Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 350. Отображено 177.
27-09-2012 дата публикации

СПОСОБ И УСТАНОВКА ДЛЯ ЭПИТАКСИАЛЬНОГО ВЫРАЩИВАНИЯ ПОЛУПРОВОДНИКОВ ТИПА III-V, УСТРОЙСТВО ГЕНЕРАЦИИ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ ВЫСОКОЙ ПЛОТНОСТИ, ЭПИТАКСИАЛЬНЫЙ СЛОЙ НИТРИДА МЕТАЛЛА, ЭПИТАКСИАЛЬНАЯ ГЕТЕРОСТРУКТУРА НИТРИДА МЕТАЛЛА И ПОЛУПРОВОДНИК

Номер: RU2462786C2
Принадлежит: Зульцер Метко АГ (CH)

FIELD: chemistry. SUBSTANCE: vacuum apparatus for epitaxial growth of type III-V semiconductors has a vacuum chamber in which pressure is kept in a range from approximately 10 -3 mbar to 1 mbar during epitaxial growth, a substrate holder mounted in the vacuum chamber with possibility of attaching and heating substrates, sources for evaporating substances and feeding vapour particles into the vacuum chamber, which are particles of metals in elementary form, metal alloys and dopants, a system for feeding and distributing gases into the vacuum chamber, a source for feeding plasma into the vacuum chamber, a magnetic field generator for creating a magnetic field which gives the plasma the required shape in the vacuum chamber. The vacuum chamber is adapted to conduct diffusive distribution of gas and metal vapour particles therein, activation of gases and metal vapour with the plasma for reaction and formation of a homogeneous epitaxial layer on the heated substrate attached to the substrate holder via gaseous-phase epitaxy, activated by the low-temperature plasma. EFFECT: possibility of obtaining epitaxial layers at a high rate, at low temperature, large surface area of substrates and without toxic gases. 31 cl, 6 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 462 786 (13) C2 (51) МПК H01L 21/205 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2007135977/28, 28.02.2006 (24) Дата начала отсчета срока действия патента: 28.02.2006 (73) Патентообладатель(и): Зульцер Метко АГ (CH) R U Приоритет(ы): (30) Конвенционный приоритет: 28.02.2005 US 60/657,208 (72) Автор(ы): ФОН КЕНЕЛЬ Ганс (CH) (43) Дата публикации заявки: 10.04.2009 Бюл. № 10 C 2 2 4 6 2 7 8 6 R U C 2 (56) Список документов, цитированных в отчете о поиске: WO 96/22408 А, 25.07.1996. WO 01/65590 A, 07.09.2001. RUBIN M ET AL. P-TYPE GALLIUM NITRIDE BY REACTIVE IONBEAM MOLECULAR BEAM EPITAXY WITH ION IMPLANTATION, DIFFUSION. OR COEVAPORATION OF MG. APPLIED ...

Подробнее
25-03-2022 дата публикации

СПОСОБ ФОРМИРОВАНИЯ ЭПИТАКСИАЛЬНЫХ ГЕТЕРОСТРУКТУР EuO/Ge

Номер: RU2768948C1

FIELD: manufacturing technology. SUBSTANCE: invention relates to methods of forming epitaxial EuO/Ge heterostructures, which can be used in spintronic devices. Method of forming epitaxial EuO/Ge heterostructures involves deposition of metal atoms on a germanium substrate in a stream of molecular oxygen by molecular beam epitaxy, wherein surface of Ge(001) substrate is pre-cleaned from natural oxide layer, and surface phases Eu are formed on it, which are sub-monolayer coatings of europium atoms, then at substrate temperature T S =20÷150 °C, europium is deposited at pressure P Eu =(0.1÷100)⋅10 -8 Torr of flux of europium atoms (F Eu ) in flow of oxygen F O2 with relative value 2≤F Eu /F O2 ≤2.2 to formation of EuO film with thickness less than 10 nm. EFFECT: formation of epitaxial EuO/Ge heterostructures with an atomic-sharp interface without using buffer layers. 1 cl, 5 dwg, 3 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК C30B 23/08 C30B 23/06 C30B 29/16 C23C 14/02 C23C 14/08 C23C 14/18 ФЕДЕРАЛЬНАЯ СЛУЖБА C23C 14/24 ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ C23C 14/58 H01F 41/30 H01F 41/20 (12) (11) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (13) 2 768 948 C1 B82B 3/00 (2006.01) B82Y 40/00 (2011.01) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК (21)(22) Заявка: 2021119937, 07.07.2021 07.07.2021 Дата регистрации: 25.03.2022 (73) Патентообладатель(и): Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU) Приоритет(ы): (22) Дата подачи заявки: 07.07.2021 2 7 6 8 9 4 8 R U Адрес для переписки: 123182, Москва, пл. Академика Курчатова, 1, НИЦ "Курчатовский институт", Главному учёному секретарю Центра И.И. Еремину (56) Список документов, цитированных в отчете о поиске: RU 2739459 С1, 24.12.2020. RU 2557394 С1, 20.07.2015. АВЕРЬЯНОВ Д.В. Эпитаксиальная интеграция пленок EuO с кремнием и свойства полученных гетероструктур. Автореферат диссертации на соискание ученой степени ...

Подробнее
27-12-2019 дата публикации

СПОСОБ СОЗДАНИЯ ДВУМЕРНОГО ФЕРРОМАГНИТНОГО МАТЕРИАЛА ДИСИЛИЦИДА ГАДОЛИНИЯ СО СТРУКТУРОЙ ИНТЕРКАЛИРОВАННЫХ СЛОЕВ СИЛИЦЕНА

Номер: RU2710570C1

FIELD: technological processes. SUBSTANCE: invention relates to production of two-dimensional magnetic materials for ultra-compact spintronic devices. Method of producing gadolinium disilicide GdSi 2 with structure of intercalated silicene layers by molecular-beam epitaxy is in deposition of atomic flow of gadolinium with pressure P Gd (from 0.1 to less than 1)⋅10 -8  Torr or P Gd (from more than 1 to 10)⋅10 -8  Torr on pre-cleaned surface of Si(111) substrate, heated to T s =350 ÷ less than 400 °C or T s = more than 400÷450 °C, to formation of gadolinium disilicide film with thickness of not more than 7 nm. EFFECT: formation of epitaxial films of two-dimensional magnetic material GdSi 2 crystalline modification of hP3 with structure of intercalated gadolinium of multilayer silicene on silicon substrates, such structures are homogeneous in thickness, do not contain extraneous phases, are ferromagnetic. 1 cl, 5 dwg, 4 ex

Подробнее
19-03-2020 дата публикации

Способ формирования тонких упорядоченных полупроводниковых нитевидных нанокристаллов без участия стороннего катализатора на подложках кремния

Номер: RU2712534C9

Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ формирования тонких упорядоченных полупроводниковых нитевидных нанокристаллов (ННК) арсенида галлия на кремнии характеризуется тем, что на подложке кремния с кристаллографической ориентацией поверхности (111) или (100) формируют ингибиторный слой оксида кремния (SiO 2 ) толщиной 80-120 нм методом термического прокисления в среде азот/пары воды при температуре Т=850-950°С при давлении, близком к атмосферному, после чего наносят слой электронного резиста, в котором формируют окна методом электронной литографии путем экспонирования электронным пучком с последующим проявлением, при этом процесс проявления останавливают путем промывки в растворителе и последующей сушки, затем осуществляют реактивное ионноплазменное травление в плазмообразующей смеси газов SF 6 и Аr с формированием окон в ингибиторном слое оксида кремния, в которых методом молекулярно-пучковой эпитаксии с использованием источников Ga и As выращивают нитевидные нанокристаллы арсенида галлия по бескатализному методу или по автокаталитическому методу с применением в качестве катализатора Ga, напыляемого на подложку со сформированными окнами в ингибиторном слое. В качестве резиста может быть использован полиметилметакрилат, в качестве проявителя - метилизобутилкетон-изопропанол, в качестве растворителя - изопропанол. Изобретение обеспечивает возможность получения тонких полупроводниковых ННК, равномерно распределенных по поверхности подложки и имеющих контролируемую поверхностную плотность. Высота упорядоченных ННК составляет 1,3 мкм, диаметр 41±3 нм. Расстояние между нанокристаллами осталось равным шагу между окнами в слое SiO 2 и составило 3 мкм. 1 з.п. ф-лы, 2 пр.

Подробнее
02-06-2020 дата публикации

СПОСОБ СОЗДАНИЯ ДВУМЕРНЫХ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ EuGeИ GdGeНА ОСНОВЕ ГЕРМАНЕНА

Номер: RU2722664C1

Изобретение относится к технологии получения двумерных ферромагнитных материалов EuGe 2 или GdGe 2 , которые могут быть использованы при создании компактных спинтронных устройств. Способ создания двумерных ферромагнитных материалов EuGe 2 и GdGe 2 на основе германена заключается в осаждении атомарного потока европия с давлением P Eu =(0,1÷100)⋅10 -8 Торр или гадолиния с давлением P Gd =(0,1÷10)⋅10 -8 Торр на предварительно очищенную поверхность подложки Ge(111), нагретую до 290°С<T s <510°С для европия или 400°С<T s <510°С для гадолиния, до формирования пленки германида европия толщиной не более 5 нм или пленки германида гадолиния толщиной не более 13 нм с последующим опциональным отжигом полученных пленок до температуры не более T s =530°С. Изобретение позволяет осуществлять топотактический синтез двумерных ферромагнитных пленок EuGe 2 или GdGe 2 кристаллической модификации hP3 со структурой интеркалированного европием или гадолинием многослойного германена на германиевых подложках. Полученные пленки не содержат посторонних фаз и содержат германеновые слои, параллельные поверхности подложки. 6 ил., 4 пр.

Подробнее
15-04-1994 дата публикации

CLEANING OF A SOLVENT FOR DRY-CLEANING.

Номер: AT0000103648T
Принадлежит:

Подробнее
02-02-2012 дата публикации

System and process for high-density,low-energy plasma enhanced vapor phase epitaxy

Номер: AU2006224282B2
Принадлежит:

An apparatus and process for fast epitaxial deposition of compound semiconductor layers includes a low-energy, high-density plasma generating apparatus for plasma enhanced vapor phase epitaxy. The process provides in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. Then highly activating the gases in the presence of a dense, low-energy plasma. Concurrently reacting the metal vapor with the highly activated gases and depositing the reaction product on a heated substrate in communication with a support immersed in the plasma, to form a semiconductor layer on the substrate. The process is carbon-free and especially suited for epitaxial growth of nitride semiconductors at growth rates up to 10 nm/s and substrate temperatures below 1000°C on large-area silicon substrates. The process requires neither carbon-containing gases nor gases releasing hydrogen, and in the absence of toxic carrier or reagent gases, is environment friendly.

Подробнее
01-06-1979 дата публикации

Epitaxial deposition with neutron and electron removal - using electromagnetic deflection and electrostatic polarisation

Номер: FR0002294246B1
Автор:
Принадлежит:

Подробнее
19-12-2016 дата публикации

질화물 반도체층의 성막 방법 및 반도체 장치의 제조 방법

Номер: KR0101687595B1

기판 위에, AlN 또는 AlGaN으로 이루어지는 버퍼층을 에피택셜 성장시키는 공정과, 버퍼층 위에, Ga와 GaN을 함유하는 질화물 타깃을 이용하고, 질소를 함유하는 반응성 가스의 유량을 프로세스 가스 전체의 유량의 20% 미만으로 해서, 스퍼터링법에 의해, 적어도 GaN을 함유하는 질화물 반도체층을 에피택셜 성장시키는 공정을 갖는다. A step of epitaxially growing a buffer layer made of AlN or AlGaN on a substrate; and a step of epitaxially growing a buffer layer made of AlN or AlGaN on a substrate by using a nitride target containing Ga and GaN on a buffer layer and setting a flow rate of the reactive gas containing nitrogen to less than 20% , There is a step of epitaxially growing at least a nitride semiconductor layer containing GaN by a sputtering method.

Подробнее
19-05-2020 дата публикации

Doped diamond semiconductor and method of manufacture

Номер: KR1020200053464A
Автор:
Принадлежит:

Подробнее
27-06-1979 дата публикации

Device and method for making doped semiconductor layers

Номер: EP0000002472A2
Принадлежит:

An apparatus for depositing a monocrystalline epitaxial layer of semiconductor material, e.g., silicon containing selected conductivity-determining impurities, on a semiconductor substrate comprising directing a beam of ions of said semiconductor material at the surface of the semiconductor substrate at an energy level below 0.5 Kev., and simultaneously directing a beam of the conductivity-determining impurity ions at at least a portion of the substrate surface whereby a layer of semiconductor material containing said conductivity-determining impurities is formed on said surface, and heating said layer to a temperature of at least 550 DEG C. to render said layer monocrystalline. The beams of semiconductor ions and of conductivity-determining impurity ions are preferably maintained at a high current density of at least 1 ma/cm2 at the surface of said semiconductor substrate even with a preferable relatively broad beam having diameters of up to 15 cm. Such wide beams are desirably achieved ...

Подробнее
01-08-2018 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ МНОГОСЛОЙНОГО СИЛИЦЕНА, ИНТЕРКАЛИРОВАННОГО ЕВРОПИЕМ

Номер: RU2663041C1

FIELD: technological processes.SUBSTANCE: invention relates to methods for producing epitaxial thin-film materials, namely to EuSicrystal modification of hP3 (space group N164,) with a structure of intercalated by europium silicene, that can be used to make experiments to study the silicene lattice. Method is based on stabilizing the required EuSiphase by its epitaxial growth on the SrSibuffer layer preformed on Si(001) or Si(111). Method consists in precipitation by molecular beam epitaxy of an atomic strontium flow with pressure P=(0.5÷3)⋅10Torr on the surface of the silicon substrate previously cleaned and heated to T=500±20 °C to form the strontium disilicide film, and in further precipitation of the atomic europium flow with pressure P=(0.5÷10)⋅10Torr on the substrate at a temperature of T=430÷550 °C to form a europium disilicide film with a thickness of not more than 8 nm. Wherein the silicide layers are formed due to the diffusion of atoms.EFFECT: invention allows obtaining homogeneous epitaxial magnetic films not containing extraneous phases, allowing studing the physical properties of two-dimensional silicon lattices with a hexagonal cellular structure.3 cl, 5 dwg, 4 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК C30B 23/08 C30B 23/06 C30B 29/10 C01B 33/06 C23C 14/06 C23C 14/16 ФЕДЕРАЛЬНАЯ СЛУЖБА C23C 14/34 ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ C23C 14/54 H01L 21/20 H01F 41/30 (12) (11) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (13) 2 663 041 C1 B82B 3/00 (2006.01) B82Y 30/00 (2011.01) B82Y 40/00 (2011.01) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК 2018108909, 14.03.2018 (24) Дата начала отсчета срока действия патента: 14.03.2018 Дата регистрации: 01.08.2018 (73) Патентообладатель(и): Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU) Приоритет(ы): (22) Дата подачи заявки: 14.03.2018 2 6 6 3 0 4 1 Адрес для переписки: 123182, Москва, пл. Академика ...

Подробнее
24-06-1982 дата публикации

Номер: DE0002805247C2

Подробнее
01-08-2007 дата публикации

GaN crystal sheet

Номер: TW0200728521A
Автор: EINAV MOSHE, EINAV, MOSHE
Принадлежит:

A method for forming a gallium nitride crystal sheet. According to the method a metal melt, including gallium, is brought to a vacuum of 0.01 Pa or lower and is heated to a growth temperature of between approximately 860 DEG C and approximately 870 DEG C. A nitrogen plasma is applied to the surface of the melt at a sub-atmospheric working pressure, until a gallium nitride crystal sheet is formed on top. Preferably, the growth temperature is of 863 DEG C, and the working pressure is within the range of 0.05 Pa and 2.5 Pa. According to a preferred embodiment, application of the plasma includes introducing nitrogen gas to the metal melt at the working pressure, igniting the gas into plasma, directing the plasma to the surface of the metal melt, until gallium nitride crystals crystallize thereon, and maintaining the working pressure and the directed plasma until a gallium nitride crystal sheet is formed.

Подробнее
18-12-1979 дата публикации

Formation of epitaxial layers doped with conductivity-determining impurities by ion deposition

Номер: US0004179312A1

A method and apparatus for depositing a monocrystalline epitaxial layer of semiconductor material, e.g., silicon containing selected conductivity-determining impurities, on a semiconductor substrate comprising directing a beam of ions of said semiconductor material at the surface of the semiconductor substrate at an energy level below 0.5 Kev., and simultaneously directing a beam of the conductivity-determining impurity ions at at least a portion of the substrate surface whereby a layer of semiconductor material containing said conductivity-determining impurities is formed on said surface, and heating said layer to a temperature of at least 550° C. to render said layer monocrystalline. The beams of semiconductor ions and of conductivity-determining impurity ions are preferably maintained at a high current density of at least 1 ma/cm2 at the surface of said semiconductor substrate even with a preferable relatively broad beam having diameters of up to 15 cm. Such wide beams are desirably ...

Подробнее
05-03-2020 дата публикации

Patent RU2018126505A3

Номер: RU2018126505A3
Автор: [UNK]
Принадлежит: [UNK]

ВИ“? 2018126505” АЗ Дата публикации: 05.03.2020 Форма № 18 ИЗ,ПМ-2011 Федеральная служба по интеллектуальной собственности Федеральное государственное бюджетное учреждение 5 «Федеральный институт промышленной собственности» (ФИПС) ОТЧЕТ О ПОИСКЕ 1. . ИДЕНТИФИКАЦИЯ ЗАЯВКИ Регистрационный номер Дата подачи 2018126505/05(042088) 23.01.2017 РСТД52017/014558 23.01.2017 Приоритет установлен по дате: [ ] подачи заявки [ ] поступления дополнительных материалов от к ранее поданной заявке № [ ] приоритета по первоначальной заявке № из которой данная заявка выделена [ ] подачи первоначальной заявки № из которой данная заявка выделена [ ] подачи ранее поданной заявки № [Х] подачи первой(ых) заявки(ок) в государстве-участнике Парижской конвенции (31) Номер первой(ых) заявки(ок) (32) Дата подачи первой(ых) заявки(ок) (33) Код страны 1. 62/281,392 21.01.2016 05 2. 62/344,009 01.06.2016 05 Название изобретения (полезной модели): [Х] - как заявлено; [ ] - уточненное (см. Примечания) СПОСОБЫ УЛУЧШЕНИЯ КОЭФФИЦИЕНТА ЗАГРУЗКИ ГАЗООБРАЗНОГО ВОДОРОДА Заявитель: ИХ ИП ХОЛДИНГЗ ЛИМИТЕД, 095$, БУРГЕСС, Даррен Р., 05, ГРИНВАЛД, Майкл Раймонд, 05, БАРБИ, Брент У., (5 2. ЕДИНСТВО ИЗОБРЕТЕНИЯ [Х] соблюдено [ ] не соблюдено. Пояснения: см. Примечания 3. ФОРМУЛА ИЗОБРЕТЕНИЯ: [Х] приняты во внимание все пункты см. п см. Примечания [ ] приняты во внимание следующие пункты: [ ] принята во внимание измененная формула изобретения (см. Примечания) 4. КЛАССИФИКАЦИЯ ОБЪЕКТА ИЗОБРЕТЕНИЯ (ПОЛЕЗНОЙ МОДЕЛИ) (Указываются индексы МПК и индикатор текущей версии) СО1ТВ 3/05 (2006.01) 5. ОБЛАСТЬ ПОИСКА 5.1 Проверенный минимум документации РСТ (указывается индексами МПК) СО1В 3/00 - СО1В 3/08 5.2 Другая проверенная документация в той мере, в какой она включена в поисковые подборки: 5.3 Электронные базы данных, использованные при поиске (название базы, и если, возможно, поисковые термины): РУУРТ, Езрасепес, Раеагсв, КОРТО, ОРТО, Уапдех 6. ДОКУМЕНТЫ, ОТНОСЯЩИЕСЯ К ПРЕДМЕТУ ПОИСКА Кате- Наименование документа с ...

