 з.п. ф-лы, 5 ил.

Подробнее
10-03-2015 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НАНОДВОЙНИКОВАННОГО ТИТАНОВОГО МАТЕРИАЛА С ПОМОЩЬЮ ЛИТЬЯ

Номер: RU2544218C2

Изобретение относится к области металлургии, в частности к способу получения нанодвойникованного технически чистого титанового материала. Способ получения нанодвойникованного технически чистого титанового материала включает литье технически чистого титанового материала, содержащего не более чем 0,05 мас.% N, не более чем 0,08 мас.% С, не более чем 0,015 мас.% Н, не более чем 0,50 мас.% Fe, не более чем 0,40 мас.% О и не более чем 0,40 мас.% остальных, доводят литой материал до температуры на уровне или ниже 0°С и проводят пластическую деформацию при этой температуре в такой степени, что в материале образуются нанодвойники. Материал характеризуется высокими характеристиками прочности и пластичности. 14 з.п. ф-лы, 6 ил., 4 табл., 4 пр.

Подробнее
24-03-2017 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПОВОК ЛОПАТОК ИЗ ТИТАНОВЫХ СПЛАВОВ

Номер: RU2614294C1

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления штамповок лопаток ГТД из титановых сплавов. Способ изготовления штамповок лопаток из титановых сплавов включает выдавливание заготовки в изотермических условиях при одинаковой температуре нагрева заготовки и штампа и последующую изотермическую штамповку выдавленной заготовки. Выдавливание и изотермическую штамповку осуществляют при температуре нагрева штампа и заготовки 800-830°C±40°C при средней скорости деформации не более 0,3 мм/с. Снижается сопротивление деформации сплава и повышается размерная стойкость штампов. Получают штамповки лопаток с мелкозернистой структурой. 1 ил., 1 пр.

Подробнее
01-03-2018 дата публикации

Номер: RU2015121129A3
Автор:
Принадлежит:

Подробнее
28-08-2019 дата публикации

Номер: RU2018106439A3
Автор:
Принадлежит:

Подробнее
14-06-2023 дата публикации

Способ изготовления трубных изделий из циркониевого сплава

Номер: RU2798020C1

Изобретение относится к изготовлению трубных изделий из циркониевого сплава. Осуществляют выплавку слитка многократным вакуумно-дуговым переплавом, механическую обработку слитка, нагрев, горячую многостадийную ковку с получением поковки, термическую обработку поковки и последующую механическую обработку поковки с получением трубных заготовок. Осуществляют проведение вакуумной термической обработки трубных заготовок, нанесение на них защитного покрытия и нагрев до температуры горячего прессования, горячее прессование, удаление защитного покрытия, вакуумную термическую обработку, многократную холодную прокатку с промежуточными вакуумными термическими обработками с получением трубных изделий. Осуществляют окончательную вакуумную термическую обработку трубных изделий с последующими финишными отделочными операциями. В результате обеспечивают высокую стойкость к коррозии и формоизменению трубных изделий. 9 з.п. ф-лы, 1 табл., 1 пр.

Подробнее
14-03-2023 дата публикации

Способ изготовления биметаллических труб из двухфазных (α+β)-титановых и деформируемых алюминиевых сплавов

Номер: RU2791931C1

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления биметаллических труб из (α+β)-титанового сплава и алюминиевой компоненты прочно-плотно сваренных по всей их контактной поверхности, предназначенных для работы в условиях агрессивных жидкостей или газов. Из (α+β)-титанового сплава получают круглый пруток двухцикловым горячим гидропрессованием, температура не выше 0,5 от температуры полиморфного превращения сплава, коэффициент вытяжки λ=8-10. Непосредственно после гидропрессования пруток закаливают в воду, затем пруток нагревают до температуры не выше 0,5 от температуры полиморфного превращения сплава и подвергают горячему гидропрессованию в направлении, противоположном первоначальному, для получения круглого прутка с необходимым диаметром, коэффициент вытяжки λ=4-5. Затем пруток закаливают с горячего гидропрессования в воду, после чего составную заготовку собирают прошивкой алюминиевой компоненты, нагретой до температуры её горячей деформации ...

Подробнее
15-01-2019 дата публикации

Способ обработки поверхности сплава никелида титана

Номер: RU2677033C1

Изобретение относится к способу обработки поверхности сплава никелида титана. Поверхность сплава никелида титана сканируют лучом лазера с плотностью мощности луча 1,5-0,5⋅10Вт/мм, средней мощностью лазерного облучения 0,48-56,2 Вт, с частотой импульсов 10-200 кГц и скоростью сканирования луча лазера 100-2000 мм/с. Для обработки используют эквиатомный сплав никелида титана, обладающий свойством памяти формы. Обработку ведут в атмосфере воздуха с использованием иттербиевого лазера. В результате получают коррозионно-стойкое покрытие за счет уменьшения или полного исключения никеля в составе поверхностного слоя. 2 з.п. ф-лы, 4 табл., 6 ил.

Подробнее
17-12-2019 дата публикации

Способ обработки технически чистого титана большой пластической деформацией

Номер: RU2709416C1

Изобретение относится к области получения наноструктурного технически чистого титана с повышенными механическими и коррозионными свойствами и способу его обработки и может быть использовано в различных областях техники, в том числе в химической промышленности. Способ обработки технически чистого титана включает большую пластическую деформацию кручением под высоким гидростатическим давлением не менее 6 ГПа при комнатной температуре. Деформацию проводят при двух оборотах с получением наноструктуры чистого титана, состоящей из 80-85% альфа-фазы со средним размером 50-60 нм и 15-20% омега-фазы. Деформацию проводят в камере Бриджмена. Получают технически чистый титан с высокими значениями микротвердости и коррозионной стойкости: положительный стационарный потенциал, высокая склонность к пассивации при анодной поляризации. 1 з.п. ф-лы, 1 ил.

Подробнее
18-06-2019 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ

Номер: RU2691815C1

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования, используемой для аддитивной технологии. Способ включает нагрев и деформацию заготовки путем волочения или прокатки. Нагрев заготовки проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева в зависимости от диаметра заготовки, а деформацию заготовки осуществляют при температуре Т=(450-850)°С с контролем допуска температуры нагрева заготовки ΔТ=±10°С. Приведены параметры установок индукционного нагрева в зависимости от диаметра заготовки. Повышается качество изготовленной проволоки, ее прочность и пластичность, снижаются затраты на изготовление. 3 з.п. ф-лы, 2 ил., 2 табл.

Подробнее
06-06-2019 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ И С ВЫСОКОЙ СТЕПЕНЬЮ ДЕФОРМАЦИИ

Номер: RU2690869C1

Изобретение относится к способам обработки титановых сплавов давлением может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования. Способ включает нагрев и деформацию заготовки путем волочения или прокатки. Нагрев заготовки проводят индукционным методом с использованием одного, двух или трех устройств индукционного нагрева в зависимости от диаметра заготовки, а деформацию заготовки осуществляют при степени деформации заготовки μ=(10-50)% за один проход. Приведены параметры устройств индукционного нагрева в зависимости от диаметра заготовки. Снижается продолжительность полного цикла производства проволоки, повышается прочность и пластичность проволоки. 3 з.п. ф-лы, 2 ил., 2 табл.

Подробнее
19-06-2019 дата публикации

Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий

Номер: RU2692003C1

Изобретение относится к термомеханической обработке титановых сплавов для медицины, а именно к созданию способа получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, и может быть использовано для изготовления костных имплантатов. Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий включает нагрев заготовок до температуры 800-950°С и их деформационно-термическую обработку путем многопроходной винтовой прокатки с промежуточными подогревами и ротационной ковки. Винтовую прокатку выполняют с истинной степенью деформации, составляющей 0,55-0,85 от суммарной истинной степени деформации при винтовой прокатке и ротационной ковке, со скоростью вращения раската 9-70 рад/с и при соблюдении соотношениягде n- суммарное число частных обжатий за все проходы, N -число проходов. Обеспечивается получение прутков из сверхупругих сплавов Ti-Zr-Nb длиной не менее 2000 мм размерного ряда по диаметру от 3 до 10 мм. Прутки имеют временное сопротивление при испытаниях ...

Подробнее
13-08-2019 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ ВЫСОКОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ ТИТАНА

Номер: RU2697309C1

Изобретение относится к области металлургии, в частности к обработке металлов давлением, и может быть использовано для получения проволоки из высокопрочных сплавов на основе титана. Способ получения заготовки сплавов включает получение слитка, его горячую деформацию под многократное волочение при комнатной температуре с промежуточными отжигами до получения проволоки необходимого размера и окончательную термическую обработку при температуре (0,5÷0,7)Т°С. Перед волочением одну или 5÷9 заготовок помещают в отверстия контейнера круглого поперечного сечения из пластичных сплавов, закрывающегося с торцов крышками из пластичных сплавов, полученную составную конструкцию с регламентированными размерами подвергают горячей деформации путем прессования со степенью деформации 80÷95% и холодной прокатке со степенью деформации 75÷95%, промежуточные отжиги при волочении проводят в атмосфере воздуха при температуре Т-(20÷150)°С, после получения проволоки необходимого размера контейнер из пластичных сплавов ...

Подробнее
01-11-2021 дата публикации

Способ обработки спеченного твердого сплава Т15К6 термоциклированием

Номер: RU2758706C1

Изобретение относится к области машиностроения, преимущественно к способам термического упрочнения изделий порошковой металлургии, в частности к изделиям твердых сплавов, применяемым для изготовления режущего и бурового оборудования. Способ обработки спеченного твердого сплава Т15К6 термоциклированием включает проведение термоциклирования в соляной печи-ванне путем подогрева твердого сплава Т15К6, его закалки и отпуска. Термоциклирование проводят за 3 цикла, причем подогрев твердого сплава Т15К6 осуществляют до температуры от 870±15°С с последующей выдержкой 3±1 мин, закалку осуществляют при температуре 1150±25°С с выдержкой 3±1 мин, а отпуск проводят при температуре 780±15°С с выдержкой 3±1 мин, после чего обработанный сплав охлаждают на воздухе. 5 ил., 4 табл.

Подробнее
10-02-2006 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУФАБРИКАТА ИЗ ЦИРКОНИЕВОГО СПЛАВА ДЛЯ ПОЛУЧЕНИЯ ПЛОСКОГО ИЗДЕЛИЯ И ЕГО ИСПОЛЬЗОВАНИЕ

Номер: RU2005125715A
Принадлежит:

... 1. Способ изготовления полуфабриката из циркониевого сплава, содержащего, по меньшей мере, 97% по весу циркония, предназначенного для получения плоских изделий, при котором получают слиток диаметром, находящимся в пределах от 400 до 800 мм, и длиной от 2 до 3 м путем литья циркониевого сплава, затем путем ковки слитка получают полуфабрикат в виде сляба толщиной примерно 100 мм, предназначенного для получения плоского изделия толщиной от 0,2 до 4 мм, отличающийся тем, что сляб (8) получают из слитка путем только одной операции ковки при температуре, при которой циркониевый сплав находится в состоянии, содержащем кристаллические α- и β-фазы. 2. Способ по п.1, отличающийся тем, что при температуре ковки объемное содержание циркониевого сплава в слитке в α -фазе составляет от 10 до 90%, при этом остальная часть циркониевого сплава слитка находится в β-фазе. 3. Способ по п.1, отличающийся тем, что ковку циркониевого сплава в α - и β-фазе осуществляют при температуре, находящейся в пределах от ...

Подробнее
10-03-2006 дата публикации

РЕНТГЕНОВСКАЯ МИШЕНЬ ИЗ СПЛАВА МОЛИБДЕНА, ИМЕЮЩАЯ ОДНОРОДНУЮ СТРУКТУРУ ЗЕРЕН

Номер: RU2005136167A
Принадлежит:

... 1. Способ изготовления молибденовой пластины, обработанной в поперечном направлении, содержащий (a) восстановление молибдата аммония и формование металлического порошка молибдена, (b) уплотнение молибденового компонента, состоящего из металлического порошка молибдена и легирующего элемента с получением первой заготовки, причем легирующий элемент выбирают из группы, состоящей из титана, циркония, гафния, углерода, окиси лантана и их комбинаций, (c) термическую обработку первой заготовки и воздействие на заготовку термомеханическими силами в первом направлении, формируя таким образом вторую заготовку, (d) термическую обработку второй заготовки и воздействие на вторую заготовку термомеханическими силами во втором направлении, которое отличается от первого направления (e) обработку термомеханически обработанной второй заготовки на этапе тепловой обработки рекристаллизации, формируя таким образом термически обработанную и обработанную в поперечном направлении заготовку и (f) обработку обработанной ...

Подробнее
10-12-2010 дата публикации

БЕТА-ТИТАНОВЫЙ СПЛАВ

Номер: RU2009119712A
Принадлежит:

... 1. β-титановый сплав, содержащий, мас.%: Al от 2 до 5, Fe от 2 до 4, Cr от 6,2 до 11, V от 4 до 10, Ti и неизбежные примеси - остальное. ! 2. β-титановый сплав, содержащий, мас.%: Al от 2 до 5, Fe от 2 до 4, Cr от 5 до 11, Мо от 4 до 10 и Ti и неизбежные примеси - остальное. ! 3. β-титановый сплав, содержащий, мас.%: Al от 2 до 5, Fe от 2 до 4, Cr от 5,5 до 11 и Mo+V (всего Mo и V) от 4 до 10, при этом Mo как минимум 0,5 и V как минимум 0,5 и Ti и неизбежные примеси - остальное. ! 4. β-титановый сплав по любому из пп.1-3, отличающийся тем, что он дополнительно содержит Zr в количестве от 1 до 4 мас.%. ! 5. β-титановый сплав по любому из пп.1-3, отличающийся тем, что кислородный эквивалент Q, определяемый формулой [1], равен 0,15-0,30, где ! кислородный эквивалент Q=[О]+2,77 [N], [1], ! в которой [О] - содержание О (кислорода) в мас.% и [N] - содержание N в мас.%. ! 6. β-титановый сплав по п.4, отличающийся тем, что кислородный эквивалент Q, определяемый формулой [1], равен 0,15-0,30, где ...

Подробнее
28-05-2018 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ И КОНТРОЛЕМ ПРОЦЕССА МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ

Номер: RU2655482C1

Изобретение относится к области металлургии, а именно к способам обработки титановых сплавов давлением, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Нагрев заготовки проводят индукционным методом, причем для заготовки диаметром от 8,0 до 4,0 мм устанавливают номинальную мощность 50-70 кВт и частоту 40-80 кГц, а для заготовок диаметром от менее 4,0 до 0,4 мм устанавливают номинальную мощность 20-40 кВт и частоту 300-500 кГц. Деформацию заготовки путем волочения или прокатки проводят при нагреве заготовки до температуры Т=300-635°C и нагреве волок или роликов до температуры Т=300-650°C, а скорость деформации заготовки выбирают на каждом проходе в зависимости от диаметра заготовки. Деформацию заготовки проводят под контролем температуры волок или роликов ...

Подробнее
25-03-2020 дата публикации

Способ винтовой прокатки сплавов системы титан-цирконий-ниобий

Номер: RU2717765C1

Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий, и может быть использовано в качестве полупродукта для изготовления костных имплантатов. Способ винтовой прокатки сплавов системы титан-цирконий-ниобий заключается в том, что осуществляют многопроходную винтовую прокатку заготовки с промежуточными подогревами при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не превышает 65% от общей истинной деформации. Увеличивается прочность и пластичность, а также повышаются служебные свойства сплавов системы титан-цирконий-ниобий, работающих в условиях долговременных скручивающих нагрузок переменного направления. 1 ...

Подробнее
10-10-2009 дата публикации

ПРОИЗВОДСТВО ЛИСТОВ МЕЛКОЗЕРНИСТОГО МИКРОЛЕГИРОВАННОГО НИОБИЯ МЕТАЛЛУРГИЕЙ СЛИТКОВ

Номер: RU2008111870A
Принадлежит:

... 1. Способ производства сплава ниобия, предусматривающий: ! A) формирование смеси, содержащей порошок ниобия и порошок металла, выбранного из группы, состоящей из иттрия, алюминия, гафния, титана, циркония, тория, лантана и церия, и прессование этой смеси с формированием прессованной смеси; ! Б) присоединение прессованной смеси к электроду, содержащему ниобий; ! B) расплавление электрода и прессованной смеси в условиях вакуумно-дугового переплава таким образом, что смесь смешивается с расплавленным электродом; ! Г) охлаждение расплавленного электрода с формированием слитка металлического сплава и ! Д) применение стадий термомеханической обработки к слитку металлического сплава с формированием обработанного изделия. ! 2. Способ по п.1, где обработанное изделие в Д) имеет однородную мелкозернистую структуру от 5 до 10 по ASTM. ! 3. Способ по п.1, где металл присутствует в А) в количестве от 0,1 до 100 млн-1 относительно общего содержания ниобия в обработанном изделии. ! 4. Способ по п.1, где ...

Подробнее
27-10-2012 дата публикации

СПОСОБ ФОРМИРОВАНИЯ ЛИСТОВЫХ КОМПОНЕНТОВ ИЗ АЛЮМИНИЕВОГО СПЛАВА

Номер: RU2011115214A
Принадлежит:

... 1. Способ формования листового компонента из алюминиевого сплава, включающий: ! (i) нагрев листовой заготовки из алюминиевого сплава до температуры термообработки на твердый раствор (SHT) на станции нагрева и в случае сплавов, не подвергаемых предварительной закалке с последующим старением, поддержание температуры SHT до завершения термообработки на твердый раствор, ! (ii) подачу листовой заготовки на ряд холодных штампов и начало формования в течение 10 с с момента ее извлечения из станции нагрева, так что потери тепла от листовой заготовки уменьшаются до минимума, ! (iii) закрывание холодных штампов для формования листовой заготовки в отформованный компонент, при этом формование происходит менее чем за 0,15 с и ! (iv) выдержку отформованного компонента в закрытых штампах во время охлаждения отформованного компонента. ! 2. Способ по п.1, в котором время выдержки отформованного компонента в закрытых штампах является достаточно долгим для достижения отформованным компонентом температуры ...

Подробнее
27-08-2014 дата публикации

ОБРАБОТКА АЛЬФА/БЕТА ТИТАНОВЫХ СПЛАВОВ

Номер: RU2013107028A
Принадлежит:

... 1. Способ формовки изделия из α+β-титанового сплава, включающий:холодную обработку α+β-титанового сплава при температуре в диапазоне от температуры окружающей среды до 500°F; истарение α+β-титанового сплава при температуре в диапазоне от 700°F до 1200°F после холодной обработки;α+β-титановый сплав, содержащий, в весовых процентах, от 2,90 до 5,00 алюминия, от 2,00 до 3,00 ванадия, от 0,40 до 2,00 железа, от 0,10 до 0,30 кислорода, титан и случайные примеси.2. Способ по п.1, отличающийся тем, что путем холодной обработки и старения формуют изделие из α+β-титанового сплава, имеющее предел прочности при растяжении в диапазоне от 155 тысяч фунтов/кв. дюйм до 200 тысяч фунтов/кв. дюйм и относительное удлинение при растяжении в диапазоне от 8% до 20%, при температуре окружающей среды.3. Способ по п.1, отличающийся тем, что путем холодной обработки и старения формуют изделие из α+β-титанового сплава, имеющее предел прочности при растяжении в диапазоне от 165 тысяч фунтов/кв. дюйм до 180 тысяч ...

Подробнее
10-05-2008 дата публикации

ЧАШИ ИЗ ТУГОПЛАВКИХ МЕТАЛЛОВ

Номер: RU2006137650A
Принадлежит:

... 1. Способ изготовления чаши, предусматривающий (a) разрезание болванки, содержащей компонент из тугоплавкого металла, в первую заготовку; (b) подвергание штамповке-высадке первой заготовки и таким образом формование второй заготовки; (c) подвергание второй заготовки первой стадии отжига в вакууме или инертном газе до первой температуры, которая является достаточно высокой, чтобы вызвать, по меньшей мере, частичную рекристаллизацию второй заготовки, и таким образом формование отожженной второй заготовки; (d) повторную штамповку отожженной второй заготовки путем уменьшения диаметра второй заготовки и таким образом формование третьей заготовки; (e) подвергание третьей заготовки штамповке-высадке и таким образом формование четвертой заготовки; (f) повторную штамповку четвертой заготовки путем уменьшения диаметра четвертой заготовки и таким образом, формование пятой заготовки; (g) подвергание пятой заготовки второй стадии отжига пятой заготовки до температуры, которая является достаточно высокой ...

Подробнее
11-12-2024 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНОГО СВЕРХУПРУГОГО СПЛАВА ТИТАН-НИКЕЛЬ

Номер: RU2831627C1

Изобретение относится к электропластической формообразующей обработке сплавов с эффектом памяти формы на основе интерметаллического соединения титан-никель и может быть использовано в металлургии, машиностроении и медицине. Изобретение направлено на создание в сплавах регламентированных параметров нанокристаллической структуры и сверхупругого состояния. Способ деформационной обработки длинномерных полуфабрикатов из сплавов Ti50-xNi50+x включает многопроходную прокатку при температуре Тд<Мн предварительно закаленного полуфабриката в мартенситном состоянии до достижения суммарной истинной степени деформации е>3, где х=0-0,3, Тд - температура деформации, Мн - температура начала прямого мартенситного превращения при охлаждении. При этом производят одновременное воздействие импульсным электрическим током плотностью 30-200 А/мм2, частотой 100-1000 Гц и длительностью 10-500 мкс. Получают полуфабрикаты тонкого сечения из сплавов Ti50-xNi50+x с эффектом памяти формы, сверхупругостью и с однородной ...

Подробнее
05-04-2018 дата публикации

Titanmaterial und Abgasrohr für Motor

Номер: DE112007000544B4

Titanlegierung mit äquiaxialer Struktur und hervorragender Hochtemperatur-Oxidationsbeständigkeit, bestehend aus 0,15 bis 2 Massen-% Si, unter 0,30 Massen-% Al, gegebenenfalls mindestens einem Element von Cu, Nb, Mo und Cr als ein Additiv, wobei die Summe des Si-Gehalts und des Additivgehalts oder die Summe des Si-, des Al- und des Additivgehalts 2 Massen-% oder weniger beträgt, gegebenenfalls Sauerstoff und Eisen, wobei die Summe des Sauerstoff- und Eisengehalts 0,20 Massen-% oder weniger beträgt, und als Rest Titan und unvermeidbaren Verunreinigungen, wobei die äquiaxiale Struktur eine mittlere Korngröße von 15 μm oder mehr aufweist.

Подробнее
05-04-2007 дата публикации

VERFAHREN ZUR HERSTELLUNG VON SAG-BESTÄNDIGEN MOLYBDÄN-LANTHANOXID-LEGIERUNGEN

Номер: DE0060312012D1
Автор: WINNICKA B, WINNICKA, B.
Принадлежит: OSRAM SYLVANIA INC, OSRAM SYLVANIA INC.

Подробнее
02-09-2015 дата публикации

Zirconium alloy for nuclear power reactor core

Номер: GB0201512801D0
Автор:
Принадлежит:

Подробнее
23-03-1966 дата публикации

Method for increasing the critical current of superconducting alloys

Номер: GB0001023523A
Автор:
Принадлежит:

A hard superconducting alloy consisting of a metal from Groups IVa, Va and VIa of the Periodic Table, together with at least one metal from Groups III, IV, V, VI, VII and VIII is heat treated at a temperature within a multiphase region of the phase diagram for a sufficient time to induce precipitation of a secondary phase and is then quenched to retain that phase. The alloy may also be subjected to a sub-critical magnetic field at or below its critical temperature. Cold working may also be applied prior or subsequent to heat-treatment. Alloys of niobium with 28-33 atomic per cent of zirconium, of zirconium with 25-33 atomic per cent niobium, and of niobium with 12.5 atomic per cent each of titanium and zirconium are particularly referred to.

Подробнее
22-12-1965 дата публикации

Improvements in or relating to the heat-treatment of columbium-base alloys

Номер: GB0001014438A
Принадлежит:

An alloy containing in percentage by weight: is solution treated at 1600-2100 DEG C. for 5 minutes to 9 hours, and is subsequently treated at 1000-1500 DEG C., for 1/2 hour to 40 hours, the conditions of the second treatment being such that the metal recrystallizes. Cooling at a rate such as 300 DEG C./min. from the solution treatment temperature down to 1200 DEG C. is preferable. An intermediate working step can be carried out between the two stages of heat treatment but deformation by cold work should not exceed 40%. The alloys may be prepared by arc melting or by powder metallurgical methods.

Подробнее
24-07-1923 дата публикации

Improvements in or relating to the manufacture of bodies from metals having a high melting-point

Номер: GB0000200879A
Автор:
Принадлежит:

... 200,879. Wade, H., (Naamlooze Vennootschap Philips' Gloeilampenfabrieken). March 24, 1922. Annealing; cementation.-Ductile bodies of refractory metals, such as tungsten, molybdenum, or tantalum, are obtained by heating a single crystal of metal in an atmosphere of a volatile and dissociable compound of the refractory metal at a temperature between about 1200‹ and 2400‹ C. the dissociated refractory metal settling on the crystal so that the latter increases in size whilst remaining a single crystal. The body so obtained may then be subjected to mechanical treatment, such as rolling, hammering, or drawing, to obtain the metal in the form of rods. ribbons, wire, or filaments for electric lamps. The original crystal, which may be obtained by any known process, such as that described in Specification 16620/14, instead of being of the same material as the ductile body may be of another metal or alloy isomorphous with the ductile body, in which case the core may afterwards be removed in anv known ...

