Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 7222. Отображено 100.
16-10-1996 дата публикации

ГАЗИФИКАЦИОННАЯ СТАНЦИЯ

Номер: RU0000003023U1

Газификационная станция, содержащая продукционный испаритель, по крайней мере две емкости для жидкого криопродукта, соединенные с продукционным испарителем посредством трубопроводов, снабженных вентилями подачи криопродукта, трубопровод выдачи газообразного продукта, систему клапанов, отличающаяся тем, что газификационная станция содержит испарители подъема давления, размещенные под емкостями, емкости подсоединены к заправочному узлу, причем каждый из трубопроводов, соединяющий емкость с продукционным испарителем, имеет параллельный участок, подключенный к заправочному узлу и снабженный односторонним клапаном. (19) RU (11) (13) 3 023 U1 (51) МПК F17C 9/02 (1995.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 95107975/20, 25.05.1995 (46) Опубликовано: 16.10.1996 (71) Заявитель(и): Товарищество с ограниченной ответственностью "Пуск" 3 0 2 3 R U (57) Формула полезной модели Газификационная станция, содержащая продукционный испаритель, по крайней мере две емкости для жидкого криопродукта, соединенные с продукционным испарителем посредством трубопроводов, снабженных вентилями подачи криопродукта, трубопровод выдачи газообразного продукта, систему клапанов, отличающаяся тем, что газификационная станция содержит испарители подъема давления, размещенные под емкостями, емкости подсоединены к заправочному узлу, причем каждый из трубопроводов, соединяющий емкость с продукционным испарителем, имеет параллельный участок, подключенный к заправочному узлу и снабженный односторонним клапаном. Ñòðàíèöà: 1 U 1 U 1 (54) ГАЗИФИКАЦИОННАЯ СТАНЦИЯ 3 0 2 3 (73) Патентообладатель(и): Товарищество с ограниченной ответственностью "Пуск" R U (72) Автор(ы): Гальперин Я.Л., Сироткин Л.Б., Павлов А.В., Липовский А.Л., Степанов Б.Г., Рымалис Р.Э. RU 3 023 U1 RU 3 023 U1 RU 3 023 U1 RU 3 023 U1 RU 3 023 U1 RU 3 023 U1

Подробнее
20-09-2001 дата публикации

КРИОГЕННЫЙ ГАЗИФИКАТОР

Номер: RU0000019666U1

1. Криогенный газификатор, содержащий внутреннюю и внешнюю оболочки с изолированной полостью между ними, с размещенной внутри секцией испарителя, клапан разгерметизации и внешний испаритель, подключенный посредством трубопроводов подачи жидкости и возврата пара на перфорированный коллектор, установленный под нижним уровнем криожидкости, отличающийся тем, что резервуар снабжен автономным аккумулятором тепла, выполненным в виде модулей с газогенерирующими устройствами, соединенных общим патрубком на изолирующую полость резервуара. 2. Криогенный газификатор по п.1, отличающийся тем, что изолированная полость сообщена через регулирующий вентиль с трубопроводом выдачи газообразного продукта. 3. Криогенный газификатор по п.1, или 2, отличающийся тем, что изолированная полость разделена перегородкой на две камеры, сообщающиеся между собой через клапаны избыточного давления. 4. Криогенный газификатор по пп.1, или 2, или 3, отличающийся тем, что в качестве автономного аккумулятора тепла на изолированную полость резервуара подсоединяют выхлопные газы транспортного средства газификатора. (19) RU (11) 19 666 (13) U1 (51) МПК F17C 9/02 (2000.01) E21F 5/00 (2000.01) A62C 2/00 (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 2001106705/20 , 13.03.2001 (24) Дата начала отсчета срока действия патента: 13.03.2001 (46) Опубликовано: 20.09.2001 1 9 6 6 6 R U U 1 U 1 (73) Патентообладатель(и): Российский научно-исследовательский институт горноспасательного дела, Прокопьевский отдельный военизированный горноспасательный отряд Кузбасса 1 9 6 6 6 (72) Автор(ы): Чуприков А.Е., Чубаров Б.В., Попов В.Б., Кужильный А.И., Буденный В.П. R U Адрес для переписки: 653045, Кемеровская обл., г. Прокопьевск, ул. Подольская, 10, РосНИИГД, А.Е.Чуприкову (71) Заявитель(и): Российский научно-исследовательский институт горноспасательного дела, Прокопьевский отдельный военизированный горноспасательный отряд Кузбасса (54) КРИОГЕННЫЙ ...

Подробнее
10-10-2001 дата публикации

ГАЗИФИКАТОР КРИОЖИДКОСТИ

Номер: RU0000019896U1

Газификатор криожидкости, содержащий блок питания, блок контроля, блок управления и резервуар для криожидкости, который соединен посредством трубопровода для подачи криожидкости со входом установки насоса сжиженных газов с размещенными в ней фильтром и насосом, выход установки насоса сжиженных газов соединен посредством трубопровода для подачи криожидкости со входом испарителя с размещенными в нем теплоэлектронагревателями и змеевиком, выход испарителя соединен с трубопроводом для подачи газа, отличающийся тем, что резервуар для криожидкости соединен с установкой насоса сжиженных газов посредством трубопровода для возврата утечек криожидкости, при этом внутри приборного отсека резервуара для криожидкости размещен регулятор давления. (19) RU (11) 19 896 (13) U1 (51) МПК F17C 9/02 (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 2001109956/20 , 13.04.2001 (24) Дата начала отсчета срока действия патента: 13.04.2001 (46) Опубликовано: 10.10.2001 (72) Автор(ы): Щепунов Ю.П., Бессонова Л.К., Королева О.Ф., Поляков А.В. 1 9 8 9 6 R U (57) Формула полезной модели Газификатор криожидкости, содержащий блок питания, блок контроля, блок управления и резервуар для криожидкости, который соединен посредством трубопровода для подачи криожидкости со входом установки насоса сжиженных газов с размещенными в ней фильтром и насосом, выход установки насоса сжиженных газов соединен посредством трубопровода для подачи криожидкости со входом испарителя с размещенными в нем теплоэлектронагревателями и змеевиком, выход испарителя соединен с трубопроводом для подачи газа, отличающийся тем, что резервуар для криожидкости соединен с установкой насоса сжиженных газов посредством трубопровода для возврата утечек криожидкости, при этом внутри приборного отсека резервуара для криожидкости размещен регулятор давления. Ñòðàíèöà: 1 U 1 U 1 (54) ГАЗИФИКАТОР КРИОЖИДКОСТИ 1 9 8 9 6 (73) Патентообладатель(и): Открытое акционерное ...

Подробнее
20-12-2001 дата публикации

УСТРОЙСТВО ДЛЯ ГАЗИФИКАЦИИ КРИОГЕННОЙ ЖИДКОСТИ

Номер: RU0000021083U1

1. Устройство для газификации криогенной жидкости, включающее испарение криогенной жидкости путем подачи теплоносителя на барботирование под слой криогенной жидкости и вытеснением продукционного газа на потребитель, отличающееся тем, что газификацию криогенной жидкости выполняют в три этапа, на подготовительной стадии с получением объема теплоносителя в виде горячего газообразного аэрозоля от автономного источника с его барботированием через слой жидкого криопродукта во втором модуле с последующим отделением капельной влаги и аккумулированием продукционного газа в расходном ресивере с регулируемой выдачей сухого сжатого газа на потребитель. 2. Устройство по п.1, отличающееся тем, что в качестве автономного источника теплоносителя используют инертные продукты сгорания газогенерирующих устройств. 3. Устройство по п.1 или 2, отличающееся тем, что барботер имеет дополнительный канал подачи теплоносителя в пространство между оболочками испарительного блока. (19) RU (11) 21 083 (13) U1 (51) МПК F17C 9/02 (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 2001110801/20 , 20.04.2001 (24) Дата начала отсчета срока действия патента: 20.04.2001 (46) Опубликовано: 20.12.2001 2 1 0 8 3 R U (54) УСТРОЙСТВО ДЛЯ ГАЗИФИКАЦИИ КРИОГЕННОЙ ЖИДКОСТИ (57) Формула полезной модели 1. Устройство для газификации криогенной жидкости, включающее испарение криогенной жидкости путем подачи теплоносителя на барботирование под слой криогенной жидкости и вытеснением продукционного газа на потребитель, отличающееся тем, что газификацию криогенной жидкости выполняют в три этапа, на подготовительной стадии с получением объема теплоносителя в виде горячего газообразного аэрозоля от автономного источника с его барботированием через слой жидкого криопродукта во втором модуле с последующим отделением капельной влаги и аккумулированием продукционного газа в расходном ресивере с регулируемой выдачей сухого сжатого газа на потребитель. ...

Подробнее
10-07-2003 дата публикации

Изотермический модуль для жидкой двуокиси углерода системы пожаротушения

Номер: RU0000030599U1

1. Изотермический модуль для жидкой двуокиси углерода системы пожаротушения, состоящий из резервуара горизонтального типа, включающего внутренний сосуд, устройства автоматического поддержания давления во внутреннем сосуде, запорно-пускового устройства, обеспечивающего открытие, закрытие и блокировку подачи жидкой двуокиси углерода из резервуара в трубопровод, и блока управления, отличающийся тем, что устройство автоматического поддержания давления во внутреннем сосуде включает в себя электронагреватель, холодильную установку с испарителем и электроконтактный манометр с чувствительным элементом, соединенный с блоком управления. 2. Изотермический модуль по п.1, отличающийся тем, что он содержит дополнительно, по меньшей мере, один электронагреватель, одну холодильную установку с испарителем и один электроконтактный манометр. 3. Изотермический модуль по п.1, отличающийся тем, что электронагреватель, испаритель холодильной установки и чувствительный элемент электроконтактного манометра вмонтированы во внутренний сосуд. (19) RU (11) 30 599 (13) U1 (51) МПК A62C F17C F17C F17C 5/00 5/00 7/00 9/00 (2000.01) (2000.01) (2000.01) (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2003110730/20 , 18.04.2003 (24) Дата начала отсчета срока действия патента: 18.04.2003 (46) Опубликовано: 10.07.2003 (72) Автор(ы): Меркулов А.В. (73) Патентообладатель(и): Закрытое акционерное общество "АРТСОК" R U Адрес для переписки: 105037, Москва, ул. Первомайская, 26, кв.11, пат.пов. Б.С. Ляховичу, рег.№ 175 (71) Заявитель(и): Закрытое акционерное общество "АРТСОК" 3 0 5 9 9 R U Ñòðàíèöà: 1 U 1 (57) Формула полезной модели 1. Изотермический модуль для жидкой двуокиси углерода системы пожаротушения, состоящий из резервуара горизонтального типа, включающего внутренний сосуд, устройства автоматического поддержания давления во внутреннем сосуде, запорно-пускового устройства, обеспечивающего открытие, закрытие и блокировку подачи ...