Подробнее
03-09-2020 дата публикации

Способ получения функционального трехмерного компонента оптоэлектронного прибора и функциональный трехмерный компонент оптоэлектронного прибора

Номер: RU2731498C1

Изобретение относится к технологии получения полупроводниковых приборов и может найти применение в промышленном производстве светоизлучающих устройств и фоточувствительных элементов. Способ получения функционального трехмерного компонента (ФТК) оптоэлектронного прибора характеризуется тем, что на поверхности нагретой до температуры 620-710°С кремниевой подложки 1 методом молекулярно-пучковой эпитаксии формируют массив однонаправленных нитевидных нанокристаллов (ННК) III-нитридных материалов с образованием массива нанокристаллов 2, имеющих переменное по высоте поперечное сечение с утонениями на обоих концах и частично сросшихся в серединной по высоте зоне 3, после чего осуществляют отделение полученного массива от подложки путем травления водным раствором, включающим плавиковую и азотную кислоту. Полученный отделением от подложки бесподложечный массив ННК предназначен для применения в качестве функционального трехмерного компонента оптоэлектронного прибора. Функциональный трехмерный компонент ...

Подробнее
10-04-2009 дата публикации

СПОСОБ, УСТАНОВКА ДЛЯ ЭПИТАКСИАЛЬНОГО ВЫРАЩИВАНИЯ ПОЛУПРОВОДНИКОВ, УСТРОЙСТВО ГЕНЕРАЦИИ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ ВЫСОКОЙ ПЛОТНОСТИ, ЭПИТАКСИАЛЬНЫЙ СЛОЙ НИТРИДА МЕТАЛЛА, ЭПИТАКСИАЛЬНАЯ ГЕТЕРОСТРУКТУРА НИТРИДА МЕТАЛЛА И ПОЛУПРОВОДНИК

Номер: RU2007135977A
Принадлежит:

... 1. Вакуумная установка для эпитаксиального выращивания полупроводников, содержащая вакуумную камеру (20, 200) с регулируемым давлением, размещенный в вакуумной камере подложкодержатель (50, 230), установленный с возможностью закрепления и нагрева подложек (54, 400), источники (40, 40', 62, 62', 300, 300') испарения веществ и ввода частиц пара в вакуумную камеру, которые являются частицами металлов в элементной форме, металлических сплавов и легирующих примесей, систему (22', 23', 240') ввода и распределения газов в вакуумную камеру, источник (31, 100) подачи плазмы в вакуумную камеру (20, 200), дополнительный генератор (70, 250) магнитного поля создания магнитного поля, позволяющего придать требуемую форму плазме (36, 140) в вакуумной камере (20, 200), отличающаяся тем, что она выполнена с возможностью осуществления диффузного распространения частиц газов и паров металлов в вакуумной камере (20, 200), активизации газов и паров металлов плазмой (36, 140) для вступления в реакцию и формирования ...

Подробнее
25-02-2020 дата публикации

СПОСОБЫ УЛУЧШЕНИЯ КОЭФФИЦИЕНТА ЗАГРУЗКИ ГАЗООБРАЗНОГО ВОДОРОДА

Номер: RU2018126505A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2018 126 505 A (51) МПК C01B 3/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2018126505, 23.01.2017 (71) Заявитель(и): ИХ ИП ХОЛДИНГЗ ЛИМИТЕД (US), БУРГЕСС, Даррен Р. (US), ГРИНВАЛД, Майкл Раймонд (US), БАРБИ, Брент У. (US) Приоритет(ы): (30) Конвенционный приоритет: 21.01.2016 US 62/281,392; 01.06.2016 US 62/344,009 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 21.08.2018 (72) Автор(ы): БУРГЕСС, Даррен Р. (US), ГРИНВАЛД, Майкл Раймонд (US), БАРБИ, Брент У. (US) US 2017/014558 (23.01.2017) (87) Публикация заявки PCT: WO 2017/127800 (27.07.2017) A Адрес для переписки: 119019, Москва, б-р Гоголевский, 11, Гоулинг ВЛГ (Интернэшнл) Инк. R U (57) Формула изобретения 1. Способ улучшения коэффициента загрузки газообразного водорода в переходный металл, включающий: осаждение пленки на поверхности переходного металла; дезактивацию посредством осажденной пленки участков десорбции на поверхности переходного металла; где область десорбции переходного металла уменьшается вследствие дезактивированных участков десорбции; где уменьшенная область десорбции снижает скорость десорбции газообразного водорода и улучшает коэффициент загрузки газообразного водорода. 2. Способ по п. 1, где пленка является металлической. 3. Способ по п. 1, где пленка является полуметаллической. 4. Способ по любому из пп. 1-3, где пленка имеет толщину от одного до пяти монослоев. 5. Способ по любому из пп. 1-3, где пленка содержит один или более из следующих элементов: титан, цирконий, гафний, ванадий, ниобий, тантал, хром, молибден, вольфрам, железо, алюминий, галлий, индий, кремний, германий и олово. 6. Способ по любому из пп. 1-3, где переходный металл представляет собой палладий, иридий, никель, платину, медь, серебро, золото, цинк, титан, цирконий, гафний, хром, ванадий, ниобий, тантал, молибден, вольфрам, железо, рутений, родий, алюминий, индий, олово, свинец или их смеси, ...

Подробнее
27-02-1985 дата публикации

Method of selective area epitaxial growth

Номер: GB2144151A
Принадлежит:

A III-V compound is grown on selected areas of a substrate (1010) by flooding the surface with a thermal beam of group V particles from an effusion oven (1020) and scanning a beam of group III particles from an ion source (1030) over the selected areas. There may be more than one scanning beam and in that case the beams may be of different elements, permitting growth of different compounds in different areas or of tertiary or higher compounds. Also there may be flooding of the surface by a thermal beam of group III particles so that growth outside the selected areas takes place by molecular beam epitaxy. ...

Подробнее
27-07-2017 дата публикации

METHODS FOR IMPROVING LOADING RATIO OF HYDROGEN GAS

Номер: CA0003011987A1
Принадлежит:

Methods and apparatus for improving the loading ratio of a hydrogen gas in a transition metal are disclosed. Blocking desorption sites on the surface of a metallic structure increases the partial hydrogen/deuterium pressure when the absorption and desorption processes reach an equilibrium. The higher the number of desorption sites that are blocked, the higher the equilibrium pressure can be reached for attaining a higher hydrogen loading ratio. Moreover, since hydrogen desorption occurs at grain boundaries, reducing grain boundaries is conducive to reducing the hydrogen desorption rate. Methods and apparatus for increasing grain sizes to reduce grain boundaries are also disclosed.

Подробнее
24-04-1987 дата публикации

PROCEEDED OF EPITAXIAL GROWTH HAS SPACE SELECTIVITY USING OF THE IONIC BEAMS

Номер: FR0002550008B1
Принадлежит: American Telephone and Telegraph Co Inc

Подробнее
20-02-1979 дата публикации

Method of producing a monocrystalline layer on a substrate

Номер: US0004140546A
Автор:
Принадлежит:

A monocrystalline layer is vapor-deposited on a substrate surface while substantially simultaneously such surface is irradiated with an ion beam having ions with a kinetic energy of at least 10 keV. The resultant ion current impinging on the substrate surface is controlled in such a manner that the sum of the vaporization rate and sputtering rate caused by such ions is smaller than the combined condensation rate of such ions and vaporized particles.

Подробнее
20-03-2012 дата публикации

Epitaxial growth of ZnO with controlled atmosphere

Номер: US0008137458B2

A ZnO crystal growth method has the steps of (a) preparing a substrate having a surface capable of growing ZnO crystal exposing a Zn polarity plane; (b) supplying Zn and O above the surface of the substrate by alternately repeating a Zn-rich condition period and an O-rich condition period; and (c) supplying conductivity type determining impurities above the surface of the substrate while Zn and O are supplied at the step (b).

Подробнее
23-04-2024 дата публикации

Method for manufacturing sputtering target, method for forming oxide film, and transistor

Номер: US0011967505B2

A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.

Подробнее
15-05-2020 дата публикации

СПОСОБЫ УЛУЧШЕНИЯ КОЭФФИЦИЕНТА ЗАГРУЗКИ ГАЗООБРАЗНОГО ВОДОРОДА

Номер: RU2721009C2

FIELD: chemistry.SUBSTANCE: blocking desorption areas on surface of metal structure increases partial pressure of hydrogen/deuterium when absorption and desorption processes reach equilibrium. Higher the number of desorption sections that are blocked, the higher the high equilibrium pressure can be achieved in order to achieve a higher hydrogen loading coefficient. Besides, since hydrogen desorption takes place along grain boundaries, reduced length of grain boundaries reduces hydrogen desorption degree. Also disclosed are methods and a device for increasing grain size to reduce the length of boundaries between grains.EFFECT: invention discloses methods and an apparatus for improving the hydrogen gas charging coefficient in a transition metal.19 cl, 5 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 721 009 C2 (51) МПК C01B 3/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C01B 3/08 (2020.02) (21)(22) Заявка: 2018126505, 23.01.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: Приоритет(ы): (30) Конвенционный приоритет: 21.01.2016 US 62/281,392; 01.06.2016 US 62/344,009 (43) Дата публикации заявки: 25.02.2020 Бюл. № 6 (45) Опубликовано: 15.05.2020 Бюл. № 14 (56) Список документов, цитированных в отчете о поиске: US 2008112881 A1, 15.05.2008. US 8227020 B1, 24.07.2012. WO 2004103036 A2, 25.11.2004. SU 1805357 A1, 30.03.1993. (86) Заявка PCT: C 2 C 2 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 21.08.2018 US 2017/014558 (23.01.2017) (87) Публикация заявки PCT: 2 7 2 1 0 0 9 WO 2017/127800 (27.07.2017) R U 2 7 2 1 0 0 9 (73) Патентообладатель(и): ИХ ИП ХОЛДИНГЗ ЛИМИТЕД (US), БУРГЕСС, Даррен Р. (US), ГРИНВАЛД, Майкл Раймонд (US), БАРБИ, Брент У. (US) 15.05.2020 R U 23.01.2017 (72) Автор(ы): БУРГЕСС, Даррен Р. (US), ГРИНВАЛД, Майкл Раймонд (US), БАРБИ, Брент У. (US) Адрес для переписки: 119019, Москва, б-р Гоголевский, 11, Гоулинг ВЛГ (Интернэшнл) Инк. (54) СПОСОБЫ УЛУЧШЕНИЯ ...

Подробнее
29-01-2020 дата публикации

Способ формирования тонких упорядоченных полупроводниковых нитевидных нанокристаллов без участия стороннего катализатора на подложках кремния

Номер: RU2712534C2

FIELD: chemistry. SUBSTANCE: invention relates to production of semiconductor nanomaterials. Method of forming thin ordered semiconductor filamentary nanocrystals (FNC) of gallium arsenide on silicon is characterized by the fact that on silicon substrate with crystallographic orientation of surface (111) or (100) forming an inhibitory layer of silicon oxide (SiO 2 ) with thickness of 80–120 nm by thermal acidification in nitrogen/water vapour medium at temperature T = 850–950 °C at pressure close to atmospheric pressure, after which an electron resist layer is formed, in which windows are formed by electronic lithography by exposure to an electron beam with subsequent manifestation, wherein development process is stopped by washing in solvent and subsequent drying, then performing reactive ion-plasma etching in plasma-forming mixture of gases SF 6 and Ar with formation of windows in silicon oxide inhibitor layer, in which molecular-beam epitaxy using Ga and As sources is used to grow filamentary nanocrystals of gallium arsenide according to a catalytic method or an autocatalytic method using Ga as a catalyst sputtered on a substrate with formed windows in an inhibitor layer. Resist can be represented by polymethyl methacrylate, the developer being methyl isobutyl ketone-isopropanol and isopropanol as the solvent. Height of ordered FNC is 1.3 mcm, diameter 41 ± 3 nm. Distance between nanocrystals remains equal to pitch between windows in SiO 2 layer and is 3 mcm. EFFECT: invention enables to obtain thin semiconductor FNC evenly distributed on the surface of the substrate and having a controlled surface density. 1 cl, 2 ex

Подробнее
30-04-2020 дата публикации

Функциональный трехмерный компонент оптоэлектронного прибора

Номер: RU197477U1

Полезная модель относится к полупроводниковым приборам и может найти применение в промышленном производстве светоизлучающих устройств и фоточувствительных элементов.Функциональный трехмерный компонент оптоэлектронного прибора представляет собой бесподложечный массив однонаправленных нитевидных нанокристаллов нитрида индий-галлия, имеющих переменное по высоте поперечное сечение с утонениями на обоих концах и частично сросшихся в серединной по высоте зоне.Достигаемый технический результат - обеспечение конструктивной прочности (целостности) ФТК, сформированного в виде массива ННК нитрида индий-галлия, достаточной для его функционирования после отделения от подложки при высоком оптическом качестве материала ННК.

Подробнее
11-03-2019 дата публикации

Способ получения нанокристаллов силицида железа α-FeSiс изменяемой преимущественной ориентацией

Номер: RU2681635C1

FIELD: chemistry.SUBSTANCE: invention relates to the technology of producing nanometer-sized materials consisting of iron silicide nanocrystals α-FeSiwith a controllably variable preferential crystallographic orientation, shape and habit, and can be used to develop new functional elements in spintronics and nanotechnology. Method for producing iron silicide nanocrystals α-FeSiwith variable preferential orientation includes preliminary chemical preparation of the surface of the silicon substrate in aqueous solution of hydrofluoric acid and its purification by annealing at 840–900 °C, deposition of a gold layer on a silicon substrate by the orientation of Si (001) at room temperature by the method of thermal evaporation in ultrahigh vacuum, increase in substrate temperature to 840 °C and coprecipitation of iron and silicon with an atomic ratio of from 1:2 to 3:1.EFFECT: technical result of the invention is the controlled production of nanocrystals α-FeSion the surface of silicon with different predominant crystallographic orientational ratios, variable cut and nanocrystal shape α-FeSifor the same orientation ratio.1 cl, 3 dwg, 1 tbl, 4 ex

Подробнее
05-05-2021 дата публикации

Способ получения гибридных нанокристаллов Au3Fe1-x/Fe и интерметаллических нанокристаллов Au3Fe1-xс контролируемым латеральным размером

Номер: RU2747433C1

Изобретение относится к технологиям получения материалов нанометрового размера, состоящих из биметаллических гибридных нанокристаллов Au3Fe1-x/Fe и монофазных нанокристаллов интерметаллидов Au3Fe1-xс контролируемо-изменяемым латеральным размером и может применяться в биомедицине, информационных технологиях и катализе. Способ получения гибридных нанокристалллов Au3Fe1-x/Fe и интерметаллических нанокристаллов Au3Fe1-xс контролируемо-изменяемым латеральным размером характеризуется тем, что на предварительно подготовленную поверхность аморфного оксида осаждают методом термического испарения в сверхвысоком вакууме в камере молекулярно-лучевой эпитаксии слой золота при температуре 250°С, затем осаждают слой железа на поверхность аморфного оксида, активированную золотом при температуре 750°С, причем атомное соотношение золота к железу изменяется от более 0 до 3,22. Технический результат состоит в возможности контролируемого изменения латерального размера получаемых биметаллических гибридных Au3Fe1 ...

Подробнее
31-03-2023 дата публикации

СПОСОБ СОЗДАНИЯ ИНТЕРФЕЙСА ДЛЯ ИНТЕГРАЦИИ МОНОКРИСТАЛЛИЧЕСКОГО ОКСИДА ЕВРОПИЯ С ГЕРМАНИЕМ

Номер: RU2793379C1

Изобретение относится к технологии формирования эпитаксиальных гетероструктур, а именно тонких пленок оксида европия на германии, которые могут быть использованы при создании устройств германиевой наноэлектроники и спинтроники, в частности инжекторов спин-поляризационного тока, спиновых фильтров, устройств памяти, нейроморфных устройств. Способ создания интерфейса для интеграции монокристаллического оксида европия с германием включает очистку поверхности подложки Ge(001) от слоя естественного оксида и формирование на ней поверхностной фазы Eu, представляющей собой субмонослойную периодическую структуру из атомов Eu, при этом поверхностную фазу Eu формируют путем открытия заслонки ячейки Eu, что обеспечивает осаждение атомов Eu при давлении потока атомов Eu PEu=(0,3÷10)⋅10-8 Торр на подложку, поддерживаемую при температуре Ts=410°С, в течение времени, необходимого для формирования поверхностной фазы, после чего заслонку ячейки Eu закрывают, температуру подложки устанавливают равной Ts=20 ...

Подробнее
30-03-1978 дата публикации

VERFAHREN ZUR HERSTELLUNG EINER MIT EINER STRUKTUR VERSEHENEN SCHICHT AUF EINEM SUBSTRAT

Номер: DE0002643893A1
Принадлежит:

Подробнее
23-01-2013 дата публикации

Vapour deposition process for the preparation of a phosphate compound

Номер: GB0002493022A
Принадлежит:

A vapour deposition process for the preparation of a phosphate compound comprises providing each component element of the phosphate compound separately as a vapour at a respective source, and co-depositing the component element vapours on a common substrate, wherein the component elements react on the substrate to form the phosphate compound. The phosphate compound is preferably a metal or mixed metal phosphate, and may be lithium iron phosphate. Each element is provided as a vapour using an appropriate source. Particularly preferred sources are an effusion cell source or electron beam evaporator source for the metal(s), a phosphorus cracking source for the phosphorus, and a plasma source for the oxygen. The phosphate compound may also include nitrogen (e.g. a phosphorus oxynitride such as LiPON) or sulfur. The stoichiometry of the phosphate compound may be controlled by controlling the rate of deposition of each component element onto the substrate. The process can be used in the manufacture ...

Подробнее
30-08-1984 дата публикации

SELECTIVE AREA EPITAXIAL GROWTH

Номер: GB0008418799D0
Автор:
Принадлежит:

Подробнее
07-09-2011 дата публикации

Vapour deposition proces for the preparation of a chemical compound

Номер: GB0201112600D0
Автор:
Принадлежит:

Подробнее
21-09-2006 дата публикации

SYSTEM AND PROCESS FOR HIGH-DENSITY,LOW-ENERGY PLASMA ENHANCED VAPOR PHASE EPITAXY

Номер: CA0002597623A1
Автор: VON KAENEL, HANS
Принадлежит: Epispeed S.A., Hans Von Kaenel, Sulzer Metco AG

An apparatus and process for fast epitaxial deposition of compound semiconductor layers includes a low-energy, high-density plasma generating apparatus for plasma enhanced vapor phase epitaxy. The process provides in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. Then highly activating the gases in the presence of a dense, low-energy plasma. Concurrently reacting the metal vapor with the highly activated gases and depositing the reaction product on a heated substrate in communication with a support immersed in the plasma, to form a semiconductor layer on the substrate. The process is carbon-free and especially suited for epitaxial growth of nitride semiconductors at growth rates up to 10 nm/s and substrate temperatures below 1000~C on large-area silicon substrates. The process requires neither carbon-containing gases nor gases releasing hydrogen, and in the absence of toxic carrier or reagent gases, is environment friendly.

Подробнее
17-09-2009 дата публикации

COMPOUND SEMICONDUCTOR SINGLE-CRYSTAL MANUFACTURING DEVICE AND MANUFACTURING METHOD

Номер: CA0002694496A1
Принадлежит:

An apparatus (1) for manufacturing a compound semiconductor single crystal is provided with a laser light source (6) which can sublimate a material by applying a laser beam to the material; a reaction container (2), which has a laser introducing window (5) that can pass through the laser beam emitted from the laser light source (6) and that can introduce the laser beam into the container, and holds a base substrate (3) which recrystallizes the sublimated material; and a heater (7) which can heat the base substrate (3). The material in the reaction container (2) is sublimated by heating the material by applying the laser beam to the material, and the sublimated material is recrystallized on the base substrate (3) to grow the compound semiconductor single crystal. Then, the compound semiconductor single crystal is separated from the base substrate (3) by using the laser beam.