Подробнее
25-03-1991 дата публикации

VERFAHREN ZUR HERSTELLUNG VON WARMKRIECHFESTEN HALBFABRIKATEN ODER FORMTEILEN AUS HOCHSCHMELZENDEN METALLEN

Номер: AT0000392432B
Автор: ECK RALF DR.
Принадлежит:

Подробнее
15-12-2011 дата публикации

PROCEDURE FOR the PRODUCTION OF (NB, TI) 3SN-DRAHT BY USE OF TIQUELLENSTÄBEN

Номер: AT0000535626T
Принадлежит:

Подробнее
15-11-2007 дата публикации

PROCEDURE FOR THE PRODUCTION OF A MOLYBDENUM ALLOY

Номер: AT0000376072T
Принадлежит:

Подробнее
15-04-2012 дата публикации

VERFAHREN ZUR HERSTELLUNG EINES SCHMIEDESTÜCKES AUS EINER GAMMA-TITAN-ALUMINIUM-BASISLEGIERUNG

Номер: AT0000508323B1
Принадлежит:

The method involves manufacturing a forge piece from a column-shaped or rod-shaped raw material of titanium-aluminum alloy. The raw material is heated at temperature higher than 1150 degree Celsius by electricity supply or induction heat such that the forge raw material is transformed to different cross-sectional area in over length range, where the raw material is heated at deformation temperature in multiple steps. A covering part is provided with oxidation zirconium to decrease surface temperature fall of the forge piece. Ratio of oxidation zirconium is greater than 70 weight percentage.

Подробнее
15-02-1988 дата публикации

KRIECHFESTE LEGIERUNG AUS HOCHSCHMELZENDEM METALL UND VERFAHREN ZU IHRER HERSTELLUNG

Номер: ATA15887A
Автор:
Принадлежит:

Подробнее
15-09-1990 дата публикации

PROCEDURE FOR THE PRODUCTION OF WARM-CREEP-RESISTANT SEMI-MANUFACTURES OR SHAPED PARTS MADE OF HIGH-MELTING METALS

Номер: AT0000105989A
Автор: ECK RALF DR.
Принадлежит:

Подробнее
25-11-2004 дата публикации

VERFAHREN ZUR HERSTELLUNG EINER MOLYBDÄN-LEGIERUNG

Номер: AT0000007187U1
Принадлежит:

Semi-finished or finished parts are made from a molybdenum alloy with intermetallic phases, preferably molybdenum-silicide, molybdenum-boron-silicide, optionally also molybdenum-boride phases. Starting from mechanically alloyed powder, hot compacted material exhibits superplastic forming behavior. It is thus possible to lower the forming temperature by at least 300° C., thus permitting processing on conventional plants.

Подробнее
10-10-1969 дата публикации

Procedure for the thermal treatment of an alloy on tungsten basis

Номер: AT0000275172B
Автор:
Принадлежит:

Подробнее
30-06-2011 дата публикации

Nickel-titanium alloy including a rare earth element

Номер: AU2007293025B2
Принадлежит:

Disclosed herein is a nickel-titanium alloy comprising nickel, titanium, and at least one rare earth element, wherein the at least one rare earth element is selected from the group consisting of La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Tn, Pa and U. The nickel-titanium alloy comprises from about 34 at.% to about 60 at.% nickel, from about 34 at.% to about 60 at.% titanium, and from about 0.1 at.% to about 15 at.% at least one rare earth element. The nickel-titanium alloy may further include one or more additional alloying elements. In addition to radiopacity, the nickel-titanium alloy preferably exhibits superelastic or shape memory behavior. Medical devices comprising the nickel-titanium alloy and a method of making them are also disclosed.

Подробнее
21-07-2011 дата публикации

Method for casting titanium alloy

Номер: AU2006218029B2
Принадлежит:

The invention relates to a method for casting objects from a ß-titanium alloy containing titanium molybdenum with a molybdenum content of 7.5 to 25 %. According to the invention: a melting of the alloy is carried out at a temperature of higher than 1770 °C; the molten alloy is precision cast into a mold corresponding to the object to be produced, and this cast object is subjected to a hot-isostatic pressing, solution annealing and subsequent quenching. An efficient production of objects made from ß-titanium alloys in the precision casting process is achieved using the inventive method. The invention thus creates the possibility of combining the advantageous properties of ß-titanium alloys, particularly their excellent mechanical properties, with the advantages of a production of objects in the precision casting process. Even objects having complex shapes, which could not or could not be sensibly produced by conventional forging methods, can be produced from a ß-titanium alloy thanks to ...

Подробнее
30-12-1999 дата публикации

Working and annealing liquid phase sintered tungsten heavy alloy

Номер: AU0004426999A
Принадлежит:

Подробнее
05-12-2010 дата публикации

METHOD FOR PRODUCING A FORGING FROM A GAMMA TITANIUM ALUMINUM-BASED ALLOY

Номер: CA0002706289A1
Принадлежит:

Method for producing a forging from a gamma titanium aluminum-based alloy. The method includes heating at least a portion of a cylindrical or rod-shaped starting or raw material to a temperature of more than 1150°C over a cross section of the at least a portion. The at least a portion corresponds to points at which the forging to be shaped has volume concentrations. The method also includes deforming the at least a portion through an applied force to form a biscuit having different cross sectional areas over a longitudinal extension of the biscuit, and finishing the forging through a second heating to a deformation temperature and at least one subsequent step.

Подробнее
12-02-2009 дата публикации

METHODS AND APPARATUS FOR CONTROLLING TEXTURE OF PLATES AND SHEETS BY TILT ROLLING

Номер: CA0002694355A1
Принадлежит:

Methods and apparatus for rolling metal sheet or plate (3) are provided. The method comprises the step of feeding the metal plate or sheet (3) into a rolling mill (1, 2) at an angle. The apparatus comprises a rolling mill having a tilted feed table (4), or an apron upon which a transfer table and tilted feed table can rest. Through- thickness gradient and shear texture can be improved using the methods and apparatus of the invention.

Подробнее
15-10-2020 дата публикации

BORING BIT COMPONENT WITH HARD FACE WEAR RESISTANCE MATERIAL WITH SUBSEQUENT HEAT TREATMENT

Номер: CA3136612A1
Принадлежит:

A boring bit or other component for horizontal directional drilling is provided which includes a hard faced layer that is preferably made by a laser cladding bead. A subsequent or post heat treatment is applied to modify the heat affected zone (HAZ) to eliminate or reduce the hard brittle regions and/or softer regions in the base iron or steel material of the HAZ. Further, the hard faced layer may be applied in combination with carbide insert teeth that are embedded within the steel base of the boring bit body, such as by press fitting.

Подробнее
22-03-2012 дата публикации

PROCESSING ROUTES FOR TITANIUM AND TITANIUM ALLOYS

Номер: CA0003013617A1
Принадлежит:

Methods of refining the grain size of titanium and titanium alloys include thermally managed high strain rate multi-axis forging. A high strain rate adiabatically heats an internal region of the workpiece during forging, and a thermal management system is used to heat an external surface region to the workpiece forging temperature, while the internal region is allowed to cool to the workpiece forging temperature. A further method includes multiple upset and draw forging titanium or a titanium alloy using a strain rate less than is used in conventional open die forging of titanium and titanium alloys. Incremental workpiece rotation and draw forging causes severe plastic deformation and grain refinement in the titanium or titanium alloy forging.

Подробнее
09-11-2021 дата публикации

A METHOD OF MANUFACTURING RODS FROM TITANIUM ALLOYS

Номер: CA3009962C

The invention relates to the pressure processing of metals, and specifically to methods for preparing rods and workpieces from titanium alloys, with applications as a structural material in nuclear reactor cores, in the chemical and petrochemical industries, and in medicine. The invention solves the problem of producing rods from high-quality titanium alloys while simultaneously ensuring the high efficiency of the process. In order to achieve same, a method for preparing rods or workpieces from titanium alloys includes the hot forging of an initial workpiece and subsequent hot deformation, the hot forging of an ingot is carried out following heating to a temperature within the range (Temperature of polymorphic transformation (Tpt)+20)°C to (Tpt+150)°C with shear deformations primarily in the longitudinal direction and a reduction ratio of k = (1.2-2.5), and then performing hot rolling forging, without cooling, within a temperature range of (Tpt+20)°C to (Tpt+150)°C, changing the direction ...

Подробнее
14-06-2018 дата публикации

HYDROGENATION-DEHYDROGENATION METHOD FOR TIAL ALLOY AND METHOD FOR PRODUCING TIAL ALLOY POWDER

Номер: CA0003029174A1
Принадлежит:

According to the present invention, a powder of a TiAl alloy is adequately produced. A hydrogenation-dehydrogenation method for a TiAl alloy according to the present invention comprises: a hydrogenation step wherein a TiAl alloy is hydrogenated in an environment where the temperature is set to a temperature at which phase transformation to the ß phase starts or higher; and a dehydrogenation step wherein the hydrogenated TiAl alloy is dehydrogenated.

Подробнее
30-07-2015 дата публикации

TITANIUM MATERIAL OR TITANIUM ALLOY MATERIAL HAVING SURFACE ELECTRICAL CONDUCTIVITY, AND FUEL CELL SEPARATOR AND FUEL CELL USING THE SAME

Номер: CA0002935525A1
Принадлежит:

A surface of titanium or a titanium alloy, having: a titanium hydride composition ([ITi-H / (ITi +ITi-H)] ×100) of at least 55% found from the maximum intensity (ITi) of the metal titanium and the maximum intensity (ITi-H) of the titanium hydride at an X-ray diffraction peak measured at an incidence angle to the surface of 0.3°; a titanium oxide film formed on the outermost surface thereof; and C at no more than 10 at.%, N at no more than 1 at.%, and B at no more than 1 at.%, at a position at which the surface is spattered by argon for 5 nm. In addition, the titanium oxide film has a thickness of 3-10 nm and is formed by stabilization after passivation treatment in a prescribed aqueous solution.

Подробнее
14-07-2015 дата публикации

METHOD FOR HEAT-TREATING METAL TUBES OR PIPES FOR NUCLEAR POWER PLANT, BATCH-TYPE VACUUM HEAT TREATMENT FURNACE USED THEREFOR, AND METAL TUBES OR PIPES FOR NUCLEAR POWER PLANT HEAT-TREATED BY THE SAME

Номер: CA0002786978C

In a method for heat treating a metal tube or pipe for a nuclear power plant, the tube or pipe being accommodated in a batch-type vacuum heat treatment furnace, when the tube or pipe is laid down on and is subjected to heat treatment on a plurality of metal cross beams arranged along a longitudinal direction of the tube or pipe, it is possible to suppress scratches to be formed on the outer surface of the tube or pipe and attributable to heat treatment, and to reduce the discoloration on the outer surface of the tube or pipe by holding the tube or pipe and the metal cross beams in indirect contact with each other by virtue of a heat resistant fabric having a thickness of 0.1 to 1.2 mm interposed in between. In this occasion, it is preferable to use a metal tube or pipe having a composition consisting of, in mass%, C: 0.15% or less, Si: 1.00% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0.030% or less, Cr: 10.0 to 40.0%, Ni: 8.0 to 80.0%, Ti: 0.5% or less, Cu: 0.6% or less, Al: 0.5% ...

Подробнее
23-05-2013 дата публикации

TITANIUM MATERIAL FOR POLYMER ELECTROLYTE FUEL CELL SEPARATOR, METHOD FOR PRODUCING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL USING THE SAME

Номер: CA0002851084A1
Принадлежит:

This titanium material for solid polymer fuel cell separators contains, in mass%, 0.005-0.15% of a platinum group element and 0.002-0.10% of a rare earth element, with the balance made up of Ti and impurities. Consequently, the surface of this titanium material for solid polymer fuel cell separators can be provided with a coating film having good conductivity, while reducing the time necessary for acid pickling. The surface of this titanium material is provided with a coating film that is formed of titanium oxide and a platinum group element, and it is preferable that the coating film has a thickness of 50 nm or less and the concentration of the platinum group element in the surface of the coating film is 1.5% by mass or more. By having the above-described coating film, this titanium material can be reduced in the initial contact resistance, while ensuring good corrosion resistance. It is preferable for this titanium material that the rare earth element is Y and the platinum group element ...

Подробнее
11-04-2000 дата публикации

TITANIUM ALLOY BAR SUITED FOR THE MANUFACTURE OF ENGINE VALVES

Номер: CA0002119022C
Принадлежит: NIPPON STEEL CORPORATION

Bars of titanium alloys suited for the manufacture of engine valves are mass-producible while maintaining good configurational and dimensional accuracies throughout the valve fabricating process and the wear-resistance imparting processes by surface oxidizing and nitriding. The alloys are of the .alpha.+.beta. type whose microstructure consists of any of an acicular .alpha.-phase consisting of acicular .alpha. crystals having a width of not smaller than 1 .mu.m, an acicular .alpha.-phase consisting of acicular .alpha. crystals having a width of not smaller than 1 .mu.m and dispersed with equiaxed .alpha. crystals, and an equiaxed .alpha.-phase consisting of a crystals whose diameter is not smaller than 6 .mu.m. Their microstructure may also include one in which the diameter of the pre-.beta. crystals in the acicular .alpha.-phase is not larger than 300 .mu.m and the width of the acicular a crystals is not smaller than 1 .mu.m and not larger than 4 .mu.m. Selection of these alloys assures ...

Подробнее
29-04-1977 дата публикации

Номер: CH0000587350A5
Автор:

Подробнее
13-11-2020 дата публикации

The invention relates to a method for producing a clockspring for a clockwork movement.

Номер: CH0000716155A2
Принадлежит:

La présente invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, comprenant : une étape d'élaboration d'une ébauche dans un alliage de niobium et d'hafnium comprenant entre 5 et 60% en poids, de préférence entre 5 et 30%, et plus préférentiellement entre 8 et 12% en poids d'hafnium, une étape de recuit et refroidissement de l'ébauche, au moins une étape de déformation de l'ébauche recuite pour former un fil, caractérisé en ce qu'il comprend, avant l'étape de déformation, une étape de dépôt, sur l'ébauche, d'une couche d'un matériau ductile choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil. La présente invention se rapporte également au ressort spiral issu du procédé de fabrication.

Подробнее
28-06-2019 дата публикации

Spiral spring for a watch movement and its manufacturing method.

Номер: CH0000714491A2
Принадлежит:

La présente invention concerne un ressort spiral pour balancier en alliage de niobium et de titane à structure essentiellement monophasée, et son procédé de fabrication qui comprend: une étape d’élaboration d’une ébauche dans un alliage à base de niobium constitué de: niobium: balance à 100% en poids, titane: entre 40 et 49% en poids, traces d’éléments sélectionnés parmi le groupe constitué de 0, H, C, Fe, Ta, N, Ni, Si, Cu, Al, entre 0 et 1600 ppm en poids en individuel, avec cumul inférieur à 0.3% en poids, une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane de l’alliage à base de niobium soit essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 10% en volume, au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique, le nombre d’étapes de traitement thermique et de déformation étant limité de sorte que l’alliage à ...

Подробнее
28-06-2019 дата публикации

Spiral spring timepiece, in particular a barrel spring or a spiral spring.

Номер: CH0000714494A2
Принадлежит:

L’invention concerne un procédé de fabrication d’un ressort spiralé d’horlogerie à structure bi-phasée, en alliage de niobium et titane, comportant les étapes: – élaboration d’un alliage binaire comportant du niobium et du titane, avec: – niobium: balance à 100%; – titane entre 45.0% et 48.0% en masse du total, – des traces de composants parmi 0, H, C, Fe, Ta, N, Ni, Si, Cu, Al, entre 0 et 1600 ppm du total en masse en individuel, avec cumul inférieur à 0.3% en masse; – application de déformations alternées à des traitements thermiques pour l’obtention d’une microstructure biphasée comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase α, la teneur en titane en phase α étant supérieure à 10% en volume, de limite élastique supérieure à 1000 MPa, de module d’élasticité inférieur à 80 GPa; – tréfilage pour obtenir du fil calandrable; – calandrage ou mise en bague pour former un ressort de barillet, en clé de sol avant son ...

Подробнее
16-08-2021 дата публикации

Ressort spiralé d'horlogerie, notamment un ressort de barillet ou un ressort-spiral.

Номер: CH714494B1
Принадлежит: NIVAROX SA, Nivarox-FAR S.A.

L'invention concerne un procédé de fabrication d'un ressort spiralé d'horlogerie à structure bi-phasée, en alliage de niobium et titane comportant les étapes : - élaboration d'un alliage binaire comportant du niobium et du titane, avec : - niobium : balance à 100% ; - titane entre 45.0% et 48.0% en masse du total, - des traces de composants parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, entre 0 et 1600 ppm, avec cumul inférieur à 0.3% en masse; - application de déformations alternées à des traitements thermiques pour l'obtention d'une microstructure biphasée comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase α, la teneur en titane en phase α étant supérieure à 10% en volume, de limite élastique supérieure à 1000 MPa, de module d'élasticité inférieur à 80 GPa ; - tréfilage pour obtenir du fil calandrable; - calandrage ou mise en bague pour former un ressort de barillet, en clé de sol avant son premier armage, ou estrapadage ...

Подробнее
28-06-2019 дата публикации

Spiral spring for a watch movement and its manufacturing method.

Номер: CH0000714492A2
Принадлежит:

La présente invention concerne un ressort spiral pour balancier en alliage de niobium et de titane, et son procédé de fabrication qui comprend: une étape d’élaboration d’une ébauche dans un alliage de niobium et de titane constitué de: niobium: balance à 100% en poids, titane: entre 40 et 60% en poids, traces d’éléments sélectionnés parmi le groupe constitué de 0, H, C, Fe, Ta, N, Ni, Si, Cu, Al, entre 0 et 1600 ppm en poids en individuel, avec cumul inférieur à 0.3% en poids, une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume, au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l’alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d’élasticité inférieur ou ...

Подробнее
28-06-2019 дата публикации

A method of manufacturing a spiral spring for a watch movement.

Номер: CH0000714493A2
Принадлежит:

La présente invention concerne un procédé de fabrication d’un ressort spiral pour balancier en alliage de niobium et de titane qui comprend: une étape d’élaboration d’une ébauche dans un alliage de niobium et de titane constitué de: niobium: balance a 100% en poids, titane: entre 40 et 60% en poids, traces d’éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, entre 0 et 1600 ppm en poids en individuel, avec cumul inférieur à 0.3% en poids, une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume, au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l’alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d’élasticité inférieur ou égal ...

Подробнее
13-11-2020 дата публикации

The invention relates to a method for producing a clockspring for a clockwork movement.

Номер: CH0000716156A2
Принадлежит:

La présente invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, comprenant : une étape d'élaboration d'une ébauche dans un alliage de Nb-Zr comprenant entre 10 et 30% en poids de Zr, une étape de recuit et refroidissement de l'ébauche, au moins une étape de déformation de l'ébauche recuite pour former un fil, caractérisé en ce qu'il comprend, avant l'étape de déformation, une étape de dépôt, sur l'ébauche, d'une couche d'un matériau ductile choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil, l'épaisseur de la couche de matériau ductile déposée étant choisie de sorte que le rapport surface de matériau ductile/surface de l'alliage pour une section de fil donnée soit inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4 ...

Подробнее
31-03-2021 дата публикации

Ressort spiral pour mouvement d'horlogerie en alliage de niobium et de titane et son procédé de fabrication.

Номер: CH0000716622A2
Принадлежит:

La présente invention concerne un ressort spiral (1) destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce que le ressort spiral (1) est réalisé dans un alliage de niobium et de titane constitué en poids de: niobium : balance à 100% ; titane avec un pourcentage supérieur ou égal à 1% et inférieur à 40% ; des traces d'autres éléments choisis parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant compris entre 0 et 1600 ppm du total en poids et la somme desdites traces étant inférieure ou égale à 0.3% en poids. La présente invention concerne également son procédé de fabrication.

Подробнее
15-07-2021 дата публикации

Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication.

Номер: CH0000717018A2
Принадлежит:

La présente invention concerne notamment un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, comprenant une âme en Nb-Ti réalisée dans un alliage constitué de : niobium : balance à 100% en poids, titane : entre 5 et 95% en poids, traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids, dans lequel l'âme en Nb-Ti est enrobée d'une couche de niobium d'or, de tantale, de vanadium ou d'un acier inoxydable, ladite couche ayant une épaisseur comprise entre 20 nm et 10 µm. L'invention concérne également un procédé de fabrication d'un tel ressort spiral.

Подробнее
31-05-2021 дата публикации

Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication.

Номер: CH0000716853A2
Принадлежит:

La présente invention concerne un procédé de fabrication d'un ressort spiral, comprenant : a) une étape de mise à disposition d'une ébauche avec une âme en Nb-Ti, b) une étape de trempe de type bêta de ladite ébauche, c) une étape de déformation en plusieurs séquences de l'ébauche, d) une étape d'estrapadage pour former le ressort spiral, e) une étape de traitement thermique final sur le ressort spiral, et étant caractérisé en ce que: - l'ébauche de l'étape a) comprend une couche en X avec un matériau X choisi parmi le Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co et le Cr ou un alliage d'un de ces éléments autour de l'âme en Nb-Ti, - il comprend une étape de traitement thermique pour transformer partiellement ladite couche en X en une couche d'intermétalliques X,Ti autour de l'âme en Nb-Ti, ladite étape étant effectuée entre l'étape b) et l'étape c) ou entre deux séquences de l'étape de déformation c), - une étape d'enlèvement de ladite partie de la couche en X, ladite étape étant effectuée ...

Подробнее
30-06-2022 дата публикации

Procédé de fabrication d'un ressort spiral thermocompensé.

Номер: CH0000718217A2
Принадлежит:

Procédé de fabrication d'un ressort spiral (1) pour oscillateur balancier-spiral, comprenant les étapes de : a) se munir d'une lame (3) en alliage Niobium-Titane, Niobium-Zirconium ou Niobium-Hafnium présentant une hauteur (H) et une épaisseur (E) prédéterminées ; b) effectuer un estrapadage de ladite lame afin de mettre ladite lame en forme de spiral ; c) effectuer un traitement thermique de fixation afin de figer la forme de ladite lame (3) ; d) effectuer une oxydation de la surface de ladite lame (3) jusqu'à une profondeur (P) prédéterminée.

Подробнее
30-09-2022 дата публикации

Ressort spiral pour mouvement d'horlogerie et procédé de fabrication de ce ressort spiral.

Номер: CH0000718454A2
Принадлежит:

La présente invention concerne un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce que le ressort spiral est réalisé dans un alliage constitué : - de Nb, Ti et au moins un élément choisi parmi le Zr et Hf, - optionnellement d'au moins un élément choisi parmi le W et Mo, - de traces éventuelles d'autres éléments choisis parmi O, H, Ta, C, Fe, N, Ni, Si, Cu, Al, avec les pourcentages en poids suivants : o une teneur en Nb comprise entre 40 et 84%, o une teneur totale en Ti, Zr et Hf comprise entre 16 et 55%, o une teneur pour respectivement le W et le Mo comprise entre 0 et 2.5%, o une teneur pour chacun desdits éléments choisis parmi O, H, Ta, C, Fe, N, Ni, Si, Cu, Al comprise entre 0 et 1600 ppm avec la somme desdites traces inférieure ou égale à 0.3% en poids. La présente invention concerne également le procédé de fabrication du ressort spiral.

Подробнее
30-09-2022 дата публикации

Ressort spiral pour mouvement d'horlogerie et procédé de fabrication de ce ressort spiral.

Номер: CH0000718455A2
Принадлежит:

La présente invention concerne un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce que le ressort spiral est réalisé dans un alliage constitué : - de Nb, Ti et au moins un élément choisi parmi le V et le Ta, - optionnellement d'au moins un élément choisi parmi le Zr et Hf, - optionnellement d'au moins un élément choisi parmi le W et Mo, de traces éventuelles d'autres éléments choisis parmi O, H, C, Fe, N, Ni, Si, Cu, Al, avec les pourcentages en poids suivants : o une teneur totale en Nb, V et Ta comprise entre 40 et 85%, o une teneur totale en Ti, Zr et Hf comprise entre 15 et 55%, o une teneur pour respectivement le W et le Mo comprise entre 0 et 2.5%, o une teneur pour chacun desdits éléments choisis parmi O, H, C, Fe, N, Ni, Si, Cu, Al comprise entre 0 et 1600 ppm avec la somme desdites traces inférieure ou égale à 0.3% en poids. La présente invention concerne également son procédé de fabrication.

Подробнее
31-01-2023 дата публикации

Ressort spiral pour mouvement d'horlogerie.

Номер: CH0000718850A2
Принадлежит:

La présente invention concerne un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, caractérisé en ce que le ressort spiral est réalisé dans un alliage constitué : de Nb, Ti, H et de traces éventuelles d'autres éléments choisis parmi O, C, Fe, N, Ni, Si, Cu et Al, avec les pourcentages en poids suivants : une teneur en Ti comprise entre 1 et 80%, une teneur en H comprise entre 0.17 et 2%, une teneur totale pour l'ensemble des autres éléments inférieure ou égale à 0.3% en poids, la balance pour atteindre 100% étant constituée du Nb. La présente invention concerne également son procédé de fabrication avec une étape de traitement thermochimique d'une ébauche réalisée dans un alliage de Nb et de Ti dans une atmosphère comprenant de l'hydrogène de façon à enrichir l'alliage de Nb et de Ti avec de l'hydrogène sous forme d'interstitiels.

Подробнее
28-06-2019 дата публикации

METHOD FOR PRODUCING LONG RODS IT IS ULTRASMALL GRANULAR ALLOYS TITANIUM - NICKEL WITH SHAPE MEMORY EFFECT

Номер: EA0201700583A2
Автор:
Принадлежит:

Подробнее
30-05-2012 дата публикации

СОСТАВ ТИТАНОВОГО СПЛАВА ДЛЯ ПРОИЗВОДСТВА ВЫСОКОКАЧЕСТВЕННЫХ ДЕТАЛЕЙ, В ЧАСТНОСТИ, ДЛЯ АВИАЦИОННОЙ ПРОМЫШЛЕННОСТИ

Номер: EA0201101687A1
Принадлежит:

Титановый сплав, содержащий по меньшей мере 4 мас.% алюминия и по меньшей мере 0,1 мас.% кислорода, также включает по меньшей мере один элемент, выбранный из ванадия, молибдена, хрома и железа. Согласно изобретению титановый сплав также включает гафний до массового содержания по меньшей мере 0,1%.