Подробнее
27-08-2003 дата публикации

Установка газового пожаротушения

Номер: RU0000031728U1

1. Установка газового пожаротушения, содержащая установленный на опорах и имеющий запорно-пусковое устройство изотермический резервуар низкого давления для СО, связанный с опорами через весовую платформу устройства управления дозированием выпуска СО, последнее из которых включает блоки измерения, управления и термостатирования, причем весовая платформа состоит из, по меньшей мере, 4-х термостатированных тензорезистивных датчиков, блок управления выполнен с возможностью контроля поданной жидкой двуокиси углерода по массе и по времени, а блок термостатирования имеет нагревательные элементы для подогрева упомянутых датчиков. 2. Установка по п.1, отличающаяся тем, что нагревательные элементы выполнены кольцевыми и огибают опоры резервуара. (19) RU (11) 31 728 (13) U1 (51) МПК A62C F17C F17C F17C 5/00 5/00 7/00 9/00 (2000.01) (2000.01) (2000.01) (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2003113688/20 , 15.05.2003 (24) Дата начала отсчета срока действия патента: 15.05.2003 (46) Опубликовано: 27.08.2003 (72) Автор(ы): Меркулов А.В. (73) Патентообладатель(и): Закрытое акционерное общество "АРТСОК" R U Адрес для переписки: 105037, Москва, ул. Первомайская, 26, кв.11, пат.пов. Б.С. Ляховичу, рег.№ 175 (71) Заявитель(и): Закрытое акционерное общество "АРТСОК" (54) Установка газового пожаротушения U 1 3 1 7 2 8 R U Ñòðàíèöà: 1 U 1 дозированием выпуска СО2, последнее из которых включает блоки измерения, управления и термостатирования, причем весовая платформа состоит из, по меньшей мере, 4-х термостатированных тензорезистивных датчиков, блок управления выполнен с возможностью контроля поданной жидкой двуокиси углерода по массе и по времени, а блок термостатирования имеет нагревательные элементы для подогрева упомянутых датчиков. 2. Установка по п.1, отличающаяся тем, что нагревательные элементы выполнены кольцевыми и огибают опоры резервуара. 3 1 7 2 8 (57) Формула полезной модели 1. Установка газового ...

Подробнее
10-07-2005 дата публикации

УСТРОЙСТВО ДЛЯ ЗАПРАВКИ ТОПЛИВОМ ТРАНСПОРТНЫХ СРЕДСТВ

Номер: RU0000046555U1

Устройство для заправки топливом транспортных средств, содержащее резервуар для подачи топлива под давлением и топливный бак транспортного средства, подводящий и перепускной трубопроводы, имеющие гибкие участки, контактирующие с соединением, связанным с заправляемым топливным баком, измерительное устройство для определения объема подаваемого жидкого криогенного топлива, клапаны и датчики температуры и давления, размещенные в клапанной коробке, отличающееся тем, что клапанная коробка выполнена в виде заправочной колонки; на подводящем трубопроводе установлен фильтр для очистки от механических примесей, контактирующее устройство выполнено в виде заправочного пистолета, пристыковываемого к горловине криогенного топливного бака; перепускной трубопровод снабжен датчиками перелива и температуры; к входу подводящего трубопровода через кран присоединен трубопровод подачи продувочного газа, например, азота, другой конец которого через кран соединен с насадкой, закрепленной на корпусе заправочной колонки. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 46 555 (13) U1 (51) МПК F17C 9/00 (2000.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2005105033/22 , 25.02.2005 (24) Дата начала отсчета срока действия патента: 25.02.2005 (45) Опубликовано: 10.07.2005 (73) Патентообладатель(и): Открытое акционерное общество "Научно-производственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") (RU) U 1 4 6 5 5 5 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Устройство для заправки топливом транспортных средств, содержащее резервуар для подачи топлива под давлением и топливный бак транспортного средства, подводящий и перепускной трубопроводы, имеющие гибкие участки, контактирующие с соединением, связанным с заправляемым топливным баком, измерительное устройство для определения объема подаваемого жидкого криогенного топлива, клапаны и датчики температуры и давления, размещенные в клапанной коробке, отличающееся тем ...

Подробнее
27-07-2006 дата публикации

ИСПАРИТЕЛЬНОЕ УСТРОЙСТВО СЖИЖЕННОГО УГЛЕРОДНОГО ГАЗА

Номер: RU0000055087U1

Испарительное устройство сжиженного углеводородного газа (СУГ), содержащее трубопровод жидкой фазы СУГ, испарительный трубопровод, при этом трубопровод жидкой фазы СУГ соединен с входом испарительного трубопровода, трубопровод паровой фазы СУГ с расположенным на нем предохранительно-запорным клапаном, соединенный с выходом испарительного трубопровода, отличающееся тем, что испарительный трубопровод состоит из двух участков разного диаметра с переходом участка меньшего диаметра в участок большего диаметра в месте, удаленном от начала участка меньшего диаметра на длину, при которой осредненная величина колебаний давления в испарительном трубопроводе и трубопроводе паровой фазы, становится равной величине максимально допустимых колебаний давления, не приводящей к срабатыванию предохранительно-запорного клапана. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 55 087 (13) U1 (51) МПК F17C 9/02 (2006.01) F23K 5/22 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2005139343/22 , 15.12.2005 (24) Дата начала отсчета срока действия патента: 15.12.2005 (45) Опубликовано: 27.07.2006 (73) Патентообладатель(и): Усачев Александр Прокофьевич (RU) U 1 5 5 0 8 7 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Испарительное устройство сжиженного углеводородного газа (СУГ), содержащее трубопровод жидкой фазы СУГ, испарительный трубопровод, при этом трубопровод жидкой фазы СУГ соединен с входом испарительного трубопровода, трубопровод паровой фазы СУГ с расположенным на нем предохранительно-запорным клапаном, соединенный с выходом испарительного трубопровода, отличающееся тем, что испарительный трубопровод состоит из двух участков разного диаметра с переходом участка меньшего диаметра в участок большего диаметра в месте, удаленном от начала участка меньшего диаметра на длину, при которой осредненная величина колебаний давления в испарительном трубопроводе и трубопроводе паровой фазы, становится равной ...

Подробнее
10-05-2007 дата публикации

УСТРОЙСТВО ДЛЯ ЗАПРАВКИ ТОПЛИВОМ ТРАНСПОРТНЫХ СРЕДСТВ

Номер: RU0000063022U1

Устройство для заправки топливом транспортных средств, содержащее резервуар для подачи топлива под давлением, заправочную колонку, подводящий и перепускной трубопроводы, связанные с заправляемым топливным баком, отличающееся тем, что транспортное средство снабжено двумя и более криогенными топливными баками, причем один из топливных баков служит компенсационной емкостью для сбора сбросной парожидкостной смеси; газовые и жидкостные полости внутренних сосудов топливных баков соединены трубопроводами в единые коллекторы, соответственно, жидкостная полость внутреннего сосуда, как минимум одного топливного бака соединена с теплообменником - испарителем наддува, выход которого через регуляторы давления соединен с газовым коллектором. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 63 022 (13) U1 (51) МПК F17C 9/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2006143829/22 , 12.12.2006 (24) Дата начала отсчета срока действия патента: 12.12.2006 (45) Опубликовано: 10.05.2007 6 3 0 2 2 R U Формула полезной модели Устройство для заправки топливом транспортных средств, содержащее резервуар для подачи топлива под давлением, заправочную колонку, подводящий и перепускной трубопроводы, связанные с заправляемым топливным баком, отличающееся тем, что транспортное средство снабжено двумя и более криогенными топливными баками, причем один из топливных баков служит компенсационной емкостью для сбора сбросной парожидкостной смеси; газовые и жидкостные полости внутренних сосудов топливных баков соединены трубопроводами в единые коллекторы, соответственно, жидкостная полость внутреннего сосуда, как минимум одного топливного бака соединена с теплообменником - испарителем наддува, выход которого через регуляторы давления соединен с газовым коллектором. Ñòðàíèöà: 1 U 1 U 1 (54) УСТРОЙСТВО ДЛЯ ЗАПРАВКИ ТОПЛИВОМ ТРАНСПОРТНЫХ СРЕДСТВ 6 3 0 2 2 (73) Патентообладатель(и): Открытое акционерное общество " ...