Подробнее
09-07-2014 дата публикации

Film formation method, vacuum treatment device, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and illumination device

Номер: CN103918060A
Автор: DAIGO YOSHIAKI
Принадлежит:

The present invention provides a film formation method making it possible to prepare an epitaxial film of +c polarity by sputtering, and a vacuum treatment device adapted to the film formation method, and further provides a method for producing a semiconductor light-emitting element using the epitaxial film, as well as a semiconductor light-emitting element and an illumination device produced by this production method. One embodiment of the present invention is a film formation method for epitaxially growing a semiconductor film having a wurtzite structure by sputtering on an epitaxial growth substrate heated to a desired temperature using a heater, wherein the film formation method includes the following steps. Firstly, the substrate is arranged on a substrate holder having the heater, so that the substrate is arranged separated from the heater by a predetermined distance. Next, an epitaxial film of the semiconductor film having a wurtzite structure is formed upon the substrate in the ...

Подробнее
28-04-1978 дата публикации

PROCESS OF FORMATION Of a SINGLE-CRYSTAL LAYER ON a SUPPORT

Номер: FR0002366057A1
Автор:
Принадлежит:

Подробнее
25-08-2011 дата публикации

SINGLE CRYSTAL ZnMgAlO THIN FILM FOR ULTRAVIOLET RAY LATTICE-MATCHED WITH A ZnO AND A MANUFACTURING METHOD THEREOF

Номер: KR1020110095769A
Принадлежит:

PURPOSE: A single crystal ZnMgAlO thin film for an ultraviolet ray lattice-matched with a ZnO and a manufacturing method thereof are provided to obtain a ZnMgAlO thin film with a large energy band gap by adding MgO and Al2O3 to ZnO and growing the ZnO. CONSTITUTION: A ZnO substrate is prepared. A ZnMgAlO thin film is grown on a ZnO substrate with a sputtering method. A mixing ratio of MgO to Al2O3 is 5.5 to 5.7 : 1. The process pressure is 9 to 11 mTorr. A growing temperature is 580 to 620 degrees centigrade. RF applying power is 90 to 110 W. A mixing ratio of Mg to Al is 2.7 to 2.9 : 1. COPYRIGHT KIPO 2011 ...

Подробнее
01-05-2015 дата публикации

Method for forming oxide semiconductor film

Номер: TW0201516167A
Принадлежит:

A method for forming an oxide semiconductor film using a sputtering apparatus including a target containing a crystalline In-Ga-Zn oxide, a substrate, and a magnet includes the following steps: generating plasma between the target and the substrate; and separating a flat-plate-like In-Ga-Zn oxide in which a first layer including a gallium atom, a zinc atom, and an oxygen atom, a second layer including an indium atom and an oxygen atom, and a third layer including a gallium atom, a zinc atom, and an oxygen atom are stacked in this order. The flat-plate-like In-Ga-Zn oxide passes through the plasma and thus is negatively charged. Then, while keeping crystallinity, the oxide gets close to a top surface of the substrate, moves over the top surface of the substrate due to a magnetic field of the magnet and current flowing from the substrate to the target, and then is deposited.

Подробнее
21-09-2006 дата публикации

SYSTEM AND PROCESS FOR HIGH-DENSITY,LOW-ENERGY PLASMA ENHANCED VAPOR PHASE EPITAXY

Номер: WO2006097804A3
Автор: VON KAENEL, Hans
Принадлежит:

An apparatus and process for fast epitaxial deposition of compound semiconductor layers includes a low-energy, high-density plasma generating apparatus for plasma enhanced vapor phase epitaxy. The process provides in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. Then highly activating the gases in the presence of a dense, low-energy plasma. Concurrently reacting the metal vapor with the highly activated gases and depositing the reaction product on a heated substrate in communication with a support immersed in the plasma, to form a semiconductor layer on the substrate. The process is carbon-free and especially suited for epitaxial growth of nitride semiconductors at growth rates up to 10 nm/s and substrate temperatures below 1000°C on large-area silicon substrates. The process requires neither carbon-containing gases nor gases releasing hydrogen, and in the absence of toxic carrier or reagent gases, is environment friendly.

Подробнее
27-08-2008 дата публикации

GAN CRYSTAL SHEET

Номер: EP0001960571A2
Автор: EINAV, Moshe
Принадлежит:

Подробнее
25-06-2019 дата публикации

Номер: RU2016149166A3
Автор:
Принадлежит:

Подробнее
23-01-2013 дата публикации

Vapour deposition of a compound using a cracking source and a plasma source

Номер: GB0002493020A
Принадлежит:

A vapour deposition process for forming a compound on a substrate comprises providing each element of the compound separately as a vapour from a respective source and co-depositing the vapours onto the substrate where they react to form the compound. A first vapourised element is provided from a cracking source, a second vapourised element is provided from a plasma source and at least one more vapourised element is provided. The first vapour may be cracked phosphorous, cracked sulphur, cracked arsenic, cracked selenium, cracked antimony or cracked tellurium. The second vapour may be oxygen, nitrogen or hydrogen. The third vapour may be provided from an effusion cell or using electron beam evaporation, and can be a metal, silicon, boron or carbon. In a particularly preferred embodiment, the process is used to make lithium phosphates, lithium phosphorous oxynitride, and lithium iron phosphate. The stoichiometry of the phosphate compound may be controlled by controlling the rate of deposition ...

Подробнее
01-04-2005 дата публикации

Method and equipment for AiN-monocrystall production with gas-pervious crucible-wall

Номер: TW0200512322A
Принадлежит:

The method and the equipment are used to produce an AiN-monocrystal (32). A gas-phase is generated from a component of the AIN-source-material (30), which exists in a storage-area (12) of a crucible (10). The AiN-monocrystal (32) grows in a crystal-area (13) of the crucible (10) from the gas-phase. At least a gas-type component, for example a part of the components existed in the gas-phase, can especially in both direction diffuse between an outer-area (15) of the crucible (10) and an inner-area (11) of the crucible (10).

Подробнее
16-09-2013 дата публикации

A novel non-polar plane of wurtzite structure material

Номер: TW0201337050A
Принадлежит:

The present invention relates to a method for growing of a novel non-polar (1340) plane epitaxy layer of wurtzite structure, which comprises the following steps: providing a single crystal oxide with perovskite structure; using a plane of the single crystal oxide as a substrate; and forming a non-polar (1340) plane epitaxy layer of wurtzite semiconductors on the plane of the single crystal oxide by a vapor deposition process. The present invention also provides an epitaxy layer having non-polar (1340) plane obtained according to the aforementioned method.

Подробнее
26-03-2019 дата публикации

Способ получения пластины монокристалла нитрида галлия

Номер: RU2683103C1

FIELD: technological processes.SUBSTANCE: invention relates to the technology for producing semiconductor materials, in particular to the production of single-crystal wide-gap gallium nitride (GaN) plates with a hexagonal crystalline lattice. Method of producing the gallium nitride single crystal plate is characterized by the gradual formation of a layered structure: at the first stage, the SiC layer is formed on the Si (111) substrate by the method of atom substitution with the formation of carbon vacansion structures, at the second stage, the GaN N-polarity layer is formed on the obtained SiC layer by molecular beam epitaxy with plasma activation of nitrogen; at the third stage, the AlN Al-polarity layer is formed on the N-polarity GaN layer by the method of chloride hydride epitaxy, at the fourth stage, the GaN Ga-polarity layer is formed on the AlN Al-polarity layer by the method of chloride-hydride epitaxy, after which the resulting layered structure is kept in an alkaline etching solution until the upper GaN Ga-polarity layer is separated from it.EFFECT: high crystalline perfection of the GaN single crystal plate due to the use of Si (111) as a substrate and the epitaxial growth of GaN on crystalline lattices with similar layers of preceding layers, one of which is susceptible to chemical etching to separate the top layer of GaN.1 cl, 5 dwg

Подробнее
13-01-1977 дата публикации

VERFAHREN ZUR HERSTELLUNG DUENNER EINKRISTALLSCHICHTEN

Номер: DE0002628366A1
Принадлежит: Futaba Corp

Подробнее
08-01-1981 дата публикации

Номер: DE0002643893C3

Подробнее
05-05-1983 дата публикации

Номер: DE0002807803C2

Подробнее
28-04-1978 дата публикации

PROCEDE POUR LA FORMATION D'UNE COUCHE POURVUE D'UNE STRUCTURE SUR UN SUBSTRAT

Номер: FR0002366693A
Автор:
Принадлежит:

Procédé pour la formation d'une couche monocristalline pourvue d'une structure sur un substrat; Le procédé de l'invention prévoit que l'on dépose la matière constitutive de la couche 8 sur la surface 6 substrat par séparation à partir d'une phase gazeuse et/ou par l'action d'un faisceau moleculaire, que l'on irradie pendant le dépôt de cette matière la surface 6 du substrat au moyen de deux faisceaux de particules 14, 15 cohérents superposés l'un, à l'autre, l'énergie des particules de ces faisceau étant supérieure à environ 10 keV, et que l'on dispose le substrat de telle sorte que se trouvent localisés sur sa surface 6 des maxima 7 d'une image d'interférence formée par les deux faisceaux de particules. Application notamment dans le domaine des lasers à corps solide.

Подробнее
09-07-1976 дата публикации

Epitaxial deposition with neutron and electron removal - using electromagnetic deflection and electrostatic polarisation

Номер: FR0002294246A1

A process and device are described for epitaxially forming layers on a substrate using a plasma contg. the ions to be deposited, the energy of which s controlled by varying the potential applied between the plasma source and the substrate. The neutral particles are removed by bending the beam of charged particles by electromagnetic induction and the electrons are electrostatically polarised near the substrate. Epitaxial layers with semiconducting, superconducting or optical properties can be produced e.g. in oscillatory diodes, diodes with variable capacitance, and light-modulating junctions. Twin layers for spectrography and electron diffraction can also be prepd. The layers can have compsns. not restricted by thermodynamic equilibria and can be defect free.

Подробнее
19-10-2022 дата публикации

단결정 구리 박막 버퍼층을 이용한 대면적 단결정 은 박막 구조체 및 그 제조방법

Номер: KR102456782B1
Автор: 정세영, 김수재, 이유실
Принадлежит: 부산대학교 산학협력단

... 본 발명은 단결정 구리박막 버퍼층을 이용한 대면적 단결정 은 박막 구조체 및 그 제조방법에 관한 것으로, 투명 기재(10), 투명 기재 상부에 증착 형성된 단결정 구리 박막 버퍼층(20) 및 상기 단결정 구리 박막 버퍼층(20) 상부에 증착 형성되고, 일정한 방향성을 가지는 단결정 은 박막층(30)을 포함한다. 이는 투명 기재(10) 상부에 단결정 구리 잉곳 타겟을 사용하여 단결정 구리 박막을 증착하여 버퍼층을 형성하는 단결정 구리 박막 버퍼층 형성단계(S100); 및 단결정 은 잉곳 타겟을 사용하여 상기 단결정 구리 박막 버퍼층(20) 상부에 단결정 은 박막층(30)을 증착하는 단결정 은 박막층 형성단계(S20)를 통해 제조되는 것을 기술적 요지로 한다.

Подробнее
21-09-2006 дата публикации

SYSTEM AND PROCESS FOR HIGH-DENSITY,LOW-ENERGY PLASMA ENHANCED VAPOR PHASE EPITAXY

Номер: WO2006097804A2
Автор: VON KAENEL, Hans
Принадлежит:

An apparatus and process for fast epitaxial deposition of compound semiconductor layers includes a low-energy, high-density plasma generating apparatus for plasma enhanced vapor phase epitaxy. The process provides in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. Then highly activating the gases in the presence of a dense, low-energy plasma. Concurrently reacting the metal vapor with the highly activated gases and depositing the reaction product on a heated substrate in communication with a support immersed in the plasma, to form a semiconductor layer on the substrate. The process is carbon-free and especially suited for epitaxial growth of nitride semiconductors at growth rates up to 10 nm/s and substrate temperatures below 1000°C on large-area silicon substrates. The process requires neither carbon-containing gases nor gases releasing hydrogen, and in the absence of toxic carrier or reagent gases, is environment friendly.

Подробнее
24-09-2015 дата публикации

結晶チタニアのナノ粒子および膜の堆積方法

Номер: JP0005784081B2
Принадлежит:

Подробнее
17-08-1978 дата публикации

VORRICHTUNG ZUR HERSTELLUNG VON VERBINDUNGSHALBLEITER-DUENNSCHICHTEN

Номер: DE0002805247A1
Принадлежит:

Подробнее
17-09-1986 дата публикации

METHOD OF SELECTIVE AREA EPITAXIAL GROWTH

Номер: GB0002144151B

Подробнее
13-06-1969 дата публикации

Номер: FR0001570729A
Автор:
Принадлежит:

Подробнее
09-06-2016 дата публикации

METHOD FOR MANUFACTURING SPUTTERING TARGET, METHOD FOR FORMING OXIDE FILM, AND TRANSISTOR

Номер: US20160160342A1
Принадлежит:

A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact. 1. (canceled)2. A method for manufacturing a sputtering target , comprising the steps of:forming a polycrystalline In-M-Zn oxide powder, M representing a metal selected from the group consisting of aluminum, titanium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium, by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide;forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder;forming a compact by compacting the mixture; andsintering the compact,wherein an atomic ratio of zinc in the sputtering target is higher than an atomic ratio of M in the sputtering target.3. The method for manufacturing a sputtering target according to claim 2 ,wherein the polycrystalline In-M-Zn oxide powder is formed from a homologous compound of an In-M-Zn oxide.4. The method for manufacturing a sputtering target according to claim 2 ,wherein the atomic ratio of zinc in the sputtering target is higher than an atomic ratio of indium in the sputtering target.5. A method for manufacturing a sputtering target claim 2 , comprising the steps of:forming a polycrystalline In-M-Zn oxide powder from a homologous compound of an In-M-Zn oxide, M representing a metal selected from the group ...

Подробнее
29-04-2021 дата публикации

Rhombohedron Epitaxial Growth with Molten Target Sputtering

Номер: US20210123158A1
Принадлежит:

Some aspects relate to methods of forming an epitaxial layer. In some examples, the methods include ejecting atoms from a molten metal sputtering material onto a heated crystalline substrate and growing a single epitaxial layer on the substrate from the ejected atoms, where the atoms are ejected with sufficient energy that the grown epitaxial layer has at least a partial rhombohedral lattice, and wherein the crystalline substrate is heated to a temperature of about 600 degrees Celsius or less, or about 500 degrees or less. Other aspects relate to materials, such as a material including a single epitaxial layer on top of a crystalline substrate, the layer including one or more semiconductor materials and having at least a partial rhombohedral lattice, or a substantially rhombohedral lattice. 1. A material comprising:a single epitaxial layer on top of a crystalline substrate, the layer comprising one or more semiconductor materials, wherein about 99% or more of the single epitaxial layer has a rhombohedral lattice.2. The material of claim 1 , wherein the one or more semiconductor materials are selected from the group consisting of Silicon claim 1 , Germanium claim 1 , Carbon claim 1 , and Tin.3. The material of claim 1 , wherein the crystalline substrate comprises a sapphire material.4. The material of claim 1 , wherein the crystalline substrate comprises one or more other triagonally structured crystalline materials.5. The material of claim 1 , wherein about 99% or more of the rhombohedral lattice has the same relative orientation.6. The material of claim 1 , wherein the single epitaxial layer has a thickness that is about 10 or more micrometers.7. The material of claim 6 , wherein the single epitaxial layer has a thickness that is about 100 or more micrometers.8. The material of claim 7 , wherein about 70% or more of the atoms of the single epitaxial layer are Germanium claim 7 , and substantially all of the remaining atoms are Silicon.9. The material of claim 8 , ...

Подробнее
27-06-2002 дата публикации

Method and apparatus for producing M'''N columns and M'''N materials grown thereon

Номер: US2002078881A1
Автор:
Принадлежит:

A method utilizes sputter transport techniques to produce arrays or layers of self-forming, self-oriented columnar structures characterized as discrete, single-crystal Group III nitride posts or columns on various substrates. The columnar structure is formed in a single growth step, and therefore does not require processing steps for depositing, patterning, and etching growth masks. A Group III metal source vapor is produced by sputtering a target, for combination with nitrogen supplied from a nitrogen-containing source gas. The III/V ratio is adjusted or controlled to create a Group III metal-rich environment within the reaction chamber conducive to preferential column growth. The reactant vapor species are deposited on the growth surface to produce single-crystal MIIIN columns thereon. The columns can be employed as a strain-relieving platform for the growth of continuous, low defect-density, bulk materials. Additionally, the growth conditions can be readjusted to effect columnar epitaxial ...

Подробнее
07-09-2011 дата публикации

Vapour deposition process for the preparation of a phosphate compound

Номер: GB0201112604D0
Автор:
Принадлежит:

Подробнее
01-02-1985 дата публикации

PROCEDE DE CROISSANCE EPITAXIALE A SELECTIVITE SPATIALE UTILISANT DES FAISCEAUX IONIQUES

Номер: FR0002550008A
Автор: WON-TIEN TSANG
Принадлежит:

L'INVENTION CONCERNE LA TECHNOLOGIE DES SEMI-CONDUCTEURS. UN APPAREIL D'EPITAXIE CONFORME A L'INVENTION COMPREND AU MOINS UNE SOURCE 1030 PRODUISANT UN FAISCEAU D'IONS D'UN ELEMENT DU GROUPE III, DES MOYENS 1040 DESTINES A DEVIER LE FAISCEAU D'IONS POUR QU'IL BALAYE UNE ZONE SELECTIONNEE D'UN SUBSTRAT 1010 ET AU MOINS UNE CELLULE D'EVAPORATION 1020 POUR UN ELEMENT DU GROUPE V. LA SOURCE DU FAISCEAU D'IONS 1030 COMPREND EGALEMENT DES MOYENS POUR ACCELERER LES PARTICULES EMISES. LA COMBINAISON DU FAISCEAU D'IONS QUI EST DIRIGE VERS UNE ZONE SELECTIONNEE DU SUBSTRAT ET DU FAISCEAU THERMIQUE QUI EST DIRIGE VERS L'ENSEMBLE DU SUBSTRAT PERMET DE REALISER UNE CROISSANCE EPITAXIALE D'UN SEMI-CONDUCTEUR COMPOSE PRESENTANT UNE SELECTIVITE SPATIALE. APPLICATION AUX DISPOSITIFS D'OPTIQUE INTEGREE.

Подробнее
19-11-1982 дата публикации

PROCESS FOR the FORMATION Of a LAYER EQUIPPED With a STRUCTURE ON a SUBSTRATE

Номер: FR0002366693B1
Автор:
Принадлежит:

Подробнее
12-01-1973 дата публикации

Compound materials mfr

Номер: FR0002077498B2
Автор:
Принадлежит:

Подробнее
28-04-1978 дата публикации

PROCESS FOR the FORMATION Of a LAYER EQUIPPED With a STRUCTURE ON a SUBSTRATE

Номер: FR0002366693A1
Автор: [UNK]
Принадлежит: SIEMENS AG

Procédé pour la formation d'une couche monocristalline pourvue d'une structure sur un substrat; Le procédé de l'invention prévoit que l'on dépose la matière constitutive de la couche 8 sur la surface 6 substrat par séparation à partir d'une phase gazeuse et/ou par l'action d'un faisceau moleculaire, que l'on irradie pendant le dépôt de cette matière la surface 6 du substrat au moyen de deux faisceaux de particules 14, 15 cohérents superposés l'un, à l'autre, l'énergie des particules de ces faisceau étant supérieure à environ 10 keV, et que l'on dispose le substrat de telle sorte que se trouvent localisés sur sa surface 6 des maxima 7 d'une image d'interférence formée par les deux faisceaux de particules. Application notamment dans le domaine des lasers à corps solide. A method for forming a monocrystalline layer provided with a structure on a substrate; The method of the invention provides that the material constituting the layer 8 is deposited on the substrate surface 6 by separation from a gas phase and / or by the action of a molecular beam, which is during the deposition of this material the surface 6 of the substrate irradiates by means of two beams of coherent particles 14, 15 superimposed on one another, the energy of the particles of these beams being greater than about 10 keV, and that the substrate is placed in such a way that maxima 7 of an interference image formed by the two particle beams are located on its surface 6. Application in particular in the field of solid body lasers.