Подробнее
25-08-2016 дата публикации

PROCESSING OF ALPHA/BETA TITANIUM ALLOYS

Номер: UA0000112295C2
Автор:
Принадлежит:

Подробнее
30-09-2019 дата публикации

METHOD FOR PRODUCING LONG RODS ULTRAMELKO GRANULAR ALLOYS TITANIUM - NICKEL WITH SHAPE MEMORY EFFECT

Номер: EA0201700583A3
Автор:
Принадлежит:

Подробнее
30-07-2019 дата публикации

Ni-free β Ti alloy with shape memory and superelasticity

Номер: CN0110073012A
Автор:
Принадлежит:

Подробнее
10-08-2016 дата публикации

W-Ni sputter target

Номер: CN0105849633A
Принадлежит:

Подробнее
17-07-2013 дата публикации

Titanium alloy containing nanocrystals, and process for producing same

Номер: CN103210101A
Принадлежит:

Provided are: a Ti alloy which has high strength, high fatigue strength and reduced hardness and is suitable as a material for various structures including automobiles; and a process for producing the Ti alloy. An alloy of which a processing starting structure is an alpha'-martensite phase is subjected to a hot working. The alloy is heated at a temperature-rising rate of 50-800 DEG C/sec, wherein the strain rate is set at 0.01-10/sec in a temperature range of 700 to 800 DEG C and is set at 0.1-10/sec in a temperature range of higher than 800 DEG C and lower than 1000 DEG C and the strain is 0.5 or greater. In this manner, it becomes possible to produce equiaxial crystals which have an average crystal grain diameter of smaller than 1000 nm, and it becomes also possible to produce a titanium alloy which has hardness of less than 400 HV and tensile strength of 1200 MPa or more, has excellent static strength and excellent dynamic strength and therefore has high strength, and also has high fatigue ...

Подробнее
29-03-2012 дата публикации

Titanium Target for Sputtering

Номер: US20120073964A1
Принадлежит: JX Nippon Mining and Metals Corp

The object of this invention is to provide a high quality titanium target for sputtering capable of reducing the impurities that cause generation of particles and abnormal discharge, which is free from fractures and cracks during high power sputtering (high rate sputtering), and capable of stabilizing the sputtering properties and effectively suppressing the generation of particles upon deposition. This invention is able to solve foregoing problems using a high purity titanium target for sputtering containing, as additive components, 3 to 10 mass ppm of S and 0.5 to 3 mass ppm of Si, and in which the purity of the target excluding additive components and gas components is 99.995 mass percent or higher.

Подробнее
05-04-2012 дата публикации

Mechanical Components From Highly Recoverable, Low Apparent Modulus Materials

Номер: US20120080123A1
Принадлежит: Individual

A shape memory alloy for use as a mechanical component is formed of an intermetallic material having a low apparent modulus and a high hardness. The intermetallic material is conditioned to have a stable, superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for high performance mechanical components such as gears and bearings.

Подробнее
17-05-2012 дата публикации

Dental and Medical Instruments Comprising Titanium

Номер: US20120118445A1
Автор: Neill Hamilton Luebke
Принадлежит: Gold Standard Instruments LLC

Endodontic instruments for use in performing root canal therapy on a tooth are disclosed. In one form, the instruments include an elongate shank having a cutting edge extending from a distal end of the shank along an axial length of the shank. The shank comprises a titanium alloy, and the shank is prepared by heat-treating the shank at a temperature above 25° C. in an atmosphere consisting essentially of a gas unreactive with the shank. In another form, the endodontic instruments have an elongate shank having a cutting edge extending from a distal end of the shank along an axial length of the shank. The shank consists essentially of a titanium alloy selected from alpha-titanium alloys, beta-titanium alloys, and alpha-beta-titanium alloys. The instruments solve the problems encountered when cleaning and enlarging a curved root canal.

Подробнее
31-05-2012 дата публикации

Method of Manufacturing a Sputtering Target and Sputtering Target

Номер: US20120132523A1
Принадлежит: Ulvac Inc

[Object] To provide a method of manufacturing a sputtering target and a sputtering target that are capable of achieving refinement and uniformity of crystal grains. [Solving Means] A method of manufacturing a sputtering target according to an embodiment of the present invention includes forging an ingot formed of metal by applying a stress in a first axis direction (z-axis direction) and a plane direction (xy-plane direction) orthogonal to the first axis direction. The ingot is additionally forged by applying a stress in a second axis direction (axial directions c 11, c 12, c 21, c 22 ) obliquely intersecting with a direction parallel to the first axis direction. The ingot is heat-treated at a temperature equal to or higher than a recrystallization temperature thereof. In such a manner, since slip deformation can be caused not only in the first axis direction and the plane direction orthogonal thereto but also in the second axis direction, the high density and uniformity of an internal stress can be achieved.

Подробнее
19-07-2012 дата публикации

Titanium alloy microstructural refinement method and high temperature-high strain rate superplastic forming of titanium alloys

Номер: US20120180913A1
Принадлежит: Individual

A method for refining the microstructure of titanium alloys in a single thermomechanical processing step, wherein the titanium alloy comprises boron. In some embodiments, the method comprises the steps of first adding boron to the titanium alloy then subjecting the boron-containing titanium alloy to a thermomechanical processing step. Also provided is a method for achieving superplasticity in titanium alloys comprising the steps of selecting a boron-containing titanium alloy, determining the temperature and strain rate necessary to achieve beta superplasticity, and applying sufficient temperature and strain rate to the boron-containing titanium alloy to deform the alloy to the desired shape. Also provided methods of forming titanium alloy parts and the parts prepared by these methods.

Подробнее
26-07-2012 дата публикации

Methods of forming molybdenum sputtering targets

Номер: US20120189483A1
Принадлежит: Individual

In various embodiments, tubular sputtering targets are produced by forming a tubular billet at least by pressing molybdenum powder in a mold and sintering the pressed molybdenum powder, working the tubular billet to form a worked billet, and heat treating the worked billet.

Подробнее
26-07-2012 дата публикации

Beta-type titanium alloy

Номер: US20120189487A1
Принадлежит: Individual

The present invention provides a β-type titanium alloy that includes, by mass %, when Al: 2 to 5%, 1) Fe: 2 to 4%, Cr: 6.2 to 11%, and V: 4 to 10%, 2) Fe: 2 to 4%, Cr: 5 to 11%, and Mo: 4 to 10%, or 3) Fe: 2 to 4%, Cr: 5.5 to 11%, and Mo+V (total of Mo and V): 4 to 10% in range, and a balance of substantially Ti. These include Zr added in amounts of 1 to 4 mass %. Furthermore, by making the oxygen equivalent Q 0.15 to 0.30 or leaving the alloy in the work hardened state or by applying both, the tensile strength before aging heat treatment can be further increased.

Подробнее
25-10-2012 дата публикации

Method for production of titanium welding wire

Номер: US20120269671A1
Автор: Kevin Dring
Принадлежит: Individual

A process for producing a weldable titanium or titanium alloy wire characterised in that full consolidation of the wire is achieved via solid-state processing entailing compaction, extrusion, and rolling, whereby melting of the constituent titanium sponge particles does not occur.

Подробнее
01-11-2012 дата публикации

Dental and Medical Instruments Comprising Titanium

Номер: US20120272526A1
Автор: Neill Hamilton Luebke
Принадлежит: Gold Standard Instruments LLC

Endodontic instruments for use in performing root canal therapy on a tooth are disclosed. In one form, the instruments include an elongate shank having a cutting edge extending from a distal end of the shank along an axial length of the shank. The shank comprises a titanium alloy, and the shank is prepared by heat-treating the shank at a temperature above 25° C. in an atmosphere consisting essentially of a gas unreactive with the shank. In another form, the endodontic instruments have an elongate shank having a cutting edge extending from a distal end of the shank along an axial length of the shank. The shank consists essentially of a titanium alloy selected from alpha-titanium alloys, beta-titanium alloys, and alpha-beta-titanium alloys. The instruments solve the problems encountered when cleaning and enlarging a curved root canal.

Подробнее
01-11-2012 дата публикации

Alloy strip material and process for making same

Номер: US20120273094A1
Автор: Craig M. Eucken
Принадлежит: ATI Properties LLC

Methods for producing alloy strips including zirconium alloy strips that demonstrate improved formability are disclosed. The strips of the present disclosure have a purity and crystalline microstructure suitable for improved formability, for example, in the manufacture of certain articles such as panels for plate heat exchangers and high performance tower packing components. Other embodiments disclosed herein relate to formed alloy strip, articles of manufacture produced from the alloy strip, and methods for making the articles of manufacture.

Подробнее
27-12-2012 дата публикации

Method for hot shaping a workpiece and agent for reducing the heat emission

Номер: US20120325117A1

A process for hot shaping a workpiece of metal or an intermetallic compound at a temperature of higher than about 1000° C. The method comprises at least partially coating the surface of the workpiece with a coating agent that comprises an oxide phase and an additive and/or an adhesive before processing the workpiece into a formed body or a rolling product. A coating agent for reducing the heat emission from the workpiece comprises a predominant amount of an oxide phase. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.

Подробнее
16-05-2013 дата публикации

METHODS FOR PROCESSING TITANIUM ALLOYS

Номер: US20130118653A1
Принадлежит: ATI PROPERTIES, INC.

Methods of refining the grain size of a titanium alloy workpiece include beta annealing the workpiece, cooling the beta annealed workpiece to a temperature below the beta transus temperature of the titanium alloy, and high strain rate multi-axis forging the workpiece. High strain rate multi-axis forging is employed until a total strain of at least 1 is achieved in the titanium alloy workpiece, or until a total strain of at least 1 and up to 3.5 is achieved in the titanium alloy workpiece. The titanium alloy of the workpiece may comprise at least one of grain pinning alloying additions and beta stabilizing content effective to decrease alpha phase precipitation and growth kinetics. 1. A method of refining the grain size of a workpiece comprising a titanium alloy , the method comprising:beta annealing the workpiece;cooling the beta annealed workpiece to a temperature below the beta transus temperature of the titanium alloy; and press forging the workpiece at a workpiece forging temperature in a workpiece forging temperature range in the direction of a first orthogonal axis of the workpiece with a strain rate sufficient to adiabatically heat an infernal region of the workpiece,', 'press forging the workpiece at a workpiece forging temperature in the workpiece forging temperature range in the direction of a second orthogonal axis of the workpiece with a strain rate that is sufficient to adiabatically heat the internal region of the workpiece,', 'press forging the workpiece at a workpiece forging temperature in the workpiece forging temperature range in the direction of a third orthogonal axis of the workpiece with a strain rate that is sufficient to adiabatically heat the internal region of the workpiece, and', 'repeating at least one of the press forging steps until a total strain of at least 1.0 is achieved in the workpiece., 'multi-axis forging the workpiece, wherein the multi-axis forging comprises'}2. The method of claim 1 , wherein at least one of the press ...

Подробнее
06-06-2013 дата публикации

Method for increasing mechanical strength of titanium alloys having alpha" phase by cold working

Номер: US20130139564A1
Принадлежит: NATIONAL CHENG KUNG UNIVERSITY

A process for making an article of a titanium alloy having α″ phase as a major phase according to the present invention includes providing a work piece of a titanium alloy consisting essentially of 7-9 wt % of molybdenum and the balance titanium and having α″ phase as a major phase; and cold working at least a portion of the work piece at room temperature to obtain a green body of the article, wherein the cold worked portion of the green body has a thickness which is 20%-80% of that of the at least a portion of the work piece, and the cold worked portion has α″ phase as a major phase. 1. A process for making an article of a titanium alloy having α″ phase as a major phase comprising the following steps:a) providing a work piece of a titanium-molybdenum alloy having α″ phase as a major phase; andb) cold working at least a portion of said work piece at room temperature once or repeatedly to obtain a green body of said article, wherein the resultant cold worked portion of said green body has an average thickness which is 10%-90% of an average thickness of said at least a portion of said work piece, and the cold worked portion has α″ phase as a major phase.2. The process of claim 1 , wherein the titanium-molybdenum alloy in step a) consists essentially of 7-9 wt % of molybdenum and the balance titanium.3. The process of claim 2 , wherein the titanium-molybdenum alloy consists essentially of about 7.5 wt % of molybdenum and the balance titanium.4. The process of claim 1 , wherein said cold working in step b) is carried out once and the resultant cold worked portion of said green body has an average thickness which is 50%-90% of an average thickness of said at least a portion of said work piece.5. The process of claim 1 , wherein said cold working in step b) is carried out repeatedly and each time of said repeated cold working results in a reduction of an average thickness of the cold worked portion being less than about 40%.6. The process of claim 1 , wherein said cold ...

Подробнее
06-06-2013 дата публикации

Method for enhancing mechanical strength of a titanium alloy by aging

Номер: US20130139933A1
Принадлежит: NATIONAL CHENG KUNG UNIVERSITY

A titanium-molybdenum alloy having α″ phase as a major phase is subjected to an aging treatment, so that yield strength of the aged alloy is increased by 10% to 120% with elongation to failure thereof being not less than about 5.0%. 1. A method for enhancing mechanical strength of an article of a titanium alloy by aging comprising providing an article of a titanium-molybdenum alloy having α″ phase as a major phase; and aging said article , so that yield strength of said aged article is increased by 10% to 120% , based on the yield strength of said article , with elongation to failure of said aged article being not less than about 5.0%.2. The method of claim 1 , wherein the yield strength of said aged article is increased by at least 20% claim 1 , preferably at least 50% claim 1 , and more preferably at least 75% claim 1 , based on the yield strength of said article claim 1 , with elongation to failure of said aged article being not less than about 7.0%.3. The method of claim 1 , wherein the titanium-molybdenum alloy consists essentially of 7-9 wt % of molybdenum and the balance titanium.4. The method of claim 3 , wherein the titanium-molybdenum alloy consists essentially of about 7.5 wt % of molybdenum and the balance titanium.5. The method of claim 1 , wherein the article provided is an as-cast article.6. The method of claim 1 , wherein the article provided is a hot-worked or cold-worked article.7. The method of claim 1 , wherein the article provided is a solution-treated article.8. The method of claim 1 , wherein the article provided is a hot-worked and then solution-treated article.9. The method of claim 1 , wherein the article provided is a cold-worked and then solution-treated article.10. The method of claim 1 , wherein the article provided is a solution-treated and then cold-worked article.11. The method of claim 1 , wherein the article provided is an as-cast and then cold-worked article.12. The method of claim 1 , wherein said aging is conducted at a ...

Подробнее
13-06-2013 дата публикации

Methods of producing deformed metal articles

Номер: US20130149553A1
Принадлежит: Global Advanced Metals USA Inc

A method of making metal articles as well as sputtering targets is described, which involves deforming an ingot to preferred dimensions. In addition, products made by the process of the present invention are further described.

Подробнее
22-08-2013 дата публикации

METHOD FOR FORMING A TUBULAR MEDICAL DEVICE

Номер: US20130216421A1
Принадлежит: Rich Products Corporation

A method and process for at least partially forming a medical device that is at least partially formed of a metal alloy which improves the physical properties of the medical device. 126-. (canceled)27. A method for forming a medical device comprising the steps of:a) forming a rod or tube having a surface and an outer cross-sectional area, said rod or tube including a metal alloy that is formed of over 50 weight percent of a solid solution of molybdenum and rhenium or tungsten and tantalum;b) drawing down said outer cross-sectional area of said rod or tube by a reducing mechanism;c) annealing said rod or tube at an annealing temperature in an oxygen reducing environment or inert environment after said rod or tube has been drawn down;d) drawing down said cross-sectional area of said rod or tube by the reducing mechanism after said rod or tube has been annealed; and,e) annealing said rod or tube at least one additional time at an annealing temperature that is a lower temperature than at least one annealing temperature of a previous annealing of said rod or tube.28. The method as defined in claim 27 , wherein said step of forming said rod or tube includes a process of isostatically pressing metal powder together and subsequently sintering said metal power to form said rod or tube in a controlled atmosphere claim 27 , said rod or tube having an average density of about 0.7-0.95 a minimum theoretical density of said metal alloy claim 27 , said rod or tube have an average density of about 12-14 gm/cc claim 27 , said controlled atmosphere including an inert atmosphere claim 27 , an oxygen reducing atmosphere claim 27 , or a vacuum.29. The method as defined in claim 28 , wherein said tube is formed by gun drilling claim 28 , EDM cutting claim 28 , or combinations thereof a passageway at least partially through a longitudinal length of said rod.30. The method as defined in claim 27 , wherein said step of forming said rod or tube includes a) forming an ingot of metal claim 27 ...

Подробнее
29-08-2013 дата публикации

METALLIC GLASS ORTHODONTIC APPLIANCES AND METHODS FOR THEIR MANUFACTURE

Номер: US20130224676A1
Принадлежит: Ormco Corporation

An orthodontic appliance for use in orthodontic treatment. The orthodontic appliance is selected from the group consisting of an orthodontic bracket, an orthodontic archwire, an orthodontic tool, and a discrete component thereof. The orthodontic appliance is made of a metallic glass. The orthodontic appliance may be an orthodontic bracket for coupling an archwire with a tooth. The orthodontic bracket comprises a bracket body including an archwire slot, the bracket body being made of a metallic glass. The orthodontic bracket further comprises a movable member made of a metallic glass and operatively coupled to the bracket body and movable between an opened position in which the archwire is insertable into the archwire slot and a closed position in which the movable member retains the archwire in the archwire slot. The orthodontic bracket further comprises a pin coupling the movable member to the bracket body. 1. An orthodontic appliance for use in orthodontic treatment selected from the group consisting of an orthodontic bracket , an orthodontic archwire , an orthodontic tool , and a discrete component thereof , the orthodontic appliance being made of a metallic glass.2. The orthodontic appliance of wherein the orthodontic appliance is an orthodontic bracket for coupling an archwire with a tooth claim 1 , the orthodontic bracket comprising:a bracket body including an archwire slot, the bracket body being made of a metallic glass;a movable member made of a metallic glass and operatively coupled to the bracket body and movable between an opened position in which the archwire is insertable into the archwire slot and a closed position in which the movable member retains the archwire in the archwire slot; anda pin coupling the movable member to the bracket body.3. The orthodontic appliance of wherein the movable member is a ligating slide having a plate-like configuration including an archwire slot covering portion extending over the archwire slot when the ligating slide ...

Подробнее
05-09-2013 дата публикации

MANUFACTURING METHOD FOR MEDICAL EQUIPMENT FOR REDUCING PLATELET ADHESION ON A SURFACE IN CONTACT WITH BLOOD

Номер: US20130230422A1
Принадлежит:

A manufacturing method for medical equipment involves electron beam irradiating a titanium or titanium alloy substrate surface that has at least been machined, whereby platelet adhesion of the surface to be contacted by blood is reduced. The manufacturing method for medical equipment can also use a specific pre-processing method and an electron beam irradiation method to reduce the platelet adhesion of the surface which is to be contacted with blood, to suppress the formation of minute depressions (craters) in the surface, which can occur due to the irradiation by an electron beam. 1. A method of manufacturing a medical device possessing a medical device configuration and configured to contact blood , the method comprising:cutting the medical device from a base material so that the medical device possesses a medical device configuration, the base material being either titanium or titanium alloy, the medical device produced by the cutting possessing an outer surface, and the cutting of the base material reducing a size of crystal grains of the titanium or titanium alloy;subjecting the medical device produced by cutting the base material to heat-treatment to thermally expand the crystal grains of the titanium or titanium alloy that were reduced in size by the cutting; andsubjecting the outer surface of the medical device which was subjected to the heat-treatment to electron beam irradiation to reduce platelet adhesion to the outer surface of the medical device when the outer surface of the medical device contacts the blood.2. The method of manufacturing the medical device according to claim 1 , wherein the subjecting of the outer surface of the medical device to electron beam irradiation comprises subjecting the outer surface of the medical device to a first electron beam irradiation using a first voltage and then subjecting the outer surface of the medical device to a second electron beam irradiation using a second voltage that is higher than the first voltage.3. The ...

Подробнее
12-09-2013 дата публикации

METHOD FOR MANUFACTURE OF WROUGHT ARTICLES OR NEAR-BETA TITANIUM ALLOYS

Номер: US20130233455A1

This invention relates to nonferrous metallurgy, namely to thermomechanical treatment of titanium alloys and can be used for manufacture of structural parts and components of high-strength near-beta titanium alloys for the aerospace application, mainly landing gear and airframe application. 1. A manufacturing method for wrought articles of near-beta titanium alloys comprising ingot melting and its-thermomechanical processing wherein the melted ingot consists of , in weight percentages , 4.0 to 6.0 aluminum , 4.5 to 6.0 vanadium , 4.5 to 6.0 molybdenum , 2.0 to 3.6 chromium , 0.2 to 0.5 iron , less than or equal to 2.0 zirconium , less than or equal to 0.2 oxygen , and less than or equal to 0.05 nitrogen , the method comprising heating to a temperature that is 150° C. to 380° C. above BTT and hot working with the strain of 40% to 70%; heating to a temperature that is 60° C. to 220° C. above BTT and hot working with the strain of 30% to 60%; heating to a temperature that is 20° C. to 60° C. below BTT and hot working with the strain of 30% to 60% with subsequent recrystallization via metal heating to a temperature that is 70° C. to 140° C. above BTT and hot working with the strain of 20% to 60% , cooling down to the ambient temperature , then heating to a temperature that is 20° C. to 60° C. below BTT and hot working with a strain of 30% to 70%; and additional recrystallization via metal heating to a temperature that is 30° C. to 110° C. above BTT and hot working with a strain of 15% to 50% followed by cooling down to ambient temperature , then heating to a temperature that is 20° C. to 60° C. below BTT and hot working with a strain of 50% to 90%; and subsequent final hot working.2. The method of wherein the final hot working is done after heating to a temperature that is 10° C. to 50° C. below BTT with a strain of 20% to 40% to result in ultimate tensile strength over 1200 MPa and fracture toughness claim 1 , κ claim 1 , of at least 35 MPa√m.3. The method of wherein ...

Подробнее
12-09-2013 дата публикации

Metallic Material With An Elasticity Gradient

Номер: US20130233456A1

The invention relates to a monolithic titanium alloy (M) comprising, in a temperature range (ΔT) and at atmospheric pressure: 1. A monolithic titanium alloy (M) comprising , in a temperature range (ΔT) and at atmospheric pressure:{'sub': 1', '1, 'a one and only outer peripheral zone consisting of a microstructure (m) having a modulus of elasticity (E) and possessing superelastic properties in said range (ΔT), and'}{'sub': 2', '2, 'claim-text': [{'sub': 1', '2, 'said microstructures (m) and (m) being different from one another, and'}, {'sub': 1', '2, 'said modulus of elasticity (E) being lower than said modulus of elasticity (E).'}], 'a core consisting of a microstructure (m) having a modulus of elasticity (E), and possessing elastic properties in said range (ΔT);'}2. The titanium alloy (M) as claimed in claim 1 , wherein the range (ΔT) is a range corresponding to the usage conditions of said alloy.3. T The titanium alloy (M) as claimed in claim 1 , wherein (ΔT) is a temperature range between (Ms−50)° C. and (Ms+100)° C. claim 1 , Ms denoting the martensitic transformation temperature of the microstructure (m) at atmospheric pressure.4. T The titanium alloy (M) as claimed in claim 1 , wherein (ΔT) is a temperature between 35° C. and 40° C. at atmospheric pressure.570. T The titanium alloy (M) as claimed in claim 1 , wherein the titanium represents at least % as an atomic percentage of the titanium alloy (M).6. T The titanium alloy (M) as claimed in claim 1 , wherein the alloy also comprises niobium.7. T The titanium alloy (M) as claimed in claim 1 , wherein the difference between Eand Eis greater than or equal to 20 GPa.8. T The titanium alloy (M) as claimed in claim 1 , wherein Eis between 20 and 50 GPa.9. T The titanium alloy (M) as claimed in claim 1 , wherein Eis between 70 and 90 GPa.10. T The titanium alloy (M) as claimed in claim 1 , for the use thereof as an implant in an individual.11. The titanium alloy (M) as claimed in claim 10 , for the use thereof as a ...

Подробнее
26-09-2013 дата публикации

METHOD OF PROCESSING TITANIUM

Номер: US20130251478A1
Принадлежит:

Disclosed is a method for manufacturing titanium-alloy articles that includes, before machining, heat treating a slug of titanium-alloy at a temperature sufficient to form a layer of alpha case on the surface of the slug of titanium-alloy, then, after heat treating, machining the slug of titanium-alloy to form a finished part while removing material from all surfaces of the slug of titanium-alloy. 1. A method for manufacturing titanium-alloy articles , the method comprising:prior to machining, heat treating a slug of titanium-alloy;forming a layer of alpha case on the surface of the slug of titanium-alloy;after heat treating; machining the slug of titanium-alloy to form a finished part, wherein the machining removes material from all surfaces of the slug of titanium-alloy.2. The method of claim 1 , wherein machining the slug of titanium-alloy to form the finished part removes at least 0.007 inches (0.18 mm) of material from all surfaces of the slug of titanium-alloy.3. The method of claim 1 , further comprising claim 1 , prior to machining the slug of titanium-alloy to form the finished part claim 1 , machining all of the surfaces of the slug of titanium-alloy to remove material from all surfaces of the slug of titanium-alloy.4. The method of claim 3 , wherein machining all of the surfaces of the slug of titanium-alloy to remove material from all surfaces of the slug of titanium-alloy removes at least 0.007 inches (0.18 mm) of material from all surfaces of the slug of titanium-alloy.5. The method of claim 1 , wherein the article is a component of an aircraft.6. The method of claim 1 , wherein the article is a shear flange collar.7. The method of claim 1 , wherein the slug of titanium-alloy is heat treated above 650 degrees C.8. The method of claim 1 , further comprising claim 1 , prior to heat treating claim 1 , cutting a titanium-alloy bar stock to a specified length to form the slug of titanium-alloy.9. The method of claim 1 , wherein the slug of titanium-alloy is ...