Подробнее
10-03-2010 дата публикации

СИСТЕМА ЗАПРАВКИ ЕМКОСТЕЙ ГАЗИФИЦИРОВАННЫМ КРИОАГЕНТОМ ВЫСОКОГО ДАВЛЕНИЯ

Номер: RU0000092144U1

1. Система заправки емкостей газифицированным криоагентом высокого давления, содержащая резервуар криожидкости, насос, всасывающий и напорный трубопроводы, газификатор, регулятор давления газа и внешний газопровод, где насос входом соединен через всасывающий трубопровод с резервуаром криожидкости, а выходом через напорный трубопровод - с входом газификатора, отличающаяся тем, что система дополнительно содержит накопитель-газификатор, турбину, газопроводы высокого и низкого давления, клапаны заправочный, жидкостной, газовый, дренажный и выходной, при том турбина механически связана с насосом, всасывающий трубопровод содержит клапан жидкостной, регулятор давления газа установлен в газопроводе высокого давления, а клапан газовый - в газопроводе низкого давления, при этом накопитель-газификатор выходом соединен через клапан выходной с внешним газопроводом, а входом через клапан заправочный - с выходом напорного трубопровода, турбина входом соединена с выходом газопровода высокого давления, а выходом через газопровод низкого давления - с резервуаром криожидкости, клапан дренажный входом соединен с выходом турбины, а выходом - с атмосферой. 2. Система по п.1, отличающаяся тем, что накопитель-газификатор выполнен в виде двух или более емкостей, сообщающихся между собой. 3. Система по п.1, отличающаяся тем, что дополнительно содержит клапаны проходной, перепускной и пусковой, при этом выход турбины через клапан проходной соединен с выходом накопителя-газификатора, вход газификатора через клапан перепускной соединен с выходом накопителя-газификатора и через клапан пусковой - с выходом напорного трубопровода. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 92 144 (13) U1 (51) МПК F17C 9/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2009140900/22, 06.11.2009 (24) Дата начала отсчета срока действия патента: 06.11.2009 (45) Опубликовано: 10.03.2010 9 2 1 4 4 R U Формула полезной модели 1 ...

Подробнее
10-05-2010 дата публикации

БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА ПРИРОДНОМ ГАЗЕ

Номер: RU0000093926U1

1. Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого; внутренний сосуд снаружи обмотан тепловой изоляцией, а межстенное пространство между внутренним и внешним сосудами отвакуумировано, компенсационной емкости, заполненной паровой фазой топлива, систем трубопроводов заправки и выдачи топлива, предохранительной и регулирующей арматуры, отличающийся тем, что компенсационная емкость расположена вне криогенного топливного бака и соединена трубопроводом с верхней частью внутреннего сосуда бака. 2. Бак криогенный топливный по п.1, отличающийся тем, что на выходном участке трубопровода газосброса установлен скоростной клапан. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 93 926 (13) U1 (51) МПК F17C 9/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2009148407/22, 28.12.2009 (24) Дата начала отсчета срока действия патента: 28.12.2009 (45) Опубликовано: 10.05.2010 9 3 9 2 6 R U Формула полезной модели 1. Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого; внутренний сосуд снаружи обмотан тепловой изоляцией, а межстенное пространство между внутренним и внешним сосудами отвакуумировано, компенсационной емкости, заполненной паровой фазой топлива, систем трубопроводов заправки и выдачи топлива, предохранительной и регулирующей арматуры, отличающийся тем, что компенсационная емкость расположена вне криогенного топливного бака и соединена трубопроводом с верхней частью внутреннего сосуда бака. 2. Бак криогенный топливный по п.1, отличающийся тем, что на выходном участке трубопровода газосброса установлен скоростной клапан. Ñòðàíèöà: 1 ru CL U 1 U 1 (54) БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА ПРИРОДНОМ ГАЗЕ 9 3 9 2 6 (73) Патентообладатель(и): Открытое акционерное ...

Подробнее
10-01-2011 дата публикации

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ГАЗА ВЫСОКОГО ДАВЛЕНИЯ ИЗ КРИОГЕННОЙ ЖИДКОСТИ

Номер: RU0000101145U1

Устройство для получения газа высокого давления из криогенной жидкости, содержащее внешний сосуд высокого давления, внутренний сосуд без перепада давления, полость которого в верхней части соединена с магистралью заправки, а в нижней - с магистралью опорожнения, теплообменник, размещенный под днищем сосуда, отличающееся тем, что оно снабжено, по меньшей мере, еще одним теплообменником-испарителем атмосферного типа, расположенным параллельно с первым и подключенным к распределителю, регулирующему их работу, термокомпрессором, соединенным входом через магистраль к нижней части сосуда, а выходом - к распределителю, за теплообменниками расположена магистраль высокого давления, на внешнюю поверхность внутреннего сосуда нанесена теплоизоляция. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 101 145 (13) U1 (51) МПК F17C 9/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2010124674/06, 16.06.2010 (24) Дата начала отсчета срока действия патента: 16.06.2010 (45) Опубликовано: 10.01.2011 1 0 1 1 4 5 R U Формула полезной модели Устройство для получения газа высокого давления из криогенной жидкости, содержащее внешний сосуд высокого давления, внутренний сосуд без перепада давления, полость которого в верхней части соединена с магистралью заправки, а в нижней - с магистралью опорожнения, теплообменник, размещенный под днищем сосуда, отличающееся тем, что оно снабжено, по меньшей мере, еще одним теплообменником-испарителем атмосферного типа, расположенным параллельно с первым и подключенным к распределителю, регулирующему их работу, термокомпрессором, соединенным входом через магистраль к нижней части сосуда, а выходом - к распределителю, за теплообменниками расположена магистраль высокого давления, на внешнюю поверхность внутреннего сосуда нанесена теплоизоляция. Ñòðàíèöà: 1 ru CL U 1 U 1 (54) УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ГАЗА ВЫСОКОГО ДАВЛЕНИЯ ИЗ КРИОГЕННОЙ ЖИДКОСТИ 1 0 1 1 4 5 Адрес для ...

Подробнее
20-05-2011 дата публикации

БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ

Номер: RU0000104664U1

Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого, теплоизоляции, компенсационной емкости, расположенной в верхней части внутреннего сосуда и заполненной паровой фазой топлива, систем трубопроводов заправки и выдачи топлива, предохранительной и регулирующей арматуры, отличающийся тем, что компенсационная емкость соединена с внутренним сосудом соединительной трубкой и сливной трубкой с обратным клапаном. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 104 664 (13) U1 (51) МПК F17C 9/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2010145737/28, 10.11.2010 (24) Дата начала отсчета срока действия патента: 10.11.2010 (45) Опубликовано: 20.05.2011 1 0 4 6 6 4 R U Формула полезной модели Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого, теплоизоляции, компенсационной емкости, расположенной в верхней части внутреннего сосуда и заполненной паровой фазой топлива, систем трубопроводов заправки и выдачи топлива, предохранительной и регулирующей арматуры, отличающийся тем, что компенсационная емкость соединена с внутренним сосудом соединительной трубкой и сливной трубкой с обратным клапаном. Ñòðàíèöà: 1 ru CL U 1 U 1 (54) БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ 1 0 4 6 6 4 Адрес для переписки: 115280, Москва, ул. Автозаводская, 25, ОАО "НПО "ГЕЛИЙМАШ" (73) Патентообладатель(и): Открытое акционерное общество "Научнопроизводственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") (RU) R U Приоритет(ы): (22) Дата подачи заявки: 10.11.2010 (72) Автор(ы): Колгушкин Юрий Васильевич (RU), Попов Олег Максимович (RU), Удут Вадим Николаевич (RU) U 1 U 1 1 0 4 6 6 4 1 0 4 6 6 4 R U R U Ñòðàíèöà: 2 RU 5 10 15 20 25 30 35 40 45 50 104 664 U1 Известно ...

Подробнее
10-04-2012 дата публикации

БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ

Номер: RU0000114747U1

Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого, внутренний сосуд снаружи обмотан тепловой изоляцией, а межстенное пространство между внутренним и внешним сосудами отвакуумировано, систем трубопроводов для заправки и выдачи жидкости, предохранительной и регулирующей арматур, отличающийся тем, что на трубопроводе заправки установлен клапан, а на трубопроводе газосброса установлен датчик измерителя фаз. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК F17C 9/00 (11) (13) 114 747 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2011141711/06, 14.10.2011 (24) Дата начала отсчета срока действия патента: 14.10.2011 (45) Опубликовано: 10.04.2012 Бюл. № 10 R U 1 1 4 7 4 7 Формула полезной модели Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого, внутренний сосуд снаружи обмотан тепловой изоляцией, а межстенное пространство между внутренним и внешним сосудами отвакуумировано, систем трубопроводов для заправки и выдачи жидкости, предохранительной и регулирующей арматур, отличающийся тем, что на трубопроводе заправки установлен клапан, а на трубопроводе газосброса установлен датчик измерителя фаз. Стр.: 1 U 1 U 1 (54) БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ 1 1 4 7 4 7 Адрес для переписки: 115280, Москва, ул. Автозаводская, 25, ОАО "НПО "ГЕЛИЙМАШ" (73) Патентообладатель(и): Открытое акционерное общество "Научнопроизводственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") (RU) R U Приоритет(ы): (22) Дата подачи заявки: 14.10.2011 (72) Автор(ы): Брагин Александр Вениаминович (RU), Гиверский Анатолий Игоревич (RU), Попов Олег Максимович (RU), Удут Вадим Николаевич (RU) U 1 U 1 1 1 4 7 4 7 1 1 4 7 4 7 R U R U Стр.: 2 RU 5 10 15 20 25 30 35 40 45 114 747 U1 Известны ...

Подробнее
27-07-2012 дата публикации

БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ

Номер: RU0000118717U1

Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого, теплоизоляции в межстенном пространстве сосудов, компенсационной емкости, расположенной во внутреннем сосуде, трубопроводов заправки и выдачи топлива, предохранительной и регулирующей арматуры, отличающийся тем, что трубопровод заправки топлива снабжен устройством для струйного ввода топлива в бак, а полость компенсационной емкости соединена с объемом внутреннего сосуда соединительной трубкой и сливной трубкой с обратным клапаном. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК F17C 9/00 (11) (13) 118 717 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2012110491/06, 20.03.2012 (24) Дата начала отсчета срока действия патента: 20.03.2012 (45) Опубликовано: 27.07.2012 Бюл. № 21 R U 1 1 8 7 1 7 Формула полезной модели Бак криогенный топливный транспортного средства, работающего на сжиженном природном газе, состоящий из двух сосудов, расположенных один внутри другого, теплоизоляции в межстенном пространстве сосудов, компенсационной емкости, расположенной во внутреннем сосуде, трубопроводов заправки и выдачи топлива, предохранительной и регулирующей арматуры, отличающийся тем, что трубопровод заправки топлива снабжен устройством для струйного ввода топлива в бак, а полость компенсационной емкости соединена с объемом внутреннего сосуда соединительной трубкой и сливной трубкой с обратным клапаном. Стр.: 1 U 1 U 1 (54) БАК КРИОГЕННЫЙ ТОПЛИВНЫЙ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ 1 1 8 7 1 7 Адрес для переписки: 115280, Москва, ул. Автозаводская, 25, ОАО "НПО "ГЕЛИЙМАШ" (73) Патентообладатель(и): Открытое акционерное общество "Научнопроизводственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") (RU) R U Приоритет(ы): (22) Дата подачи заявки: 20.03.2012 (72) Автор(ы): Колгушкин Юрий Васильевич (RU), Попов Олег Максимович (RU), Протасова ...