Подробнее
24-01-2013 дата публикации

VAPOUR DEPOSITION PROCESS FOR THE PREPARATION OF A CHEMICAL COMPOUND

Номер: WO2013011327A2
Принадлежит:

The present invention provides a vapour deposition process for the preparation of a chemical compound, wherein the process comprises providing each component element of the chemical compound as a vapour, and co-depositing the component element vapours on a common substrate, wherein: the vapour of at Ieast one component element is provided using a cracking source; the vapour of at least one other component element is provided using a plasma source; and at Ieast one further component element vapour is provided; wherein the component elements react on the substrate to form the chemical compound.

Подробнее
11-02-2020 дата публикации

Method for using sputtering target and method for forming oxide film

Номер: US0010557192B2

In a method for using a sputtering target, by making an ion collide with the sputtering target, a sputtered particle whose size is greater than or equal to 1/3000 and less than or equal to 1/20, preferably greater than or equal to 1/1000 and less than or equal to 1/30 of a crystal grain is generated.

Подробнее
15-01-2015 дата публикации

SELF-ALIGNED TUNABLE METAMATERIALS

Номер: US2015017466A1
Принадлежит:

A self-aligned tunable metamaterial is formed as a wire mesh. Self-aligned channel grids are formed in layers in a silicon substrate using deep trench formation and a high-temperature anneal. Vertical wells at the channels may also be etched. This may result in a three-dimensional mesh grid of metal and other material. In another embodiment, metallic beads are deposited at each intersection of the mesh grid, the grid is encased in a rigid medium, and the mesh grid is removed to form an artificial nanocrystal.

Подробнее
19-04-1978 дата публикации

MONOCRYSTALLINE LAYER GROWTH

Номер: JP0053043684A
Автор: EBAAHARUTO KURIMUMERU
Принадлежит:

Подробнее
30-04-1981 дата публикации

Номер: DE0002644208C3

Подробнее
03-06-2011 дата публикации

METHOD OF MANUFACTURING SINGLE CRYSTAL

Номер: CA0002757206A1
Принадлежит:

A seed crystal (11) having a frontside surface and a backside surface is prepared. Surface roughness of the backside surface of the seed crystal (11) is increased. A coating film including carbon is formed on the backside surface of the seed crystal (11). The coating film and a pedestal (41) are brought into contact with each other with an adhesive interposed therebetween. The adhesive is cured to fix the seed crystal (11) to the pedestal (41). A single crystal (52) is grown on the seed crystal (11). Before the growth is performed, a carbon film (22) is formed by carbonizing the coating film.

Подробнее
25-11-2009 дата публикации

A method for depositing crystalline titania nanoparticles and films

Номер: CN0101589173A
Принадлежит:

The present invention provides a one-step and room-temperature process for depositing nanoparticles or nanocomposite (nanoparticle-assembled) films of crystalline titanium dioxide (TiO2) onto a substrate surface using ultrafast pulsed laser ablation of Titania or metal titanium target. The system includes a pulsed laser with a pulse duration ranging from a few femtoseconds to a few tens of picoseconds, an optical setup for processing the laser beam such that the beam is focused onto the target surface with an appropriate average energy density and an appropriate energy density distribution, and a vacuum chamber in which the target and the substrate are installed and background gases and their pressures are appropriately adjusted.

Подробнее
25-04-1980 дата публикации

PROCESS OF FORMATION Of a SINGLE-CRYSTAL LAYER ON a SUPPORT

Номер: FR0002366057B1
Автор:
Принадлежит:

Подробнее
29-10-1971 дата публикации

Compound materials mfr

Номер: FR0002077498A2
Автор:
Принадлежит:

Подробнее
07-03-1986 дата публикации

METHOD FOR FORMING A STREAM OF ATOMS AND UTILIZATION THEREOF IN AN ATOMIC JET EPITAXY PROCESS AND DEVICE (E.J.A.)

Номер: FR0002542327B1
Автор: [UNK]
Принадлежит: Bensoussan Marcel

Подробнее
14-09-1984 дата публикации

METHOD FOR FORMING A STREAM OF ATOMS AND UTILIZATION THEREOF IN AN ATOMIC JET EPITAXY PROCESS AND DEVICE (E.J.A.)

Номер: FR0002542327A1
Автор:
Принадлежит:

Подробнее
14-09-1984 дата публикации

SOURCE D'ATOMES ET D'IONS POUR EPITAXIE OU DEPOT SOUS ULTRAVIDE ET SON UTILISATION DANS UN PROCEDE ET UN DISPOSITIF D'EPITAXIE PAR JETS ATOMIQUES (E.J.A.)

Номер: FR0002542327A
Автор:
Принадлежит:

L'INVENTION A POUR OBJET UNE SOURCE D'ATOMES ET D'IONS POUR EPITAXIE OU DEPOT SOUS ULTRAVIDE ET SON UTILISATION DANS UN PROCEDE ET UN DISPOSITIF D'EPITAXIE PAR JETS ATOMIQUES. LA SOURCE COMPREND UNE CIBLE 17 DE L'ELEMENT OU D'UN COMPOSE DE L'ELEMENT A DEPOSER SOUS LA FORME DE COUCHE, ET UN LASER PULSE 21 DONT LA DUREE DES IMPULSIONS ET LA PUISSANCE SONT TELLES QUE, PAR IRRADIATION DE LADITE CIBLE AU MOYEN DUDIT LASER, ON EXTRAIT DE LADITE CIBLE UN FAISCEAU D'ATOMES ET D'IONS DUDIT ELEMENT. ELLE PEUT ETRE UTILISEE DANS UN DISPOSITIF D'EPITAXIE POUR DEPOSER SUR LE SUBSTRAT 11 UNE COUCHE DE COMPOSE BINAIRE III-V TEL QUE GAAS OU INP.

Подробнее
10-10-2017 дата публикации

방사선 검출기, 신틸레이터 패널, 및 그 제조 방법

Номер: KR0101784118B1

... 실시형태에 의하면, 방사선 검출기는 광을 전기 신호를 변환하는 광전변환기판과, 이 광전변환기판에 접하고 외부에서 입사한 방사선을 광으로 변환하는 신틸레이터 층을 포함한다. 이 신틸레이터 층은 할로겐화물인 CsI 내에 활성제로서 Tl을 함유하는 형광체로 만들어진다, 이 형광체 내의 활성제의 농도는 1.6 질량%±0.4 질량% 이고, 면내 방향과 막 두께 방향에서의 상기 활성제의 농도 분포는 ±15% 이내이다.

Подробнее
02-10-2014 дата публикации

CARBON-DOPED ZINC OXIDE FILM AND METHOD FOR PRODUCING SAME

Номер: WO2014157000A1
Принадлежит:

Disclosed is a carbon-doped zinc oxide film which is produced by at least one film formation process selected from a sputtering process and a PLD process and is composed of zinc oxide polycrystals doped with carbon at a concentration of 1.0 × 1019 atoms/cm3 or more. The carbon-doped zinc oxide film can be produced by a method comprising the steps of: providing a composite target comprising zinc, oxygen and carbon as constituent elements; and forming a film by a sputtering process and/or a PLD process using the composite target to thereby form the carbon-doped zinc oxide film. According to the present invention, a zinc oxide film doped with carbon at a high concentration can be produced and provided in a relatively simple and inexpensive manner with high reliability.

Подробнее
09-01-1987 дата публикации

CRYSTAL GROWTH

Номер: JP0062003095A
Принадлежит:

Подробнее
25-04-1981 дата публикации

Номер: JP0056017935B2
Автор:
Принадлежит:

Подробнее
22-11-1978 дата публикации

PRODUCTION OF MONOCRYSTALLINE LAYERS ON SUBSTRATES

Номер: GB0001532759A
Автор:
Принадлежит:

... 1532759 Simultaneous ion bombardment and vapour deposition SIEMENS AG 29 Sept 1977 [30 Sept 1976] 40461/77 Heading C7F A monocrystalline layer is produced by vaporizing a material 10 and vapour depositing on a substrate e.g. Si or foil while simultaneously bombarding the substrate surface with ions 12 e.g. ions of the material 10 accelerated by potential source 8 to a Kinetic energy of at least 10 keV the ion current produced in the substrate being such that the vaporization rate plus the rate of atomization of the substrate caused by the ion bombardment is less than the rate of deposition of the vaporized particles and the ions. The substrate may be subjected to heating below 400‹C, to an electric field using electrode 13 and to mechanical stress by stretching.

Подробнее
01-02-1985 дата публикации

PROCEEDED OF EPITAXIAL GROWTH HAS SPACE SELECTIVITY USING OF THE IONIC BEAMS

Номер: FR0002550008A1
Принадлежит:

Подробнее
28-04-1978 дата публикации

PROCEDE DE FORMATION D'UNE COUCHE MONOCRISTALLINE SUR UN SUPPORT

Номер: FR0002366057A
Автор:
Принадлежит:

Procédé de formation d'une couche monocristalline sur un support, selon lequel la matière constitutive de la couche est vaporisée à partir d'une source appropriée et est redéposée sur la surface du support, et selon lequel cette surface du support est soumise à un bombardement ionique pendant que s'effectue ce dépôt; Ce procédé prévoit que l'on procède au bombardement ionique au moyen d'ions 12 dont l'énergie cinétique lors de leur impact sur la surface du support 6 atteint au moins 10 keV, et que l'intensité du flux d'ions 12 projeté sur la surface du support 6 est choisie de manière à ce que au niveau de cette surface la somme des taux de vaporisation et de la dispersion provoquée par les ions soit inférieure au taux de la condensation produite par ces ions 12 ainsi que par les particules vaporisées; Application notamment à la fabrication de composants et de circuits intégrés en technique MOS ou SOS.

Подробнее
24-02-2014 дата публикации

SYSTEM AND PROCESS FOR HIGH-DENSITY, LOW-ENERGY PLASMA ENHANCED VAPOR PHASE EPITAXY

Номер: KR0101366181B1
Автор:
Принадлежит:

Подробнее
12-09-2013 дата публикации

SELF-ALIGNED TUNABLE METAMATERIALS

Номер: WO2013134779A1
Принадлежит:

... [0055] A self-aligned tunable metamaterial is formed as a wire mesh. Self-aligned channel grids are formed in layers in a silicon substrate using deep trench formation and a high-temperature anneal. Vertical wells at the channels may also be etched. This may result in a three-dimensional mesh grid of metal and other material. In another embodiment, metallic beads are deposited at each intersection of the mesh grid, the grid is encased in a rigid medium, and the mesh grid is removed to form an artificial nanocrystal.

Подробнее
28-08-2014 дата публикации

METHOD FOR MANUFACTURING SPUTTERING TARGET, METHOD FOR FORMING OXIDE FILM, AND TRANSISTOR

Номер: US20140241978A1

A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.

Подробнее
03-06-1971 дата публикации

Номер: GB0001234312A
Автор:
Принадлежит:

Подробнее
15-04-1980 дата публикации

Apparatus for forming compound semiconductor thin-films

Номер: US0004197814A
Автор:
Принадлежит:

An apparatus for forming compound semiconductors, which has a plurality of closed type crucibles for separately holding and vaporizing the component elements of a desired compound semiconductor thin-film, the crucibles each having at least one injection nozzle, a plurality of temperature control sections for separately controlling vapor pressures inside the crucibles so that the vapors jetted from the injection nozzles of the crucibles may form clusters, a plurality of ionization chambers provided in the vicinity of the injection nozzles of the crucibles respectively for ionizing the clusters, and acceleration power supplies provided between a substrate and the ionization chambers for giving kinetic energy to the cluster ions to make them impinge on the surface of the substrate so as to form a thin film thereon.

Подробнее
21-09-2006 дата публикации

System and process for high-density,low-energy plasma enhanced vapor phase epitaxy

Номер: AU2006224282A1
Принадлежит:

Подробнее
24-01-2013 дата публикации

Use of freestanding nitride veneers in semiconductor devices

Номер: US20130019927A1
Принадлежит: Individual

Thin freestanding nitride veneers can be used for the fabrication of semiconductor devices. These veneers are typically less than 100 microns thick. The use of thin veneers also eliminates the need for subsequent wafer thinning for improved thermal performance and 3D packaging.

Подробнее
19-09-2013 дата публикации

Non-polar plane of wurtzite structure material

Номер: US20130240876A1
Автор: CHANG Li, HO YEN-TENG
Принадлежит: NATIONAL CHIAO TUNG UNIVERSITY

The present invention relates to a method for growing a novel non-polar (13 0) plane epitaxy layer of wurtzite structure, which comprises the following steps: providing a single crystal oxide with perovskite structure; using a plane of the single crystal oxide as a substrate; and forming a non-polar (13 0) plane epitaxy layer of wurtzite semiconductors on the plane of the single crystal oxide by a vapor deposition process. The present invention also provides an epitaxy layer having non-polar (13 0) plane obtained according to the aforementioned method. 1. A method for growing a non-polar (13 0) plane epitaxy layer of wurtzite structure , which comprises the following steps:providing a single crystal oxide with perovskite structure;selecting a plane of the single crystal oxide as a substrate; and{'o': {'@ostyle': 'single', '4'}, 'forming a non-polar (13 0) plane epitaxy layer of wurtzite semiconductors on the plane of the substrate by a vapor deposition process.'}2. The method of claim 1 , wherein the single crystal oxide is an oxide with perovskite structure of LaAlO claim 1 , LaNiO claim 1 , LaGaO claim 1 , SrTiO claim 1 , (LaSr)(AlTa)O claim 1 , PrAlO claim 1 , or NdAlO.3. The method of claim 1 , wherein the non-polar (13 0) plane epitaxy layer is a zinc oxide claim 1 , or a Group III nitride.4. The method of claim 1 , wherein the zinc oxide is further doped with magnesium claim 1 , calcium claim 1 , strontium claim 1 , barium claim 1 , cadmium claim 1 , aluminum claim 1 , gallium claim 1 , indium claim 1 , or combinations thereof.5. The method of claim 3 , wherein the Group III nitride is gallium nitride claim 3 , indium nitride claim 3 , aluminum nitride claim 3 , indium gallium nitride claim 3 , aluminum gallium nitride claim 3 , aluminum indium nitride claim 3 , or aluminum indium gallium nitride.6. The method of claim 1 , wherein the plane is a crystal plane or a cross section of the single crystal oxide.7. The method of claim 1 , wherein the plane is a plane ...

Подробнее
03-10-2013 дата публикации

System and process for high-density, low-energy plasma enhanced vapor phase epitaxy

Номер: US20130260537A1
Автор: Hans Von Känel
Принадлежит: Sulzer Metco AG

A process for epitaxial deposition of compound semiconductor layers includes several steps. In a first step, a substrate is removably attached to a substrate holder that may be heated. In a second step, the substrate is heated to a temperature suitable for epitaxial deposition. In a third step, substances are vaporized into vapor particles, such substances including at least one of a list of substances, comprising elemental metals, metal alloys and dopants. In a fourth step, the vapor particles are discharged to the deposition chamber. In a fifth step, a pressure is maintained in the range of 10̂-3 to 1 mbar in the deposition chamber by supplying a mixture of gases comprising at least one gas, wherein vapor particles and gas particles propagate diffusively. In a sixth optional step, a magnetic field may be applied to the deposition chamber. In a seventh step, the vapor particles and gas particles are activated by a plasma in direct contact with the sample holder. In an eighth step, vapor particles and gas particles are allowed to react, so as to form a uniform epitaxial layer on the heated substrate by low-energy plasma-enhanced vapor phase epitaxy.

Подробнее
05-12-2013 дата публикации

FERROELECTRIC CRYSTAL FILM, ELECTRONIC COMPONENT, MANUFACTURING METHOD OF FERROELECTRIC CRYSTAL FILM, AND MANUFACTURING APPARATUS THEREFOR

Номер: US20130323534A1
Принадлежит:

There is provided a manufacturing method of a ferroelectric crystal film in which an orientation of a seed crystal film is transferred preferably and a film deposition rate is suitable for volume production. 1. A ferroelectric crystal film , comprising:a ferroelectric seed crystal film formed on a substrate by a sputtering method and having an orientation in a predetermined face; anda ferroelectric coated-and-sintered crystal film formed over said ferroelectric seed crystal film, whereinsaid ferroelectric coated-and-sintered crystal film is formed by a process that a solution, which contains a metal compound including some or all the component metals of said ferroelectric coated-and-sintered crystal film and partial polycondensate thereof in an organic solvent, is coated, heated, and crystallized.2. The ferroelectric crystal film according to claim 1 , whereinsaid ferroelectric coated-and-sintered crystal film has an orientation in the same face as said predetermined face.3. The ferroelectric crystal film according to claim 1 , wherein{'sub': 3', '3, 'each of said ferroelectric seed crystal film and said ferroelectric coated-and-sintered crystal film is a Ph (Zr, Ti)Ofilm or a (Pb, A) (Sr, Ti)Ofilm and A is configured with at least one kind selected from the group consisting of Li, Na, X, Rb, Ca, Sr, Ba, Bi, and La.'}4. The ferroelectric crystal film according to claim 3 , wherein{'sub': 3', '3, 'claim-text': {'br': None, '60/40≦Zr/Ti≦40/60\u2003\u2003(1)'}, 'a Zr/Ti ratio in the number of elements for said Pb (Zr, Ti)Ofilm or (Pb, A)(Zr, Ti)Ofilm satisfies said following formula (1).'}5. The ferroelectric crystal film according to claim 3 , wherein{'sub': 3', '3, 'claim-text': [{'br': None, 'Pb/(Zr+Ti)<1.06\u2003\u2003(2)'}, {'br': None, '(Pb+A)/(Zr+Ti)≦1.35\u2003\u2003(3)'}], 'each ratio in the number of elements for said Pb(Zr, Ti)Ofilm satisfies the following formula (2) and each ratio in the number of elements for said (Pb, A)(Zr, Ti)Ofilm satisfies the ...

Подробнее
19-12-2013 дата публикации

LATTICE MATCHING LAYER FOR USE IN A MULTILAYER SUBSTRATE STRUCTURE

Номер: US20130333611A1
Принадлежит: Tivra Corporation

A lattice matching layer for use in a multilayer substrate structure comprises a lattice matching layer. The lattice matching layer includes a first chemical element and a second chemical element. Each of the first and second chemical elements has a hexagonal close-packed structure at room temperature that transforms to a body-centered cubic structure at an α-β phase transition temperature higher than the room temperature. The hexagonal close-packed structure of the first chemical element has a first lattice parameter. The hexagonal close-packed structure of the second chemical element has a second lattice parameter. The second chemical element is miscible with the first chemical element to form an alloy with a hexagonal close-packed structure at the room temperature. A lattice constant of the alloy is approximately equal to a lattice constant of a member of group III-V compound semiconductors. 1. A lattice matching layer for use in a multilayer substrate structure , the lattice matching layer including:a first chemical element, the first chemical element having a hexagonal close-packed structure at room temperature that transforms to a body-centered cubic structure at an α-β phase transition temperature higher than the room temperature, the hexagonal close-packed structure of the first chemical element having a first lattice parameter; anda second chemical element, the second chemical element having a hexagonal close-packed structure at room temperature with similar chemical properties to the first chemical element, the hexagonal close-packed structure of the second chemical element having a second lattice parameter, the second chemical element being miscible with the first chemical element to form an alloy with a hexagonal close-packed structure at the room temperature,wherein a lattice constant of the alloy is approximately equal to a lattice constant of a member of group III-V compound semiconductors.2. The lattice matching layer of claim 1 , wherein a linear ...