Подробнее
31-10-2013 дата публикации

NANOCRYSTAL-CONTAINING TITANIUM ALLOY AND PRODUCTION METHOD THEREFOR

Номер: US20130284325A1
Принадлежит:

An alloy having an α′ martensite which is a processing starting structure is hot worked. The alloy is heated at a temperature increase rate of 50 to 800° C./sec, and strain is given at not less than 0.5 by a processing strain rate of from 0.01 to 10/sec in a case of a temperature range of 700 to 800° C., or by a processing strain rate of 0.1 to 10/sec in a case of a temperature range of 800° C. to 1000° C. By generating equiaxial crystals having average crystal particle diameters of less than 1000 nm through the above processes, a titanium alloy having high strength and high fatigue resistant property can be obtained, in which hardness is less than 400 HV, tensile strength is not less than 1200 MPa, and static strength and dynamic strength are superior. 1. A titanium alloy comprising:structure in which equiaxial crystals having average crystal particle diameter less than 1000 nm are uniformly dispersed,hardness less than 400 HV, andtensile strength not less than 1200 MPa,wherein the titanium alloy is formed by performing hot working of a processing starting material having composition generally classified as at least one of near α type and α+β type titanium alloy, in which an α′ martensite phase is generated by rapid cooling from a temperature not less than a β transus temperature.2. The titanium alloy according to claim 1 , wherein an area ratio of crystals of orientation angles having a difference of less than 3° in crystal particles of the equiaxial crystal is not less than 80% by measurement of a GOS map by an electron backscatter diffraction (EBSD) method.3. The titanium alloy according to claim 1 , wherein the titanium alloy has a composition comprising 4 to 9 mass % of Al claim 1 , 2 to 10 mass % of V and the remainder of Ti and inevitable impurities.4. The titanium alloy according to claim 1 , wherein a structure accounts for not less than 80% of area ratio claim 1 , and the structure in which equiaxial crystals having average particle diameter of less than ...

Подробнее
05-12-2013 дата публикации

TITANIUM ALLOY MATERIAL EXCELLENT IN SCALE DEPOSITION INHIBITING PROPERTY AND FORMABILITY AND A METHOD OF PRODUCING THE SAME, AS WELL AS A HEAT EXCHANGER OR A SEAWATER EVAPORATOR

Номер: US20130319637A1
Принадлежит:

The titanium alloy material of the invention is excellent in a deposition inhibiting property of scales mainly comprising calcium carbonate contained in water and exhibits an excellent formability during manufacture of a heat exchanger or the like. The titanium alloy material of the invention contains P in an amount of 0.005 to 0.30% (mass % here and hereinafter) and Sn in an amount of 0.01 to 3.0%, with the balance of Ti and unavoidable impurities. Further, in a case where the titanium alloy material contains one or more elements selected from the group consisting of Cu, Fe, and Ni, they may satisfy the following formula (1): 1. A titanium alloy material comprising:Ti,P in an amount of 0.005 to 0.30 mass %, andSn in an amount of 0.01 to 3.0 mass %.3. The titanium alloy material according to claim 1 , further comprising 0.3 mass % or less of Cu.4. The titanium alloy material according to claim 1 , having an average crystal grain size of 10 μm or more.5. The titanium alloy material according to claim 1 , which is suitable for use in a heat exchanger or a seawater evaporator.6. A heat exchanger or a seawater evaporator comprising the titanium alloy material according to in a heat transfer portion where water or seawater is caused to flow as a thermal medium.7. A method of producing the titanium alloy material according to claim 1 , whereina compound comprising, as a P source, at least one mother alloy selected from the group consisting of Sn—P mother alloy, Cu—P mother alloy, Fe—P mother alloy, Ni—P mother alloy, and Ti—P mother alloy is used for the starting material.8. A method of producing the titanium alloy material according to claim 1 , the method comprising:melting and casting a melting material and then performing at least hot working in which a P-comprising compound is melted together with titanium as the melting material.9. A method of producing the titanium alloy material according to claim 1 , the method comprising:melting and casting a melting material ...

Подробнее
12-12-2013 дата публикации

HIGH-STRENGTH alpha+beta TITANIUM ALLOY HOT-ROLLED SHEET EXCELLENT IN COLD COIL HANDLING PROPERTY AND PROCESS FOR PRODUCING THE SAME

Номер: US20130327448A1

A high-strength α+β type hot-rolled titanium alloy sheet containing 0.8 to 1.5 mass % Fe, 4.8 to 5.5 mass % Al, 0.030 mass % N, O and N, wherein cracks are prevented from spreading, wherein: (a) ND represents normal direction of a hot-rolled sheet; RD represents hot rolling direction; TD represents hot rolling width direction; θ represents the angle formed between c axis and ND; φ represents angle formed between plane including c axis and ND, and a plane including ND and TD; (b1) XND represents highest (0002) relative intensity of X-ray reflection by grains when θ is from 0° to 30°; (b2) XTD represents the highest (0002) relative intensity of the X-ray reflection caused by grains when θ is from 80° to 100° and φ is ±10°. (c) The high-strength α+β type hot-rolled titanium alloy sheet has a value for XTD/XND of at least 4.0. Q(%)=[O]+2.77·[N]. 1. A high-strength α+β titanium alloy hot-rolled sheet excellent in cold coil handling property , which is a high-strength α+β titanium alloy hot-rolled sheet , comprising , in mass % , Fe: 0.8 to 1.5% , Al: 4.8 to 5.5% , and N: 0.030% or less , and , containing O and N to satisfy the condition that Q (%) defined by the following formula (1) is 0.14 to 0.38 , with the balance being Ti and unavoidable impurities , wherein ,(a) the normal direction of a hot-rolled sheet is taken as ND, the hot rolling direction is taken as RD, the hot-rolling width direction is taken as TD, the normal direction of the α-phase (0001) plane is taken as c-axis orientation, the angle formed between the c-axis orientation and the ND is taken as θ, and the angle formed between a plane including the c-axis orientation and the ND, and a plane including the ND and the TD is taken as φ;(b1) among (0002) relative reflection intensities of X-ray by grains where θ is from 0 to 30° and φ falls in the entire circumference (from −180 to 180°, the highest intensity is taken as XND;(b2) among (0002) relative reflection intensities of X-ray caused by grains where θ ...

Подробнее
12-12-2013 дата публикации

alpha + beta Titanium Alloy Sheet Excellent In Cold Rollability And Cold Handling Property And Process For Producing The Same

Номер: US20130327449A1

An α+β type hot-rolled titanium alloy sheet, wherein: (a) ND represents the normal direction of a hot-rolled sheet; RD represents the hot rolling direction; TD represents the hot rolling width direction; θ represents the angle formed between the orientation of c axis and the ND; φ represents the angle formed between a plane including the orientation of the c axis and the ND, and a plane including the ND and the TD; (b1) XND represents the highest (0002) relative intensity of the X-ray reflection caused by crystal grains when θ is from 0° to 30° and φ is within the entire circumference; (b2) XTD represents the highest (0002) relative intensity of the X-ray reflection caused by crystal grains when θ is from 80° to 100° and φ is ±10°. (c) The α+β type titanium alloy sheet has a value for XTD/TND of at least 5.0. 1. An α+β titanium alloy sheet excellent in cold rollability and cold handling property , wherein:(a) the normal direction of a hot-rolled sheet is taken as ND, the hot rolling direction is taken as RD, the hot-rolling width direction is taken as TD, the normal direction of the α-phase (0001) plane is taken as c-axis orientation, the angle formed between the c-axis orientation and the ND is taken as θ, and the angle formed between a plane including the c-axis orientation and the ND, and a plane including the ND and the TD is taken as φ;(b1) among (0002) relative reflection intensities of X-ray by a crystal grain where θ is 0° or more and 30° or less, and φ falls in the entire circumference (−180 to 180°), the maximum intensity is taken as XND;(b2) among (0002) relative reflection intensities of X-ray caused by a crystal grain where θ is 80° or more and less than 100°, and φ falls in ±10°, the maximum intensity is taken as XTD; and(c) XTD/XND is 5.0 or more.3. A process for producing an 11+13 titanium alloy sheet excellent in cold rollability and cold handling property according to claim 1 , wherein:at the time of hot-rolling an α+β titanium alloy, the titanium ...

Подробнее
16-01-2014 дата публикации

Ti-Mo ALLOY AND METHOD FOR PRODUCING THE SAME

Номер: US20140014242A1

A task of the present invention is to provide a Ti—Mo alloy material which can be improved in the yield stress at room temperature by the precipitation of an aged omega phase in the Ti—Mo alloy while maintaining large ductility at room temperature, and a method for producing the same. Provided is a Ti—Mo alloy collectively having an Mo content of 10 to 20 mass %, wherein the Ti—Mo alloy has a winding belt-like or swirly segregation portion having a width of 10 to 20 μm in the plane of a backscattered electron image (BEI) or an energy dispersive X-ray spectroscopy (EDS) image of the Ti—Mo alloy, as examined under a scanning electron microscope, in which Mo content is larger than the collective Mo content of the Ti—Mo alloy. When generally observing the entire plane examined, a segregation structure in a swirly form can be observed. Further, provided is the Ti—Mo alloy which has been subjected to aging treatment so that an aged omega phase is precipitated along the segregation portion. When generally observing the entire plane examined, an aged omega phase structure in a swirly form can be observed.

Подробнее
30-01-2014 дата публикации

Titanium slab for hot rolling use and method of production of same

Номер: US20140027024A1
Принадлежит: Individual

A titanium slab for hot rolling comprised of a titanium slab obtain by smelting commercially pure titanium, wherein even if the breakdown process is omitted, the strip shaped coil after hot rolling is excellent in surface properties and a method of smelting that titanium slab are provided. The titanium slab according to the present invention is a titanium slab for hot rolling obtained by smelting commercially pure titanium including the β phase stabilizing element Fe, wherein the formation of coarse β phases is suppressed by making the average Fe concentration down to 10 mm from the surface layer of the surface which corresponds to at least the rolling surface of the titanium slab 0.01 mass % or less. A titanium slab obtained by smelting commercially pure titanium can be obtained by cooling until the surface becomes the β transformation point or less, then reheating it to the β transformation point or more, and gradually cooling from the slab surface layer.

Подробнее
20-03-2014 дата публикации

METASTABLE BETA-TITANIUM ALLOYS AND METHODS OF PROCESSING THE SAME BY DIRECT AGING

Номер: US20140076468A1
Принадлежит: ATI PROPERTIES, INC.

Metastable beta titanium alloys and methods of processing metastable (β-titanium alloys are disclosed. For example, certain non-limiting embodiments relate to metastable (β-titanium alloys, such as binary β-titanium alloys comprising greater than 10 weight percent molybdenum, having tensile strengths of at least 150 ksi and elongations of at least 12 percent. Other non-limiting embodiments relate to methods of processing metastable β-titanium alloys, and more specifically, methods of processing binary (β-titanium alloys comprising greater than 10 weight percent molybdenum, wherein the method comprises hot working and aging the metastable β-titanium alloy at a temperature below the (β-transus temperature of the metastable (β-titanium alloy for a time sufficient to form α-phase precipitates in the metastable β-titanium alloy. The metastable β-titanium alloys are not solution heat treated after hot working and prior to aging. Articles of manufacture comprising binary β-titanium alloys according to various non-limiting embodiments disclosed herein are also disclosed. 1. A metastable β-titanium alloy consisting of titanium , greater than 10 weight percent molybdenum , and incidental impurities , the metastable β-titanium alloy having a tensile strength of at least 150 ksi , an elongation of at least 12 percent , and a microstructure comprising a uniform distribution of α-phase precipitates in metastable phase regions of the metastable β-titanium alloy.2. The metastable β-titanium alloy of claim 1 , wherein the metastable β-titanium alloy has a tensile strength of 150 ksi to 180 ksi and an elongation of 12 percent to 20 percent.3. The metastable β-titanium alloy of claim 1 , wherein the metastable β-titanium alloy has a rotating beam fatigue strength of at least 650 MPa.4. The metastable β-titanium alloy of claim 1 , wherein the metastable β-titanium alloy consists of titanium claim 1 , at least 14 weight percent molybdenum claim 1 , and incidental impurities.5. The ...

Подробнее
20-03-2014 дата публикации

PROCESSING ROUTES FOR TITANIUM AND TITANIUM ALLOYS

Номер: US20140076471A1
Принадлежит: ATI PROPERTIES, INC.

Methods of refining the grain size of titanium and titanium alloys include thermally managed high strain rate multi-axis forging. A high strain rate adiabatically heats an internal region of the workpiece during forging, and a thermal management system is used to heat an external surface region to the workpiece forging temperature, while the internal region is allowed to cool to the workpiece forging temperature. A further method includes multiple upset and draw forging titanium or a titanium alloy using a strain rate less than is used in conventional open die forging of titanium and titanium alloys. Incremental workpiece rotation and draw forging causes severe plastic deformation and grain refinement in the titanium or titanium alloy forging. 1. A method of refining grain size in a workpiece comprising a metallic material selected from titanium and a titanium alloy , the method comprising:heating the workpiece to a workpiece forging temperature range within an alpha+beta phase field of the metallic material, wherein the workpiece comprises a cylindrical-like shape and a starting cross-sectional dimension;upset forging the workpiece within the workpiece forging temperature range; and wherein multiple pass draw forging comprises incrementally rotating the workpiece in a rotational direction followed by draw forging the workpiece; and', 'wherein incrementally rotating and draw forging is repeated until the workpiece comprises the starting cross-sectional dimension., 'multiple pass draw forging the workpiece within the workpiece forging temperature range;'}2. The method of claim 1 , wherein a strain rate used in upset forging and draw forging is the range of 0.001 sto 0.02 s claim 1 , inclusive.3. The method of claim 1 , wherein the workpiece comprises a cylindrical workpiece claim 1 , and wherein incrementally rotating and draw forging further comprises rotating the cylindrical workpiece in 15° increments followed by draw forging after each rotation claim 1 , until ...

Подробнее
27-03-2014 дата публикации

HOT ROLLING OF THICK URANIUM MOLYBDENUM ALLOYS

Номер: US20140083570A1

Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step. 2. The method of wherein the thickness of the starting billet is about ⅞ inch or greater.3. The method of wherein the starting billet is heated to about 800° C.4. The method of wherein the thickness of the thinned billet is reduced by about ten percent with each medium rolling pass.5. The method of further comprising a step between steps (a) and (b) of kiss-rolling the heated starting billet.6. The method of further comprising annealing the medial plate of the uranium molybdenum alloy.7. The method of wherein the medial plate is annealed between about 620° C. to about 640° C.9. The method of wherein the thickness of the reheated medial plate is reduced by about twenty percent with each heavy rolling pass.10. The method of further comprising annealing the thin strip of the uranium molybdenum alloy.11. The method of wherein the medial plate is annealed between about 620° C. to about 640° C.13. The method of wherein the thickness of the reheated medial plate is reduced by about twenty percent with each heavy rolling pass.14. The method of further comprising annealing the thin strip of the uranium molybdenum alloy.15. The method of wherein the medial plate is annealed between about 620° C. to about 640° C.16. The method of further comprising annealing the medial plate of the uranium molybdenum alloy.17. The method of wherein the medial plate is annealed between about 620° C. to about 640° C. The U.S. Government has rights to this ...

Подробнее
02-01-2020 дата публикации

BIOFILM RESISTANT MEDICAL IMPLANT

Номер: US20200000977A1
Принадлежит:

A method of incorporating silver and/or copper into a biomedical implant includes: providing an implant having an outer surface; depositing silver and/or copper onto the outer surface of the implant; diffusing the silver and/or copper into a subsurface zone adjacent the outer surface; and oxidizing or anodizing the implant after the diffusion step to form an oxidized or anodized layer that contains at least some amount of elemental silver, elemental copper or silver or copper ions or compounds. 1. A method of incorporating silver , copper or both silver and copper into a metallic biomedical implant , comprising:providing an implant comprising a biomedical metal or a biomedical alloy having an outer surface;depositing silver, copper or both silver and copper onto the outer surface;diffusing silver, copper or both silver and copper into the biomedical metal or biomedical alloy beneath the outer surface by heating the implant; andoxidizing or anodizing the outer surface after said diffusing to form an oxidized or anodized layer.2. The method of claim 1 , wherein the oxidized or anodized layer contains at least some amount of elemental silver claim 1 , silver oxide or silver compounds.3. The method of claim 1 , further including claim 1 , before said depositing claim 1 , roughening the outer surface.4. The method of claim 3 , wherein the surface claim 3 , after said roughening and before said depositing claim 3 , has a roughness of from about 0.1 micron to about 10 micron Ra.5. The method of wherein said roughening comprises a physical roughening treatment claim 3 , a chemical treatment that includes soaking the substrate in an alkaline solution for a period of time of about 1 hour to about 24 hours claim 3 , or both the physical roughening and the chemical treatment.6. The method of claim 1 , further comprising claim 1 , before said depositing claim 1 , etching the outer surface using a fluoride solution.7. The method of claim 1 , wherein said diffusing is conducted in ...

Подробнее
02-01-2020 дата публикации

MnAl ALLOY

Номер: US20200002790A1
Автор: Satoh Suguru
Принадлежит: TDK Corporation

An object of the present invention is to provide a Mn-based alloy exhibiting metamagnetism over a wide temperature range. A MnAl alloy according to the present invention exhibits metamagnetism and has crystal grains containing a τ-MnAl phase and crystal grains containing a γ2-MnAl phase. Assuming that the area of the crystal grains containing the τ-MnAl phase in a predetermined cross section is B, and the area of the crystal grains containing the γ2-MnAl phase therein is A, the value of B/A is 0.2 or more and 21.0 or less. When the ratio of the areas between the crystal grains containing the τ-MnAl phase and those containing the γ2-MnAl phase is controlled within the above range, metamagnetism is imparted to the MnAl alloy and, thus, it is possible to obtain metamagnetism over a wide temperature range, particularly, over a temperature range of −100° C. to 200° C. 1. A MnAl alloy exhibiting metamagnetism comprising crystal grains containing a τ-MnAl phase and crystal gains containing a γ2-MnAl phase.2. The MnAl alloy as claimed in claim 1 , wherein a value of B/A is 0.2 or more and 21.0 or less claim 1 , where an area of the crystal grains containing the τ-MnAl phase in a predetermined cross section of the MnAl alloy is B claim 1 , and an area of the crystal grains containing the γ2-MnAl phase in a predetermined cross section of the MnAl alloy is A.3. The MnAl alloy as claimed in claim 2 , wherein the value of B/A is 1.0 or more and less than 4.0.4. The MnAl alloy as claimed in claim 1 , wherein an average crystal grain diameter of the crystal grains containing the τ-MnAl phase is 0.1 μm or more and 1.0 μm or less.5. The MnAl alloy as claimed in claim 1 , wherein when a composition of the MnAl alloy is expressed by MnAl claim 1 , 45≤b<55 is satisfied.6. The MnAl alloy as claimed in claim 5 , wherein 45≤b<52 is satisfied.7. The MnAl alloy as claimed in claim 1 , wherein a magnetic structure of the τ-MnAl phase has an antiferromagnetic structure in a non-magnetic field ...

Подробнее
02-01-2020 дата публикации

MnAl ALLOY AND MANUFACTURING METHOD THEREFOR

Номер: US20200002797A1
Автор: Satoh Suguru
Принадлежит: TDK Corporation

A MnAl alloy according to the present invention exhibits metamagnetism and has crystal grains containing a τ-MnAl phase and crystal grains containing a γ2-MnAl phase and a β-MnAl phase. When the ratio of the τ-MnAl phase is A, 75%≤A≤99% is preferably satisfied, and when the ratios of the γ2-MnAl phase and β-MnAl phase are B and C, respectively, B Подробнее

07-01-2021 дата публикации

CONTROLLED THERMAL COEFFICIENT PRODUCT SYSTEM AND METHOD

Номер: US20210002739A1
Принадлежит: The Texas A&M University System

A controlled thermal coefficient product manufacturing system and method is disclosed. The disclosed product relates to the manufacture of metallic material product (MMP) having a thermal expansion coefficient (TEC) in a predetermined range. The disclosed system and method provides for a first material deformation (FMD) of the MMP that comprises at least some of a first material phase (FMP) wherein the FMP comprises martensite randomly oriented and a first thermal expansion coefficient (FTC). In response to the FMD at least some of the FMP is oriented in at least one predetermined orientation. Subsequent to deformation, the MMP comprises a second thermal expansion coefficient (STC) that is within a predetermined range and wherein the thermal expansion of the MMP is in at least one predetermined direction. The MMP may be comprised of a second material phase (SMP) that may or may not transform to the FMP in response to the FMD. 1. A controlled thermal coefficient product manufacturing method comprising:(1) plastically deforming a metallic material; and(2) texturing said metallic material in at least one selected material direction in response to said plastic deforming;wherein: [{'sub': 100-A-B', 'A', 'B, '(1) a material characterized by a general formula FeMnX, wherein X is at least one of Ga, Ni, Co, Al, Ta, Si, or combinations thereof, and A is in a range from 0 to 50 atomic percent composition, and B is in a range from 0 to 50 atomic percent composition such that A plus B is less than 100;'}, {'sub': 100-A-B', 'A', 'B, '(2) a material characterized by a general formula FeNiX, wherein X is at least one of Ga, Mn, Co, Al, Ta, Si, or combinations thereof, and A is in a range from 0 to 50 atomic percent composition, and B is in a range from 0 to 50 atomic percent composition such that A plus B is less than 100;'}, {'sub': 100-A-B-C', 'A', 'B', 'C', 'D, '(3) a material characterized by a general formula FeNiCoAlX, wherein X is at least one of Ti, Ta, Nb, Cr, W or ...

Подробнее
07-01-2016 дата публикации

TITANIUM TARGET FOR SPUTTERING AND MANUFACTURING METHOD THEREOF

Номер: US20160005576A1
Автор: Tsukamoto Shiro
Принадлежит:

A high-purity titanium target for sputtering having a purity of 5N5 (99.9995%) or higher, wherein the high-purity titanium target has no macro pattern on the target surface. An object of this invention is to provide a high-quality titanium target for sputtering, in which impurities causing particles and abnormal discharge phenomena are reduced, and which is free from fractures and cracks even during high-rate sputtering, and capable of stabilizing the sputtering characteristics, effectively inhibiting the generation of particles during deposition, and improving the uniformity of deposition. 1. A high-purity titanium target for sputtering having a purity of 5N5 (99.9995%) or higher , wherein the high-purity titanium target has no macro pattern on the target surface.2. The high-purity titanium target for sputtering according to claim 1 , wherein an average crystal grain size is 10 μm or less.3. A method of producing a high-purity titanium target for sputtering having a purity of 5N5 (99.9995%) or higher claim 1 , wherein a melted and cast ingot is subject to primary forging at a temperature of 800 to 950° C. claim 1 , and subject to secondary forging at a temperature exceeding 500° C. but 600° C. or lower to produce the target having no macro pattern on its surface.4. The method of producing a high-purity titanium target for sputtering according to claim 3 , wherein cold rolling is performed after the secondary forging claim 3 , heat treatment is additionally performed at 400 to 460° C. claim 3 , and the ingot is thereafter processed into a target.5. (canceled)6. The method of producing a high-purity titanium target for sputtering according to claim 4 , of which average crystal grain size is 10 μm or less.7. The method of producing a high-purity titanium target for sputtering according to claim 3 , wherein an average crystal grain size of the target is 10 μm or less. The present invention relates to a high-quality titanium target for sputtering which is capable of ...

Подробнее
14-01-2016 дата публикации

Titanium Alloy for Fastener Applications

Номер: US20160008903A1
Автор: Briggs Robert D.
Принадлежит:

A method and apparatus for forming a fastener for an aircraft. An annealed titanium alloy is provided with about 5.50 to about 6.75 weight percent aluminum, about 3.50 to about 4.50 weight percent vanadium, more than 0.20 weight percent oxygen, and more than 0.30 weight percent iron. Operations are performed to form the fastener for the aircraft from the annealed titanium alloy. 1. A fastener comprising:a titanium alloy having 5.50 to 6.75 weight percent aluminum, 3.50 to 4.50 weight percent vanadium, more than 0.20 percent weight oxygen and more than 0.30 percent weight iron.2. The fastener of claim 1 , wherein the titanium alloy has 5.50 to 6.75 weight percent aluminum claim 1 , 3.50 to 4.50 weight percent vanadium claim 1 , 0.25 to 0.50 weight percent oxygen claim 1 , and 0.40 to 0.80 weight percent iron.3. The fastener of claim 1 , wherein the titanium alloy has about 0.25 to about 0.30 weight percent oxygen and about 0.40 to about 0.60 percent weight iron.4. The fastener of claim 1 , wherein the titanium alloy has about 0.005 to about 0.20 weight percent molybdenum and about 0.03 to about 0.15 weight percent chromium.5. The fastener of claim 1 , wherein the fastener has an ultimate tensile strength of at least 160 ksi and a shear strength of at least 95 ksi when a diameter of the fastener is less than about 0.625 inches.6. The fastener of claim 1 , wherein an ultimate tensile strength of the titanium alloy remains substantially a same as a thickness of the titanium alloy increases from about 1.0 inch to about 4.0 inches.7. A method for making a titanium alloy claim 1 , the method comprising:manufacturing the titanium alloy to have about 5.50 to about 6.75 weight percent aluminum, about 3.50 to about 4.50 weight percent vanadium, more than 0.20 weight percent oxygen, and more than 0.30 weight percent iron.8. The method of claim 7 , wherein manufacturing the titanium alloy comprises:manufacturing the titanium alloy to have about 0.25 to about 0.50 weight percent ...