Подробнее
27-08-2012 дата публикации

ГАЗИФИКАЦИОННАЯ УСТАНОВКА

Номер: RU0000119846U1

Газификационная установка, включающая криогенную цистерну под сжиженные газы, содержащую внутренний сосуд, испаритель подъема давления жидкой фазы, снабженный вентилем подъема давления, отличающаяся тем, что криогенная цистерна снабжена газификационным узлом, содержащим испаритель парожидкостной смеси, и соединена с газификационным узлом двумя гибкими шлангами (металлорукавами), один из которых соединяет выход испарителя подъема давления жидкой фазы и вход испарителя парожидкостной смеси газификационного узла, выход которого соединен через предохранительный клапан, регулятор давления и обратный клапан с сетевыми редукторами для подачи газа потребителю, а второй металлорукав подключен одним концом параллельно к выходу испарителя парожидкостной смеси газификационного узла между регулятором давления и обратным клапаном, а другим концом - к газовой (верхней) полости внутреннего сосуда криогенной цистерны. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК F17C 9/02 (11) (13) 119 846 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2012100874/06, 11.01.2012 (24) Дата начала отсчета срока действия патента: 11.01.2012 (72) Автор(ы): Ноговицин Виктор Анатольевич (RU), Ноговицин Константин Викторович (RU) (45) Опубликовано: 27.08.2012 Бюл. № 24 1 1 9 8 4 6 R U Формула полезной модели Газификационная установка, включающая криогенную цистерну под сжиженные газы, содержащую внутренний сосуд, испаритель подъема давления жидкой фазы, снабженный вентилем подъема давления, отличающаяся тем, что криогенная цистерна снабжена газификационным узлом, содержащим испаритель парожидкостной смеси, и соединена с газификационным узлом двумя гибкими шлангами (металлорукавами), один из которых соединяет выход испарителя подъема давления жидкой фазы и вход испарителя парожидкостной смеси газификационного узла, выход которого соединен через предохранительный клапан, регулятор давления и обратный клапан с сетевыми редукторами для подачи ...

Подробнее
20-09-2013 дата публикации

СИСТЕМА РЕГАЗИФИКАЦИИ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА

Номер: RU0000132521U1
Автор:

Система регазификации сжиженного природного газа, включающая соединенные между собой коллекторами блок приема сжиженного природного газа из автоцистерны, блоки хранения и выдачи сжиженного природного газа, блок подготовки продукционного газа, блок рассеивания, блок хранения и подготовки азота, отличающаяся тем, что блок приема сжиженного природного газа из автоцистерны соединен с блоками хранения и выдачи сжиженного природного газа с блоком подготовки продукционного газа и блоком рассеивания, при этом каждый блок хранения и выдачи сжиженного природного газа соединен с блоком подготовки продукционного газа, с коллектором, который соединяет блок приема сжиженного природного газа из автоцистерны с блоком подготовки продукционного газа и с коллектором, который соединяет блок приема сжиженного природного газа из автоцистерны с блоком рассеивания, а блок хранения и подготовки азота соединен с коллектором, соединяющим блок рассеивания с блоком приема сжиженного природного газа из автоцистерны и блоками хранения и выдачи сжиженного природного газа. 132521 И 1 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 132 521” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 27.11.2019 Дата внесения записи в Государственный реестр: 15.09.2020 Дата публикации и номер бюллетеня: 15.09.2020 Бюл. №26 Стр.: 1 СЧС па ЕП

Подробнее
20-12-2014 дата публикации

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ДОПОЛНИТЕЛЬНОЙ ЭЛЕКТРОЭНЕРГИИ В ПРОЦЕССЕ ЗАПРАВКИ АВТОМОБИЛЕЙ

Номер: RU0000148865U1

Устройство для получения дополнительной электроэнергии в процессе заправки автомобилей, содержащее топливный баллон, отличающееся тем, что за топливным баллоном установлены дополнительно система заправки автомобилей и система подачи газа, система заправки автомобилей включает в себя магистраль, подключенную к топливному баллону и соединенную с автомобильной газовой заправочной станцией, перед которой установлен вентиль, система подачи газа включает в себя магистраль, подключенную к топливному баллону и подсоединенную к редуктору, перед которым установлен вентиль, турбину, соединенную с электрогенератором, вторую турбину, соединенную с электрогенератором и теплообменником, за которым установлена газопоршневая установка, подключенная к электрогенератору, и параллельно редуктору подключены вентиль и второй редуктор. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК F17C 9/02 (11) (13) 148 865 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2014120055/06, 19.05.2014 (24) Дата начала отсчета срока действия патента: 19.05.2014 (45) Опубликовано: 20.12.2014 Бюл. № 35 1 4 8 8 6 5 R U Формула полезной модели Устройство для получения дополнительной электроэнергии в процессе заправки автомобилей, содержащее топливный баллон, отличающееся тем, что за топливным баллоном установлены дополнительно система заправки автомобилей и система подачи газа, система заправки автомобилей включает в себя магистраль, подключенную к топливному баллону и соединенную с автомобильной газовой заправочной станцией, перед которой установлен вентиль, система подачи газа включает в себя магистраль, подключенную к топливному баллону и подсоединенную к редуктору, перед которым установлен вентиль, турбину, соединенную с электрогенератором, вторую турбину, соединенную с электрогенератором и теплообменником, за которым установлена газопоршневая установка, подключенная к электрогенератору, и параллельно редуктору подключены вентиль и второй ...

Подробнее
20-02-2015 дата публикации

ГАЗИФИКАТОР КРИОГЕННОЙ ЖИДКОСТИ

Номер: RU0000150624U1

Газификатор криогенной жидкости, содержащий испаритель, емкость для криогенной жидкости, трубопроводы заправки, дренирования, подачи криогенной жидкости на испаритель и выдачи газа потребителю, контрольно-регулирующую и запорную арматуру, отличающийся тем, что трубопровод подачи криогенной жидкости на испаритель перед испарителем разделен на две ветви, на одной из которых установлен регулятор давления, на другой - обратный клапан; после этого ветви объединены в один трубопровод, подсоединенный к испарителю. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК F17C 9/02 (11) (13) 150 624 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2014111943/06, 28.03.2014 (24) Дата начала отсчета срока действия патента: 28.03.2014 (45) Опубликовано: 20.02.2015 Бюл. № 5 (73) Патентообладатель(и): Открытое акционерное общество "Научнопроизводственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") (RU) 1 5 0 6 2 4 R U Формула полезной модели Газификатор криогенной жидкости, содержащий испаритель, емкость для криогенной жидкости, трубопроводы заправки, дренирования, подачи криогенной жидкости на испаритель и выдачи газа потребителю, контрольно-регулирующую и запорную арматуру, отличающийся тем, что трубопровод подачи криогенной жидкости на испаритель перед испарителем разделен на две ветви, на одной из которых установлен регулятор давления, на другой - обратный клапан; после этого ветви объединены в один трубопровод, подсоединенный к испарителю. Стр.: 1 U 1 U 1 (54) ГАЗИФИКАТОР КРИОГЕННОЙ ЖИДКОСТИ 1 5 0 6 2 4 Адрес для переписки: 115280, Москва, ул. Автозаводская, 25, ОАО "НПО "ГЕЛИЙМАШ" R U Приоритет(ы): (22) Дата подачи заявки: 28.03.2014 (72) Автор(ы): Алексеев Михаил Валерьевич (RU), Еремина Наталья Михайловна (RU), Житомирский Михаил Морисович (RU), Колгушкин Юрий Васильевич (RU), Никитина Алла Анвэртовна (RU), Панова Светлана Егоровна (RU), Попов Олег Максимович (RU), Смирнов Сергей Александрович (RU), Удут Вадим ...

Подробнее
20-01-2016 дата публикации

ПЕРЕЛИВНОЕ УСТРОЙСТВО

Номер: RU0000158756U1

Переливное устройство для криогенных жидкостей, содержащее сосуд, сифон, испарительную камеру, кольцевой канал, уплотнительное устройство и регулирующую арматуру, отличающееся тем, что на нижней части сифона концентрически расположен аккумулятор тепла, а в средней части сифона расположен обратный клапан. Ц 158756 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ 7 ВУ‘’” 158 756” 91 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 24.04.2020 Дата внесения записи в Государственный реестр: 01.02.2021 Дата публикации и номер бюллетеня: 01.02.2021 Бюл. №4 Стр.: 1 па 9914389“ ЕП

Подробнее
27-01-2016 дата публикации

СТАЦИОНАРНОЕ УСТРОЙСТВО ДЛЯ ПОДАЧИ ХЛАДАГЕНТА В КАМЕРУ ХОЛОДА

Номер: RU0000159066U1

Стационарное устройство для подачи хладагента в камеру холода, содержащее питатель в виде трубки, один конец которой и электрический нагреватель размещены в сосуде Дьюара на расстоянии 0-10 мм от дна, и штуцер, верхняя резьбовая часть которого предназначена для подсоединения к трубопроводу камеры холода, отличающееся тем, что стационарное устройство для подачи хладагента в камеру холода содержит как минимум один стационарный сосуд Дьюара, каждый из которых снабжен фланцем и герметизирующей кольцеобразной прокладкой, расположенной между торцом горловины сосуда Дьюара и посадочным местом во фланце, выполненном с двумя патрубками, расположенными вертикально над горловиной сосуда Дьюара, оба патрубка выполнены с внутренней резьбой в верхней их части, один из патрубков является заправочным и герметично соединен резьбой с предохранительным клапаном, выполненным съемным, второй патрубок герметично соединен резьбой с заглушкой, которая также выполнена съемной, средняя часть второго патрубка выполнена с внутренней резьбой и посадочным местом для верхней резьбовой части питателя, выполненного съемным, и расположенным коаксиально второму патрубку, верхний торец питателя выполнен со шлицевыми прорезями, под заглушкой и выше верхней резьбовой части питателя во втором патрубке выполнен отвод под камеру шарикового клапана, верхняя часть камеры выполнена с внутренней резьбой и герметично соединена с нижней резьбовой частью штуцера, нижний торец которого выполнен со шлицевыми прорезями, фланец винтовым соединением прикреплен к ручкам сосуда Дьюара и снабжен герметичными токовводами, соединенными проводами с нагревателем и датчиком уровня жидкого азота, размещенным на расстоянии 30-50 мм выше нагревателя. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 159 066 U1 (51) МПК F17C 9/02 (2006.01) F25D 3/10 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015122778/06, 11.06.2015 (24) Дата начала отсчета срока действия патента: ...