Подробнее
03-04-2014 дата публикации

METHOD FOR DEPOSITING CRYSTALLINE TITANIA NANOPARTICLES AND FILMS

Номер: US20140093744A1
Автор: CHE Yong, HU Zhendong, LIU Bing
Принадлежит: IMRA AMERICA, INC.

A one-step and room-temperature process for depositing nanoparticles or nanocomposite (nanoparticle-assembled) films of metal oxides such as crystalline titanium dioxide (TiO) onto a substrate surface using ultrafast pulsed laser ablation of Titania or metal titanium target. The system includes a pulsed laser with a pulse duration ranging from a few femtoseconds to a few tens of picoseconds, an optical setup for processing the laser beam such that the beam is focused onto the target surface with an appropriate average energy density and an appropriate energy density distribution, and a vacuum chamber in which the target and the substrate are installed and background gases and their pressures are appropriately adjusted. 1. An article of manufacturing comprising: a substrate comprising a heat-sensitive material having nanoparticles or nanocomposite films of crystalline metal oxide deposited thereon.202. The article of claim 1 , wherein said article comprises: functional nanoparticles or functional nanocomposite films of crystalline Ti.3. The article of wherein said nanoparticles or nanocomposite films of crystalline metal oxide are characterized by exhibiting a thermally stable rutile phase subsequent to deposition onto said substrate at said temperature and said background pressure.4. An article of manufacturing comprising: a substrate comprising a heat-sensitive material having nanoparticles or nanocomposite films of crystalline metal oxide deposited thereon claim 1 , where said article is made by a method comprising providing a target comprised of a metal or metal-oxide material; providing a substrate to support the deposited nanoparticles of crystalline metal oxide or films of crystalline metal oxide; and ablating regions of said target with ultrafast laser pulses to create a plume of particles directed toward said substrate claim 1 , and thereby depositing said nanoparticles of crystalline metal oxide or nanocomposite films of crystalline metal oxide onto said ...

Подробнее
15-01-2015 дата публикации

Self-aligned tunable metamaterials

Номер: US20150017466A1
Принадлежит: Individual

A self-aligned tunable metamaterial is formed as a wire mesh. Self-aligned channel grids are formed in layers in a silicon substrate using deep trench formation and a high-temperature anneal. Vertical wells at the channels may also be etched. This may result in a three-dimensional mesh grid of metal and other material. In another embodiment, metallic beads are deposited at each intersection of the mesh grid, the grid is encased in a rigid medium, and the mesh grid is removed to form an artificial nanocrystal.

Подробнее
18-02-2021 дата публикации

DIAMETER EXPANSION OF ALUMINUM NITRIDE CRYSTALS DURING GROWTH BY PHYSICAL VAPOR TRANSPORT

Номер: US20210047749A1
Принадлежит:

In various embodiments, aluminum nitride single crystals are rapidly diameter-expanded during growth by physical vapor transport. High rates of diameter expansion during growth may be enabled by the use of internal thermal shields and directed plasma-modification of the growth environment to augment radial thermal gradients and increase radial growth rates. 1. A method of forming single-crystal aluminum nitride (AlN) , the method comprising:providing within a growth chamber a seed crystal having a growth face comprising AlN;establishing a radial thermal gradient and an axial thermal gradient within the growth chamber;condensing vapor comprising aluminum and nitrogen within the growth chamber, thereby forming on the growth face of the seed crystal an AlN single crystal that (a) increases in length along a growth direction in response to the axial thermal gradient and (b) expands in diameter along a radial direction substantially perpendicular to the growth direction in response to the radial thermal gradient; andthereduring, increasing a lateral growth rate of the AlN single crystal to increase a rate of the diameter expansion of the AlN single crystal.2. The method of claim 1 , wherein establishing the radial thermal gradient and the axial thermal gradient within the growth chamber comprises claim 1 , at least in part claim 1 , (i) heating the growth chamber and (ii) configuring a plurality of thermal shields outside of the growth chamber.3. The method of claim 1 , wherein increasing the lateral growth rate of the AlN single crystal comprises enhancing the vapor with atomic nitrogen proximate an edge portion of the AlN single crystal.4. The method of claim 3 , wherein enhancing the vapor with atomic nitrogen comprises (i) introducing nitrogen gas proximate the edge portion of the AlN single crystal and (ii) generating a plasma proximate the edge portion of the AlN single crystal with the nitrogen gas.5. The method of claim 1 , wherein increasing the lateral growth ...

Подробнее
16-04-2015 дата публикации

EPITAXIAL FILM FORMING METHOD, SPUTTERING APPARATUS, MANUFACTURING METHOD OF SEMICONDUCTOR LIGHT-EMITTING ELEMENT, SEMICONDUCTOR LIGHT-EMITTING ELEMENT, AND ILLUMINATION DEVICE

Номер: US20150102371A1
Автор: DAIGO Yoshiaki
Принадлежит:

The present invention has an object to provide an epitaxial film forming method of epitaxially growing a high-quality group III nitride semiconductor thin film on an α-AlOsubstrate by a sputtering method. An epitaxial film forming method according to an embodiment of the present invention includes forming an epitaxial film of a group III nitride semiconductor thin film on an α-AlOsubstrate placed on a substrate holder () including a heater electrode () and a bias electrode () in a sputtering apparatus () by applying high-frequency power to a target electrode () and applying high-frequency bias power to the bias electrode () while the heater electrode () maintains the α-AlOsubstrate at a predetermined temperature. In this process, the high-frequency power and the high-frequency bias power are applied so that frequency interference therebetween may not occur. 1. An epitaxial film forming method of forming an epitaxial film on a substrate by using a sputtering method comprising:placing the substrate in a vessel in which at least one of a target with a wurtzite structure and a target for forming a film with a wurtzite structure by deposition;applying high-frequency power to a target electrode to which the target is attached, and applying high-frequency bias power to a substrate holder supporting the substrate in such a manner as to suppress frequency interference between the applied high-frequency power and the applied high-frequency bias power; andforming the epitaxial film on the substrate by sputtering the target with plasma generated by the high-frequency power.2. The epitaxial film forming method according to claim 1 , wherein the film is formed while the substrate is heated to a predetermined temperature by the substrate holder.3. The epitaxial film forming method according to claim 1 , wherein the high-frequency power and the high-frequency bias power are applied with the frequency interference suppressed by setting the high-frequency power and the high-frequency ...

Подробнее
28-04-2016 дата публикации

RADIATION DETECTOR, SCINTILLATOR PANEL, AND METHOD FOR MANUFACTURING THE SAME

Номер: US20160116607A1
Принадлежит:

According to the embodiment, a radiation detector includes a photoelectric conversion substrate converting light to an electrical signal and a scintillator layer being in contact with the photoelectric conversion substrate and converting externally incident radiation to light. The scintillator layer is made of a phosphor containing Tl as an activator in CsI, which is a halide. A concentration of the activator in the phosphor is 1.6 mass %±0.4 mass %, and a concentration distribution of the activator in an in-plane direction and a film thickness direction is within ±15%. 1. A radiation detector comprising:a photoelectric conversion substrate converting light to an electrical signal; anda scintillator layer being in contact with the photoelectric conversion substrate and converting externally incident radiation to light,the scintillator layer being made of a phosphor containing Tl as an activator in CsI, which is a halide, a concentration of the activator in the phosphor being 1.6 mass %±0.4 mass %, and a concentration distribution of the activator in an in-plane direction and a film thickness direction being within ±15%.2. The radiation detector according to claim 1 , wherein in the scintillator layer claim 1 , the concentration distribution of the activator in the in-plane direction and the film thickness direction is ±15% or less in a region of a unit film thickness of 200 nm or less.3. The radiation detector according to claim 1 , wherein the scintillator layer has a columnar crystal structure.4. A method for manufacturing a radiation detector including a photoelectric conversion substrate converting light to an electrical signal and a scintillator layer being in contact with the photoelectric conversion substrate and converting externally incident radiation to light claim 1 ,the scintillator layer being made of a phosphor containing Tl as an activator in CsI, which is a halide,the method comprising:forming the scintillator layer by a vapor phase growth technique ...

Подробнее
25-05-2017 дата публикации

FILM FORMATION METHOD, VACUUM PROCESSING APPARATUS, METHOD OF MANUFACTURING SEMICONDUCTOR LIGHT EMITTING ELEMENT, SEMICONDUCTOR LIGHT EMITTING ELEMENT, METHOD OF MANUFACTURING SEMICONDUCTOR ELECTRONIC ELEMENT, SEMICONDUCTOR ELECTRONIC ELEMENT, AND ILLUMINATING APPARATUS

Номер: US20170145588A1
Принадлежит:

The present invention provides a film formation method and a film formation apparatus which can fabricate an epitaxial film with +c polarity by a sputtering method. In one embodiment of the present invention, the film formation method of epitaxially growing a semiconductor thin film with a wurtzite structure by the sputtering method on an epitaxial growth substrate heated to a predetermined temperature by a heater includes the following steps. First, the substrate is disposed on a substrate holding portion including the heater to be located at a predetermined distance away from the heater. Then, the epitaxial film of the semiconductor film with the wurtzite structure is formed on the substrate with the impedance of the substrate holding portion being adjusted. 1. A film formation method of forming an epitaxial film of a semiconductor thin film with a wurtzite structure on a substrate by a sputtering method using a vacuum processing apparatus , the vacuum processing apparatus including:a vacuum chamber capable of being vacuumed;a substrate holding portion which supports the substrate in the vacuum chamber;a heater capable of heating the substrate held by the substrate holding portion to a given temperature;a target electrode which is provided in the vacuum chamber and to which a target is attachable;a radio-frequency power supply which inputs radio-frequency power into the target via the target electrode;an electrode portion which is disposed around the substrate held by the substrate holding portion and which forms part of a return route through which the radio-frequency power inputted from the radio-frequency power supply returns to a ground; andan impedance adjuster which adjusts impedance of the electrode portion, the film formation method comprising:a substrate transporting step of causing the substrate holding portion to hold the substrate at a predetermined distance away from a substrate facing surface of the heater;a film formation step of forming the ...

Подробнее
25-05-2017 дата публикации

Rhombohedron Epitaxial Growth with Molten Target Sputtering

Номер: US20170145589A1
Принадлежит:

Some aspects relate to methods of forming an epitaxial layer. In some examples, the methods include ejecting atoms from a molten metal sputtering material onto a heated crystalline substrate and growing a single epitaxial layer on the substrate from the ejected atoms, where the atoms are ejected with sufficient energy that the grown epitaxial layer has at least a partial rhombohedral lattice, and wherein the crystalline substrate is heated to a temperature of about 600 degrees Celsius or less, or about 500 degrees or less. Other aspects relate to materials, such as a material including a single epitaxial layer on top of a crystalline substrate, the layer including one or more semiconductor materials and having at least a partial rhombohedral lattice, or a substantially rhombohedral lattice. 1. A method comprising:ejecting atoms from a molten metal sputtering material onto a heated crystalline substrate; andgrowing a single epitaxial layer of the ejected atoms on the substrate;wherein the atoms are ejected with sufficient energy such that the formation of epitaxial layer has at least a partially rhombohedral lattice, and wherein the crystalline substrate is heated to a temperature of about 600 degrees Celsius or less.2. The method of claim 1 , wherein the crystalline substrate is heated to a temperature of about 500 degrees Celsius or less.3. The method of claim 1 , wherein about 99% or more of the single epitaxial layer has a rhombohedral lattice.4. The method of claim 1 , wherein the single epitaxial layer has a thickness that is about 10 or more micrometers.5. The method of claim 4 , wherein the single epitaxial layer has a thickness that is about 100 or more micrometers.6. The method of claim 1 , wherein the ejected atoms include one or more of Silicon claim 1 , Germanium claim 1 , Carbon claim 1 , and Tin claim 1 , and wherein the crystalline substrate comprises a sapphire material or one or more other triagonally structured crystalline materials.7. The method ...

Подробнее
07-05-2020 дата публикации

Method for manufacturing sputtering target, method for forming oxide film, and transistor

Номер: US20200144059A1
Принадлежит: Semiconductor Energy Laboratory Co Ltd

A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.

Подробнее
18-06-2015 дата публикации

Substrate Structures and Methods

Номер: US20150167198A1
Принадлежит: Tivra Corporation

A process for separating a substrate from an epitaxial layer comprises forming a multilayer substrate comprising a substrate, a lattice matching layer and an epitaxial layer. The method further comprises etching the lattice matching layer by one of a liquid or a vapor phase acid. The lattice matching layer is a metal alloy between the substrate and the epitaxial layer and serves as an etching release layer. The substrate can also be separated from an epitaxial layer by laser lift off process. The process comprises forming a multilayer substrate comprising a substrate, a lattice matching layer and an epitaxial layer, directing laser light at the lattice matching layer, maintaining the laser light on the lattice matching layer for a sufficient period of time so that it is absorbed by free electrons in the lattice matching layer to allow decomposition of the lattice matching layer. 1. A process for separating a substrate from an epitaxial layer , comprising:forming a multilayer substrate comprising a substrate, a lattice matching layer and an epitaxial layer, wherein the lattice matching layer is a metal alloy;etching the lattice matching layer by one of a liquid or a vapor phase acid, wherein the metal layer is between the substrate and the epitaxial layer and serves as an etching release layer.2. The process of claim 1 , wherein the substrate comprises one of sapphire claim 1 , silicon or AIN material.3. The process of claim 1 , wherein the epitaxial layer comprises one of GaN or GaAs material.4. The process of claim 1 , wherein the acid comprises hydrochloric acid and trifluoroacetic acid.5. The process of claim 1 , wherein lattice matching layer comprises a first chemical element and a second chemical element claim 1 , and wherein at least one of the first chemical element and the second chemical element belongs to group four elements in the periodic table.6. The process of claim 6 , wherein the first chemical element comprises Zr and the second chemical element ...

Подробнее
15-06-2017 дата публикации

CRYSTAL FILM, METHOD FOR MANUFACTURING CRYSTAL FILM, VAPOR DEPOSITION APPARATUS AND MULTI-CHAMBER APPARATUS

Номер: US20170170384A1
Принадлежит: YOUTEC CO., LTD.

To improve the single crystallinity of a stacked film in which a ZrOfilm and a YOfilm are stacked or a YSZ film. A crystal film includes a Zr film and a stacked film in which a ZrOfilm and a YOfilm formed on the Zr film are stacked, and has a peak half-value width when the stacked film is evaluated by X-ray diffraction being 0.05° to 2.0°. 18-. (canceled)9. A method for manufacturing a crystal film , comprising the steps of:forming a Zr film on a substrate heated to 700° C. or more by a vapor deposition method using a vapor deposition material having a Zr single crystal;{'sub': '2', 'forming a ZrOfilm on said Zr film on a substrate heated to 700° C. or more, by a vapor deposition method using said vapor deposition material having a Zr single crystal, and oxygen; and'}{'sub': 2', '3, 'forming a YOfilm on said ZrO2 film on a substrate heated to 700° C. or more, by a vapor deposition method using a vapor deposition material having Y, and oxygen.'}10. The method for manufacturing a crystal film according to claim 9 , wherein:said substrate has a (100) crystal plane; and{'sub': 2', '3, 'a stacked film in which said ZrO2 film and said YOfilm are stacked is oriented in (100).'}11. The method for manufacturing a crystal film according to claim 9 , wherein a peak half-value width when a stacked film in which said ZrO2 film and said YOfilm are stacked is evaluated by X-ray diffraction is 0.05° to 2.0°.12. The method for manufacturing a crystal film according to claim 9 , wherein:{'sub': 7', '3, 'on a stacked film in which said ZrO2 film and said YOfilm are stacked, an electroconductive film oriented in (100) is formed; and'}on said electroconductive film, a dielectric film oriented in (001) is formed.13. The method for manufacturing a crystal film according to claim 12 , wherein:said electroconductive film is a film containing a metal; and{'sub': '3', 'said dielectric film is represented by a general formula ABO, being a film containing a perovskite material, A including at ...

Подробнее
22-06-2017 дата публикации

Single Crystal Rhombohedral Epitaxy of SiGe on Sapphire at 450°C - 500°C Substrate Temperatures

Номер: US20170178903A1
Принадлежит:

Various embodiments may provide a low temperature (i.e., less than 850° C.) method of Silicon-Germanium (SiGe) on sapphire (AlO) (SiGe/sapphire) growth that may produce a single crystal film with less thermal loading effort to the substrate than conventional high temperature (i.e., temperatures above 850° C.) methods. The various embodiments may alleviate the thermal loading requirement of the substrate, which in conventional high temperature (i.e., temperatures above 850° C.) methods had surface temperatures within the range of 850° C.-900° C. The various embodiments may provide a new thermal loading requirement of the sapphire substrate for growing single crystal SiGe on the sapphire substrate in the range of about 450° C. to about 500° C. 1. A method of growing a Silicon-Germanium (SiGe) on a sapphire (AlO) wafer , comprising:providing a sapphire wafer;heating the sapphire wafer to a wafer surface temperature at or below about 500° C.;growing mono-crystalline SiGe structures on the sapphire wafer at the wafer surface temperature thereby forming a SiGe/sapphire wafer; andcooling the SiGe/sapphire wafer with the SiGe structures.2. The method of claim 1 , wherein heating claim 1 , growing claim 1 , and cooling is completed in less than one hour.3. The method of claim 2 , wherein the growing occurs immediately after the heating without a thermal soak step.4. The method of claim 3 , wherein a separate silicon (Si) layer is not deposited on the sapphire wafer prior to the growing.5. The method of claim 4 , wherein the wafer surface temperature is about 500° C.6. The method of claim 4 , wherein the wafer surface temperature is about 450° C.7. The method of claim 4 , wherein the wafer surface temperature is about 450° C. to about 500° C.8. The method of claim 1 , wherein the wafer surface temperature is about 500° C.9. The method of claim 1 , wherein the wafer surface temperature is about 450° C.10. The method of claim 1 , wherein the wafer surface temperature is about ...

Подробнее
22-06-2017 дата публикации

METHOD FOR MANUFACTURING SPUTTERING TARGET, METHOD FOR FORMING OXIDE FILM, AND TRANSISTOR

Номер: US20170178904A1
Принадлежит:

A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact. 1. A method for manufacturing a semiconductor device , comprising the steps of:forming a gate electrode;forming a first oxide film by using a first sputtering target comprising In, Ga and Zn over the gate electrode;forming a second oxide film by using a second sputtering target comprising In, Ga and Zn over the first oxide film;forming a source electrode over the second oxide film; andforming a drain electrode over the second oxide film,wherein the first oxide film comprises a microcrystal,wherein the second oxide film comprises a c-axis aligned crystal part,wherein an atomic ratio of metal elements of the second sputtering target satisfies Ga>In and Zn>Ga.2. The method for manufacturing a semiconductor device according to claim 1 , wherein an atomic ratio of metal elements of the first sputtering target satisfies In:Ga:Zn=1:1:1.3. The method for manufacturing a semiconductor device according to claim 1 , wherein the c-axis of the second oxide film is aligned in a direction parallel to a normal vector of a surface where the second oxide film is formed or a top surface of the second oxide film.4. The method for manufacturing a semiconductor device according to claim 1 , wherein a direction of an a-axis and a b-axis of a first region of ...