Подробнее
12-01-2017 дата публикации

METHODS OF OFF-LINE HEAT TREATMENT OF NON-FERROUS ALLOY FEEDSTOCK

Номер: US20170009325A1
Принадлежит:

The present invention, in some embodiments, is a method of forming an O temper or T temper product that includes obtaining a coil of a non-ferrous alloy strip as feedstock; uncoiling the coil of the feedstock; heating the feedstock to a temperature between a recrystallization temperature of the non-ferrous alloy and 10 degrees Fahrenheit below a solidus temperature of the non-ferrous alloy; and quenching the feedstock to form a heat-treated product having am O temper or T temper. The non-ferrous alloy strip used in the method excludes aluminum alloys having 0.4 weight percent silicon, less than 0.2 weight percent iron, 0.35 to 0.40 weight percent copper, 0.9 weight percent manganese, and 1 weight percent magnesium. 1. A method comprising:obtaining a coil of a non-ferrous alloy strip as feedstock;uncoiling the coil of the feedstock;heating the feedstock to a temperature between a recrystallization temperature of the non-ferrous alloy and 10 degrees Fahrenheit below a solidus temperature of the non-ferrous alloy; andquenching the feedstock to form a heat-treated product having a temper;wherein the temper is O temper or T temper; and 0.4 weight percent silicon,', 'less than 0.2 weight percent iron,', '0.35 to 0.40 weight percent copper,', '0.9 weight percent manganese, and', '1 weight percent magnesium., 'wherein the non-ferrous alloy strip excludes aluminum alloys having all of the following2. The method of claim 1 , wherein the heating is selected from the group consisting of infrared claim 1 , radiant-tube claim 1 , gas-fired furnace claim 1 , direct resistance claim 1 , induction heating claim 1 , and combinations thereof.3. The method of claim 1 , wherein the non-ferrous alloy is selected from the group consisting of aluminum alloys claim 1 , magnesium alloys claim 1 , titanium alloys claim 1 , copper alloys claim 1 , nickel alloys claim 1 , zinc alloys and tin alloys.4. The method of claim 3 , wherein the non-ferrous alloy is an aluminum alloy selected from the ...

Подробнее
12-01-2017 дата публикации

METHOD OF MANUFACTURING SPUTTERING TARGET AND SPUTTERING TARGET

Номер: US20170009336A1
Принадлежит:

The manufacturing cost of a sputtering target is reduced and the impurity concentration of the manufactured sputtering target is also reduced. A method of manufacturing a sputtering target includes: surface-treating at least one of a used sputtering target and a scrap material; melting at least one of the used sputtering target and the scrap material after the surface treatment to form an ingot; and manufacturing a sputtering target by subjecting the ingot to forging, rolling, heat treating, and machining. 1. A method of manufacturing a sputtering target , comprising:surface-treating at least one of a used sputtering target including a first face and a scrap material including a second face to expose at least one of the first and second faces and remove at least one of a part of the used sputtering target and a part of the scrap material by 1 mm or more in an inward direction from at least one of the first and second faces, the used sputtering target and the scrap material each containing a metal element, and the first and second faces each having uniform metallic color;melting at least one of the used sputtering target and the scrap material after the surface treatment to form an ingot; andmanufacturing a sputtering target by subjecting the ingot to forging, rolling, heat treating, and machining.2. The method according to claim 1 , wherein at least one of the used sputtering target and the scrap material is surface-treated by at least one of a pickling removal and a mechanical removal.3. The method according to claim 2 , wherein the pickling removal is performed using a mixture containing two acids or more out of hydrofluoric acid claim 2 , nitric acid claim 2 , hydrochloric acid claim 2 , and acetic acid.4. The method according to claim 3 , wherein the pickling removal is performed using the mixture containing the hydrofluoric acid having a first mixture ratio and the nitric acid having a second mixture ratio higher than the first mixture ratio.5. The method ...

Подробнее
11-01-2018 дата публикации

DUPLEX SURFACE TREATMENT FOR TITANIUM ALLOYS

Номер: US20180010229A1
Принадлежит:

A surface treatment for a metal substrate includes a nitride layer and a diamond-like carbon coating on said nitride layer. The metal substrate can be a titanium-containing substrate. The nitride layer and diamond-like carbon coating serve to improve the tribological properties of the metal substrate. 1. A surface treatment for a titanium-containing substrate comprising a nitride layer and a diamond-like carbon coating on said nitride layer.2. The surface treatment of claim 1 , wherein said nitride layer has a thickness of from 3 to 15 μm.3. The surface treatment of claim 1 , wherein said nitride layer has a hardness of from 300 HV to 1800 HV.4. The surface treatment of claim 1 , wherein said nitride layer has a hardness of 700 HV or more.5. The surface treatment of claim 1 , wherein said diamond-like carbon coating includes a gradient layer between an adhesion layer and a top functional layer claim 1 , said adhesion layer being proximate said nitride layer.6. The surface treatment of claim 1 , wherein said diamond-like carbon coating has a hardness of 9 GPa or more.7. A coated metal substrate comprising a titanium-containing substrate having a nitride layer claim 1 , and a diamond-like carbon coating on top of said nitride layer.8. The coated metal substrate of claim 7 , wherein said titanium-containing substrate includes 50 wt. % or more titanium.9. The coated metal substrate of claim 7 , wherein said titanium-containing substrate includes 80 wt. % or more titanium.10. The coated metal substrate of claim 7 , wherein said titanium-containing substrate is a nickel titanium alloy.11. The coated metal substrate of claim 10 , wherein said titanium-containing substrate is represented by the formula NiTi claim 10 , where x is in a range of from 0.30 to 0.70.12. The coated metal substrate of claim 11 , where x is in a range of from 0.35 to 0.50.13. The coated metal substrate of claim 7 , wherein said titanium-containing substrate is selected from the group consisting of a ...

Подробнее
11-01-2018 дата публикации

SPUTTERING TARGET AND/OR COIL, AND PROCESS FOR PRODUCING SAME

Номер: US20180010241A1
Принадлежит:

A sputtering target and/or a coil disposed at a periphery of a plasma-generating region for confining plasma are provided. The target and/or coil has a surface to be eroded having a hydrogen content of 500 μL/cmor less. In dealing with reduction in hydrogen content of the surface of the target and/or coil, a process of producing the target and/or coil, in particular, conditions for heating the surface of the target and/or coil, which is believed to be a cause of hydrogen occlusion, are appropriately regulated. As a result, hydrogen occlusion at the surface of the target can be reduced, and the degree of vacuum during sputtering can be improved. Thus, a target and/or coil is provided that has a uniform and fine structure, makes plasma stable, and allows a film to be formed with excellent uniformity. A method of producing the target and/or the coil is also provided. 1. A method of producing a sputtering target and/or a coil , comprising the steps of:{'sup': '2', 'heating a finished-processed sputtering target and/or a coil for being disposed at a periphery of a plasma-generating region for confining plasma to 500° C. or more under a vacuum atmosphere or an inert gas atmosphere to regulate the hydrogen content of a surface to be eroded of the target and/or the coil to 500 μL/cmor less; and'}installing the target and/or coil in a vacuum chamber within 5 hours after said heating step to prevent adsorption or occlusion of hydrogen.2. The method of producing a sputtering target and/or a coil according to claim 1 , wherein the hydrogen content of the surface to be eroded of the sputtering target and/or the coil is regulated to 300 μL/cmor less.3. The method or producing a sputtering target and/or a coil according to claim 1 , wherein the hydrogen content of the surface to be eroded of the sputtering target and/or the coil is regulated to 100 μL/cmor less.4. The method of producing a sputtering target and/or a coil according to claim 3 , wherein the sputtering target and/or ...

Подробнее
14-01-2021 дата публикации

TITANIUM MEMBER, METHOD FOR MANUFACTURING TITANIUM MEMBER, AND DECORATIVE ARTICLE INCLUDING TITANIUM MEMBER

Номер: US20210010122A1
Принадлежит: CITIZEN WATCH CO., LTD.

A titanium member includes a first region where a plurality of first convex structural bodies extending in a first direction are arranged on the surface of the titanium member in a second direction orthogonal to the first direction, the first convex structural body has first convex portions arranged on an upper surface of the first convex structural body at an interval of several hundred nanometers along the first direction, and a height of the first convex portion is several ten nanometers. It is preferable that the first convex structural bodies adjacent in the second direction are arranged at an interval wider than the interval at which the first convex portions are arranged, and in the first convex structural bodies, a height including the first convex portion is higher than the height of the first convex portion. 116-. (canceled)17. A titanium member comprising:a first region where a plurality of first convex structural bodies extending in a first direction are arranged on a surface of the titanium member in a second direction orthogonal to the first direction,wherein the first convex structural body has first convex portions arranged on an upper surface of the first convex structural body at an interval of several hundred nanometers along the first direction, andwherein a height of the first convex portion is several ten nanometers.18. The titanium member according to claim 17 , wherein a titanium content is 99 mass % or more.19. The titanium member according to claim 17 , wherein the titanium member includes a β alloy or an α+β alloy.20. The titanium member according to claim 17 ,wherein the first convex structural bodies adjacent in the second direction are arranged at an interval wider than the interval at which the first convex portions are arranged, andwherein in the first convex structural bodies, a height including the first convex portion is higher than the height of the first convex portion.21. The titanium member according to claim 18 ,wherein the ...

Подробнее
19-01-2017 дата публикации

Alpha + beta titanium alloy welded pipe excellent in strength and rigidity in pipe longitudinal direction and method for producing the same

Номер: US20170014882A1
Принадлежит: Nippon Steel and Sumitomo Metal Corp

Provided is an α+β titanium alloy welded pipe excellent in the strength and the rigidity in the pipe longitudinal direction, the α+β titanium alloy welded pipe having a composition consisting of, in mass %, Fe: 0.8% to 1.5%, N: 0.02% or less, and the balance: Ti and impurities, and satisfying Q shown in Formula (1) being 0.34 to 0.55. A tensile strength in a pipe longitudinal direction is more than 900 MPa and a Young's modulus in the pipe longitudinal direction is more than 130 GPa. Q =[O]+2.77×[N]+0.1×[Fe]  ( 1 ) where [Fe], [O], and [N] represent the amounts of the respective elements contained [mass %].

Подробнее
03-02-2022 дата публикации

High Strength Titanium Alloys

Номер: US20220033935A1
Принадлежит:

A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the α phase and increase the volume fraction of the a phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility. 1. A titanium alloy comprising , in weight percentages based on total alloy weight:6.0 to 12.0 vanadium;3.0 to 8.0 tin;2.0 to 5.0 aluminum;1.0 to 5.0 zirconium;1.0 to 5.0 molybdenum;0.005 to 0.3 oxygen;0 to 0.40 iron;0 to 0.5 chromium;0 to 0.05 carbon;0 to 0.05 nitrogen;titanium; andimpurities.2. The titanium alloy of claim 1 , comprising 8.6 to 11.4 vanadium in weight percent based on total alloy weight.3. The titanium alloy of claim 1 , comprising 8.6 to 9.4 vanadium in weight percent based on total alloy weight.4. The titanium alloy of claim 1 , comprising 4.6 to 7.4 tin in weight percent based on total alloy weight.5. The titanium alloy of claim 1 , comprising 2.0 to 3.9 aluminum in weight percent based on total alloy weight.6. The titanium alloy of claim 1 , comprising 3.0 to 3.9 aluminum in weight percent based on total alloy weight.7. The titanium alloy of claim 1 , comprising 2.0 to 3.4 aluminum in weight percent based on total alloy weight.8. The titanium alloy of claim 1 , comprising 1.6 to 3.4 zirconium in weight percent based on total alloy weight.9. The titanium alloy of claim 1 , comprising 1.0 to 3.0 molybdenum in weight percent based on total alloy weight.10. The ...

Подробнее
19-01-2017 дата публикации

TITANIUM ALLOYS EXHIBITING RESISTANCE TO IMPACT OR SHOCK LOADING AND METHOD OF MAKING A PART THEREFROM

Номер: US20170016103A1
Принадлежит:

Titanium alloys formed into a part or component used in applications where a key design criterion is the energy absorbed during deformation of the part when exposed to impact, explosive blast, and/or other forms of shock loading is described. The titanium alloys generally comprise a titanium base with added amounts of aluminum, an isomorphous beta stabilizing element such as vanadium, a eutectoid beta stabilizing element such as silicon and iron, and incidental impurities. The titanium alloys exhibit up to 70% or more improvement in ductility and up to a 16% improvement in ballistic impact resistance over a Ti-6Al-4V alloy, as well as absorbing up to 50% more energy than the Ti-6Al-4V alloy in Charpy impact tests. A method of forming a part that incorporates the titanium alloys and uses a combination of recycled materials and new materials is also described. 1. A titanium alloy having a titanium base with added amounts of aluminum , at least one isomorphous beta stabilizing element , at least one eutectoid beta stabilizing element , and incidental impurities , the titanium alloy comprising mechanical properties of:a yield strength between about 550 and about 850 MPa;an ultimate tensile strength that is between about 600 MPa and about 900 Mpa;{'sub': '50', 'a ballistic impact resistance that is greater than about 120 m/s at the Vballistic limit; and'}a machinability V15 turning benchmark that is above 125 m/min,wherein the titanium alloy exhibits a hot workability that is greater than the hot workability exhibited by a Ti-6Al-4V alloy under similar conditions.2. The titanium alloy of claim 1 , wherein the titanium alloy further exhibitsa percent elongation that is between about 19% and about 40%; anda flow stress that is less than about 200 MPa measured at 1/sec and 800° C.3. The titanium alloy according to claim 1 , wherein the titanium alloy comprises:aluminum in an amount ranging between about 0.5 wt. % to about 1.6 wt. %;vanadium in an amount ranging between ...

Подробнее
19-01-2017 дата публикации

STRESS RELIEVED WELDS IN POSITIVE EXPULSION FUEL TANKS WITH ELASTOMERIC DIAPHRAGM

Номер: US20170016574A1
Принадлежит:

A metallic positive expulsion fuel tank with stress free weld seams may include a first hemispherical shell with a first edge; a pressurized gas inlet attached to the first hemispherical shell; and a metallic cylinder with first and second edges attached to the first hemispherical shell along matching first edges by a first weld seam. The tank may also include a second hemispherical shell with a first edge attached to a fuel outlet fixture. An elastomeric diaphragm may be attached to the fuel outlet fixture on the second hemispherical shell. The second hemispherical shell may be attached to the second edge of the metallic cylinder along matching edges by a second weld seam thereby forming a positive expulsion fuel tank with two interior chambers separated by the elastomeric diaphragm. The first and second weld seams may be subjected to a localized post-weld stress relief heat treatment in which heating of the tank is confined to a distance of 2 inches (5.08 cm) of the first weld seam and a distance of 2 inches (5.08 cm) of the second weld seam such that the stresses in the first and second weld seams are relieved and the elastomeric diaphragm is unaffected by the heat treatment. 1. A metallic positive expulsion fuel tank comprising:a first hemispherical shell with a circumferential edge;a pressurized propellant gas inlet attached to the first hemispherical shell;a metallic cylinder with first and second circumferential edges wherein the first circumferential edge is attached to the circumferential edge of the first hemispherical shell by a first weld seam;a second hemispherical shell with a circumferential edge;a fuel outlet fixture attached to the second hemispherical shell;a hemispherical elastomeric diaphragm attached to the fuel outlet fixture;a second hemispherical shell attached to the second circumferential edge of the cylinder by a second weld seam forming two interior chambers separated by the elastomeric diaphragm;the first and second weld seams being ...

Подробнее
21-01-2016 дата публикации

Method for producing defect-free threads for large diameter beta solution treated and overaged titanium-alloy bolts

Номер: US20160017470A1
Принадлежит: Sikorsky Aircraft Corp

A method for producing a Ti—6Al—4V article, includes providing a work piece of a Ti-6Al-4V alloy having a beta-transus temperature; subjecting the work piece to a beta solution heat treatment process in a furnace with a vacuum at a temperature above the beta transus; quenching the work piece in the furnace using high pressure inert gas following the subjecting of the work piece in the beta solution heat treatment process; and subjecting the work piece to an overage heat treatment process in the furnace with a vacuum to overage the work piece following the quenching of the work piece. The work piece can be a bolt blank that is further manufactured into a titanium bolt with pre-machined wave form threads and wave form rolling process utilized to manufacture threads into the bolt blank.

Подробнее
18-01-2018 дата публикации

HIGH TEMPERATURE RESISTANT TiAl ALLOY, PRODUCTION METHOD THEREFOR AND COMPONENT MADE THEREFROM

Номер: US20180016668A1
Принадлежит:

Described is α-TiAl alloy which, besides titanium, comprises 42 to 48 at. % aluminum, 3 to 5 at. % niobium, 0.05 to 1 at. % molybdenum, 0.2 to 2.2 at. % silicon, 0.2 to 0.4 at. % carbon, 0.05 to 0.2 at. % boron, and optionally tungsten, zirconium and hafnium, as well as unavoidable impurities, and at room temperature has a microstructure which comprises globular colonies of lamellae of α-TiAl and γ-TiAl, as well as silicide precipitates, and essentially no β phase. A method for producing a component made of this alloy is also described. 118.-. (canceled)19. A TiAl alloy , wherein the alloy comprisestitanium,from 42 to 48 at. % aluminum,from 3 to 5 at. % niobium,from 0.05 to 1 at. % molybdenum,from 0.2 to 2.2 at. % silicon,from 0.2 to 0.4 at. % carbon,from 0.05 to 0.2 at. % boron,0 to 2.0 at. % tungsten,0 to 3.5 at. % zirconium,0 to 0.3 at. % hafnium,{'sub': 2', '3, 'and unavoidable impurities, titanium being provided in a quantity such that the sum of proportions of chemical elements amounts to 100 at. %, and the TiAl alloy having at room temperature a microstructure which comprises globular colonies of lamellae of α-TiAl and γ-TiAl, as well as silicide precipitates, and essentially no β phase.'}20. The alloy of claim 19 , wherein the alloy comprisesfrom 43 to 45 at. % aluminum,from 3.5 to 4.5 at. % niobium,from 0.85 to 0.95 at. % molybdenum,from 0.25 to 0.35 at. % silicon,from 0.25 to 0.35 at. % carbon,from 0.05 to 0.15 at. % boron.21. The alloy of claim 19 , wherein the alloy comprisesfrom 43.5 to 45 at. % aluminum,from 3.5 to 4.5 at. % niobium,from 0.1 to 0.5 at. % molybdenum,from 0.4 to 1 at. % tungsten,from 0.25 to 0.35 at. % silicon,from 0.25 to 0.35 at. % carbon,from 0.05 to 0.15 at. % boron.22. The alloy of claim 19 , wherein the alloy comprisesfrom 43.5 to 45 at. % aluminum,from 3.5 to 4.5 at. % niobium,from 0.85 to 0.95 at. % molybdenum,from 0.1 to 3 at. % zirconium,from 0.25 to 2.2 at. % silicon,from 0.25 to 0.35 at. % carbon,from 0.05 to 0.15 at. % boron ...

Подробнее
18-01-2018 дата публикации

TITANIUM BASED CERAMIC REINFORCED ALLOY

Номер: US20180016669A1
Принадлежит:

A titanium based, ceramic reinforced body formed from an alloy having from about 3 wt. % to about 10 wt. % of zirconium, about 10 wt. % to about 25 wt. % of niobium, from about 0.5 wt. % to about 2 wt. % of silicon, and from about 63 wt. % to about 86.5 wt. % of titanium. The alloy has a hexagonal crystal lattice a phase of from about 20 vol % to about 70 vol %, and a cubic body centered β crystal lattice phase of from about 30 vol. % to about 80 vol. %. The body has an ultimate tensile strength of about 950 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a zirconium, niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into body. The body may then be formed into a desired shape, for example, a medical implant and optionally annealed. 1. A body comprising an alloy , the alloy comprising from about 3 wt. % to about 10 wt. % of zirconium , about 10 wt. % to about 25 wt. % of niobium , from about 0.5 wt. % to about 2 wt. % of silicon , and from about 63 wt. % to about 86.5 wt. % of titanium , the alloy having a hexagonal crystal lattice a phase of from about 20 vol % to about 70 vol % , and a cubic body centered crystal lattice phase of from about 30 vol. % to about 80 vol. % , the ingot having an ultimate tensile strength of about 950 MPa or more , and a Young's modulus of about 150 GPa or less.2. The body of wherein the alloy comprises from about 3 wt. % to about 10 wt. % of zirconium claim 1 , about 10 wt. % to about 25 wt. % of niobium claim 1 , from about 0.5 wt. % to about 2 wt. % of silicon claim 1 , and the balance titanium.3. The body of which has an ultimate tensile strength of from about 1000 MPa to about 1400 MPa claim 1 , and a Young's modulus of from about 100 GPa to about 150 GPa.4. The body of which has an ultimate tensile strength of from about 1100 MPa to about 1300 MPa claim 1 , and a Young's modulus of from about 110 GPa to about 140 GPa.5. The body of wherein the ...

Подробнее
18-01-2018 дата публикации

PROCESSING OF ALPHA/BETA TITANIUM ALLOYS

Номер: US20180016670A1
Автор: Bryan David J.
Принадлежит:

Processes for forming an article from an α+β titanium alloy are disclosed. The α+β titanium alloy includes, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, and from 0.10 to 0.30 oxygen. The α+β titanium alloy is cold worked at a temperature in the range of ambient temperature to 500° F., and then aged at a temperature in the range of 700° F. to 1200° F. 1. A process comprising:cold working an α+β titanium alloy workpiece at a temperature in the range of ambient temperature to 500° F.; anddirect aging the cold-worked α+β titanium alloy workpiece at a temperature in the range of 700° F. to 1200° F.; {'br': None, 'Elongation (%)+5×UTS≧230.'}, 'the α+β titanium alloy comprising, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, from 0.10 to 0.30 oxygen, titanium, and incidental impurities, wherein the cold working and direct aging forms an α+β titanium alloy article having an ultimate tensile strength (UTS) and an elongation that satisfy the equation2. The process of comprising cold working the α+β titanium alloy workpiece to a 20% to 60% reduction in area.3. The process of claim 1 , wherein the cold working of the α+β titanium alloy comprises at least two deformation cycles claim 1 , wherein each deformation cycle comprises cold working the α+β titanium alloy workpiece to an at least 10% reduction in area.4. The process of comprising cold working the α+β titanium alloy workpiece at ambient temperature.5. The process of comprising direct aging the α+β titanium alloy workpiece at a temperature in the range of 800° F. to 1100° F.6. The process of comprising direct aging the α+β titanium alloy workpiece for 0.5 to 10 hours at temperature.7. The process of comprising hot working the α+β titanium alloy workpiece at a temperature in the range of 300° F. to 25° F. below the β-transus temperature of the α+β titanium alloy claim 1 , wherein the hot working is performed ...

Подробнее
17-01-2019 дата публикации

HIGH-TEMPERATURE FORGING, PARTICULARLY OF TITANIUM ALUMINIDES

Номер: US20190017158A1
Автор: SCHLOFFER Martin
Принадлежит: MTU Aero Engines AG

The present invention relates to a method for forging a component, in particular a component made of a TiAl material, in which the die for forging is heated to a specified first temperature prior to the forging, and in which a preform of the component to be forged is preheated to a specified second temperature, wherein the first temperature is lower than the second temperature, and first and second temperatures are selected so that during the forging, the surface temperature of the preform does not fall below a minimum forging temperature, and the temperature of the die does not increase above a maximum die temperature. 1. A method for forging a component , in which the die for forging is heated to a specified first temperature prior to the forging , and in which a preform of the component to be forged is preheated to a specified second temperature prior to the forging , wherein the first temperature is lower than the second temperature , and first and second temperatures are selected so that during the forging , the surface temperature of the preform does not fall below a minimum forging temperature , and the temperature of the die does not exceed a maximum die temperature.2. The method according to claim 1 , wherein the die is heated during the forging so that the surface temperature of the preform does not fall below a minimum forging temperature and the temperature of the die does not exceed a maximum die temperature during the forging.3. The method according to claim 1 , wherein the difference between first and second temperatures is less than or equal to 320° C. claim 1 , in particular less than or equal to 200° C. claim 1 , and preferably less than or equal to 150° C.4. The method according to claim 1 , wherein the minimum forging temperature and the maximum die temperature are the same or differ by less than ±50° C.5. The method according to claim 1 , wherein the preform is preheated in a preheating furnace and is transferred therefrom directly into the die ...

Подробнее
17-01-2019 дата публикации

Method for Preparing Rods from Titanium-Based Alloys

Номер: US20190017159A1
Принадлежит:

The invention relates to the pressure processing of metals, and specifically to methods for preparing rods and workpieces from titanium alloys, with applications as a structural material in nuclear reactor cores, in the chemical and petrochemical industries, and in medicine. The invention solves the problem of producing rods from high-quality titanium alloys while simultaneously ensuring the high efficiency of the process. A method for preparing rods or workpieces from titanium alloys includes the hot forging of an initial workpiece and subsequent hot deformation, the hot forging of an ingot is carried out following heating, with shear deformations primarily in the longitudinal direction and a reduction ratio of k=(1.2−2.5), and then performing hot rolling forging, without cooling, changing the direction of shear deformations to being primarily transverse and with a reduction ratio of up to 7.0, and conducting subsequent hot deformation by heating deformed workpieces. 1. Method of manufacturing the rods from titanium alloys that includes hot forging of the workpiece and the subsequent hot deformation , characterized in that hot forging of the ingot is performed after heating to a temperature in the interval from (Tpt+20) to (Tpt+150)° C. with shear deformations mainly in the longitudinal direction and a reduction ratio k=(1.2−2.5) , after which , without cooling , hot rolling of the forged piece is performed in the temperature range of (Tpt+20)+(Tpt+150)° C. with change of shear deformations into the predominantly transverse direction and a reduction ratio of up to 7.0; the subsequent hot deformation is carried out by heating the deformed workpieces in the temperature range from (Tpt−70) to (Tpt−20)° C. , where Tpt is the temperature of polymorphic transformation.2. Method according to claim 1 , wherein before hot rolling claim 1 , the semi-finished forgings are heated to a temperature range from (Tpt+20) to (Tpt+150)° C.3. Method according to claim 1 , wherein ...