Подробнее
20-02-2016 дата публикации

УСТРОЙСТВО ДЛЯ ПОДАЧИ ХЛАДАГЕНТА В КАМЕРУ ХОЛОДА

Номер: RU0000159660U1

Устройство для подачи хладагента в камеру холода, содержащее питатель в виде трубки, один конец которой снабжен электрическим нагревателем с закрывающим кожухом и размещен в сосуде Дьюара, отличающееся тем, что устройство для подачи хладагента в камеру холода содержит воронку, выполненную как одно целое с фланцем, и герметизирующую пробку, выполненную с вертикальным сквозным отверстием, расположенную между горловиной сосуда Дьюара и посадочным местом во фланце, при этом трубка воронки, расположенная в вертикальном отверстии пробки, выполнена на 5 мм длиннее высоты пробки, верхняя цилиндрическая часть воронки выполнена с внутренней резьбой, и герметично соединена с нижней резьбовой частью тонкостенной теплоразвязывающей трубки, верхняя часть которой снабжена фасонным фланцем с внутренней резьбой, нижняя часть которой герметично соединена с верхней резьбовой частью питателя, а верхняя резьбовая часть фасонного фланца соединена, с нижней резьбовой частью выходного штуцера, верхняя резьбовая часть которого предназначена для подсоединения к трубопроводу камеры холода, верхняя резьбовая часть питателя выполнена с вертикальной цилиндрической полостью, в которой расположен металлический шарик, являющийся шариковым клапаном, а торец верхней резьбовой части питателя выполнен со шлицевыми прорезями, торец нижней резьбовой части выходного штуцера, также выполнен со шлицевыми прорезями, с наружной части воронка снабжена отводом, выполненным с воронкой как одно целое, внутренняя резьбовая часть отвода герметично соединена с предохранительным клапаном, устройство так же содержит два зацепа, расположенные на ручках сосуда Дьюара, снабженных барашками соединенными резьбовым соединением с двумя тягами, выполненными в виде прутков, верхняя часть которых выполнена как одно целое с вилками шарнирных соединений с фланцем, который выполнен с ответными частями этих соединений, расположенными с противоположных сторон. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 159 660 U1 (51) МПК F17C 9/02 ( ...

Подробнее
20-08-2016 дата публикации

ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Номер: RU0000164117U1

Энергетическая установка, содержащая топливный баллон, отличающаяся тем, что установка включает в себя контур компенсации потерь и контур теплоотрицательной установки, причем контур компенсации потерь содержит магистраль, подключенную к топливному баллону и соединенную с газовым ресивером, за которым последовательно установлены центробежный компрессор, теплообменник-испаритель и дроссельный вентиль, подсоединенный к топливному баллону, а контур теплоотрицательной установки включает в себя магистраль, подключенную к топливному баллону и соединенную с термоакустическим двигателем, подключенным, в свою очередь, к электрогенератору, который служит приводом центробежного компрессора, и последовательно установленные теплообменник-утилизатор, редуктор, газопоршневую установку, которая соединена с электрогенератором, служащим для подачи электроэнергии потребителю, причем горячий теплообменник термоакустического двигателя нагревается солнечным потоком от солнечного концентратора. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 164 117 U1 (51) МПК F17C 9/02 (2006.01) F02G 1/043 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015147477/06, 03.11.2015 (24) Дата начала отсчета срока действия патента: 03.11.2015 (45) Опубликовано: 20.08.2016 U 1 1 6 4 1 1 7 R U Стр.: 1 электрогенератором 11, солнечный концентратор 12, являющийся источником тепловой энергии для термоакустического двигателя 6. Установка позволяет компенсировать потери при испарении криогенного продукта из топливного баллона, а также получить дополнительную электрическую энергию, которую можно использовать для различных целей, в том числе для решения задач, возникающих при эксплуатации газопоршневой установки, вырабатывающую энергию для населенного пункта или другого объекта жизнедеятельности человека. 1 ил. U 1 (54) ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА (57) Реферат: Полезная модель относится к технике хранения и распределения газов и жидкостей. Энергетическая ...

Подробнее
11-04-2017 дата публикации

Криогенный насос-газификатор

Номер: RU0000170011U1

Полезная модель относится к технике хранения и распределения газов и жидкостей. Криогенный насос-газификатор включает в себя баллон с криогенной заправкой 1, соединенный через магистраль с контуром газификации, который включает в себя вентиль 2, плунжерный насос 3, теплообменник-конденсатор 4. Теплообменник-конденсатор 4 соединен через магистраль с контуром получения дополнительной энергии, который включает в себя насос 5, теплообменник-испаритель 6, турбину 7, соединенную с теплообменником-конденсатором 4, электрогенератор 8, аккумуляторную батарею 9. Применение такого устройства позволяет получить дополнительную электрическую энергию при эксплуатации баллона с криогенной заправкой, а также позволяет сократить время газификации криопродукта в баллоне с криогенной заправкой. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 170 011 U1 (51) МПК F17C 9/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2016145710, 22.11.2016 (24) Дата начала отсчета срока действия патента: 22.11.2016 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 22.11.2016 (45) Опубликовано: 11.04.2017 Бюл. № 11 (56) Список документов, цитированных в отчете о поиске: RU 2570952 C1, 20.12.2015. US 1 7 0 0 1 1 R U (54) Криогенный насос-газификатор (57) Реферат: Полезная модель относится к технике хранения и распределения газов и жидкостей. Криогенный насос-газификатор включает в себя баллон с криогенной заправкой 1, соединенный через магистраль с контуром газификации, который включает в себя вентиль 2, плунжерный насос 3, теплообменникконденсатор 4. Теплообменник-конденсатор 4 соединен через магистраль с контуром получения дополнительной энергии, который включает в Стр.: 1 себя насос 5, теплообменник-испаритель 6, турбину 7, соединенную с теплообменникомконденсатором 4, электрогенератор 8, аккумуляторную батарею 9. Применение такого устройства позволяет получить дополнительную электрическую энергию при эксплуатации баллона с ...

Подробнее
24-11-2017 дата публикации

Криогенная энергетическая установка

Номер: RU0000175179U1

Полезная модель относится к технике хранения и распределения газов и жидкостей. Установка содержит баллон с криогенной заправкой 1, теплообменник-испаритель криогенного рабочего тела 2, поршневой детандер 3, теплообменник теплоносителя 4, насос 5, бак с теплоносителем 6, сепаратор теплоносителя 7, компрессор 8, электрогенератор 9, блок аккумуляторных батарей 10, теплообменник-конденсатор хладагента 11, вентиль 12, теплообменник-испаритель хладагента 13, холодильную камеру рефрижератора 14, газовый редуктор 15. Применение такого технического решения позволяет получить потребную холодопроизводительность для охлаждения холодильной камеры автомобильного рефрижератора, также получить электрическую энергию, необходимую для привода компрессора и других нужд. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 175 179 U1 (51) МПК F17C 9/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2017117358, 18.05.2017 (24) Дата начала отсчета срока действия патента: 18.05.2017 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 18.05.2017 (45) Опубликовано: 24.11.2017 Бюл. № 33 (56) Список документов, цитированных в отчете о поиске: RU 170011 U1, 11.04.2017. RU 1 7 5 1 7 9 R U (54) Криогенная энергетическая установка (57) Реферат: Полезная модель относится к технике хранения и распределения газов и жидкостей. Установка содержит баллон с криогенной заправкой 1, теплообменник-испаритель криогенного рабочего тела 2, поршневой детандер 3, теплообменник теплоносителя 4, насос 5, бак с теплоносителем 6, сепаратор теплоносителя 7, компрессор 8, электрогенератор 9, блок аккумуляторных батарей 10, теплообменник-конденсатор хладагента 11, Стр.: 1 вентиль 12, теплообменник-испаритель хладагента 13, холодильную камеру рефрижератора 14, газовый редуктор 15. Применение такого технического решения позволяет получить потребную холодопроизводительность для охлаждения холодильной камеры автомобильного рефрижератора, также получить ...