Подробнее
29-06-2017 дата публикации

ELECTRODE HAVING NANO MESH MULTI-LAYER STRUCTURE, USING SINGLE CRYSTAL COPPER, AND MANUFACTURING METHOD THEREFOR

Номер: US20170186511A1
Принадлежит:

The present invention relates to an electrode having a multilayer nanomesh structure using single-crystalline copper and a method for manufacturing same, the electrode comprising: a substrate; a single-crystalline copper electrode layer formed on the substrate and having a hive-shaped pattern with a nano-sized line width; and a metal oxide layer formed on the single-crystalline copper electrode layer, this providing an electrode having excellent optical transmittance, low electrical sheet resistance, and excellent mechanical stability. The present invention is technically characterized by an electrode having a multilayer nanomesh structure using single-crystalline copper, the electrode comprising: a substrate; a single-crystalline copper electrode layer formed on the substrate and having a hive-shaped pattern with a nano-sized line width; and a metal oxide layer formed on the single-crystalline copper electrode layer. 1. An electrode having a multilayer nanomesh structure made of single-crystalline copper , the electrode comprising:a substrate;a single-crystalline copper electrode layer formed on the substrate and having a hive-shaped pattern with a nano-sized line width; anda metal oxide layer formed on the single-crystalline copper electrode layer.2. The electrode having a multilayer nanomesh structure made of single-crystalline copper according to claim 1 , wherein the substrate is a polyimide substrate or a polyethylene terephthalate substrate.3. The electrode having a multilayer nanomesh structure made of single-crystalline copper according to claim 1 , wherein the single-crystalline copper electrode layer has a thickness of 30 to 150 nm.4. The electrode having a multilayer nanomesh structure made of single-crystalline copper according to claim 1 , wherein the metal oxide is a chemical compound of zinc oxide (ZnO) or aluminum-doped zinc oxide (AZO).5. A method for manufacturing an electrode having a multilayer nanomesh structure made of single-crystalline ...

Подробнее
23-07-2015 дата публикации

PERPENDICULAR MAGNETIC RECORDING MEDIUM, METHOD OF MANUFACTURING THE SAME, AND MAGNETIC RECORDING/REPRODUCTION APPARATUS

Номер: US20150206547A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

A perpendicular magnetic recording medium according to an embodiment includes a soft underlayer, an orientation control layer mainly containing Ni having a face-centered cubic structure, a grain size control layer including a plurality of metal oxide posts having a pitch dispersion of 15% or less and crystal grains having grown in a region defined by the plurality of metal oxide posts, and having a hexagonal close-packed structure or face-centered cubic structure, and a perpendicular magnetic recording layer, formed in this order on a substrate. 1. A perpendicular magnetic recording medium comprising:a substrate;a soft underlayer formed on the substrate;an orientation control layer formed on the soft underlayer and mainly containing nickel having a face-centered cubic structure;a grain size control layer including a plurality of metal oxide posts formed on the orientation control layer and having a pitch dispersion of not more than 15%, and crystal grains having grown in a region defined by the plurality of metal oxide posts, and having a hexagonal close-packed structure or the face-centered cubic structure; anda perpendicular magnetic recording layer formed on the grain size control layer.2. The medium according to claim 1 , wherein the metal oxide posts have a height of not more than 5 nm and a diameter of not more than 5 nm.3. The medium according to claim 1 , wherein the orientation control layer and the grain size control layer are in contact with each other.4. The medium according to claim 1 , wherein the orientation control layer mainly contains a nickel-tungsten alloy.5. The medium according to claim 1 , wherein the grain size control layer mainly contains ruthenium.6. The medium according to claim 1 , wherein the metal oxide posts mainly contain alumina.7. The medium according to claim 6 , wherein the metal oxide posts are formed by forming an AlSi layer on the orientation control layer and performing etching.8. The medium according to claim 1 , wherein a ...

Подробнее
12-07-2018 дата публикации

TRANSLATING LAYER FOR COMBINING FCC AND HCP LATTICE STRUCTURES

Номер: US20180197571A1
Автор: Thiele Jan-Ulrich
Принадлежит:

An apparatus includes a substrate, a plurality of layers overlying the substrate, a hexagonal close packed (hcp) translating layer, and an hcp layer overlying the hcp translating layer. A top layer of the multiple layers has a face centered cube (fcc) lattice structure. The hcp translating layer overlies the top layer. The hcp translating layer interfaces between the top layer and the hcp layer, and columnar structure of the top layer aligns with the hcp layer through the hcp translating layer. 1. An apparatus comprising:a substrate;a plurality of layers overlying the substrate, wherein a top layer of the plurality of layers has a face centered cube (fcc) lattice structure;a hexagonal close packed (hcp) translating layer overlying the top layer; andan hcp layer overlaying the hcp translating layer, wherein the hcp translating layer interfaces between the top layer and the hcp layer, and wherein columnar structure of the top layer aligns with the hcp layer through the hcp translating layer.2. The apparatus of claim 1 , wherein the plurality of layers comprises:an hcp lattice structure; andan fcc translating layer overlaying a top layer of the hcp lattice structure, wherein the fcc translating layer interfaces between the top layer and the hcp lattice structure, and wherein columnar structure of the hcp lattice structure aligns with the top layer through the fcc translating layer.3. The apparatus of claim 2 , wherein the fcc translating layer comprises ZnO.4. The apparatus of claim 3 , wherein the ZnO is doped to reduce its resistivity.5. The apparatus of claim 3 , wherein the doping material is selected from a group consisting of Al claim 3 , Ga claim 3 , and In.6. The apparatus of claim 2 , wherein the hcp lattice structure comprises Ru.7. The apparatus of claim 1 , wherein the hcp translating layer comprises ZnO.8. The apparatus of claim 7 , wherein the ZnO is doped to reduce its resistivity.9. The apparatus of claim 8 , wherein the doping material is selected from ...

Подробнее
03-08-2017 дата публикации

SURFACE-COATED CUTTING TOOL HAVING EXCELLENT CHIP RESISTANCE

Номер: US20170216930A1
Принадлежит: MITSUBISHI MATERIALS CORPORATION

A surface-coated cutting tool has a hard coating layer and a tool body, which is coated with a lower layer including a TiCN layer having at least an NaCl type face-centered cubic crystal structure and an upper layer formed of a TiAlCN layer having a single phase crystal structure of NaCl type face-centered cubic crystals or a mixed phase crystal structure of NaCl type face-centered cubic crystals and hexagonal crystals. The tool body is further coated with an outermost surface layer including an AlOlayer, when the layer of a complex nitride or complex carbonitride of Ti and Al is expressed by the composition formula: (TiAl)(CN), the average amount Xave of Al in Ti and Al and the average amount Yave of C in C and N (both Xave and Yave are atomic ratios) respectively satisfy 0.60≦Xave≦0.95 and 0≦Yave≦0.005. 1. A surface-coated cutting tool comprising:a hard coating layer constituted by a lower layer and an upper layer; anda tool body on a surface of which the hard coating layer is formed, said tool body being made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, and a cubic boron nitride-based ultrahigh-pressure sintered body, wherein(a) the lower layer is a Ti compound layer that is formed of one layer or two or more layers of a Ti carbide layer, a Ti nitride layer, a Ti carbonitride layer, a Ti oxycarbide layer, and a Ti oxycarbonitride layer and has a total average layer thickness of 1 μm to 20 μm, and includes a Ti carbonitride layer having at least an NaCl type face-centered cubic crystal structure,(b) the upper layer is a layer of a complex nitride or complex carbonitride of Ti and Al having a single phase crystal structure of NaCl type face-centered cubic crystals or a mixed phase crystal structure of NaCl type face-centered cubic crystals and hexagonal crystals with an average layer thickness of 1 μm to 20 μm,{'sub': 1-x', 'x', 'y', '1-y, '(c) in a case where the layer of a complex nitride or complex carbonitride of Ti and ...

Подробнее
01-09-2016 дата публикации

PROCESS FOR MAKING LEAD ZIRCONATE TITANATE (PZT) LAYERS AND/OR PLATINUM ELECTRODES AND PRODUCTS THEREOF

Номер: US20160254439A1

A method of making a piezoelectric device comprising providing a deposition chamber, the deposition chamber having reduced pressure therein; loading a substrate into the deposition chamber; sputter depositing hexagonal 001 oriented titanium on the substrate; providing an oxygen anneal to convert 001 oriented titanium into 100 oriented rutile TiO; sputter depositing a 111 or 100 oriented textured conducting material for use as an electrode; sputter depositing a hexagonal 001 oriented titanium and providing an oxygen anneal in a lead oxide environment to convert 001 oriented titanium into 100 oriented rutile TiOor PbTiO; sputter depositing textured lead zirconate titanate PbZrTi0having an 001 orientation as a piezoelectric layer, and sputter depositing a textured electrode on top of the textured lead zirconate titanate; whereby processing of the layers within the deposition chamber provides minimized exposure to ambient contamination and improved texturing in the resulting films.

Подробнее
20-11-2014 дата публикации

Preparation Method of Manufacturing Thermoelectric Nanowires Having Core/Shell Structure

Номер: US20140342488A1

Disclosed is a preparation method of manufacturing a thermoelectric nanowire having a core/shell structure. The preparation method of thermoelectric nanowire includes preparing a substrate provided with an oxide layer formed thereon, and forming a Bi thin film on the oxide layer, heat treating a structure produced during forming the Bi thin film to induce compressive stress due to differences in coefficients of thermal expansion between the substrate, the oxide layer and the Bi thin film, to grow a Bi single crystal nanowire on the Bi thin film, and cooling the substrate of a structure on which the nanowire is grown to a low temperature, and sputtering a thermoelectric material on the Bi single crystal nanowire in a cooled state to manufacture a thermoelectric nanowire having a core/shell structure of Bi/thermoelectric material.

Подробнее
07-10-2021 дата публикации

EPI-GROWTH APPARATUS OF SEPARATE CHAMBER TYPE

Номер: US20210310153A1
Принадлежит:

Disclosed herein is a separate chamber type epi-growth apparatus including a reaction chamber having a growth space, a substrate mounting unit disposed in the growth space and allowing a substrate to be mounted thereon, a metal oxide treating unit treating a metal oxide in a space independent from the growth space so that metal ions and oxygen ions generated from the metal oxide are supplied to the substrate, an arsenic supply unit installed to face the substrate and supplying arsenic ions to the substrate, an oxygen radical supply unit installed to face the substrate, dissociating oxygen molecules in a gaseous state, and supplying oxygen radicals to the substrate, and a vacuum control unit independently controlling a vacuum state of the reaction chamber and the metal oxide treating unit. 1. A separate chamber type epi-growth apparatus comprising:a reaction chamber having a growth space;a substrate mounting unit disposed in the growth space and allowing a substrate to be mounted thereon;a metal oxide treating unit treating a metal oxide in a space independent from the growth space so that metal ions and oxygen ions generated from the metal oxide are supplied to the substrate;an arsenic supply unit installed to face the substrate and supplying arsenic ions to the substrate;an oxygen radical supply unit installed to face the substrate and additionally supplying oxygen radicals to the substrate; anda vacuum control unit independently controlling a vacuum state of the reaction chamber and the metal oxide treating unit.2. The separate chamber type epi-growth apparatus of claim 1 , whereinthe metal oxide treating unit includes:a metal oxide treatment chamber having an evaporation space independent from the growth space;a mount disposed in the evaporation space to face the growth space and allowing a zinc oxide plate as the metal oxide to be installed thereon;an electron beam irradiator irradiating the zinc oxide plate with an electron beam to cause zinc ions and oxygen ...

Подробнее
21-09-2017 дата публикации

Molten Target Sputtering (MTS) Deposition for Enhanced Kinetic Energy and Flux of Ionized Atoms

Номер: US20170268122A1
Принадлежит:

Various embodiments provide Molten Target Sputtering (MTS) methods and devices. The various embodiments may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules for better crystal formation at low temperature operation. The various embodiment MTS methods and devices may enable the growth of a single crystal SiGefilm on a substrate heated to less than about 500° C. The various embodiment MTS methods and devices may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules without requiring the addition of extra systems.

Подробнее
06-10-2016 дата публикации

METHOD FOR MANUFACTURING MAGNETIC RECORDING MEDIUM

Номер: US20160293199A1
Принадлежит:

The purpose of the present invention is to provide a method for manufacturing a magnetic recording medium including a magnetic recording layer having a larger magnetic anisotropic constant Ku. The method according to the present invention includes the steps of: (a) preparing a substrate; (b) heating the substrate to a temperature of 350° C. or higher, and depositing a non-magnetic material containing MgO as a main component to form a base layer; and (c) forming a magnetic recording layer onto the base layer. 1. A method for manufacturing a magnetic recording medium comprising the steps of:(a) preparing a substrate;(b) heating the substrate to a temperature of 350° C. or higher and depositing a non-magnetic material comprising MgO as a main component, to form a base layer; and(c) forming a magnetic recording layer onto the base layer.2. The method for manufacturing a magnetic recording medium according to claim 1 , further comprising the step of:(b′) depositing Cr metal or an alloy having a bcc structure and comprising Cr as a main component, to form a second base layer,prior to the step (b).3. The method for manufacturing a magnetic recording medium according to claim 1 , wherein a material for forming an ordered alloy is deposited in the step (c).4. The method for manufacturing a magnetic recording medium according to claim 1 , wherein a magnetic material for forming magnetic crystal grains and a non-magnetic material for forming a non-magnetic grain boundary which surrounds the magnetic crystal grains are deposited in the step (c).5. The method for manufacturing a magnetic recording medium according to claim 4 , wherein the magnetic material comprises a material for forming an ordered alloy. The invention some constitutional examples of which are described in the specification relates to a method for manufacturing a magnetic recording medium. Particularly, it relates to a method for manufacturing a magnetic recording medium which is used in a hard disc magnetic ...

Подробнее
04-10-2018 дата публикации

FERROELECTRIC CRYSTAL FILM, ELECTRONIC COMPONENT, MANUFACTURING METHOD OF FERROELECTRIC CRYSTAL FILM, AND MANUFACTURING APPARATUS THEREFOR

Номер: US20180282896A1
Принадлежит:

There is provided a manufacturing method of a ferroelectric crystal film in which an orientation of a seed crystal film is transferred preferably and a film deposition rate is suitable for volume production. 1. A manufacturing apparatus for a ferroelectric crystal film , comprising:a first apparatus forming a ferroelectric seed crystal film having an orientation in a predetermined face over a substrate in epitaxial growth by a sputtering method;a second apparatus performing coating to form an amorphous film including ferroelectric material over said ferroelectric seed crystal film by a spin-coat coating method; anda third apparatus heating said ferroelectric seed crystal film and said amorphous film in an oxygen atmosphere to oxidize and crystallize said amorphous film, and thereby forming a ferroelectric coated-and-sintered crystal film.2. The manufacturing apparatus for a ferroelectric crystal film according to claim 1 , whereinsaid ferroelectric coated-and-sintered crystal film has an orientation in the same face as said predetermined face.3. The manufacturing apparatus for a ferroelectric crystal film according to claim 1 , wherein{'sub': 3', '3, 'each of said ferroelectric seed crystal film and said ferroelectric coated-and-sintered crystal film is a Pb(Zr, Ti)Ofilm or a (Pb, A) (Zr, Ti)Ofilm and A is configured with at least one kind selected from the group consisting of Li, Na, K, Rb, Ca, Sr, Ba, Bi, and La.'}4. The manufacturing apparatus for a ferroelectric crystal film according to claim 3 , wherein{'sub': 3', '3, 'claim-text': {'br': None, '60/40≤Zr/Ti≤40/60\u2003\u2003(1)'}, 'a Zr/Ti ratio in the number of elements for said Pb(Zr, Ti)Ofilm or (Pb, A) (Zr, Ti)Ofilm satisfies the following formula (1).'}5. The manufacturing apparatus for a ferroelectric crystal film according to claim 3 , wherein{'sub': 3', '3, 'claim-text': [{'br': None, 'Pb/(Zr+Ti)<1.06\u2003\u2003(2)'}, {'br': None, '(Pb+A)/(Zr+Ti)≤1.35\u2003\u2003(3)'}], 'each ratio in the number of ...

Подробнее
03-09-2020 дата публикации

METHODS FOR IMPROVING LOADING RATIO OF HYDROGEN GAS

Номер: US20200277185A1
Принадлежит:

Methods and apparatus for improving the loading ratio of a hydrogen gas in a transition metal are disclosed. Blocking desorption sites on the surface of a metallic structure increases the partial hydrogen/deuterium pressure when the absorption and desorption processes reach an equilibrium. The higher the number of desorption sites that are blocked, the higher the equilibrium pressure can be reached for attaining a higher hydrogen loading ratio. Moreover, since hydrogen desorption occurs at grain boundaries, reducing grain boundaries is conducive to reducing the hydrogen desorption rate. Methods and apparatus for increasing grain sizes to reduce grain boundaries are also disclosed. 2. The method of claim 1 , wherein the film is metallic.3. The method of claim 1 , wherein the film is semi-metallic.4. The method of any of the preceding claims claim 1 , wherein the film is one to five monolayers thick.5. The method of claim 1 , wherein the film comprises one or more of the following elements: titanium claim 1 , zirconium claim 1 , hafnium claim 1 , vanadium claim 1 , niobium claim 1 , tantalum claim 1 , chromium claim 1 , molybdenum claim 1 , tungsten claim 1 , iron claim 1 , aluminum claim 1 , gallium claim 1 , indium claim 1 , silicon claim 1 , germanium claim 1 , and tin.6. The method of claim 1 , wherein the transition metal is palladium claim 1 , iridium claim 1 , nickel claim 1 , platinum claim 1 , copper claim 1 , silver claim 1 , gold claim 1 , zinc claim 1 , titanium claim 1 , zirconium claim 1 , hafnium claim 1 , chromium claim 1 , vanadium claim 1 , niobium claim 1 , tantalum claim 1 , molybdenum claim 1 , tungsten claim 1 , iron claim 1 , ruthenium claim 1 , rhodium claim 1 , aluminum claim 1 , indium claim 1 , tin claim 1 , lead claim 1 , or mixtures thereof claim 1 , preferably palladium.7. The method of claim 1 , wherein the improved hydrogen loading ratio is 0.9 or more.9. The method of claim 8 , wherein the transition metal is palladium.10. The method ...

Подробнее
29-10-2015 дата публикации

METHOD OF PRODUCING FREE-STANDING NET-SHAPE SAPPHIRE

Номер: US20150308013A1
Принадлежит: RUBICON TECHNOLOGY, INC.

A method for producing one or more free-standing aluminum oxide windows or laminates by using a substrate of aluminum oxide and one or more sacrificial layers that each separates one or more deposited aluminum oxide layer. The sacrificial layer may be decomposed to producing one or more a free-standing aluminum oxide windows. The free-standing windows or laminates are substantially in finished form requiring little or no post growth processing. The produced windows or laminates may be hard, scratch resistant net-shaped sapphire ready for use in cell phones, electronic devices, a tablet computer, watches, glass applications, or the like. 1. A super-lattice comprising:a substrate of aluminum oxide;a first sacrificial layer of metal oxide on the substrate; anda first layer of aluminum oxide deposited on the first sacrificial layer.2. The super-lattice of claim 1 , wherein the aluminum oxide is sapphire.3. The super-lattice of claim 1 , further comprising one or more additional sacrificial layers and one more additional aluminum oxide layers claim 1 , in alternating sequence.4. The super-lattice of claim 3 , wherein any of the sacrificial layers has a thickness of about 10 nanometers to about 200 nanometers and the thickness of any of the aluminum oxide layers is about 5 microns to about 500 microns.5. The super-lattice of claim 1 , wherein the metal oxide is nickel-oxide claim 1 , zinc oxide or chromium oxide.6. A process for producing net-shaped aluminum oxide windows comprising the steps of:providing an aluminum oxide substrate;layering a sacrificial layer on the substrate;creating an aluminum oxide layer on the sacrificial layer; anddecomposing the sacrificial layer to create a free-standing aluminum oxide window or laminate.7. The process of claim 6 , further comprising the steps of:layering at least one additional sacrificial layer and creating at least one additional aluminum oxide layer, so that the at least one additional sacrificial layer separates two ...

Подробнее
19-11-2015 дата публикации

USE OF FREESTANDING NITRIDE VENEERS IN SEMICONDUCTOR DEVICES

Номер: US20150329988A1
Принадлежит: Goldeneye, Inc.