Подробнее
16-01-2020 дата публикации

NIOBIUM-BASED ALLOY THAT IS RESISTANT TO AQUEOUS CORROSION

Номер: US20200017940A1
Автор: AIMONE Paul, Yang Mei
Принадлежит:

In various embodiments, a metal alloy resistant to aqueous corrosion consists essentially of or consists of niobium with additions of tungsten, molybdenum, and one or both of ruthenium and palladium. 123.-. (canceled)24. A method of chemical processing , the method comprising:providing equipment for chemical processing; andexposing the equipment to an acidic process fluid,wherein the equipment is composed of a metallic alloy consisting essentially of (i) 1 weight percent-10 weight percent tungsten, (ii) 0.5 weight percent-10 weight percent molybdenum, (iii) at least one of ruthenium or palladium collectively present at 0.2 weight percent-5 weight percent, and (iv) the balance niobium.25. The method of claim 24 , wherein a grain size of the metallic alloy is greater than 6 microns.26. The method of claim 24 , wherein the alloy comprises both ruthenium and palladium.27. The method of claim 24 , wherein the alloy contains 2 weight percent-10 weight percent tungsten.28. The method of claim 24 , wherein the alloy contains 2 weight percent-10 weight percent molybdenum.29. The method of claim 24 , wherein the alloy contains at least one of ruthenium or palladium collectively present at 2 weight percent-5 weight percent.30. The method of claim 24 , wherein the acidic process fluid comprises hydrochloric acid claim 24 , nitric acid claim 24 , phosphoric acid claim 24 , sulfuric acid claim 24 , and/or acetic acid.31. The method of claim 24 , wherein the equipment has the form of a plate claim 24 , a sheet claim 24 , or a tube.32. The method of claim 24 , wherein the equipment comprises a heat exchanger claim 24 , a lined vessel claim 24 , a static mixer claim 24 , or a pump.33. The method of claim 24 , wherein a temperature of the acidic process fluid ranges from approximately 80° C. to approximately 250° C.34. The method of claim 24 , wherein (i) providing the equipment comprises alloying niobium with tungsten claim 24 , molybdenum claim 24 , and at least one of ruthenium or ...

Подробнее
28-01-2016 дата публикации

Methods of forming metallic glass multilayers

Номер: US20160023438A1
Принадлежит: Glassimetal Technology Inc

The disclosure is directed to methods of forming metallic glass multilayers by depositing a liquid layer of a metallic glass forming alloy over a metallic glass layer, and to multilayered metallic glass articles produced using such methods.

Подробнее
28-01-2016 дата публикации

METHOD FOR JOINING HIGH TEMPERATURE MATERIALS AND ARTICLES MADE THEREWITH

Номер: US20160023439A1
Принадлежит:

Methods for joining dissimilar high-temperature alloys are provided, along with articles, such as turbine airfoils, formed by the method. The method comprises interposing a barrier material between a first segment and a second segment to form a segment assembly. The first segment comprises a titanium aluminide material, and the second segment comprises a nickel alloy. The barrier material comprises a primary constituent element present in the barrier material at a concentration of at least about 30 weight percent of the barrier material, and the primary constituent element is a transition metal element of Group 1B, Group 4B (excluding titanium and zirconium), Group 5B, Group 6B, Group 7B, or Group 8B (excluding nickel). The segment assembly is bonded in the solid state at a combination of temperature, pressure, and time effective to produce a metallurgical joint between the first and second segments, thereby forming an intermediate article; and the intermediate article is heat treated to form a bonded article. 1. A method comprising:interposing a barrier material between a first segment and a second segment to form a segment assembly, wherein the first segment comprises a titanium aluminide material, the second segment comprises a nickel alloy, and the barrier material comprises a primary constituent element present in the barrier material at a concentration of at least about 30 weight percent of the barrier material; wherein the primary constituent element is a transition metal element of Group 1B, Group 4B (excluding titanium and zirconium), Group 5B, Group 6B, Group 7B, or Group 8B (excluding nickel);bonding the segment assembly in the solid state at a combination of temperature, pressure, and time effective to produce a metallurgical joint between the first and second segments, thereby forming an intermediate article; andheat treating the intermediate article to form a bonded article.2. The method of claim 1 , wherein the primary constituent element comprises ...

Подробнее
28-01-2016 дата публикации

METHOD OF PREPARING A METAL ALLOY PART

Номер: US20160024631A1
Автор: Soniak Francis
Принадлежит: MESSIER-BUGATTI-DOWTY

A method of converting an alloy comprising a majority of titanium, the method comprising: 1. A method of converting an alloy that comprises , in percentage by weight of alloy , a majority of titanium , the alloy presenting a β transus temperature beyond which a transition is observed from α phase alloy structures to β phase alloy structures , the method comprising:{'b': '1', 'a step of fabricating an ingot () made of said alloy;'}at least first, second, and third steps of a first type (A, B, C) consisting in plastically deforming the alloy from said ingot while it is at a current temperature strictly higher than the β transus temperature (Tβ); andat least first and second steps of a second type (A′, B′) consisting in plastically deforming the alloy from said ingot while it is at a current temperature strictly lower than the β transus temperature (Tβ);the method being characterized in that the steps of the first and second types (A, A′, B, B′, C) are applied in the following sequence:{'b': '1', 'performing the first step of the first type (A) while the alloy is at a first temperature (T); followed by'}performing the first step of the second type (A′); followed by{'b': 2', '1, 'performing the second step of the first type (B) while the alloy is at a second temperature (T) strictly lower than said first temperature (T); followed by'}performing the second step of the second type (B′); followed by{'b': 3', '2, 'performing the third step of the first type (C) while the alloy is at a third temperature (T) strictly lower than said second temperature (T).'}2. An alloy conversion method according to claim 1 , wherein:{'b': '1', 'the first temperature (T) is higher than the β transus temperature (Tβ) by at least 200° C. and at most 300° C.;'}{'b': '2', 'the second temperature (T) is higher than the β transus temperature (Tβ) by at least 100° C. and at most 200° C.;'}{'b': '3', 'the third temperature (T) is higher than the β transus temperature (Tβ) by at least 50° C. and at ...

Подробнее
28-01-2016 дата публикации

Method for Forming Aluminide Coating Film on Base Material

Номер: US20160024637A1
Принадлежит:

There is provided a method for forming an aluminide coating on a surface of a heat resistant superalloy substrate, comprising the steps of: exposing a base metal of the substrate in a selective area; forming a aluminum or an aluminum alloy film on the exposed base metal, by a non-aqueous electroplating; and conducting a heat treatment to the substrate on which the film is formed, in order to make a diffusion reaction between an aluminum component in the film and the base metal, and form the aluminide coating, wherein: there is used, as a plating liquid, a non-aqueous plating liquid containing a halide of the metal to be plated and an organic compound which forms an ion pair with the metal halide; and the electroplating is conducted by immersing the selective area into the plating liquid through the use of predetermined means for shielding the plating liquid from the atmosphere. 1. A method for forming an aluminide coating on a surface of a heat resistant superalloy substrate , comprising the steps of:exposing a base metal of the heat resistant alloy substrate in a selective area where the aluminide coating is to be formed;forming a metal aluminum film or an aluminum based alloy film on the exposed base metal, by a non-aqueous electroplating; andconducting a heat treatment to the heat resistant alloy substrate on which the film is formed, in order to make a diffusion reaction between an aluminum component in the film and the base metal, and form the aluminide coating,wherein there is used, as a plating liquid, a non-aqueous plating liquid containing a halide of the metal to be plated (a metal halide) and an organic compound which forms an ion pair with the metal halide, andwherein the non-aqueous electroplating is carried out by immersing topically the selective area into the non-aqueous plating liquid through the use of predetermined means for shielding the non-aqueous plating liquid from the atmosphere.2. The method for forming an aluminide coating on a substrate ...

Подробнее
10-02-2022 дата публикации

CANISTER AND METHOD OF PRODUCTION

Номер: US20220040783A1
Автор: Cipolla Steven A.
Принадлежит:

A method of forming a canister by means of a mechanical bonding of respective layers of a first metal material (tantalum) and a second metal material (niobium) to form a sheet stock, thereby forming the sheet stock into a canister form, wherein the first metal material comprises tantalum and the second metal material comprises at least one of niobium, molybdenum, or steel. The completed canister comprises a first metal material comprising tantalum, and a second metal material mechanically bonded to the first metal material by subjecting the first and second metal materials to at least 1,000,000 psi, to thereby form a canister having an inner diameter of 13-19 millimeters (mm), the second metal material comprising at least one of niobium, molybdenum, or steel. 1. A method of forming a canister by means of a mechanical bonding of respective layers of a first metal material and a second metal material to form a sheet stock , thereby forming the sheet stock into the canister , wherein the formation of the canister consisting of the first metal material being tantalum and the second metal material being niobium.2. The method of wherein claim 1 , with respect to the canister claim 1 , an inner layer is comprised of the first material and an outer layer is comprised of the second material.3. (canceled)4. (canceled)5. The method of wherein the sheet stock is comprised of at least 30% tantalum.6. The method of claim 1 , further comprising brushing exterior surfaces of the first metal material and the second metal material to deoxidize the first metal material and the second metal material prior to performing the mechanical bonding.7. The method of wherein the first metal material and the second metal material each have a purity of at least 99.9%.8. The method of wherein the means of mechanical bonding comprises cladding with at least one roller of at least 1 claim 1 ,000000 psi to mechanically bond the first metal material together with the second metal material.9. The ...

Подробнее
26-01-2017 дата публикации

HEAT TREATMENT OF AN ALLOY BASED ON TITANIUM ALUMINIDE

Номер: US20170022594A1
Принадлежит: SAFRAN AIRCRAFT ENGINES

The invention relates to a method for the treatment of an alloy based on titanium aluminide. The method comprises the following steps, during which no hot isostatic pressing is carried out: obtaining a semi-finished product () produced by centrifugal casting, then heat treating the semi-finished product in order to obtain an alloy microstructure comprising gamma grains and/or lamella grains (alpha2/gamma). 1. A method for treating a titanium-aluminide alloy , the method comprising the following steps: carrying out centrifugal casting in a permanent mould in order to obtain a semi-finished product , then heat treating the semi-finished product at a pressure below that of a hot isostatic pressing (HIP) , preferably substantially equal to atmospheric pressure , until a microstructure of the alloy comprising gamma grains and/or lamellar grains (alpha2/gamma) is obtained.2. A method for fabricating , without a hot isostatic pressing , a turbine-engine part made from titanium-aluminide alloy , comprising the following steps:carrying out centrifugal casting in a permanent mould in order to obtain a semi-finished product with a form less complex than that of the finished product,heat treating the semi-finished product without hot isostatic pressing, at a pressure lower than that of hot isostatic pressing (HIP), preferably substantially equal to atmospheric pressure, until an alloy microstructure comprising gamma grains and/or lamellar grains (alpha2/gamma) is obtained,then machining the heat-treated semi-finished product to the form of said part.3. A method according to claim 1 , where the step of obtaining the semi-finished product produced by the centrifugal casting comprises casting in said permanent mould filled by the alloy claim 1 , so that the size of the internal pores of this alloy is reduced after casting compared with what is was before claim 1 , the mould being filled by the alloy:with a speed of flow of the alloy in the mould greater than the rate of ...

Подробнее
10-02-2022 дата публикации

ASYNCHRONOUS CONVERSION OF METALS TO METAL CERAMICS

Номер: US20220042145A1
Принадлежит: Newsotech, Inc.

A metal-ceramic article and method for creating the same is disclosed in which the article has undergone machining to remove outer surface volume. The article is then treated to enhance the characteristics of at least the machined surface to be comparable to the original surface. In the disclosed application the machining extends into an inner layer of the article in which the article consists purely of a metal. 1. A method for creating a metal ceramic article comprising:providing a metal-oxide workpiece having an outer layer, with an outer layer depth, of a substantially isotropic metal-ceramic to a waste depth of said workpiece, said waste depth extending into a metal core consisting of a metal;machining a target volume of said workpiece to shape said workpiece into a predetermined final article volume, composed of an original surface and a machined surface, having a substantially isotropic metal-ceramic surface; andemitting coherent energy upon said machined surface for a duration sufficient to impart a comparable hardness between said original surface and said machined surface.2. The method of wherein said machining step includes light-energization said target volume.3. The method of wherein said machining step includes light-energization of said target volume using overlapping paths.4. The method of wherein said machining step includes pulse light-energization of said target volume.5. The method of wherein said machining step includes a scrolling rate for a beam providing said light-energization at a rate in excess of 1 m/s.6. The method of wherein said machining step includes said scrolling rate in excess of 10 m/s.7. The method of wherein said machining step includes machining said target volume to a waste depth greater than 50% of said original surface outer layer depth.8. The method of wherein said machining step includes machining said target volume to a waste depth greater than 75% of said original surface outer layer depth.9. The method of wherein said ...

Подробнее
23-01-2020 дата публикации

TITANIUM ALLOY

Номер: US20200024696A1
Автор: Foltz, IV John W.
Принадлежит:

According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities. 1. A method of forming an article from a metallic form comprising an alpha-beta titanium alloy , the method comprising:cold working a metallic form to at least a 25 percent reduction in cross-sectional area;wherein the metallic form does not exhibit substantial cracking after cold working; and an aluminum equivalency in the range of 2.0 to 10.0,', 'a molybdenum equivalency in the range of 0 to 20.0,', '0.3 to 5.0 weight percent cobalt,', 'titanium, and', 'incidental impurities., 'wherein the metallic form comprises an alpha-beta titanium comprising2. The method of claim 1 , wherein cold working the metallic form comprises cold working the metallic form to at least 35 percent reduction.3. The method of claim 1 , wherein cold working the metallic form comprises one or more of rolling claim 1 , forging claim 1 , extruding claim 1 , pilgering claim 1 , rocking claim 1 , drawing claim 1 , flow-turning claim 1 , liquid compressive forming claim 1 , gas compressive forming claim 1 , hydro-forming claim 1 , bulge forming claim 1 , roll forming claim 1 , stamping claim 1 , fine-blanking claim 1 , die pressing claim 1 , deep drawing claim 1 , coining claim 1 , spinning claim 1 , swaging claim 1 , impact extruding claim 1 , explosive forming claim 1 , rubber forming claim 1 , back extrusion claim 1 , piercing claim 1 , stretch forming claim 1 , press bending claim 1 , electromagnetic forming claim 1 , and cold heading.4. The method of claim 1 , wherein cold working the metallic form comprises cold rolling.5. The method of claim 1 , wherein cold working the metallic form comprises working the metallic form at a temperature less than 1250° F. (676.7° C.).6. The method of claim 1 , wherein cold working ...

Подробнее
23-01-2020 дата публикации

TITANIUM ALLOY

Номер: US20200024697A1
Автор: Foltz, IV John W.
Принадлежит:

According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities. 1. An alpha-beta titanium alloy comprising , in weight percentages:up to about 4.1 aluminum;at least 2.1 vanadium;0.3 to 5.0 cobalt;an aluminum equivalency in the range of about 6.7 to 10.0;a molybdenum equivalency in the range of 0 to 20.0;titanium; andincidental impurities.2. The alpha-beta titanium alloy according to claim 1 , wherein the molybdenum equivalency is in the range of 2.0 to 20.0.3. The alpha-beta titanium alloy according to claim 1 , wherein the alpha-beta titanium alloy exhibits a cold working reduction ductility limit of at least 25%.4. The alpha-beta titanium alloy according to claim 1 , wherein the alpha-beta titanium alloy exhibits a cold working reduction ductility limit of at least 35%.5. The alpha-beta titanium alloy according to claim 1 , wherein the alpha-beta titanium alloy exhibits a yield strength of at least 130 KSI (896.3 MPa) and a percent elongation of at least 10%.6. The alpha-beta titanium alloy according to claim 1 , further comprising greater than 0 up to 0.3 total weight percent of one or more of cerium claim 1 , praseodymium claim 1 , neodymium claim 1 , samarium claim 1 , gadolinium claim 1 , holmium claim 1 , erbium claim 1 , thulium claim 1 , yttrium claim 1 , scandium claim 1 , beryllium claim 1 , and boron.7. The alpha-beta titanium alloy according to claim 6 , wherein the molybdenum equivalency is in the range of 0 to 10.8. The alpha-beta titanium alloy according to claim 1 , further comprising greater than 0 up to 0.5 total weight percent of one or more of gold claim 1 , silver claim 1 , palladium claim 1 , platinum claim 1 , nickel claim 1 , and iridium.9. The alpha-beta titanium alloy according to claim 6 , further comprising greater than 0 up ...

Подробнее
25-01-2018 дата публикации

SPRAY METHODS FOR COATING NUCLEAR FUEL RODS TO ADD CORROSION RESISTANT BARRIER

Номер: US20180025794A1
Принадлежит:

A method is described herein for coating the substrate of a component for use in a water cooled nuclear reactor to provide a barrier against corrosion. The method includes providing a zirconium alloy substrate; and coating the substrate with particles selected from the group consisting of metal oxides, metal nitrides, FeCrAl, FeCrAlY, and high entropy alloys. Depending on the metal alloy chosen for the coating material, a cold spray or a plasma arc spray process may be employed for depositing various particles onto the substrate. An interlayer of a different material, such as a Mo, Nb, Ta, or W transition metal or a high entropy alloy, may be positioned in between the Zr-alloy substrate and corrosion barrier layer. 1. A method of forming a corrosion resistant barrier on a substrate of a component for use in a water cooled nuclear reactor , the method comprising:providing a zirconium alloy substrate;coating the substrate to a desired thickness with particles selected from the group consisting of metal oxides, metal nitrides, FeCrAl, FeCrAlY, and high entropy alloys, the particles having an average diameter of 100 microns or less.2. The method recited in wherein coating comprises application of particles selected from the group consisting of metal oxides claim 1 , metal nitrides claim 1 , and combinations thereof claim 1 , by a plasma arc spray.3. The method recited in wherein the metal oxide particles are selected from the group consisting of TiO claim 2 , YO claim 2 , CrO claim 2 , and combinations thereof.4. The method recited in wherein the metal oxide particles are selected from the group consisting of TiOand YOand combinations thereof.5. The method recited in wherein the metal nitride particles are selected from the group consisting of TiN claim 2 , CrN claim 2 , ZrN claim 2 , and combinations thereof.6. The method recited in wherein coating comprises application of particles selected from the group consisting of FeCrAl claim 1 , high entropy alloys claim 1 , ...

Подробнее
28-01-2021 дата публикации

Titanium plate

Номер: US20210025031A1
Принадлежит: Nippon Steel Corp

A titanium plate includes a chemical composition of industrial pure titanium, in which an arithmetic mean roughness Ra of a surface is 0.05 μm or more and 0.40 μm or less, the surface has titanium carbide regarding which a ratio between a total sum of integrated intensities Ic derived from the titanium carbide and a total sum of integrated intensities Im of all diffraction peaks derived from the titanium carbide and titanium obtained from X-ray diffractometry ((Ic/Im)×100) is 0.8% or more and 5.0% or less, a number density of asperities on the surface is 30 to 100 pieces/mm, and an average spacing of the asperities is 20 μm or less.

Подробнее
02-02-2017 дата публикации

Dmls orthopedic intramedullary device and method of manufacture

Номер: US20170027624A1
Принадлежит: Smith and Nephew Inc

An orthopedic device, such as an intramedullary nail for internal fixation of a bone and a method of manufacturing the same. The orthopedic device may be formed from a medical grade powder via an additive manufacturing process. The forming process may include heat treating the additive manufactured component and machining the heat treated additive manufactured component to form the orthopedic device. Further, the orthopedic device may be formed to include an internal sensor probe channel that extends within at least a portion of the wall of the device, but which does not protrude through an outer portion of the wall. Embodiments further include a dynamizing intramedullary nail that accommodate adjustments in the relative axial positions of one or more sections of the orthopedic device. The devise may include features in an inner region of the orthopedic device that may alter an elastic modulus of the orthopedic device.

Подробнее
29-01-2015 дата публикации

Porous structures and methods of making same

Номер: US20150030493A1
Принадлежит: Smith and Nephew Inc

The present disclosure provides methods to improve the properties of a porous structure formed by a rapid manufacturing technique. Embodiments of the present disclosure increase the bonding between the micro-particles 5 on the surface of the porous structure and the porous structure itself without substantially reduce the surface area of the micro-particles. In one aspect, embodiments of the present disclosure improves the bonding while preserving or increasing the friction of the structure against adjacent materials.

Подробнее
02-02-2017 дата публикации

METHODS OF FORMING METALLIC GLASS MULTILAYERS

Номер: US20170028682A9
Принадлежит:

The disclosure is directed to methods of forming metallic glass multilayers by depositing a liquid layer of a metallic glass forming alloy over a metallic glass layer, and to multilayered metallic glass articles produced using such methods. 1. A method of forming a metallic glass multilayer comprising depositing a molten layer of a metallic-glass forming alloy over a metallic glass layer ,{'sub': i', 'i', 'o', 'o', 's', 'g, 'where the thickness dand initial temperature Tof the molten layer and the thickness dand initial temperature Tof the metallic glass layer produce an interface temperature Tthat is at least as high as the glass transition temperature of the metallic glass T'}{'sub': l', 'i', 's', 'i', 'l, 'sup': 2', '2', '−6', '2, 'where the characteristic cooling rate of the molten layer given by απ(T−T)/4d, where α=3×10m/s, is greater than the critical cooling rate of the metallic glass forming alloy, and'}{'sub': o', 'o', 'o', 's, 'sup': 2', '2', '−6', '2, 'where the characteristic time scale of the metallic glass layer following the deposition process given by 4d/απ, where α=3×10m/s, is shorter than the time for the metallic glass to crystallize at the interface temperature T.'}2. The method of claim 1 , where the interface temperature Tis at least 25° C. higher than T.3. The method of claim 1 , where the characteristic time scale of the molten layer following the deposition process is given by [(T−T)/(T−T)][4d/απ] claim 1 , where Tis the crystallization nose temperature of the metallic glass forming alloy claim 1 , and where the characteristic time scale is shorter than the crystallization nose time of the metallic glass forming alloy.4. The method of claim 1 , where the molten layer thickness dis less than the maximum thickness given by (π/2)√[αt(T−T)/0.2T] claim 1 , where Tis the liquidus temperature and tthe crystallization nose time of the metallic glass forming alloy.5. The method of claim 1 , where the molten layer thickness dis less than the critical ...

Подробнее
01-02-2018 дата публикации

Powdered Titanium Alloy Composition and Article Formed Therefrom

Номер: US20180029131A1
Принадлежит:

A titanium alloy composition that includes, other than impurities, about 7.0 to about 9.0 percent by weight vanadium (V), about 3.0 to about 4.5 percent by weight aluminum (Al), about 0.8 to about 1.5 percent by weight iron (Fe), about 0.14 to about 0.22 percent by weight oxygen (O), optionally about 0.8 to about 2.4 percent by weight chromium (Cr), and the balance titanium. 1. A titanium alloy consisting essentially of:about 7.0 to about 9.0 percent by weight vanadium;about 3.0 to about 4.5 percent by weight aluminum;about 0.8 to about 1.5 percent by weight iron;about 0.14 to about 0.22 percent by weight oxygen;optionally about 0.8 to about 2.4 percent by weight chromium; andbalance titanium.2. The titanium alloy of wherein said vanadium is present at about 7.0 to about 8.5 percent by weight.3. The titanium alloy of wherein said vanadium is present at about 7.5 to about 9.0 percent by weight.4. The titanium alloy of wherein said aluminum is present at about 3.5 to about 4.5 percent by weight.5. The titanium alloy of wherein said aluminum is present at about 3.0 to about 4.0 percent by weight.6. The titanium alloy of wherein said iron is present at about 0.9 to about 1.5 percent by weight.7. The titanium alloy of wherein said iron is present at about 0.8 to about 1.3 percent by weight.8. The titanium alloy of wherein said oxygen is present at about 0.15 to about 0.22 percent by weight.9. The titanium alloy of wherein said oxygen is present at about 0.14 to about 0.20 percent by weight.10. The titanium alloy of wherein said chromium is optionally present at about 1.8 to about 2.4 percent by weight.11. The titanium alloy of wherein:said vanadium is present at about 7.0 to about 8.5 percent by weight;said aluminum is present at about 3.5 to about 4.5 percent by weight;said iron is present at about 0.9 to about 1.5 percent by weight; andsaid oxygen is present at about 0.15 to about 0.22 percent by weight.12. The titanium alloy of wherein said optional chromium is not ...

Подробнее
02-02-2017 дата публикации

W-NI SPUTTERING TARGET

Номер: US20170029934A1
Принадлежит:

A sputtering target contains 45 to 75 wt % W and a remainder of Ni and common impurities. The sputtering target contains a Ni(W) phase, a W phase and no or less than 10% intermetallic phases. A process for producing a W—Ni sputtering target and a process of using the sputtering target are also provided. 115-. (canceled)16. A sputtering target , comprising:from 45 to 75% by weight of W and a balance of Ni and normal impurities; anda Ni(W) phase, a W phase and no or less than 10% by area on average of intermetallic phases measured at a target material cross section.17. The sputtering target according to claim 16 , which further comprises an oxygen content of less than 100 μg/g.18. The sputtering target according to claim 16 , which further comprises a hardness of less than 500 HV10.19. The sputtering target according to claim 16 , wherein the sputtering target is a tubular sputtering target.20. The sputtering target according to claim 16 , wherein the sputtering target is a one-piece tubular target.21. The sputtering target according to claim 16 , which further comprises a proportion by area of the W phase measured at the target material cross section in a range of from 15% to 45%.22. The sputtering target according to claim 16 , which further comprises an average grain size of the W phase of less than 40 μm.23. The sputtering target according to claim 16 , which further comprises a texture of <110> parallel to a main deformation direction in the Ni(W) phase.24. A process of using a sputtering target claim 16 , the process comprising the following steps:using a sputtering target having from 45 to 75% by weight of W, a balance of Ni and normal impurities, a Ni(W) phase, a W phase and no or less than 10% by area on average of intermetallic phases measured at a target material cross section, for deposition of an electrochromic layer.25. A process of using of a sputtering target claim 16 , the process comprising the following steps:using a sputtering target having from 45 ...