Подробнее
28-05-2020 дата публикации

Устройство испарительное сжиженного углеводородного газа для газовой горелки

Номер: RU0000197775U1

Устройство испарительное сжиженного углеводородного газа для газовой горелки относится к области теплотехники и может быть использовано для испарения сжиженного углеводородного газа (СУГ), с его последующей подачей в форсунки газовой горелки, в том числе в составе нагревательных установок для сельскохозяйственных потребителей, оснащенных емкостями с СУГ.Устройство испарительное сжиженного углеводородного газа для газовой горелки, содержащее две основные линии: линию подачи газа для горения и линию жидкой фазы сжиженного углеводородного газа, в состав которых входят заслонка регулировки подачи газа для горения, клапан обратного линии подачи газа для горения, манометр низкого давления, датчик давления газа, редуктор газовый понижающий, клапан предохранительный сброса избыточного давления, клапан обратного жидкой фазы сжиженного углеводородного газа, фильтра жидкой фазы сжиженного углеводородного газа, кран запорный линии жидкой фазы сжиженного углеводородного газа и манометр высокого давления, при этом между линией подачи газа для горения и линией жидкой фазы сжиженного углеводородного газа применены сменные трубопроводы нагрева испарителя, один из них выполнен в виде объемной геометрической фигуры в форме усеченного конуса, другой в форме усеченной равносторонней пирамиды и третий в форме усеченной не равносторонней пирамиды. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 197 775 U1 (51) МПК F17C 9/02 (2006.01) F23K 5/22 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК F17C 9/02 (2020.02); F23K 5/22 (2020.02) (21)(22) Заявка: 2019136296, 12.11.2019 (24) Дата начала отсчета срока действия патента: (73) Патентообладатель(и): Мирошниченко Святослав Александрович (RU) Дата регистрации: 28.05.2020 (56) Список документов, цитированных в отчете о поиске: RU 2289752 C2, 20.12.2006. RU 2691863 C1, 18.06.2019. RU 119846 U1, 27.08.2012. RU 2293248 C1, 10.02.2007. (45) Опубликовано: 28.05.2020 Бюл. № 16 1 9 7 7 7 5 R U (54) ...

Подробнее
18-11-2021 дата публикации

КРИОГЕННЫЙ ГАЗИФИКАТОР

Номер: RU0000207829U1

Полезная модель относится к технике хранения и распределения газов и жидкостей. Внутренний сосуд баллона с криогенной заправкой 1 соединен с внешним контуром газификации трубопроводом подачи жидкого криопродукта 2 через вентиль 3 с испарителем 4 и теплообменником 5, который соединен трубопроводом подачи газифицированного криопродукта 6 через вентиль 7 с внешним сосудом баллона с криогенной заправкой 1. Теплообменник 5 также соединен с потребителем трубопроводом подачи газифицированного продукта к потребителю 8 через вентиль 9. Таким образом, применение такого устройства позволяет управлять процессом газификации с гарантированным преодолением гидравлического сопротивления испарившегося криогенного продукта в трубопроводе подачи газифицированного продукта. 2 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 207 829 U1 (51) МПК F17C 9/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК F17C 9/02 (2021.05) (21)(22) Заявка: 2021100240, 11.01.2021 (24) Дата начала отсчета срока действия патента: Дата регистрации: 18.11.2021 (54) КРИОГЕННЫЙ ГАЗИФИКАТОР (57) Реферат: Полезная модель относится к технике хранения и распределения газов и жидкостей. Внутренний сосуд баллона с криогенной заправкой 1 соединен с внешним контуром газификации трубопроводом подачи жидкого криопродукта 2 через вентиль 3 с испарителем 4 и теплообменником 5, который соединен трубопроводом подачи газифицированного криопродукта 6 через вентиль 7 с внешним сосудом баллона с криогенной заправкой 1. R U 2 0 7 8 2 9 U 1 Адрес для переписки: 443086, г. Самара, Московское ш., 34, Самарский университет, отдел технического контроля, сертификации и патентоведения Стр.: 1 (73) Патентообладатель(и): федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" (RU) (56) Список документов, цитированных в отчете о поиске: SU 1640493 A1, 07.04.1991. RU ...

Подробнее
20-12-2012 дата публикации

Pressure Cycle Management In Compressed Gas Dispensing Systems

Номер: US20120318403A1
Принадлежит: Air Products and Chemicals Inc

A method for dispensing compressed gas from two or more compressed gas storage volumes to receiving vessel such as vehicle fuel tanks. Control instructions are provided to cycle the compressed gas storage volumes through pressure cycles in a rolling rotating cascading manner such that each of the compressed gas storage volumes cycle from an upper pressure limit to a lower pressure limit.

Подробнее
14-03-2013 дата публикации

Method for the Refrigerated Transportation of a Stock in a Vehicle Implementing a Liquid Combustible Gas Tank and a Liquid Nitrogen Tank

Номер: US20130061608A1

The present invention relates to a supply station jointly storing a low-temperature-liquefied combustible gas, in particular natural gas, and liquid nitrogen and designed for supplying each component separately or jointly as needed to a vehicle, the supply station being present on the vehicle, the station comprising at least a first storage tank for storing said liquefied combustible gas; and at least a second storage tank for storing said liquid nitrogen and at least one heat-transmitting connection element between the at least one first storage tank and the at least one second storage tank, which connection element is designed so that the combustible gas can be cooled, or can be maintained at a temperature below its boiling point, directly or indirectly by the liquid nitrogen.

Подробнее
21-03-2013 дата публикации

SYSTEM AND METHOD FOR FILLING A PORTABLE LIQUID GAS STIAGE/DELIVERY SYSTEM

Номер: US20130067953A1
Принадлежит: RIC INVESTMENTS, LLC.

A liquefied gas storage/delivery system and method that includes a liquefied gas storage system. The liquefied gas storage system includes a housing containing a storage vessel suited to contain a supply of liquefied gas, such as liquid oxygen (LOX). A rotatable turntable is provided on an exterior surface of the housing. An interface shaped to match the shape of at least a portion of a portable liquid storage/delivery device is provide in or on the turntable. A connector is disposed in the interface that couples to a corresponding connector on the portable liquid storage/delivery device. The two connectors are coupled by placing the portable liquid storage/delivery device in the interface and rotating the turntable. 1. A method of providing ambulatory liquefied gas comprising:providing a housing adapted to contain a supply of liquefied gas in a storage vessel;coupling a portable liquid storage/delivery device to a turntable provided on an exterior surface of the housing;moving the turntable to engage a first connector disposed on the portable liquid storage/delivery device with a second connector provided on the housing; andtransferring liquefied gas from the storage vessel to the portable liquid storage/delivery device responsive to the first connector engaging the second connector.2. The method of claim 1 , wherein rotating the turntable includes rotating the turntable between (a) a first position in which the supply of liquid is prevented from being delivered from the storage vessel to such a portable liquid storage/delivery device claim 1 , and (b) a second position in which the supply of liquid is capable of being delivered from the storage vessel to such a portable liquid storage/delivery device.3. The method of claim 1 , further comprising producing the liquefied gas using a liquefaction system disposed in the housing.4. The method of claim 1 , wherein transferring liquefied gas from the storage vessel to the portable liquid storage/delivery device includes ...

Подробнее
18-04-2013 дата публикации

Cold gas supply device and NMR installation comprising such a device

Номер: US20130091870A1
Автор: KRENCKER Patrick
Принадлежит: BRUKER BIOSPIN

A device for supplying cold gases to an NMR installation or analytical apparatus equipped with a measuring probe, with cold gases ensuring the cooling of the sample contained in the probe, but also its lift and rotation, the device including an insulated tank containing liquid gas at boiling point and in which are arranged exchangers through which gas streams to be cooled pass, these exchangers being connected to transfer lines channeling the cooled gases to the probe. The device also includes at least one additional exchanger that ensures a pre-cooling of the gas stream before it is channeled to the corresponding exchanger, with the or each additional exchanger coming in the form of a double-flow exchanger that is supplied either by the gaseous vapor produced by the boiling of the liquid gas in the tank or by the cold gas that is evacuated or that escapes at the probe. 17-. (canceled)8. Device for supplying cold gases to an NMR installation or analytical apparatus that is equipped with a measuring probe , with said cold gases ensuring the cooling of the sample that is contained in the probe , but also its lift and rotation ,{'b': 1', '4', '5', '6', '6', '6', '7', '7', '7, 'said supply device () essentially comprising an insulated tank () containing liquid gas () at boiling point and in which are arranged exchangers (, ′, ″) through which gas streams that are to be cooled pass, with these exchangers being connected to one or more transfer lines (, ′, ″) channeling the cooled gases to the probe,'}{'b': 1', '8', '8', '8', '6', '6', '6', '8', '8', '8, 'said device () also comprising at least one additional exchanger (, ′, ″) that ensures a pre-cooling of the gas stream in question before it is channeled to the corresponding exchanger (, ′, ″), with said or each additional exchanger (, ′, ″) being a double-flow exchanger,'}{'b': 1', '8', '8', '8', '5', '5', '4', '9', '3', '6', '6', '6, 'said device () characterized in that upstream relative to the gaseous stream in ...

Подробнее
13-06-2013 дата публикации

Device for revaporizing natural gas

Номер: US20130149212A1

Disclosed is a device for revaporizing natural gas. Provided is a device for revaporizing natural gas hydrate pellets, comprising: a pellet charging portion for charging pellets which is formed with an upper valve and a lower valve so as to divide space for adjusting pressure; a storing portion, which communicates with the lower portion of the pellet charging portion, for receiving pellets when the lower valve is opened; a transfer screw, one end of which couples to the lower portion of the storing portion, for transferring the pellets in the storing portion; and a dissolving reaction tub, which is coupled to the other end of the transfer screw, receives pellets from the lower portion of the dissolving reaction tub, and which accommodates heating water.

Подробнее
20-06-2013 дата публикации

PROCESS AND PLANT FOR THE VAPORIZATION OF LIQUEFIED NATURAL GAS AND STORAGE THEREOF

Номер: US20130152607A1
Автор: CICCARELLI Liberato
Принадлежит:

A process and plant for the vaporization of liquefied natural gas includes obtaining electric energy during the vaporization operation by way of thermal exchange by transformation of an energy source for obtaining electric power. 1. A process for the vaporization of liquefied natural gas (LNG) and its storage , the process comprising:production of electric power during said vaporization operation by means of thermal exchange,wherein said thermal exchange is carried out by means of a heating-releasing permanent gas in a closed cycle in which at least a first part of said vaporized LNG is injected for storage into a pre-existing natural gas reservoir,wherein said natural gas reservoir is at least partially exhausted, andwherein a remaining part of non-stored vaporized LNG is burnt and expanded in a turbine.2. The process according to any one of the previous claims , wherein said permanent gas takes heat from the discharge gases of at least a first gas turbine which burns a second part of the vaporized LNG not sent for storage.3. The process according to any one of the previous claims , wherein LNG is vaporized at a substantially constant pressure and pumped by means of thermal exchange with said heat-releasing permanent gas in a closed cycle.4. The process according to any one of the previous claims , wherein in said closed cycle said permanent gas , after the releasing of heat , is subjected to a subsequent thermal exchange with said heat-releasing discharge gases of said turbine and finally to expansion in at least a second turbine.5. The process according to any one of the previous claims , wherein said electric power is produced by both said first turbine in which the remaining vaporized part of LNG not sent for storage is burnt and expanded and also by said second turbine in which said heated compressed permanent gas is expanded.6. The process according to any one of the previous claims , wherein said pumping of LNG is effected at a substantially constant ...