Thin freestanding nitride veneers can be used for the fabrication of semiconductor devices. These veneers are typically less than 100 microns thick. The use of thin veneers also eliminates the need for subsequent wafer thinning for improved thermal performance and 3D packaging.

Подробнее
08-12-2016 дата публикации

EPITAXY BASE, SEMICONDUCTOR LIGHT EMITTING DEVICE AND MANUFACTURING METHODS THEREOF

Номер: US20160355948A1
Автор: Lai Yen-Lin, Wu Jyun-De
Принадлежит:

An epitaxy base including a substrate and a nucleating layer disposed on the substrate. The nucleating layer is an AlN layer with a single crystal structure. A diffraction pattern of the nucleating layer includes a plurality of dot patterns. Each of the dot patterns is substantially circular, and a ratio between lengths of any two diameters perpendicular to each other on each of the dot patterns ranges from approximately 0.9 to approximately 1.1. A semiconductor light emitting device, a manufacturing method of the epitaxy base, and a manufacturing method of the light emitting semiconductor device are further provided. 1. An epitaxy base , comprising:a substrate; anda nucleating layer, disposed on the substrate, wherein the nucleating layer is an aluminum nitride layer having a single crystal structure and the lattice thereof is well-organized, an electron diffraction pattern of the nucleating layer comprises a plurality of dot patterns, each of the dot patterns is substantially circular, and a ratio between lengths of any two diameters perpendicular to each other on each of the dot patterns ranges from approximately 0.9 to approximately 1.1.2. The epitaxy base as claimed in claim 1 , wherein a surface of the substrate close to the nucleating layer is a plane.3. The epitaxy base as claimed in claim 1 , wherein the nucleating layer is formed on the substrate by sputtering.4. The epitaxy base as claimed in claim 1 , further comprising a buffer layer disposed on the nucleating layer.5. A manufacturing method of an epitaxy base claim 1 , comprising:providing a substrate; andforming a nucleating layer in a form of a single crystal structure on the substrate by sputtering, wherein the nucleating layer is an aluminum nitride layer and the lattice thereof is well-organized, an electron diffraction pattern of the nucleating layer comprises a plurality of dot patterns, each of the dot patterns is substantially circular, and a ratio between lengths of any two diameters ...

Подробнее
15-12-2016 дата публикации

OFF-AXIS SPUTTERING DEPOSITION FOR GROWTH OF SINGLE CRYSTALLINE FILMS OF A BROAD RANGE OF COMPLEX MATERIALS

Номер: US20160362812A1
Автор: YANG Fengyuan
Принадлежит:

Systems and methods are disclosed for growing crystalline films of a broad range of complex materials with high crystalline quality by off-axis sputtering deposition. The synthesis of sputtering targets relating to the systems and methods is also described. Materials that can be grown include binary, ternary and quaternary oxides, metals and alloys, and intermetallics with simple or complex crystal structures. The disclosed systems and methods can be regarded as a broadly applicable for the growth of many other materials having magnetic, electronic, and optical applications. 1. A method for thin-film deposition of a material comprising:providing a sputtering target, wherein the sputtering target is comprised of at least one pressed powder of at least one constituent material;providing a substrate, wherein the substrate is located at an angle relative to the sputtering target;applying energy to the sputtering target to deposit, via sputtering deposition, at least one film of the material on the substrate, wherein the material can comprise at least one nonvolatile single crystalline film, and wherein growth parameters associated with the sputtering deposition are optimized for the sputtering deposition of the material.2. The method of claim 1 , wherein the material can comprise one or more metals claim 1 , intermetallic compounds claim 1 , or one or more oxides.3. The method of claim 1 , wherein the growth parameters can comprise one or more of at least one sputtering gas claim 1 , a total pressure of the at least one sputtering gas claim 1 , an oxygen percentage in the at least one sputtering gas for oxide growth claim 1 , a substrate location claim 1 , a substrate temperature claim 1 , a sputtering power source claim 1 , and a deposition rate.4. The method of claim 3 , wherein the substrate location comprises an off-axis angle value from about 45 degrees to about 70 degrees claim 3 , inclusive claim 3 , with respect to a target normal direction claim 3 , and ...

Подробнее
28-12-2017 дата публикации

METHOD FOR PREPARING COPPER THIN FILM BY USING SINGLE CRYSTAL COPPER TARGET

Номер: US20170369986A1
Принадлежит:

A method of manufacturing a copper thin film using a single-crystal copper target, and more particularly, a method of manufacturing a copper thin film using a single-crystal copper target, wherein a copper thin film is deposited on a sapphire disk substrate through high-frequency sputtering using a single-crystal copper target grown through a Czochralski process, and may thus exhibit high quality in terms of crystallinity. The method includes depositing a copper thin film on a sapphire disk substrate through a high-frequency sputtering process using a disk-shaped single-crystal copper target obtained by cutting cylindrical single-crystal copper grown through a Czochralski process. 1. A method of manufacturing a copper thin film using a single-crystal copper target , comprising depositing a copper thin film on a sapphire disk substrate through a high-frequency sputtering process using a disk-shaped single-crystal copper target obtained by cutting a cylindrical single-crystal copper grown through a Czochralski process.21110001. The method of claim 1 , wherein a height of a peak () of the copper thin film is at least one times a height of a peak () of the sapphire disk substrate on an X-ray diffraction (XRD) pattern.3. The method of claim 1 , wherein claim 1 , in the copper thin film claim 1 , a resistivity drop claim 1 , in which a resistivity is lower than an average resistivity claim 1 , occurs in a range from room temperature to 200° C.4. The method of claim 1 , wherein the high-frequency sputtering is performed by applying a high-frequency power of 30 to 60 W at 100 to 200° C. for 2 to 3 hr. This is a continuation of International Patent Application PCT/KR2015/002837 filed on Mar. 23, 2015, which designates the United States, the entire contents of which are incorporated herein by reference.The present invention relates to a method of manufacturing a copper thin film using a single-crystal copper target, and more particularly to a method of manufacturing a copper ...

Подробнее
08-10-2014 дата публикации

用于制备化合物的气相沉积方法

Номер: CN104093876A
Принадлежит: Ilika Technologies Ltd, Toyota Motor Corp

本发明提供一种用于制备化合物的气相沉积方法,其中,所述方法包括将所述化合物的每种成分元素以蒸气提供,和将所述成分元素蒸气共沉积在共同的基材上,其中:使用裂化源提供至少一种成分元素的蒸气;使用等离子源提供至少一种其他成分元素的蒸气;并且提供至少一种另外的成分元素蒸气;其中,所述成分元素在所述基材上反应,以形成所述化合物。

Подробнее
03-12-2009 дата публикации

METHOD AND DEVICE FOR ONE-CRYSTAL PRODUCTION WITH A GAS-PERMANENT WALLPAPE

Номер: DE502004010263D1
Принадлежит: SiCrystal AG

Подробнее
23-08-2016 дата публикации

Epitaxial film-forming method, sputtering device, method for manufacturing semiconductor light-emitting element, semiconductor light-emitting element, and illumination device

Номер: KR101650353B1

본 발명은, 스퍼터링법에 의해, α-Al 2 O 3 기판 위에 고품질의 III족 질화물 반도체 박막을 에피택셜 성장시키는 에피택셜막 형성 방법을 제공하는 것을 목적으로 한다. 본 발명의 일 실시형태에 따른 에피택셜막 형성 방법은, 스퍼터링 장치(1)의 히터 전극(104)과 바이어스 전극(103)을 구비한 기판 홀더(111) 위에 배치된 α-Al 2 O 3 기판에 대해서, III족 질화물 반도체 박막의 에피택셜막을 형성할 때에, 히터 전극(104)에 의해 α-Al 2 O 3 기판을 소정 온도로 유지한 상태에서, 타깃 전극(102)에 고주파 전력을 인가함과 함께 바이어스 전극(103)에 고주파 바이어스 전력이 인가된다. 이러한 프로세스에서는, 고주파 전력과 고주파 바이어스 전력의 주파수 간섭이 발생하지 않도록 인가된다. An object of the present invention is to provide an epitaxial film forming method for epitaxially growing a high-quality group III nitride semiconductor thin film on an? -Al 2 O 3 substrate by a sputtering method. Epitaxial film forming method, the α-Al 2 O 3 substrate disposed on a substrate holder 111 having the heater electrode 104 and bias electrode 103 of the sputtering apparatus 1 according to an embodiment of the present invention; to, in forming a film epitaxy of III-nitride semiconductor thin film with respect, while maintaining the α-Al 2 O 3 substrate to a predetermined temperature by the heating elements (104) state, applying a high-frequency power to the target electrode (102) the A high frequency bias power is applied to the bias electrode 103. [ In this process, frequency interference between high-frequency power and high-frequency bias power is applied so as not to occur.

Подробнее
25-11-2015 дата публикации

For the preparation of the CVD (Chemical Vapor Deposition) method of phosphate compounds

Номер: CN103703161B
Принадлежит: Ilika Technologies Ltd, Toyota Motor Corp

本发明提供一种用于制备磷酸盐化合物的气相沉积方法,其中,所述方法包括:将所述磷酸盐化合物的每种成分元素以蒸气提供,和将所述成分元素蒸气共沉积在共同的基材上,其中,所述成分元素在所述基材上反应,以形成所述磷酸盐化合物。

Подробнее
26-09-1981 дата публикации

Patent JPS5641165B2

Номер: JPS5641165B2
Автор: [UNK]
Принадлежит: [UNK]

Подробнее
13-04-2021 дата публикации

Radiation detector, scintillator panel, and method of manufacturing the same

Номер: CN105378507B

根据实施例,一种辐射检测器包括:光电转换基板,将光转换为电信号;以及闪烁体层,与该光电转换基板接触并将外部入射的辐射转换为光。该闪烁体层可由在作为卤化物的CsI中含有Tl作为激活剂的磷光体制成。该磷光体中的激活剂的浓度是1.6mass%±0.4mass%,且在平面内方向和膜厚度方向上的激活剂的浓度分布为±15%内。

Подробнее
31-08-1978 дата публикации

Device for producing compound semiconductor film

Номер: JPS5399762A
Принадлежит: Futaba Corp

Подробнее
18-02-2020 дата публикации

GaP nanowire and preparation method and application thereof

Номер: CN107858754B
Автор: 宫建茹, 董泽健

本发明提供了一种GaP纳米线及其制备方法和用途。GaP纳米线的制备方法为:1)在导电基底上覆盖催化剂;2)将GaP粉末装入容器中;3)将导电基底和容器置于两端开口的石英管两侧,放到双温区管式炉中;4)对双温区管式炉抽真空,通保护气,加热,使第一温区升温至930℃‑1000℃,第二温区升温至620℃‑650℃,保温,得GaP纳米线。本发明还提供一种GaP/GaPN核壳纳米线,其制备方法为:将GaP纳米线置于两端开口的石英管中,放到反应炉中,抽真空,通入保护气,加热反应炉,升温至720℃‑800℃,停止抽真空并停止通入保护气,通入氨气,保温,得到核壳纳米线。本发明提供的纳米线作为光电极。

Подробнее
01-07-2022 дата публикации

Method for preparing single crystal nickel ferrite film

Номер: CN113235159B
Автор: 王悦, 薛德胜
Принадлежит: LANZHOU UNIVERSITY

本发明公开了一种制备单晶镍铁氧体薄膜的方法,包括以下步骤:在室温下,采用镍铁氧体靶材,在单晶基片上通过磁控溅射,制备得到单晶镍铁氧体薄膜。本发明在室温下通过磁控溅射法可以制备得到单晶镍铁氧体薄膜,无需在溅射过程中对基片进行加热或是后续进行热处理,操作简单,可重复性高,应用前景广阔。

Подробнее
28-09-2018 дата публикации

The method for improving hydrogen load ratio

Номер: CN108602668A

本发明公开了提高过渡金属中氢气的加载比率的方法和设备。阻塞金属结构表面上的解吸位点增加了吸收和解吸过程达到平衡时氢/氘分压。阻塞的解吸位点的数量越多,可以达到越高的平衡压力以获得更高的氢加载比率。此外,由于在晶界处发生氢解吸,因此减少晶界有利于降低氢解吸速率。还公开了增加晶粒尺寸以减小晶界的方法和设备。

Подробнее
31-08-2004 дата публикации

MIIIN based materials and methods and apparatus for producing same

Номер: US6784085B2
Принадлежит: North Carolina State University

A high deposition rate sputter method is utilized to produce bulk, single-crystal, low-defect density Group III nitride materials suitable for microelectronic and optoelectronic devices and as substrates for subsequent epitaxy, and to produce highly oriented polycrystalline windows. A template material having an epitaxial-initiating growth surface is provided. A Group III metal target is sputtered in a plasma-enhanced environment using a sputtering apparatus comprising a non-thermionic electron/plasma injector assembly, thereby to producing a Group III metal source vapor. The Group III metal source vapor is combined with a nitrogen-containing gas to produce a reactant vapor species comprising Group III metal and nitrogen. The reactant vapor species is deposited on the growth surface to produce a single-crystal M III N layer thereon. The template material is removed, thereby providing a free-standing, single-crystal M III N article having a diameter of approximately 0.5 inch or greater and a thickness of approximately 50 microns or greater.

Подробнее
14-05-2012 дата публикации

Method and device for ain single crystal production with gas-permeable crucible walls

Номер: KR101146050B1
Принадлежит: 시크리스탈 아게

본 발명은 AIN 단결정(32)을 제조하기 위한 방법 및 장치에 관한 것이다. 기체상은 도가니(10)의 보관 영역(12) 내에 있는 AIN-원재료(30)의 부분으로부터 형성된다. 상기 AIN 단결정(32)은 도가니(10)의 결정화 영역(13) 내에서 기체상으로부터 성장한다. 적어도 하나의 기체 성분, 예컨대 상기 기체 상태로 존재하는 성분들의 일부분은 특히 2가지 방향으로, 도가니(10)의 외부 영역(15)과 도가니(10)의 내부 영역(11) 사이에서 확산될 수 있다. The present invention relates to a method and apparatus for producing AIN single crystal (32). The gas phase is formed from a portion of the AIN-raw material 30 in the storage region 12 of the crucible 10. The AIN single crystal 32 grows from the gas phase in the crystallization region 13 of the crucible 10. At least one gaseous component, such as a portion of the components present in the gaseous state, can diffuse between the outer region 15 of the crucible 10 and the inner region 11 of the crucible 10, in particular in two directions. .

Подробнее
21-02-2014 дата публикации

System and process for high-density, low-energy plasma enhanced vapor phase epitaxy

Номер: KR101358966B1
Автор: 캐널 한스 본
Принадлежит: 에피스피드 에스.에이.

화합물 반도체층들을 빠르게 에피택셜 증착하기 위한 장치 및 공정은 플라즈마 인헨스드 기상 에피택시를 위한 저 에너지 고밀도의 플라즈마 발생 장치를 포함한다. 상기 공정은, 일 단계에서, 증착 챔버 내에서 비 금속 원소들의 가스들과 하나 이상의 금속 증기들을 결합하는 것을 제공한다. 이후, 밀도 높은 저 에너지 플라즈마의 존재하에서 가스들을 고도로 활성화시킨다. 금속 증기와 고도로 활성화된 가스들을 반응시킴과 동시에, 플라즈마 내에 액침된 지지부(support)와 통신하는 가열된 기판상에 반응 결과(reaction product)를 증착시킴으로써, 기판 위에 반도체층을 형성한다. 상기 공정은 탄소가 없으며, 큰 면적의 실리콘 기판들 상에서 1000℃ 미만의 기판 온도 및 최대 10nm/s의 성장 속도에서의 나이트라이드 반도체들의 에피택셜 성장에 특히 적합하다. 본 공정은 탄소 함유 가스도 요구하지 않고, 수소를 방출하는 가스들도 요구하지 않으며, 유독성 캐리어 또는 반응물 가스들이 없기 때문에, 환경 친화적이다. An apparatus and process for rapidly epitaxially depositing compound semiconductor layers includes a low energy high density plasma generating device for plasma enhanced vapor phase epitaxy. The process provides, in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. The gases are then highly activated in the presence of a dense low energy plasma. A semiconductor layer is formed on the substrate by reacting the metal vapor with the highly activated gases and depositing a reaction product on a heated substrate in communication with a support immersed in the plasma. The process is carbon-free and is particularly suitable for epitaxial growth of nitride semiconductors at substrate temperatures below 1000 ° C. and growth rates up to 10 nm / s on large area silicon substrates. The process requires no carbon-containing gas, no hydrogen-releasing gases, and is environmentally friendly because there are no toxic carrier or reactant gases.

Подробнее
19-11-2008 дата публикации

M'N-based material generating apparatus and method

Номер: JP4184789B2

A method utilizes sputter transport techniques to produce arrays or layers of self-forming, self-oriented columnar structures characterized as discrete, single-crystal Group III nitride posts or columns on various substrates. The columnar structure is formed in a single growth step, and therefore does not require processing steps for depositing, patterning, and etching growth masks. A Group III metal source vapor is produced by sputtering a target, for combination with nitrogen supplied from a nitrogen-containing source gas. The III/V ratio is adjusted or controlled to create a Group III metal-rich environment within the reaction chamber conducive to preferential column growth. The reactant vapor species are deposited on the growth surface to produce single-crystal M<III>N columns thereon. The columns can be employed as a strain-relieving platform for the growth of continuous, low defect-density, bulk materials. Additionally, the growth conditions can be readjusted to effect columnar epitaxial overgrowth, wherein coalescence of the Group III nitride material occurs at the tops of the columns, thereby forming a substantially continuous layer upon which additional layers can be deposited. The intervening presence of the column structure mitigates thermal mismatch stress between substrates, films, or other layers above and below the columns. A high deposition rate sputter method utilizing a non-thermionic electron/plasma injector assembly is provided to carrying out one or more of the growth steps.

Подробнее
15-11-2012 дата публикации

Compound semiconductor laminate, process for producing the compound semiconductor laminate, and semiconductor device

Номер: KR101202073B1

본 발명은 Si 기판 상에 InSb막을 형성하는 것을 가능하게 하고, 홀 소자, 자기 저항 소자 등의 자기 센서나 적외 센서 등의 광 디바이스, 트랜지스터 등의 전자 디바이스에 대한 응용 전개를 공업적으로 제공 가능하게 하는 화합물 반도체 적층체 및 그의 제조 방법에 관한 것이다. Si 기판 (1) 상에 As를 포함하지 않는 화합물 반도체인 활성층 (2)가 직접 형성되어 있다. 이 활성층 (2)와 Si 기판 (1)의 단결정층의 계면에 As가 존재하고 있다. 화합물 반도체는 적어도 질소를 함유한다. 화합물 반도체는 단결정 박막이다. Si 기판 (1)은 벌크 단결정 기판 또는 최상층이 Si인 박막 기판이다. The present invention makes it possible to form an InSb film on a Si substrate, and to industrially provide application development for magnetic devices such as Hall elements, magnetoresistive elements, optical devices such as infrared sensors, and electronic devices such as transistors. It relates to a compound semiconductor laminate and a method for producing the same. The active layer 2 which is a compound semiconductor which does not contain As is directly formed on the Si substrate 1. As exists at the interface between the active layer 2 and the single crystal layer of the Si substrate 1. The compound semiconductor contains at least nitrogen. The compound semiconductor is a single crystal thin film. The Si substrate 1 is a bulk single crystal substrate or a thin film substrate whose uppermost layer is Si. 화합물 반도체 적층체, 반도체 디바이스, Si 기판, InSb막 Compound semiconductor laminate, semiconductor device, Si substrate, InSb film

Подробнее
07-08-2008 дата публикации

EPITAXIAL GROWTH OF ZnO WITH CONTROLLED ATMOSPHERE

Номер: US20080185580A1
Принадлежит: Stanley Electric Co Ltd

A ZnO crystal growth method has the steps of (a) preparing a substrate having a surface capable of growing ZnO crystal exposing a Zn polarity plane; (b) supplying Zn and O above the surface of the substrate by alternately repeating a Zn-rich condition period and an O-rich condition period; and (c) supplying conductivity type determining impurities above the surface of the substrate while Zn and O are supplied at the step (b).