Подробнее
04-02-2016 дата публикации

Nanostructured Titanium Alloy and Method for Thermomechanically Processing the Same

Номер: US20160032437A1
Принадлежит: Manhattan Scientifics, Inc.

A nanostractured titanium alloy article is provided. The nanostractured alloy includes a developed titanium structure having at least 80% of grains of a grain size≦1.0 microns. 1. A nanostructured titanium alloy article , comprising:a developed titanium structure having ≧80% of grains being of a size ≦1.0 micron.2. The nanostructured titanium alloy article according to claim 1 , wherein the developed titanium structure is a developed α-titanium structure.3. The nanostructured titanium alloy article according to claim 1 , wherein the grains are u phase grains.4. The nanostructured titanium alloy article according to claim 1 , wherein the developed titanium structure has a dislocation density ≧10m.5. The nanostructured titanium alloy article according to claim 1 , wherein 20-40% of the grains include high angle grain boundaries with a misorientation angle ≧15°.6. The nanostructured titanium alloy article according to claim 1 , wherein ≧80% of the grains have a grain shape aspect ratio that is in a range of 0.3 to 0.7.7. The nanostructured titanium alloy article according to claim 1 , wherein the developed titanium structure is processed from a combination of a severe plastic deformation process type and non-severe plastic deformation type thermomechanical processing steps.8. The nanostructured titanium alloy article according to claim 1 , wherein the developed titanium structure has an average crystallite size is ≦100 nanometers.9. The nanostructured titanium alloy article according to claim 8 , wherein the developed titanium structure has a dislocation density is ≧10m.10. The nanostructured titanium alloy article according to claim 9 , wherein 20-40% of the grains have high angle grain boundaries with a misorientation angle ≧15°.11. The nanostructured titanium alloy article according to claim 10 , wherein ≧80% of the grains have a gain shape aspect ratio in a range from 0.3 to 0.7.12. The nanostructured titanium alloy article according to claim 11 , wherein the ...

Подробнее
17-02-2022 дата публикации

METAL ALLOYS FOR MEDICAL DEVICES

Номер: US20220047782A1
Автор: Patel Udayan, Roth Noah
Принадлежит:

A medical device and a method and process for at least partially forming a medical device, which medical device has improved physical properties. 130-. (canceled)31. A method for forming a medical device comprising the steps of:a) providing a metal alloy; said metal alloy including at least about 55 wt. % of a solid solution of rhenium and molybdenum alloy; said metal alloy including at least about 20 wt. % rhenium and at least about 20 wt. % molybdenum; said metal alloy including about 0.01-35 wt. % of an additional metal additive; said additional metal additive includes i) one or more metals selected from the group consisting of hafnium and technetium, or ii) two or more different metals selected from the group consisting of hafnium, osmium, technetium, vanadium, and titanium; and,b) forming said metal alloy so as to form at least a portion of said medical device.32. The method as defined in claim 31 , wherein said metal alloy is in the form of a rod or tube claim 31 , and further including the steps of:drawing down said outer cross-sectional area of said rod or tube by a reducing mechanism;annealing said rod or tube at an annealing temperature in an oxygen reducing environment or inert environment after said rod or tube has been drawn down; and,cooling said annealed rod or tube.33. The method as defined in claim 31 , wherein said additional additive includes hafnium claim 31 , or technetium.34. The method as defined in claim 31 , wherein said metal alloy has a controlled amount of nitrogen claim 31 , oxygen and carbon so as to reduce micro-cracking in said metal alloy claim 31 , a nitrogen content in said metal alloy is less than a combined content of oxygen and carbon in said metal alloy claim 31 , said metal alloy has an oxygen to nitrogen atomic ratio of at least about 1.2:1 claim 31 , said metal alloy has a carbon to nitrogen atomic ratio of at least about 2:1.35. The method as defined in claim 31 , wherein said metal alloy includes less than about 0.2 wt. % ...

Подробнее
04-02-2016 дата публикации

Flowforming corrosion resistant alloy tubes

Номер: US20160033059A1
Автор: Matthew V. Fonte
Принадлежит: ATI Properties LLC

Flowforming processes for the production of corrosion resistant alloy tubes are disclosed.

Подробнее
02-02-2017 дата публикации

Process for design and manufacture of cavitation erosion resistant components

Номер: US20170031351A1
Принадлежит: HITACHI LTD

A process for designing and manufacturing a cavitation erosion resistant component. The process includes selecting a base material for use in a cavitation erosion susceptible environment and conducting a uniaxial loading test on a sample of the selected material. Thereafter, atomic force microscopy (AFM) topography on a surface of the tested sample is conducted and used to provide a surface strain analysis. The process also includes crystal plasticity finite element modeling (CPFEM) of uniaxial loading and CPFEM nanoindentation of the selected material over a range of values for at least one microstructure parameter. A subrange of microstructure parameter values that correlate to CPFEM nanoindentation results that provide increased CE resistance is determined. Finally, a component having an average microstructure parameter value that falls within the subrange of microstructure parameter values is manufactured.

Подробнее
01-05-2014 дата публикации

Heat-Treatment of an Alloy for a Bearing Component

Номер: US20140116581A1
Принадлежит: AKTIEBOLAGET SKF

A method for preparing titanium alloy that is created to be formed into a bearing component, wherein the titanium alloy comprises from 5 to 7 wt % Al, from 3.5 to 4.5 wt % V, from 0.5 to 1.5 wt % Mo, from 2.5 to 4.5 wt % Fe, from 2.5 to 4.5 wt % Fe, and from 0.05 to 2 wt % Cr. The alloy can optionally include one or more of the following elements: up to 2.5 wt % Zr, up to 2.5 wt % Sn, and up to 0.5 wt % C. The balance of the composition comprises Ti together with unavoidable impurities. The alloy is heated to a temperature T below the (α+β/β)-transition temperature Tβ and then quenched. The alloy is then aged a temperature of from 400 to 600° C. 1. A method for preparing a titanium alloy for a bearing component comprising: (a) from 5 to 7 wt % Al,', '(b) from 3.5 to 6 wt % V,', '(c) from 0.5 to 6 wt % Mo,', '(d) from 0.2 to 4.5 wt % Fe,', '(e) from 0.05 to 2.5 wt % Cr,', up to 2.5 wt % Zr,', 'up to 2.5 wt % Sn,', 'up to 0.5 wt % C; and, '(f) optionally one or more of the following elements'}, '(g) the balance comprising Ti together with unavoidable impurities;, '(i) providing an alloy composition comprising{'sub': 'β', '(ii) heating the alloy to a temperature T below the (α+β/β)-transition temperature Tand then quenching; and'}(iii) ageing the alloy at a temperature of from 400 to 600° C.2. A method as claimed in claim 1 , wherein once the composition has been heated to a temperature T claim 1 , it is worked before being quenched.3. A method as claimed in wherein the working is carried out by rolling.4. A method as claimed in wherein the rolling comprises multiple rolling stages with intermediate annealing stages.5. A method as claimed in wherein the temperature T is greater than the (α+α/β)-transition temperature T.6. A method as claimed in wherein the temperature T is such that:{'br': None, 'i': T', '>T≧T, 'sub': β', 'β, '−50° C.'}7. A method as claimed in wherein the temperature T is less than 1000° C.8. A method as claimed in wherein quenching is carried out in ...

Подробнее
05-02-2015 дата публикации

Method of producing a nano-twinned titanium material by casting

Номер: US20150034216A1
Автор: Guocai Chai
Принадлежит: Sandvik Intellectual Property AB

A method of producing a nano twinned commercially pure titanium material includes the step of casting a commercially pure titanium material, that apart from titanium, contains not more than 0.05 wt % N; not more than 0.08 wt % C; not more than 0.015 wt % H; not more than 0.50 wt % Fe; not more than 0.40 wt % O; and not more than 0.40 wt % residuals. The material is brought to a temperature at or below 0° C. and plastic deformation is imparted to the material at that temperature to such a degree that nano twins are formed in the material.

Подробнее
31-01-2019 дата публикации

TITANIUM PLATE

Номер: US20190032182A1
Принадлежит:

A titanium plate is provided in which a Vickers hardness Hvat a load of 0.245 N at a surface is 150 or less, and an average length of the profile elements RSm is 80 μm or less and a maximum height Rz is less than 1.5 μm, RSm and Rz being as defined in JIS B 0601: 2013. The titanium plate has good surface deformability. 1. A titanium plate , wherein:{'sub': '0.025', 'a Vickers hardness Hvat a load of 0.245 N at a surface is 150 or less, and an average length of profile elements RSm is 80 μm or less and Rz is less than 1.5 μm, RSm and Rz being as defined in JIS B 0601: 2013.'}2. The titanium plate according to claim 1 , wherein:when a carbon concentration at a depth of 5 μm from the surface is represented by “Cs”, and a carbon concentration at a depth of 20 μm from the surface is represented by “Cb”, Cs/Cb is in a range of values less than 2.0. The present invention relates to a titanium plate.Because of their excellent corrosion resistance, titanium plates are used as the starting material for heat exchangers in various plants such as chemical plants, power plants and food processing plants. For a plate-type heat exchanger, among others, it is intended to raise the heat exchanging efficiency by increasing the surface area of a titanium sheet by forming recesses and protrusions in the sheet by press forming, which requires excellent formability.Patent Document 1 discloses a technique including: forming an oxide film and a nitride film by heating in an oxidizing atmosphere or a nitriding atmosphere; thereafter performing bending or pulling out to introduce fine cracks into these films and to expose the titanium metal; and thereafter scarfing in an acid aqueous solution in which titanium metal is soluble to form dense and deep irregularities. Patent Document 1 discloses that the oil retainability of a lubricating oil increases and the lubricity improves, and that by causing an oxide film and a nitride film to remain on the surface or by the formation thereof, the ...

Подробнее
31-01-2019 дата публикации

TITANIUM PRODUCT AND METHOD FOR PRODUCING THE SAME

Номер: US20190032183A1
Принадлежит:

A titanium product includes an inner layer portion and a surface layer portion joined to the inner layer portion. The surface layer portion has a composition consisting of, by mass %, O: 0.4% or less, Fe: 0.5% or less, Cl: 0.020% or less, the balance: Ti and impurities. The inner layer portion has pores and a composition consisting of, by mass %, O: 0.4% or less, Fe: 0.5% or less, Cl: more than 0.020% and 0.60%, the balance: Ti and impurities. The area fraction of the pores in the inner layer portion in a cross-section perpendicular to the longitudinal direction of the titanium product is more than 0% and not more than 30%. The Cl content (Cl) of the inner layer portion, a thickness (t) of the surface layer portion, and a thickness (t) of the inner layer portion satisfy the expression [Cl≤0.03+0.02×t/t]. 1. A titanium product comprising an inner layer portion and a surface layer portion , wherein:a chemical composition of the surface layer portion consists, by mass %, of:O: 0.40% or less,Fe: 0.50% or less,Cl: 0.020% or less,N: 0.050% or less,C: 0.080% or less,H: 0.013% or less, andthe balance: Ti and impurities;a chemical composition of the inner layer portion consists, by mass %, of:O: 0.40% or less,Fe: 0.50% or less,Cl: more than 0.020 and not more than 0.60%,N: 0.050% or less,C: 0.080% or less,H: 0.013% or less, andthe balance: Ti and impurities;the inner layer portion has pores;in a cross-section perpendicular to a longitudinal direction of the titanium product, an area fraction of the pores of the inner layer portion is more than 0% and not more than 30%; and {'br': None, 'sub': I', 'S', 'I, 'i': t', '/t, 'Cl≤0.03+0.02×\u2003\u2003(i)'}, 'the titanium product satisfies formula (i) belowwhere, the meaning of each symbol in formula (i) above is as follows:{'sub': 'I', 'Cl: Cl content (mass %) of inner layer portion'}{'sub': 'S', 't: thickness of surface layer portion'}{'sub': 'I', 't: thickness of inner layer portion.'}2. A method for producing a titanium product ...

Подробнее
31-01-2019 дата публикации

METHOD TO PREVENT ABNORMAL GRAIN GROWTH FOR BETA ANNEALED TI-6AL-4V FORGINGS

Номер: US20190032184A1
Принадлежит: SPIRIT AEROSYSTEMS, INC.

A method for heat-treating a titanium alloy, such as Ti-6Al-4V. The method may occur after or include a step of forging the titanium alloy such that localized, highly deformed grains are formed in the titanium alloy. Then the method may include steps of recrystallization annealing the titanium alloy by heating the titanium alloy to a temperature in a range between 30° F. to 200° F. below beta transus of the titanium alloy for 1 hour to 6 hours and then furnace cooling of the titanium alloy to 1200° F. to 1500° F. at a rate of 50° F. to 500° F. per hour. Following the recrystallization annealing, the method may include beta annealing the titanium alloy. These steps may be performed in a single heat treating cycle. 1. A method for heat-treating a titanium alloy , the method comprising the steps of:recrystallization annealing the titanium alloy, wherein recrystallization annealing includes heating the titanium alloy to a temperature below a beta transus of the titanium alloy for a length of time followed by slow cooling the titanium alloy; andbeta annealing the titanium alloy following completion of the recrystallization annealing steps by heating the titanium alloy to a temperature above the beta transus of the titanium alloy.2. The method of claim 1 , wherein the beta transus of the titanium alloy is a temperature between 1800° F. and 1850° F.3. The method of claim 1 , wherein the temperature to which the titanium alloy is heated during recrystallization annealing is 30° F. to 200° F. below the beta transus of the titanium alloy.4. The method of claim 1 , wherein the length of time for which the temperature below the beta transus of the titanium alloy is maintained during recrystallization annealing is in a range of 1 hour to 6 hours.5. The method of claim 1 , wherein following heating the titanium alloy to the temperature below the beta transus of the titanium alloy for the length of time during recrystallization annealing claim 1 , the titanium alloy is cooled to ...

Подробнее
31-01-2019 дата публикации

HIGH PURITY REFRACTORY METAL POWDERS AND THEIR USE IN SPUTTERING TARGETS WHICH MAY HAVE RANDOM TEXTURE

Номер: US20190032196A1
Принадлежит:

A method for making a sputtering target including steps of encapsulating and hot isostatically pressing at least one mass of metal powder (e.g., tantalum), having a particle size ranging from about 10 to about 1000 μm, with at least about 10 percent by weight of particles having a particle size greater than about 150 μm (for example, about 29 to about 56 percent (e.g., about 35 to about 47 percent) by weight of the particles in the at least one mass of metal powder having a particle size that is larger than 150 microns, but below about 250 μm), for defining at least a portion of a sputtering target body, having an essentially theoretical random and substantially uniform crystallographic texture. 120.-. (canceled)21. A method for making a sputtering target comprising the steps of:a. encapsulating a mass of metal powder that has at least about 95% by weight of particles exhibiting a particle size ranging from about 10 to about 1000 μm, with at least about 10 percent by weight of particles having a particle size greater than about 150 μm, in a container configured for defining at least a portion of a sputtering target body, wherein at least some of the particles of the mass of metal powder are non-spherical; andb. hot isostatically pressing the mass of metal powder to form a resulting densified mass having an initial crystallographic texture, while the mass of metal powder is in the container, wherein the hot isostatically pressing step is performed under conditions so that the initial crystallographic texture achieved in the resulting densified mass is an essentially theoretically random and generally uniform crystallographic texture, wherein the method is devoid of any step of altering the initial crystallographic texture substantially throughout the resulting densified mass after the step of hot isostatically pressing and prior to sputtering.22. The method of claim 21 , wherein the mass of metal powder comprises one or more refractory metals.23. The method of claim ...

Подробнее
30-01-2020 дата публикации

METHOD OF HEAT-TREATING A TITANIUM ALLOY PART

Номер: US20200032380A1
Принадлежит: EOS GMBH ELECTRO OPTICAL SYSTEMS

Disclosed is a method of heat-treating a titanium alloy part resulting from an additive manufacturing procedure, including arranging the titanium alloy part in an oven; heating to a first annealing temperature; maintaining the first annealing temperature for a first annealing duration; heating to a second annealing temperature, wherein the second annealing temperature exceeds the first annealing temperature; and subsequently cooling the titanium alloy part to room temperature. Further disclosed is a titanium alloy part that has been heat-treated using such a method. 1. A method of heat-treating a titanium alloy part resulting from an additive manufacturing procedure , which method comprises the steps ofarranging the titanium alloy part in an oven;heating to a first annealing temperature;maintaining the first annealing temperature for a first annealing duration;heating to a second annealing temperature, wherein the second annealing temperature exceeds the first annealing temperature; and subsequentlycooling the titanium alloy part to room temperature.2. A method according to claim 1 , wherein the first annealing temperature lies in the range 650° C.±50° C.3. A method according to claim 1 , wherein the first annealing duration comprises at least 60 minutes.4. A method according to claim 1 , wherein the second annealing temperature is a sub beta transus temperature of the titanium alloy.5. A method according to claim 1 , wherein the second annealing temperature lies in the range 850° C.±50° C.6. A method according to claim 1 , wherein the second annealing temperature exceeds the first annealing temperature by at least 100° C.7. A method according to of claim 1 , wherein the step of cooling the titanium alloy part to room temperature is performed directly after reaching the second annealing temperature.8. A method according to claim 1 , comprising a step of maintaining the second annealing temperature for a second annealing duration claim 1 , wherein the second ...

Подробнее
30-01-2020 дата публикации

PROCESSING OF ALPHA-BETA TITANIUM ALLOYS

Номер: US20200032833A1
Принадлежит:

A method for increasing tensile strength of a cold workable alpha-beta titanium alloy comprises solution heat treating a cold workable alpha-beta titanium alloy in a temperature range of T−106° C. to T−72.2° C. for 15 minutes to 2 hours; cooling the alpha-beta titanium alloy at a cooling rate of at least 3000° C./minute; cold working the alpha-beta titanium alloy to impart an effective strain in the range of 5 percent to 35 percent in the alloy; and aging the alpha-beta titanium alloy in a temperature range of T−669° C. to T−517° C. for 1 to 8 hours. Fastener stock and fasteners including solution treated, quenched, cold worked, and aged alpha-beta titanium alloys are also disclosed. 1. A method for producing an alpha-beta titanium alloy fastener stock , comprising:heating an alpha-beta titanium alloy in a temperature range of 866° C. to 899° C. for 15 minutes to 2 hours;water quenching the alpha-beta titanium alloy;cold working the alpha-beta titanium alloy using at least one of cold drawing and cold swaging the alpha-beta titanium alloy to impart an effective strain in the range of 5 percent to 35 percent to the alpha-beta titanium alloy; andaging the alpha-beta titanium alloy in a temperature range of 302° C. to 454° C. for 1 to 8 hours; 2.9 to 5.0 aluminum;', '2.0 to 3.0 vanadium;', '0.4 to 2.0 iron;', '0.2 to 0.3 oxygen;', '0.005 to 0.3 carbon;', 'titanium;', 'impurities; and, 'wherein the alpha-beta titanium alloy comprises, in percentages by weight based on total alloy weightoptionally, one or more of tin, zirconium, molybdenum, chromium, nickel, silicon, copper, niobium, tantalum, manganese, cobalt, boron and yttrium;wherein the sum of the weight percentages of any tin, zirconium, molybdenum, chromium, nickel, silicon, copper, niobium, tantalum, manganese, cobalt, boron, and yttrium present in the titanium alloy is less than 0.5 weight percent;wherein the individual concentrations of any tin, zirconium, molybdenum, chromium, nickel, silicon, copper, niobium, ...

Подробнее
11-02-2016 дата публикации

Titanium cast product for hot rolling and method for manufacturing same

Номер: US20160038983A1
Принадлежит: Nippon Steel and Sumitomo Metal Corp

There is provided a titanium cast product for hot rolling composed of commercially pure titanium, the titanium cast product including: a microstructural refinement layer having acicular microstructure on an outermost layer of a surface layer to be rolled; and an inside microstructural refinement layer having acicular microstructure provided in an inside of the microstructural refinement layer. Cast solidification microstructure is present more inward than the inside microstructural refinement layer. The microstructural refinement layer has finer microstructure than the inside microstructural refinement layer. The microstructural refinement layer is present in a range of a depth of 1 mm or more and less than 6 mm from the surface. The inside microstructural refinement layer is present in an inside of the microstructural refinement layer in a range of a depth of 3 mm or more and 20 mm or less from the surface.

Подробнее
11-02-2016 дата публикации

Wear Resistant Vapor Deposited Coating, Method of Coating Deposition and Applications Therefor

Номер: US20160040280A1
Принадлежит:

A low friction top coat over a multilayer metal/ceramic bondcoat provides a conductive substrate, such as a rotary tool, with wear resistance and corrosion resistance. The top coat further provides low friction and anti-stickiness as well as high compressive stress. The high compressive stress provided by the top coat protects against degradation of the tool due to abrasion and torsional and cyclic fatigue. Substrate temperature is strictly controlled during the coating process to preserve the bulk properties of the substrate and the coating. The described coating process is particularly useful when applied to shape memory alloys. 1. A method for producing a wear resistant edge applied to a shape memory alloy , wherein the temperature of the shape memory alloy is controlled through the vapor deposition process , the method comprising the steps of:i) providing a blank (unsharpened) substrate capable of electrical conduction by applying at least one finishing method selected from the group consisting of sandblasting, chemical cleaning, electrolytic cleaning, grinding, polishing, vibratory tumbling and ion etching to produce a cleaned substrate;ii) depositing a metal-ceramic coating on the cleaned blank substrate by a vapor deposition process, the metal-ceramic coating comprising at least one pair of a metallic layer selected from the group consisting of boron, silicon, titanium, chromium, vanadium, aluminum, molybdenum, niobium, tungsten, hafnium, zirconium, and alloys thereof; overlayed by a ceramic layer selected from the group consisting of nitrides, carbides, oxycarbides, oxynitrides, borides, carboborides, borocarbonitrides, silicides, borosilicides and combinations thereof;iii) grinding a sharp flute to produce a sharpened substrate; andiv) cleaning the sharpened substrate by applying at least one finishing method selected from the group consisting of sandblasting, chemical cleaning, electrolytic cleaning, grinding, polishing, vibratory tumbling and ion etching ...

Подробнее
07-02-2019 дата публикации

TUNGSTEN FISHING SINKER AND METHOD THEREOF

Номер: US20190037823A1
Автор: Dial Ray Steven
Принадлежит:

A tungsten sinker formed of a flat unpainted outer body surface with an inner channel running from a first end to a second end, the tungsten sinker is unpainted, has a flat dark neural color, and includes a base stock of 97% pure tungsten. 1. A tungsten sinker with a flat unpainted exterior surface created by a process comprising the steps of:molding a plurality of tungsten fishing sinkers, each of said tungsten fishing sinkers having an inner channel, said tungsten fishing sinker be formed of at least a base stock of 97% pure tungsten;stringing a plurality of tungsten fishing sinkers weighing between 1/16 ounces and 2 ounces, said plurality of tungsten fishing sinkers strung in a tip-to-tip and toe-to-toe alignment;heating in a first pass said tungsten fishing sinkers against an Oxygen/acetylene flame;rotating said tungsten fishing sinkers in relation to said flame until the plurality of tungsten sinkers are completely red visually;removing said tungsten fishing sinkers from said first pass;heating in a second pass said tungsten fishing sinkers against said flame;removing said plurality of tungsten fishing sinkers from said second pass;submerging said tungsten fishing sinkers in a purified ice water bath;sufficiently drying said tungsten fishing sinkers;applying anise oil to an outer surface of said tungsten fishing sinkers; andpackaging said tungsten fishing sinkers.2. The process of creating a flat unpainted tungsten sinker , said process comprising:molding a tungsten fishing sinker, each of said tungsten fishing sinker having an inner channel and an exterior surface, said tungsten fishing sinker be formed of at least a base stock of 97% pure tungsten;heating said tungsten fishing sinker to a sufficient heat for causing said exterior surface to appear flat without an application of paint.3. The process of creating a flat unpainted tungsten sinker of claim 2 , further comprising stringing a plurality of tungsten fishing sinkers weighing between 1/16 ounces and 2 ...

Подробнее
24-02-2022 дата публикации

THERMO-HYDROGEN REFINEMENT OF MICROSTRUCTURE OF TITANIUM MATERIALS

Номер: US20220056569A1
Принадлежит:

A method of refining a microstructure of a titanium material can include providing a solid titanium material at a temperature below about 400° C. The titanium material can be heated under a hydrogen-containing atmosphere to a hydrogen charging temperature that is above a β transus temperature of the titanium material and below a melting temperature of the titanium material, and held at this temperature for a time sufficient to convert the titanium material to a substantially homogeneous β phase. The titanium material can be cooled under the hydrogen-containing atmosphere to a phase transformation temperature below the β transus temperature and above about 400° C., and held for a time to produce α phase regions. The titanium material can also be held under a substantially hydrogen-free atmosphere or vacuum at a dehydrogenation temperature below the β transus temperature and above the δ phase decomposition temperature to remove hydrogen from the titanium material. 1. A method of refining a microstructure of a titanium material , comprising:providing a solid titanium material at a temperature below about 400° C.;heating the titanium material under an inert gas atmosphere to a pre-charge temperature for a pre-charge time to form a heated titanium material;exposing the heated titanium material under a hydrogen-containing atmosphere to a hydrogen charging temperature above a β transus temperature of the titanium material and below a melting temperature of the titanium material, and holding for a hydrogen charging time sufficient to convert the titanium material to a substantially homogeneous β phase titanium material;cooling the β phase titanium material under the hydrogen-containing atmosphere to a phase transformation temperature below the β transus temperature and above about 400° C., and holding at the phase transformation temperature for a phase transformation time to produce a transformed titanium material having α phase regions; andholding the transformed titanium ...