Подробнее
18-07-2013 дата публикации

Carbon dioxide supply for injection-molding systems

Номер: US20130180620A1
Автор: Andreas Praller
Принадлежит: Linde GmbH

For supplying a sink with liquid carbon dioxide with a required temperature of more than 0° C. and with a required pressure of more than 30 bar, liquid carbon dioxide is taken from a tank, in which it has been stored at a temperature below the required temperature and at a pressure below the required pressure. The pressure of the carbon dioxide is increased and then the carbon dioxide is heated to the required temperature.

Подробнее
01-08-2013 дата публикации

CONFIGURATIONS AND METHODS FOR SMALL SCALE LNG PRODUCTION

Номер: US20130192297A1
Автор: Mak John
Принадлежит:

A small scale natural gas liquefaction plant is integrated with an LNG loading facility in which natural gas is liquefied using a multi-stage gas expansion cycle. LNG is then loaded onto an LNG truck or other LNG transport vehicle at the loading facility using a differential pressure control system that uses compressed boil off gas as a motive force to move the LNG from the LNG storage tank to the LNG truck so as to avoid the use of an LNG pump and associated equipment as well as to avoid venting of boil off vapors into the environment. 1. A small scale LNG plant with integrated loading terminal , comprising:a refrigeration unit comprising a closed refrigeration cycle configured to provide refrigeration content to a natural gas feed in an amount sufficient to produce LNG from the natural gas feed;a LNG storage tank fluidly coupled to the cold box and configured to allow receiving and storing the LNG;a first boil off vapor conduit configured to provide a first boil off vapor from an LNG transporter to the cold box, and from the cold box to the LNG storage tank to thereby allow use of the first boil off vapor as a motive force to move the LNG out of the LNG storage tank;a second boil off vapor conduit configured to provide a second boil off vapor from the LNG storage tank to the cold box, and from the cold box to the natural gas feed; anda compressor that is configured to allow compression of at least one of the first and second boil off vapors.2. The plant of further comprising a differential pressure controller configured to maintain a predetermined pressure differential between the LNG storage tank and the LNG transporter.3. The plant of wherein the differential pressure controller is configured to allow liquefaction operation concurrent with filling operation of the LNG transporter.4. The plant of wherein the predetermined pressure differential is between 10-50 psi.5. The plant of wherein the refrigeration unit further comprises at least 3 exchanger passes that ...

Подробнее
15-08-2013 дата публикации

HANDLER AND PART INSPECTING APPARATUS

Номер: US20130205804A1
Принадлежит: SEIKO EPSON CORPORATION

A handler includes a storage tank which stores liquid nitrogen, supply channels which supply refrigerant from the storage tank to inner passages of a first shuttle, a valve which opens and closes the supply channel, and a heat exchanger which has vaporization chambers with larger flow path cross-sectional areas than those of the supply channels to vaporize liquid nitrogen within the vaporization chambers. According to this structure, the respective vaporization chambers are filled with nitrogen gas produced by preceding vaporization. Thus, pressure fluctuations produced by successive vaporization of liquid nitrogen can be reduced. Moreover, nitrogen gas is supplied to the respective inner passages. Accordingly, excessive cooling for part housing pockets can be prevented. 1. A handler , comprising:a stage on which a part is supported;a supply unit to which liquefied gas produced by liquification of gas is supplied;a supply channel which connects the supply unit and a passage within the stage;a valve which opens and closes the supply channel;a heater which heats the stage;a temperature sensor which detects a temperature of the stage;a controller which controls an output of the heater and opening and closing of the valve such that the temperature detected by the temperature sensor becomes a predetermined temperature; anda vaporization vessel included along the supply channel and having a larger flow path cross-sectional area than a flow path cross-sectional area of the supply channel to vaporize the liquefied gas.2. The handler according to claim 1 , wherein the valve is provided along the supply channel on the upstream side of the vaporization vessel.3. The handler according to claim 1 , further comprising:a housing vessel which houses the stage; anda discharge channel which connects the passage within the stage and an interior of the housing vessel.4. The handler according to claim 3 , wherein a non-return valve which regulates gas flow of into the passage within the ...

Подробнее
05-09-2013 дата публикации

LNG VAPORIZATION EQUIPMENT

Номер: US20130227967A1
Автор: YAMANAKA Yusuke
Принадлежит:

An LNG vaporization equipment is provided with: a nitrogen supply apparatus (); a heating apparatus () that heats nitrogen supplied from the nitrogen supply apparatus; vaporizers (A, B, C) that vaporize LNG by means of a heat exchange between the nitrogen heated by the heating apparatus and the LNG that is fed out from an LNG tank (); and a recirculation line () which, after the nitrogen after the heat exchange that has been discharged from the vaporizers has been used to reduce the amount of BOG that is generated or has been used for reliquefaction, recirculates it to the heating apparatus. By employing this structure, it is possible to provide the LNG vaporization equipment that is able to use the cooling energy of LNG to reduce the quantity of BOG that is generated, or for reliquefaction. 1. An LNG vaporization equipment comprising:a nitrogen supply apparatus;a heating apparatus that heats nitrogen supplied from the nitrogen supply apparatus;vaporizers that vaporize LNG by means of a heat exchange between the nitrogen heated by the heating apparatus and the LNG that is fed out from an LNG tank; anda recirculation line that, after the nitrogen after the heat exchange that has been discharged from the vaporizers has been used to reduce the amount of BOG that is generated or has been used for reliquefaction, recirculates it to the heating apparatus.2. The LNG vaporization equipment according to claim 1 , wherein claim 1 ,when the nitrogen after the heat exchange that is discharged from the vaporizers is used to reduce the amount of BOG that is generated,the recirculation line is installed as a dual system that is formed by a first recirculation line that connects a nitrogen discharge port of the vaporizers to a nitrogen intake port of the heating apparatus outside the LNG tank, and a second recirculation line that connects the nitrogen discharge port of the vaporizers to the nitrogen intake port of the heating apparatus via an inside of the LNG tank.3. The LNG ...

Подробнее
05-09-2013 дата публикации

SEWAGE TANKS AND GRINDER PUMP SYSTEMS

Номер: US20130228244A1
Принадлежит:

A sewage tank for use with a pump such as a grinder pump to convey sewage. The sewage tank includes a container having an upper portion and a lower tapering portion defining a chamber for containing the pump. The lower tapering portion has a reduced size compared to the upper portion. The upper portion and the lower portion may include a plurality of intersecting vertical ribs and horizontal ribs defining a plurality of recessed pockets. The lower portion of the sewage tank may also include an outwardly-extending flange sufficiently sized so that soil may be backfilled around the bottom of the tank to prevent the tank from floating upward out of the ground due to its buoyancy under high ground water conditions. A sewage tank having a stepped flange is also disclosed. 132-. (canceled)33. A sewage tank for use with a pump to convey sewage , said sewage tank comprising:a container comprising a sidewall and a bottom; anda plurality of members connectable and attachable around an outer surface of said sidewall of said container operable for use in providing additional ballast under high ground water conditions.34. The sewage tank of wherein each of said plurality of members being similarly sized and configured.35. The sewage tank of wherein said plurality of members comprises ends which are connectable together.36. The sewage tank of wherein said ends of said plurality of members are connectable to each other with at least one bolt.37. The sewage tank of wherein said plurality of members and said sidewall of said container comprise interlocking portions.38. The sewage tank of wherein said plurality of members and said container comprise interlocking tongue and groove.39. The sewage tank of wherein said plurality of members is configured for backfilling of material on top of said plurality of members for providing additional ballast under high ground water conditions.40. The sewage tank of wherein said sidewall and said bottom are integrally formed.41. The sewage tank of ...

Подробнее
12-09-2013 дата публикации

METHOD AND ARRANGEMENT FOR PROVIDING LNG FUEL FOR SHIPS

Номер: US20130233392A1
Автор: Aarseth Harald
Принадлежит: Wartsila Oil & Gas Systems AS

An arrangement for providing liquefied natural gas (LNG) as fuel for propulsion of a ship () having cargo tanks () for liquefied gas comprises a source of LNG () and at least one first heat exchanger () for vaporizing and/or heating the LNG directly or indirectly with a warmer medium (). The warmer medium is boil-off gases from the cargo tanks () being re-liquefied in the process. 1. A method for vaporizing and/or heating a first liquefied gas for use as fuel for a ship having a cargo tank containing a second liquefied gas , comprising:taking the heat for vaporization and/or heating of a first liquefied gas from the contents of a cargo tank; andobtaining the heat through heat exchange with and condensation of boil-off from the contents of the cargo tank, wherein the first liquefied gas has a lower boiling point than a second liquefied gas.2. A method according to claim 1 , wherein the first liquefied gas is LNG.3. A method according to claim 1 , wherein the second liquefied gas has a boiling point higher than −105° C.4. A method according to claim 1 , wherein the boiling point of the second liquefied gas is higher than −48° C.5. A method according to claim 1 , wherein the second liquefied gas is LPG.6. A method according to claim 1 , wherein obtaining the heat further comprises the heat exchange between LNG as fuel and cargo boil-off being made by heat exchanging in a vapour space in an upper part of the cargo tank.7. A method according to claim 1 , wherein obtaining the heat further comprises the heat exchange between LNG as fuel and cargo boil-off being made in separately installed heat exchangers.8. A method according to claim 1 , wherein obtaining the heat further comprises the heat exchange between LNG as fuel and cargo boil-off being made indirectly by a circulating cryogenic medium in a loop including a second heat exchanger between the cryogenic medium and the LNG to be heated.9. An arrangement for providing liquefied natural gas (LNG) as fuel for propulsion ...