Подробнее
12-07-1990 дата публикации

Method of purifying dry-cleaning solvent

Номер: WO1990007606A1
Автор: Masanobu Abo
Принадлежит: Novo Nordisk A/S

Contaminants containing non-polar neutral lipid are removed from a solvent that has been used for dry cleaning by placing used solvent in contact with a lipase, which is stable and exhibits an activity in the solvent, or with an immobilized product of said lipase, and with an adsorbent.

Подробнее
11-02-2014 дата публикации

System and process for high-density, low-energy plasma enhanced vapor phase epitaxy

Номер: US8647434B2
Автор: Hans Von Kaenel
Принадлежит: Sulzer Metco AG

An apparatus and process for fast epitaxial deposition of compound semiconductor layers includes a low-energy, high-density plasma generating apparatus for plasma enhanced vapor phase epitaxy. The process provides in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. Then highly activating the gases in the presence of a dense, low-energy plasma. Concurrently reacting the metal vapor with the highly activated gases and depositing the reaction product on a heated substrate in communication with a support immersed in the plasma, to form a semiconductor layer on the substrate. The process is carbon-free and especially suited for epitaxial growth of nitride semiconductors at growth rates up to 10 nm/s and substrate temperatures below 1000° C. on large-area silicon substrates. The process requires neither carbon-containing gases nor gases releasing hydrogen, and in the absence of toxic carrier or reagent gases, is environment friendly.

Подробнее
24-03-2023 дата публикации

Ion-conducting materials, electrolytes containing ion-conducting materials, and methods of forming the same

Номер: JP2023512340A
Принадлежит: Saint Gobain Ceramics and Plastics Inc

固体イオン伝導性材料は、複合金属ハロゲン化物を含むことができる。複合金属ハロゲン化物は、少なくとも1つのアルカリ金属元素を含むことができる。一実施形態において、複合金属ハロゲン化物を含む固体イオン伝導性材料は、単結晶であり得る。別の実施形態では、複合金属ハロゲン化物を含むイオン伝導性材料は、特定の結晶学的配向を有する結晶性材料とすることができる。固体電解質は、複合金属ハロゲン化物を含むイオン伝導性材料を含むことができる。【選択図】図1

Подробнее
03-11-2016 дата публикации

Manufacturing method and manufacturing device of template substrate

Номер: WO2016175096A1

The purpose of the present invention is to stably and continuously manufacture template substrates with good reproducibility by sputtering, the template substrates being metal sulfide thin films epitaxially grown on an Si(100) single crystal substrate. A barrier film 2 of metal sulfide is formed on an Si(100) single crystal substrate 1 by sputtering using a target having the composition of the metal sulfide. Then, the Si(100) single crystal substrate 1 is heated and the formed barrier film 2 is crystallized by solid phase epitaxial growth to be transformed into a barrier film 3. With the Si(100) single crystal substrate 1 kept heated, an epitaxial film 4 of the metal sulfide is epitaxially grown on the crystallized barrier film 3 by sputtering using the target having the composition of the metal sulfide.

Подробнее
12-06-1985 дата публикации

Method for forming a stream of atoms and utilization thereof in an atomic jet epitaxy process and device (e.j.a.).

Номер: EP0143792A1
Автор: Marcel Bensoussan
Принадлежит: Marcel Bensoussan, Moison Jean Marie

On forme un flux d'atomes d'un élément, par exemple d'un élément V, en irradiant un cible (17) constitué par un composé de cet élément, par exemple un composé III-V, au moyen d'un laser pulsé (21) dont la densité d'énergie par impulsion est au moins égale au seuil d'émission d'atomes dudit élément et inférieure au seuil d'ablation dudit élément ou dudit composé. Ce mode de formation d'un faisceau d'atomes peut être utilisé dans un procédé d'épitaxie pour déposer sur un substract (11) une couche d'un composé binaire III-V tel que GaAs ou InP. A flow of atoms of an element, for example of an element V, is formed by irradiating a target (17) constituted by a compound of this element, for example a compound III-V, by means of a pulsed laser. (21) whose energy density per pulse is at least equal to the emission threshold of atoms of said element and lower than the ablation threshold of said element or of said compound. This mode of formation of a beam of atoms can be used in an epitaxy process to deposit on a substract (11) a layer of a binary III-V compound such as GaAs or InP.

Подробнее
31-12-2019 дата публикации

Method for manufacturing sputtering target, method for forming oxide film, and transistor

Номер: US10522347B2
Принадлежит: Semiconductor Energy Laboratory Co Ltd

A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.

Подробнее
24-05-1994 дата публикации

Substrate of single crystal of oxide, device using said substrate and method of producing said superconductive device

Номер: US5314871A
Автор: Kozo Nakamura
Принадлежит: KOMATSU LTD

According to the present invention, when a superconductive thin film is formed on a substrate of a single crystal, a compound having a composition of SrNdGaO 4 and a K 2 NiF 4 type crystal structure is used as a material employable for the substrate. Alternatively, a single crystal composed of an oxide in which Ca, La and Cr are added to the foregoing compound is used as a material employable for the substrate. Then, a superconductive thin film composed of an oxide is formed on the substrate by employing an epitaxial growing method. Thus, the present invention makes it possible to provide a superconductive material having an excellent property of lattice alignment, a stable and high critical superconductivity temperature and a stable critical superconductivity electric current.

Подробнее
13-09-1984 дата публикации

Method for forming a stream of atoms and utilization thereof in an atomic jet epitaxy process and device (e.j.a.)

Номер: WO1984003524A1
Принадлежит: Marcel Bensoussan, Moison Jean Marie

A stream of atoms of an element, for example an element V, is formed by irradiating a target (17) made with one compound of said element, for example a compound III-V, by means of a pulsated laser (21) of which the energy density per impulsion is at least equal to the atom emission threshold of said element and lower than the ablation threshold of said element or said compound. This mode of formation of an atom beam may be used in an epitaxy process to deposit on a substrate (11) a layer of a binary compound III-V such as GaAs or InP.

Подробнее
20-11-2008 дата публикации

A method for depositing crystalline titania nanoparticles and films

Номер: WO2008118533A3
Автор: Bing Liu, Yong Che, Zhendong Hu
Принадлежит: Bing Liu, IMRA America Inc, Yong Che, Zhendong Hu

A one-step and room-temperature process for depositing nanoparticles or nanocomposite (nanoparticle-assembled) films of metal oxides such as crystalline titanium dioxide (TiO2) onto a substrate surface using ultrafast pulsed laser ablation of Titania or metal titanium target. The system includes a pulsed laser with a pulse duration ranging from a few femtoseconds to a few tens of picoseconds, an optical setup for processing the laser beam such that the beam is focused onto the target surface with an appropriate average energy density and an appropriate energy density distribution, and a vacuum chamber in which the target and the substrate are installed and background gases and their pressures are appropriately adjusted.

Подробнее
09-12-2009 дата публикации

Compound semiconductor laminate, process for producing the compound semiconductor laminate, and semiconductor device

Номер: EP2131398A1
Принадлежит: Asahi Kasei EMD Corp

The present invention relates to a compound semiconductor lamination that enables an InSb film to be formed on an Si substrate and enables development of applications to magnetic sensors, such as Hall elements, magnetoresistance elements, etc., optical devices, such as infrared sensors, etc., and electronic devices, such as transistors, etc., to be provided industrially, and a method for manufacturing the compound semiconductor lamination. An active layer (2), which is a compound semiconductor that does not contain As, is directly formed on an Si substrate (1). As is present at an interface of the active layer (2) and a single crystal layer of the Si substrate (1). The compound semiconductor contains at least nitrogen. The compound semiconductor is a single crystal thin film. The Si substrate (1) is a bulk single crystal substrate or a thin film substrate with an uppermost layer being Si.

Подробнее
09-04-2009 дата публикации

Gan crystal sheet

Номер: WO2007057892A3
Автор: Moshe Einav
Принадлежит: Mosaic Crystals Ltd, Moshe Einav

A method for forming a gallium nitride crystal sheet. According to the method a metal melt, including gallium, is brought to a vacuum of 0.01 Pa or lower and is heated to a growth temperature of between approximately 860oC and approximately 870oC. A nitrogen plasma is applied to the surface of the melt at a sub-atmospheric working pressure, until a gallium nitride crystal sheet is formed on top. Preferably, the growth temperature is of 863oC, and the working pressure is within the range of 0.05 Pa and 2.5 Pa. According to a preferred embodiment, application of the plasma includes introducing nitrogen gas to the metal melt at the working pressure, igniting the gas into plasma, directing the plasma to the surface of the metal melt, until gallium nitride crystals crystallize thereon, and maintaining the working pressure and the directed plasma until a gallium nitride crystal sheet is formed.

Подробнее
04-02-2016 дата публикации

Film formation method, vacuum treatment device, method for producing semiconductor light-emitting element, semiconductor light-emitting element, method for producing semiconductor electronic element, semiconductor electronic element, and lighting device

Номер: WO2016017047A1
Принадлежит: キヤノンアネルバ株式会社

The present invention provides a film formation method and film formation device which make it possible to produce an epitaxial film having +C polarity using a sputtering method. One of the embodiments of the present invention pertains to a film formation method for epitaxially growing, using a sputtering method, a semiconductor film having a wurtzite structure on an epitaxial growth substrate heated to a prescribed temperature by a heater, the film formation method having the following steps: first, a step for positioning the substrate on a substrate-holding part having a heater, in a manner such that the substrate is positioned so as to be only a prescribed distance away from the heater; and next, a step for forming an epitaxial film for a semiconductor film having a wurtzite structure on the substrate, while adjusting the impedance of the substrate-holding part.

Подробнее
27-06-1991 дата публикации

Process for forming epitaxial film

Номер: WO1991009161A1
Принадлежит: CANON KABUSHIKI KAISHA

A process for forming an epitaxial film by applying a bias and a high-frequency electric power for plasma generation to a target and forming a film on a biased substrate by the sputtering of the target, wherein the substrate is kept in the temperature range of 400 to 700 °C in an atmosphere where the partial pressure of each of H2O, CO and CO2 is 1.0 x 10-8 Torr in the film forming step. The obtained epitaxial film has excellent interfacial properties, an extremely reduced impurity content, a good crystallinity and an excellent step coverage, so that it can be suitably applied to semiconductor devices.

Подробнее
31-07-1980 дата публикации

Process for the production of a monocrystalline layer on a substrate

Номер: DE2644208B2
Принадлежит: SIEMENS AG

Подробнее
16-03-2021 дата публикации

Molten target sputtering (MTS) deposition for enhanced kinetic energy and flux of ionized atoms

Номер: US10947639B2

Various embodiments provide Molten Target Sputtering (MTS) methods and devices. The various embodiments may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules for better crystal formation at low temperature operation. The various embodiment MTS methods and devices may enable the growth of a single crystal Si 1-x Ge x film on a substrate heated to less than about 500° C. The various embodiment MTS methods and devices may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules without requiring the addition of extra systems.

Подробнее
02-10-2008 дата публикации

A method for depositing crystalline titania nanoparticles and films

Номер: WO2008118533A2
Автор: Bing Liu, Yong Che, Zhendong Hu
Принадлежит: IMRA AMERICA, INC.

A one-step and room-temperature process for depositing nanoparticles or nanocomposite (nanoparticle-assembled) films of metal oxides such as crystalline titanium dioxide (TiO2) onto a substrate surface using ultrafast pulsed laser ablation of Titania or metal titanium target. The system includes a pulsed laser with a pulse duration ranging from a few femtoseconds to a few tens of picoseconds, an optical setup for processing the laser beam such that the beam is focused onto the target surface with an appropriate average energy density and an appropriate energy density distribution, and a vacuum chamber in which the target and the substrate are installed and background gases and their pressures are appropriately adjusted.

Подробнее
25-04-1981 дата публикации

Patent JPS5617935B2

Номер: JPS5617935B2
Автор: [UNK]
Принадлежит: [UNK]

A method of producing compounds which comprises the steps of separately vaporizing a plurality of substances containing the component elements of a desired compound and placed in a plurality of crucibles to form vapors of the substances, mixing the vapors in a heated mixing chamber to form a mixed vapor, jetting the mixed vapor into a vacuum region to form clusters, ionizing the clusters to form cluster ions, and accelerating the cluster ions to make them impinge on a substrate. An apparatus for producing compounds which comprises a plurality of crucibles for separately vaporizing substances containing the component elements of a desired compound to form vapors of the substances, a mixing chamber for heating and mixing the vapors introduced therein to form a mixed vapor, the mixing chamber having at least one injection hole for jetting the mixed vapor into a vacuum region, communication pipes for connecting the mixing chamber to the crucibles, an ionization chamber for ionizing clusters produced from the mixed vapor jetted from the mixing chamber, means for accelerating cluster ions produced in the ionization chamber and making them impinge on a substrate, and a substrate holder for holding the substrate.

Подробнее
14-08-2013 дата публикации

Compound semiconductor single crystal manufacturing apparatus and manufacturing method

Номер: JP5262203B2
Принадлежит: Sumitomo Electric Industries Ltd

A compound semiconductor single-crystal manufacturing device (1) is furnished with: a laser light source (6) making it possible to sublime a source material by directing a laser beam onto the material; a reaction vessel (2) having a laser entry window (5) through which the laser beam output from the laser light source (6) can be transmitted to introduce the beam into the vessel interior, and that is capable of retaining a starting substrate (3) where sublimed source material is recrystallized; and a heater (7) making it possible to heat the starting substrate (3). The laser beam is shone on, to heat and thereby sublime, the source material within the reaction vessel (2), and compound semiconductor single crystal is grown by recrystallizing the sublimed source material onto the starting substrate (3); afterwards the laser beam is employed to separate the compound semiconductor single crystal from the starting substrate (3).

Подробнее
24-03-2010 дата публикации

Apparatus and method for manufacturing compound semiconductor single crystal

Номер: CN101680109A
Принадлежит: Sumitomo Electric Industries Ltd

一种化合物半导体单晶制造装置(1),具有:激光源(6),所述激光源(6)能通过将激光束照射到原料上而使得所述原料升华;具有激光入口(5)的反应容器(2),从所述激光源(6)输出的所述激光束能透过所述激光入口(5)而导入到所述反应容器的内部,且所述反应容器(2)能保持起始衬底(3),所述起始衬底(3)使所述升华的原料发生再结晶;以及加热器(7),所述加热器(7)能加热所述起始衬底(3)。通过将所述激光束照射到所述反应容器(2)内部的所述原料上对原料进行加热,由此使其升华,并将所述升华的原料在所述起始衬底(3)上再结晶以生长化合物半导体单晶。然后,利用所述激光束将所述化合物半导体单晶与所述起始衬底(3)分离。

Подробнее
30-12-2014 дата публикации

Non-polar plane of wurtzite structure material

Номер: US8921851B2
Автор: Li Chang, Yen-Teng Ho
Принадлежит: National Chiao Tung University NCTU

The present invention relates to a method for growing a novel non-polar (13 4 0) plane epitaxy layer of wurtzite structure, which comprises the following steps: providing a single crystal oxide with perovskite structure; using a plane of the single crystal oxide as a substrate; and forming a non-polar (13 4 0) plane epitaxy layer of wurtzite semiconductors on the plane of the single crystal oxide by a vapor deposition process. The present invention also provides an epitaxy layer having non-polar (13 4 0) plane obtained according to the aforementioned method.

Подробнее
10-04-2020 дата публикации

Diamond-doped semiconductor and method for manufacturing the same

Номер: CN110998796A
Принадлежит: Diamond Technology Co Ltd

本文中公开一种掺杂金刚石半导体和使用激光的制造方法。如所公开的,可将掺杂物和/或金刚石或蓝宝石晶种材料添加到定位于限制层下方的基于石墨的烧蚀层,所述烧蚀层也是基于石墨的且定位于背衬层上方,以通过激光束作用于所述烧蚀层来促使形成具有所需半导体性质的金刚石颗粒。可将掺杂物并入到工艺中以激活寻求产生适用于产生掺杂半导体或掺杂导体的材料的反应,所述掺杂半导体或所述掺杂导体适合于调节所产生的所述材料的电气、热或量子性质的目的。如所公开的,由机器或所公开的限制型脉冲激光沉积的方法形成的所述金刚石颗粒可布置为半导体、电气组件、热组件、量子组件和/或集成电路。

Подробнее
25-04-2023 дата публикации

Method for manufacturing sputtering target, method for forming oxide film, and transistor

Номер: US11637015B2
Принадлежит: Semiconductor Energy Laboratory Co Ltd

A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.

Подробнее
17-11-2010 дата публикации

Apparatus and method for manufacturing compound semiconductor single crystal

Номер: EP2251463A1
Принадлежит: Sumitomo Electric Industries Ltd

A compound semiconductor single-crystal manufacturing device (1) is furnished with: a laser light source (6) making it possible to sublime a source material by directing a laser beam onto the material; a reaction vessel (2) having a laser entry window (5) through which the laser beam output from the laser light source (6) can be transmitted to introduce the beam into the vessel interior, and that is capable of retaining a starting substrate (3) where sublimed source material is recrystallized; and a heater (7) making it possible to heat the starting substrate (3). The laser beam is shone on, to heat and thereby sublime, the source material within the reaction vessel (2), and compound semiconductor single crystal is grown by recrystallizing the sublimed source material onto the starting substrate (3); afterwards the laser beam is employed to separate the compound semiconductor single crystal from the starting substrate (3).

Подробнее
14-10-2021 дата публикации

Ion conductive material, electrolyte including ion conductive material, and methods of forming

Номер: US20210320327A1
Принадлежит: Saint Gobain Ceramics and Plastics Inc

A solid ion conductive material can include a complex metal halide. The complex metal halide can include at least one alkali metal element. In an embodiment, the solid ion conductive material including the complex metal halide can be a single crystal. In another embodiment, the ion conductive material including the complex metal halide can be a crystalline material having a particular crystallographic orientation. A solid electrolyte can include the ion conductive material including the complex metal halide.

Подробнее
24-12-2020 дата публикации

Metal oxide, method for forming metal oxide, semiconductor device, and method for manufacturing semiconductor device

Номер: WO2020254910A1

Provided is a novel metal oxide. A metal oxide containing a c-axis-oriented crystal. The metal oxide comprises indium, an element M (wherein M represents gallium, aluminum, yttrium or tin) and zinc. The diffusion length of hydrogen in the metal oxide is 200 nm or less. In the metal oxide, the absorption by a localized level measured by CPM is 0.01 /cm or less. The diffusion length of hydrogen is calculated under the conditions of a temperature of 400℃ and 1 hour.

Подробнее
28-07-1981 дата публикации

Method of coating with a stoichiometric compound

Номер: US4281029A
Принадлежит: Futaba Corp

A method of coating which comprises the steps of separately vaporizing a plurality of substances containing the component elements of a desired compound and placed in a plurality of crucibles to form vapors of the substances, mixing the vapors in a heated mixing chamber to form a mixed vapor, jetting the mixed vapor into a vacuum region to form clusters, ionizing the clusters to form cluster ions, and accelerating the cluster ions to make them impinge on a substrate. An apparatus for coating which comprises a plurality of crucibles for separately vaporizing substances containing the component elements of a desired compound to form vapors of the substances, a mixing chamber for heating and mixing the vapors introduced therein to form a mixed vapor, the mixing chamber having at least one injection hole for jetting the mixed vapor into a vacuum region, communication pipes for connecting the mixing chamber to the crucibles, an ionization chamber for ionizing clusters produced from the mixed vapor jetted from the mixing chamber, means for accelerating cluster ions produced in the ionization chamber and making them impinge on a substrate, and a substrate holder for holding the substrate.

Подробнее