Подробнее
07-02-2019 дата публикации

COMPUTATIONALLY-DESIGNED TRANSFORMATION-TOUGHENED NEAR-ALPHA TITANIUM ALLOY

Номер: US20190040510A1
Принадлежит:

A near-α transformation-induced plasticity (TRIP) titanium (Ti) alloy is designed by using a thermodynamic database and a mobility database of Ti alloys for α, β, and TiAl phase equilibria and diffusive processes; based on experimental data, creating a thermodynamic and kinetic database for β-to-α′/α″ martensitic transformations in the Ti alloys; creating a molar volume database for the β-to-α′/α″ martensitic transformations in the Ti alloys at room temperature; and obtaining an overall composite of the near-α TRIP Ti alloy by adjusting a reference overall composite of a reference near-α Ti alloy based on the created thermodynamic database, where the reference near-α Ti alloy is Ti-5Al-1Sn-1Zr-1V-0.8Mo-0.1Si-0.1Fe-0.1O by weight percentage (Ti-5111), and wherein the near-α TRIP Ti alloy is Ti-8Al-1V-1Sn-1Zr-0.6Mo-0.9Fe-0.1Si-0.1O by weight percentage. 1. A near-α transformation-induced plasticity (TRIP) titanium (Ti) alloy designed by a method comprising:{'sub': '3', 'using a thermodynamic database and a mobility database of Ti alloys for α, β, and TiAl phase equilibria and diffusive processes;'}based on experimental data, creating a thermodynamic and kinetic database for β-to-α′/α″ martensitic transformations in the Ti alloys;creating a molar volume database for the β-to-α′/α″ martensitic transformations in the Ti alloys at room temperature; andobtaining an overall composite of the near-α TRIP Ti alloy by adjusting a reference overall composite of a reference near-α Ti alloy based on the created thermodynamic database, wherein the reference near-α Ti alloy is Ti-5Al-1Sn-1Zr-1V-0.8Mo-0.1Si-0.1Fe-0.1O by weight percentage (Ti-5111), and wherein the near-α TRIP Ti alloy is Ti-8Al-1V-1Sn-1Zr-0.6Mo-0.9Fe-0.1Si-0.1O by weight percentage.2. A near-α transformation-induced plasticity (TRIP) titanium (Ti) alloy , comprising:Ti-8Al-1V-1Sn-1Zr-0.6Mo-0.9Fe-0.1Si-0.1O by weight percentage, being annealed at an annealing temperature.3. The near-α TRIP Ti alloy of claim 2 , ...

Подробнее
18-02-2016 дата публикации

METHODS FOR PROCESSING TITANIUM ALLOYS

Номер: US20160047024A1
Принадлежит:

Methods of refining the grain size of a titanium alloy workpiece include beta annealing the workpiece, cooling the beta annealed workpiece to a temperature below the beta transus temperature of the titanium alloy, and high strain rate multi-axis forging the workpiece. High strain rate multi-axis forging is employed until a total strain of at least 1 is achieved in the titanium alloy workpiece, or until a total strain of at least 1 and up to 3.5 is achieved in the titanium alloy workpiece. The titanium alloy of the workpiece may comprise at least one of grain pinning alloying additions and beta stabilizing content effective to decrease alpha phase precipitation and growth kinetics. 1. A method of processing a workpiece comprising a titanium alloy , the method comprising:beta annealing the workpiece;cooling the beta annealed workpiece to a temperature below a beta transus temperature of the titanium alloy; and press forging the workpiece in a forging temperature range along a first axis of the workpiece with a strain rate that adiabatically heats an internal region of the workpiece,', 'press forging the workpiece in the forging temperature range along a second axis of the workpiece with a strain rate that adiabatically heats the internal region of the workpiece,', 'press forging the workpiece in the forging temperature range along a third axis of the workpiece with a strain rate that adiabatically heats the internal region of the workpiece,', 'wherein the first axis, the second axis, and the third axis are not the same or parallel, and', 'repeating at least one of the press forgings,', 'wherein the forging the workpiece along a plurality of axes results in a total true strain of at least 1.0 in the workpiece., 'forging the workpiece along a plurality of axes, wherein the forging the workpiece along a plurality of axes comprises'}2. The method of claim 1 , wherein the forging the workpiece along a plurality of axes results in a total true strain in the range of at ...

Подробнее
15-02-2018 дата публикации

Alpha-ß TITANIUM ALLOY

Номер: US20180044763A1

To provide an α-β titanium alloy that has high strength and excellent hot workability of the level of the α-β titanium alloy, typified by the Ti-6Al-4V, while exhibiting more excellent machinability than the Ti-6Al-4V. The α-β titanium alloy includes, in percent by mass: at least one element of 0.1 to 2.0% of Cu and 0.1 to 2.0% of Ni; 2.0 to 8.5% of Al; 0.08 to 0.25% of C; and 1.0 to 7.0% in total of at least one element of 0 to 4.5% of Cr and 0 to 2.5% of Fe, with the balance being Ti and inevitable impurities. 1. An α-β titanium alloy comprising , in percent by mass:Ti;at least one element of 0.1 to 2.0% of Cu and 0.1 to 2.0% of Ni;2.0 to 8.5% of Al;0.08 to 0.25% of C; and1.0 to 7.0% in total of at least one element of 0 to 4.5% of Cr and 0 to 2.5% of Fe.2. The α-β titanium alloy according to claim 1 , further comprising claim 1 , in percent by mass:more than 0% and 10% or less in total of one or more elements selected from the group consisting ofmore than 0% and 5.0% or less of V;more than 0% and 5.0% or less of Mo;more than 0% and 5.0% or less of Nb; andmore than 0% and 5.0% or less of Ta.3. The α-β titanium alloy according to claim 1 , further comprising claim 1 , in percent by mass claim 1 , more than 0% and 0.8% or less of Si.4. The α-β titanium alloy according to claim 2 , further comprising claim 2 , in percent by mass claim 2 , more than 0% and 0.8% or less of Si. The present invention relates to an α-β titanium alloy. More particularly, the present invention relates to an α-β titanium alloy with excellent machinability.A high-strength α-β titanium alloy, typified by Ti-6Al-4V, can have its strength level changed easily by a heat treatment, in addition to being lightweight and having high strength and high corrosion resistance. For this reason, this type of α-β titanium alloy has been hitherto used very often, especially in the aircraft industry. To further make use of these characteristics, in recent years, applications of the α-β titanium alloy have been ...

Подробнее
19-02-2015 дата публикации

Method For Manufacturing Hollow Shafts

Номер: US20150050513A1
Принадлежит:

The present invention describes a method of manufacturing a near-net shaped hollow shaft useful for high power applications such as gearboxes for wind energy industry. The method involves providing a concast bloom (of a round or rectangular or of any polygonal cross section) or an as-cast round ingot from which a hollow perform is prepared using hollow die punching, followed by process of heat treatment, proof-machining and stress relieving. 1. A method for manufacturing hollow shafts from an input object for use in the gearboxes of wind-energy applications characterised in that said method comprises the steps of optimisation of the near net shape through forging followed by proof machining and stress relieving , said input object is a concast bloom or an ingot is in round or polygonal in cross section , wherein said step of optimising the near net shape comprises the steps of:a. heating said bloom or ingot in a furnaceb. first upsetting said bloom or ingot to an intermediate heightc. drawing the upset bloom or ingot to an intermediate diameterd. providing booster heating to the drawn bloom or ingote. second upsetting the booster-heated bloom or ingot in a hollow die to the final height of the preformf. punching the second upset bloom or ingot in a hollow dieg. Providing heat treatment to the punched bloom or ingot to carry out normalising, hardening and double tempering so as to produce a near net shaped hollow shaft.2. A method for manufacturing hollow shafts as claimed in wherein in the case said concast bloom or ingot is in substantially rectangular in cross section claim 1 , the said step of optimising the near net shape comprises the steps of:a. heating said bloom or ingot in a furnaceb. first upsetting the heated ingot or bloom to an intermediate heightc. drawing the first upset bloom or ingot to an intermediate diameterd. providing booster heating to the drawn bloom or ingote. second upsetting in the booster-heated bloom or ingot in a hollow die to the final ...

Подробнее
15-02-2018 дата публикации

TITANIUM PLATE, PLATE FOR HEAT EXCHANGER, AND SEPARATOR FOR FUEL CELL

Номер: US20180047996A1

A titanium plate that have both excellent strength and formability, and a plate for a heat exchanger and a separator for a fuel cell, which are made using the titanium plate, are provided. The titanium plate includes Fe and O, with the balance being titanium and inevitable impurities, wherein the titanium plate includes an α-phase crystal grain microstructure having a hexagonal close packed structure, and when crystal orientations of the α-phase crystal grains are represented by a crystallite orientation distribution function, the α-phase crystal grain microstructure of the titanium plate satisfies certain conditions. 1. A titanium plate , comprising:Ti;Fe: 0.020 to 1.000% by mass; andO: 0.020 to 0.400% by mass,wherein the titanium plate includes an α-phase crystal grain microstructure having a hexagonal close packed structure,wherein, when crystal orientations of α-phase crystal grains are represented by a crystallite orientation distribution function, and an orientation 1 is defined as φ1=0°, Φ=35°, and φ2=0°; an orientation 2 is defined as φ1=0°, Φ=35°, and φ2=30°; an orientation 3 is defined as φ1=90°, Φ=50°, φ2=0°; an orientation 4 is defined as φ1=90°, Φ=50°, φ2=30°; and an orientation 5 is defined as φ1=50°, Φ=90°, and φ2=0°, {'br': None, '0.05≦(X3+X4+X5)/(X1+X2)≦3.0 \u2003\u2003(1)'}, 'the α-phase crystal grain microstructure of the titanium plate satisfies formula (1)where each of X1, X2, X3, X4, and X5 is an area ratio of crystal grains having orientations within a range of 15° or less from corresponding each of the orientations 1, 2, 3, 4, and 5, respectively, as a center thereof to a total area of all α-phase crystal grains, andwherein an average value of a circle equivalent diameter of the α-phase crystal grain is 3 μm or more and 25 μm or less, anda maximum value of the circle equivalent diameter of the α-phase crystal grain is 140 μm or less.2. The titanium plate according to claim 1 , wherein X5 satisfies [[the]] formula (2).{'br': None, '0.5≦X5≦20 \ ...

Подробнее
25-02-2016 дата публикации

Improved Metal Alloys For Medical Devices

Номер: US20160051384A1
Автор: Patel Udayan, Roth Noah
Принадлежит:

A method and process for at least partially forming a medical device which improves the physical properties of the medical device. 116-. (canceled)17. A method for forming a medical device comprising the steps of:a) providing a rod or tube of a metal alloy;b) annealing said rod or tube during a shaping process to form the shape of the metal alloy; and,{'sub': 2', '2', '3, 'c) swaging at least a portion of said metal alloy such that a surface of said metal allow has a hardness that is greater than a core of said metal alloy, said step of swaging forming one or more compounds on an outer surface of said metal alloy, said one or more compounds including a compound selected from the group consisting of ReB, ReN, and ReN.'}18. The method as defined in wherein said metal alloy includes a majority weight percent rhenium claim 17 , molybdenum claim 17 , or rhenium and molybdenum.19. The method as defined in claim 17 , wherein said metal alloy includes at least 90 weight percent rhenium and molybdenum.20. The method as defined in claim 18 , wherein said metal alloy includes at least 90 weight percent rhenium and molybdenum.21. The method as defined in claim 19 , wherein said metal alloy includes about 41-49 weight percent rhenium claim 19 , about 51-59 weight percent molybdenum claim 19 , and optionally up to about 1 weight percent additional metal claim 19 , said additional metal including a metal selected from the group consisting of titanium claim 19 , yttrium claim 19 , zirconium claim 19 , or mixtures thereof.22. The method as defined in claim 20 , wherein said metal alloy includes about 41-49 weight percent rhenium claim 20 , about 51-59 weight percent molybdenum claim 20 , and optionally up to about 1 weight percent additional metal claim 20 , said additional metal including a metal selected from the group consisting of titanium claim 20 , yttrium claim 20 , zirconium claim 20 , or mixtures thereof.23. The method as defined in claim 17 , further including the steps of ...

Подробнее
08-05-2014 дата публикации

PRODUCTION OF METAL OR ALLOY OBJECTS

Номер: US20140127068A1
Принадлежит:

Disclosed is a method of producing an object, the object being made of metal or an alloy, having a desired shape and being non-porous, the method comprising: providing some metal or alloy having a first average solute level; using the provided metal or alloy, performing a net-shape or near-net shape manufacturing process to produce an intermediate object, the intermediate object having the desired shape, being non-porous, and having a second average solute level, the second average solute level being greater than or equal to the first average solute level; and performing a solute level changing process on the intermediate object to change the solute level of at least the bulk of the intermediate object such as to provide the intermediate object with a third average solute level, thereby providing the object, the third average solute level being different to the second. 1. A method of producing an object , the object being made of titanium or titanium alloy , the object having a desired shape , the object being a non-porous object , the method comprising:providing some titanium or titanium alloy, the provided titanium or titanium alloy having a first average oxygen level; the intermediate object having the desired shape,', 'the intermediate object being a non-porous object,', 'the intermediate object having a second average oxygen level, the second average oxygen level being greater than or equal to the first average oxygen level;, 'using the provided titanium or titanium alloy, performing a net-shape or near-net shape manufacturing process to produce an intermediate object,'}performing a deoxidation process to remove an amount of oxygen from a surface of the intermediate object such as to provide the intermediate object with a third average oxygen level, the third average oxygen level being less than the second average oxygen level; andthereafter, performing a homogenisation process on the intermediate object to increase the uniformity of the oxygen level within the ...

Подробнее
13-02-2020 дата публикации

SYSTEMS AND METHODS FOR HIGH STRENGTH TITANIUM WIRE ADDITIVE MANUFACTURING

Номер: US20200047248A1
Принадлежит: GOODRICH CORPORATION

A method of titanium wire additive manufacturing is disclosed. The method may comprise mixing a plurality of powdered metals comprising titanium, iron, vanadium, and aluminum to produce a powder blend, sintering the powder blend to form a billet, performing a wire forming operation to produce a worked wire, heat treating the worked wire to produce a heat treaded wire, loading the heat treated wire into a wirefeed additive manufacturing machine, and producing a metallic component from the heat treated wire. The titanium may be a titanium hydride powder. 1. A method of titanium wire additive manufacturing , comprising:mixing a plurality of powdered metals comprising titanium, iron, vanadium, and aluminum to produce a powder blend;sintering the powder blend to form a billet;performing a wire forming operation on the billet to produce a worked wire;heat treating the worked wire to produce a heat treated wire;loading the heat treated wire into a wirefeed additive manufacturing machine configured to deposit the heat treated wire; andproducing a metallic component from the heat treated wire.2. The method of claim 1 , wherein the titanium is a titanium hydride powder.3. The method of claim 2 , wherein the powder blend comprises between 4% and 6% by weight iron claim 2 , between 0.5% to 2% by weight aluminum claim 2 , and between 6% to 9% by weight vanadium.4. The method of claim 3 , wherein the sintering is performed between 900° F. and 1600° F. and under a vacuum.5. The method of claim 3 , wherein the wire forming operation includes at least one of rotary swaging claim 3 , rolling claim 3 , or extrusion.6. The method of claim 5 , wherein the wire forming operation includes at least one of a metal pickling treatment claim 5 , an intermediate heat treatment claim 5 , or applying anti-oxidation coating.7. The method of claim 6 , wherein at least one of the rotary swaging claim 6 , rolling claim 6 , extrusion claim 6 , metal pickling treatment claim 6 , or intermediate heat ...

Подробнее
23-02-2017 дата публикации

Process for producing shaped refractory metal bodies

Номер: US20170050244A1
Принадлежит: Individual

The present invention relates to a process for producing shaped articles composed of refractory metals.

Подробнее
22-02-2018 дата публикации

PROCESS FOR MANUFACTURING A PRODUCT OF COMMERCIALLY PURE TITANIUM

Номер: US20180051365A1
Принадлежит:

The present disclosure relates to a process for manufacturing a product of commercially pure titanium, wherein the process includes the steps of mechanically deforming an object of commercially pure titanium in a temperature below −80° C. until the product is formed, and heat-treating the formed product in a temperature range of from 300 to below 450° C. during a treatment time from 10 minutes to 168 hours. 1. A process for manufacturing a product of commercially pure titanium , wherein said process comprises the steps of:a) plastically deforming an object of commercially pure titanium in a temperature below −80° C. until the product is formed; andb) heat-treating the formed product in a temperature range of from 300 to below 450° C. during a treatment time from 10 minutes to 168 hours.2. The process according to claim 1 , wherein the formed product is brought to room temperature before the heat treatment.3. The process according to claim 1 , wherein the object is brought to a temperature below −100° C. before the plastic deformation is imparted.4. The process according to claim 1 , wherein the object is brought to a temperature about −196° C. before the plastic deformation is imparted.5. The process according to claim 1 , wherein the plastic deformation corresponds to deformation of at least 70% of a total fracture strain.6. The process according to claim 1 , wherein the heat treatment is performed at a temperature range of from 350 to 440° C.7. The process according to claim 1 , wherein the heat treatment is performed at a temperature range of from 360 to 430° C.8. The process according to claim 1 , wherein the heat treatment is performed at a temperature range of from 380 to 410° C.9. The process according to claim 1 , wherein the heat treatment is performed at a temperature range of from 300 to 400° C.10. The process according to claim 1 , wherein the product will have a microstructure having nano-twins with a higher twin density of compression twins than ...

Подробнее
15-05-2014 дата публикации

Alloy strip material and process for making same

Номер: US20140130946A1
Автор: Craig M. Eucken
Принадлежит: ATI Properties LLC

Methods for producing alloy strips that demonstrate improved formability are disclosed. The strips have a crystalline microstructure suitable for improved formability in the manufacture of various articles such as panels for plate heat exchangers and high performance tower packing components.

Подробнее
25-02-2016 дата публикации

Titanium sheet material for fuel cell separators and method for producing same

Номер: US20160056479A1
Принадлежит: Kobe Steel Ltd

Provided is a titanium sheet for fuel cell separators which can surely achieve a low contact resistance. This titanium sheet for fuel cell separators includes a titanium base metal and a surface layer. The titanium base metal has a recrystallized structure. The surface layer includes a compound-mixed titanium layer having thickness less than 1 μm alone. The compound-mixed titanium layer includes a mixture of matrix titanium (Ti) and a compound between Ti and at least one element selected from the group consisting of oxygen (O), carbon (C), and nitrogen (N). The matrix titanium contains O, C, and N each solid-soluted in the titanium. Alternatively, the surface layer includes the compound-mixed titanium layer and a passivation layer being disposed on a surface of the compound-mixed titanium layer and having a thickness less than 5 nm.

Подробнее
03-03-2016 дата публикации

PRODUCTION PROCESS FOR TiAl COMPONENTS

Номер: US20160059312A1
Принадлежит:

The present invention relates to a process for producing a component, in particular a component for a turbomachine, composed of a TiAl alloy, which comprises the following: 1. A process for producing a component of a TiAl alloy , wherein the process comprises:introduction of a powder of the TiAl alloy into a capsule whose shape corresponds to a shape of the component to be produced and closing of the capsule,hot isostatic pressing of the capsule together with the powder,heat treatment of the hot isostatically pressed capsule,removal of the capsule,post-working of a contour of the component by removal of material.2. The process of claim 1 , wherein the powder has been produced by a process which comprises at least one of the following:pressing of starting materials or melting of prealloys which consist of or comprise the components to be alloyed,melting of the alloy by one or more of single or multiple plasma arc melting (PAM), vacuum arc remelting (VAR), vacuum induction melting (VIM),atomization of the alloy to produce the powder from a melt bath or with the aid of a cast ingot,classification of powder fractions and selection of one or more powder fractions having average or maximum particle diameters or maximum dimensions smaller than or equal to 150 μm, andpurification of the powder in a plasma purification process.3. The process of claim 1 , wherein the capsule is formed of titanium or a Ti alloy.4. The process of claim 1 , wherein the capsule is formed by at least two shaped parts.5. The process of claim 1 , wherein the capsule is overdimensioned relative to the component to be produced.6. The process of claim 1 , wherein the introduction of the powder is carried out under protective gas or under reduced pressure.7. The process of claim 1 , wherein the powder before introduction into the capsule or a filled but not yet closed capsule is subjected to a heat treatment under reduced pressure.8. The process of claim 7 , wherein cooling after the heat treatment is ...

Подробнее
03-03-2016 дата публикации

Forged titanium alloy material and method for producing same, and ultrasonic inspection method

Номер: US20160060729A1
Принадлежит: Kobe Steel Ltd

A forged titanium alloy material having a duplex grain structure composed of flat grains and non-flat grains, wherein the flat grains are crystal grains of prior-β grains each having an aspect ratio of more than 3 and the non-flat grains are crystal grains of prior-β grains each having an aspect ratio of 1 to 3 inclusive. The forged titanium alloy material is characterized in that the average equivalent circle diameter of the non-flat grains is 100 μm or less, flat grains each having a thicknesswise diameter of 20 to 500 μm are contained in an amount of 40 to 98%, non-flat grains each having a thicknesswise diameter of 10 to 150 μm are contained in an amount of 2 to 50%, and the flat grains each having the above-mentioned thicknesswise diameter and the non-flat grains each having the above-mentioned thicknesswise diameter are contained in the total amount of 90% or more.

Подробнее
03-03-2016 дата публикации

COMPUTATIONALLY-DESIGNED TRANSFORMATION-TOUGHENED NEAR-ALPHA TITANIUM ALLOY

Номер: US20160060742A1
Принадлежит:

In one aspect, a method of computationally designing a near-α transformation-induced plasticity (TRIP) titanium (Ti) alloy is provided. A thermodynamic database of Ti alloys is created. The data of the thermodynamic database is tailored for martensitic transformations in the Ti alloys near room temperature. Then an overall composite of the near-α TRIP Ti alloy may be obtained by adjusting a reference overall composite of a reference near-α Ti alloy based on the tailored data in the thermodynamic database. In certain embodiments, an annealing temperature of the near-α TRIP Ti alloy may be determined such that a M(ct) temperature of the near-α TRIP Ti alloy is about room temperature. In certain embodiments, the near-α TRIP Ti alloy is Ti-8Al-1V-1Sn-1Zr-0.6Mo-0.9Fe-0.1Si-0.1O by weight percentage. In certain embodiments, the near-α TRIP Ti alloy may be cooled at a cooling rate greater than 20° C./min after annealing to inhibit formation of grain-boundary α (GB-α) phase. 1. A method of computationally designing a near-α transformation-induced plasticity (TRIP) titanium (Ti) alloy , comprising:creating a thermodynamic database of Ti alloys;tailoring data of the thermodynamic database for martensitic transformations in the Ti alloys near room temperature; andobtaining an overall composite of the near-α TRIP Ti alloy by adjusting a reference overall composite of a reference near-α Ti alloy based on the tailored data in the thermodynamic database.2. The method of claim 1 , wherein a transformation dilatation of the near-α TRIP Ti alloy is greater than that of the reference near-α Ti alloy.3. The method of claim 1 , wherein the near-α TRIP Ti alloy has a β-phase fraction no greater than 20%.4. The method of claim 1 , wherein the reference near-α Ti alloy is Ti-5Al-1Sn-1Zr-1V-0.8Mo-0.1Si-0.1Fe-0.1O by weight percentage (Ti-5111).5. The method of claim 4 , wherein the near-α TRIP Ti alloy is Ti-8Al-1V-1Sn-1Zr-0.6Mo-0.9Fe-0.1Si-0.1O by weight percentage.6. The method of claim 5 ...

Подробнее
20-02-2020 дата публикации

METHOD OF CREATING A COMPONENT USING ADDITIVE MANUFACTURING

Номер: US20200055121A1
Принадлежит: IMPERIAL COLLEGE INNOVATIONS LIMITED

There is provided a method of manufacturing a component. The method comprises creating a preform from a material using additive manufacturing and heat treating the preform at a heating temperature to modify the microstructure of the material. The preform is geometrically unconstrained during the step of heat treating. The method then comprises compressive forming the preform into a predefined arrangement to create the component wherein the step of compressive forming is effective to close pores and diffusively bond the material. The material may then be geometrically constrained as it is cooled, for example within the die used for compressive forming. 1. A method of manufacturing a component , the method comprising:creating a preform from a material using additive manufacturing;heat treating the preform at a heating temperature to modify the microstructure of the material wherein the preform is geometrically unconstrained during the step of heat treating; andcompressive forming the preform into a predefined arrangement to create the component wherein the step of compressive forming is effective to close pores and diffusively bond the material.2. A method according to further comprising cooling the component after forming to allow microstructural change to complete claim 1 , wherein the component is geometrically constrained during the step of cooling.3. A method according to any of the above claims wherein the component cools during the step of compressive forming.4. A method according to any of the above claims wherein at least one of: the heating temperature claim 1 , the temperature of the preform at the start of forming claim 1 , the temperature of the preform at the end of forming claim 1 , and the rate of change of temperature of the preform during forming is selected depending on the material of the preform.5. A method according to any of the above claims wherein the preform material is: titanium alloy claim 1 , such as two-phase titanium alloy or Ti-6Al-4V; ...

Подробнее