Подробнее
03-10-2013 дата публикации

WATERTIGHTNESS BARRIER FOR A WALL OF A TANK

Номер: US20130255562A1
Автор: Canler Gery, Mange Amaury
Принадлежит: GAZTRANSPORT ET TECHNIGAZ

A method of creating a watertightness barrier for a wall of a watertightened thermally insulating tank, involves steps of: arranging a repeating structure including alternately a strip of sheet metal and an elongate welding flange connected to the support surface, so that the turned-up lateral edges of the strip of sheet metal are positioned against the adjacent welding flanges, welding the turned-up lateral edge to the welding flange using a straight welded seam along a first longitudinal portion, continuing the straight welded seam with an end portion which is deviated in the direction of an upper edge corner, and producing a watertight edge corner welded seam along a second longitudinal portion of the strip of sheet metal such that the edge corner welded seam watertightly meets the end portion of the welded seam. 117.-. (canceled)18. A method of creating a watertightness barrier for a wall of a watertight and thermally insulating tank , comprising:arranging, on a thermally insulating barrier that has a flat support surface for the watertightness barrier, a repeating structure comprising alternately strips of sheet metal and elongate welding flanges connected to the support surface and projecting with respect to the latter so that the welding flanges run parallel to the strips of sheet metal over at least part of the length of the strips of sheet metal and so that lateral edges of the strips of sheet metal which are turned up with respect to the support surface are positioned against the adjacent welding flanges,for respectively a first and a second adjacent strip of sheet metal arranged on either ride of a welding flange, watertightly welding the turned-up lateral edge of the strip of sheet metal to the welding flange using a straight welded seam parallel to the support surface along a first longitudinal portion of the strip of sheet metal, the straight welded seam being each time arranged beneath an upper ridge of the turned-up lateral edge of the respective ...

Подробнее
07-11-2013 дата публикации

Regasification Plant

Номер: US20130291567A1
Принадлежит:

Methods and systems for regasifiing LNG are provided. A method for regasifying liquefied natural gas (LNG) includes providing heat to a LNG regasification process from a power plant. If the heat is not sufficient, additional heat can be provided to the LNG regasification process from a cooling tower operated in a warming tower configuration. 1. A method for regasifying liquefied natural gas (LNG) , comprising:providing heat to a LNG regasification process from a power plant; and, if the heat is not sufficient,providing additional heat to the LNG regasification process from a cooling tower operated in a warming tower configuration.2. The method of claim 1 , further comprising cooling water in the cooling tower when the power plant is operational.3. The method of claim 1 , further comprising using the cooling tower to warm a heat transfer fluid.4. The method of claim 1 , further comprising chilling intake air for a gas turbine by transferring heat to the LNG regasification process.5. The method of claim 1 , further comprising condensing steam from a steam turbine in a heat exchanger by transferring energy to the LNG regasification process.6. The method of claim 1 , further comprising transferring energy from the power plant to the LNG regasification process through a heat transfer fluid.7. The method of claim 6 , further comprising heating at least a portion of the heat transfer fluid against an net air stream for a gas turbine.8. The method of claim 6 , further comprising heating at least a portion of the heat transfer fluid against condensing steam in the power plant.9. A method for vaporizing a cryogenic fluid claim 6 , comprising:vaporizing the cryogenic fluid against a heat transfer fluid;providing heat energy to the heat transfer fluid from a power plant; and, if the heat from the power plant is not sufficient to vaporize the cryogenic fluid,providing heat energy to the heat transfer fluid from a cooling tower of the power plant operating in a warming mode.10. ...

Подробнее
07-11-2013 дата публикации

FUEL SUPPLYING DEVICE

Номер: US20130291967A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

To provide a fuel supplying device that, in a fuel tank equipped with plural accommodating portions that accommodate fuel, can suppress occurrence of running-out of fuel and can send-out fuel in a short time, even when a liquid surface of fuel of a fuel tank main body tilts. A sub-cup that has a fuel filter and a storage member is disposed at each of a first accommodating portion and a second accommodating portion. A distal end of a vapor discharging pipe of a fuel pump main body (or a sending-back pipe of a pressure regulator) is disposed within a second storage member. 1. A fuel supplying device , comprising:a first fuel accommodating portion and a second fuel accommodating portion that accommodate fuel;a first fuel filter that is formed in a shape of a bag and is provided at the first fuel accommodating portion, and, when fuel flows into an interior of the first fuel filter, the first fuel filter removes foreign matter from the fuel, and, in a state in which a portion or an entirety of the first fuel filter is immersed in fuel, an oil film produced by the fuel is formed at a surface of the first fuel filter;a second fuel filter that is formed in a shape of a bag and is provided at the second fuel accommodating portion, and, when fuel flows into an interior of the second fuel filter, the second fuel filter removes foreign matter from the fuel, and, in a state in which a portion or an entirety of the second fuel filter is immersed in fuel, an oil film produced by the fuel is formed at a surface of the second fuel filter;a first storage member that is provided within the first fuel accommodating portion and above the first fuel filter, a bottom portion of the first storage member being structured by at least one portion of an upper surface of the first fuel filter, and the first storage member being configured to store fuel;a second storage member that is provided within the second fuel accommodating portion and above the second fuel filter, a bottom portion of the ...

Подробнее
28-11-2013 дата публикации

GAS TANK REFUELING SYSTEM

Номер: US20130312430A1
Автор: Suppes Galen J.

A method of expansive-cooling an amount of a natural gas during transfer from a first storage container to a second storage container is provided. In addition, a system including two storage containers connected by an expander for the expansion of natural gas during the transfer from the first storage container to the second storage container is provided. 1. A method of expansive-cooling of an amount of a natural gas during transfer from a first storage container to a second storage container , the method comprising:transferring the amount of the natural gas from the first storage container to an expander, wherein the natural gas has a first temperature and a first pressure in the first storage container;expanding the transferred amount of the natural gas within the expander to a second pressure and to a second temperature; andtransferring the amount of the natural gas from the expander to the second storage container;wherein the amount of the natural gas within the second storage container has the second temperature and second pressure, the second pressure is lower than the first pressure, and the second temperature is lower than the first temperature.2. The method of claim 1 , wherein the first pressure is a stable pressure.3. The method of claim 2 , wherein the first pressure is about 500 psia.4. The method of claim 1 , wherein the first temperature is ambient temperature.5. The method of claim 1 , wherein the second pressure is not a constant pressure.6. The method of claim 5 , wherein the second pressure ranges from about 5 psia and about 500 psia.7. The method of claim 1 , wherein the second temperature ranges from about −100° C. to about ambient temperature.8. The method of claim 1 , wherein the energy removed from the amount of the natural gas in the expander is put to at least one use selected from: producing electricity claim 1 , producing heat claim 1 , and compressing gases.9. The method of claim 1 , wherein the amount of the natural gas stored in the ...

Подробнее
12-12-2013 дата публикации

TEMPERATURE CONTROL

Номер: US20130327066A1
Принадлежит: Aker Engineering & Technology AS

The present invention provides a method for increasing the internal pressure of a pressure vessel (1) containing a medium being present in both a liquid (3) and gaseous (2) phase, the vessel comprising one inner (9)and one outer (10) fluid tight barrier, said barriers being separated by an inter-barrier space (8), comprising the steps of: —circulating a suitable fluid through both the inter-barrier space and a heating unit; and —heating the fluid by the heating unit. 1. A method for increasing the internal pressure of a pressure vessel containing a medium being present in both a liquid and gaseous phase by heating at least part of the medium in the pressure vessel for expelling the liquid phase out over the top of the vessel , the vessel comprising one inner and one outer fluid tight barrier , said barriers being separated by an inter-barrier space , wherein the method comprisescirculating a suitable fluid other than said medium through both the inter-barrier space and a heating unit in a closed loop; andheating the fluid by the heating unit.2. A method according to claim 1 , wherein the heating unit is a heat exchanger.3. A method according to claim 2 , wherein a suitable heating medium claim 2 , such as water or air claim 2 , is provided to the heat exchanger on the opposite side of the fluid from the inter-barrier space.4. A pressure vessel for a medium having both a liquid and a gaseous phase claim 2 , comprising one inner and one outer fluid tight barrier claim 2 , the two barriers being separated by an inter-barrier space claim 2 , and means for heating at least part of the medium to be stored in the pressure vessel in order to increase the pressure in the vessel for expelling the liquid phase out over the top of the vessel wherein the space between the two barriers is connected to a heating unit by pipes claim 2 , such that a fluid other than said medium may be circulated through both the barrier space and the heating unit in a closed loop claim 2 , said ...

Подробнее
19-12-2013 дата публикации

CRYOGENIC COOLING APPARATUS FOR TRANSPORT OF PERISHABLE GOODS

Номер: US20130333396A1
Автор: HANDLEY Simon James
Принадлежит: LINDE AKTIENGESELLSCHAFT

A portable cryogenic cooling apparatus includes a platform; a tank for storing a cryogen and mounted to the platform; a heat exchanger operatively associated with the platform and in fluid communication with the cryogen; at least one air circulation device operatively associated with the heat exchanger for moving atmosphere therethrough; a first exhaust pipe in communication with the heat exchanger for removing gaseous cryogen from the heat exchanger to a location external to the atmosphere; a power source mounted to the platform and connected to the at least one air circulation device for powering said device; a control valve operatively associated with the tank and the heat exchanger to adjust an amount of the cryogen provided to the heat exchanger; and a controller in communication with the heat exchanger and the control valve for generating a signal to the control valve for operation thereof. 1. A portable cryogenic cooling apparatus , comprising:a platform;a tank for storing a cryogen therein and being mounted to the platform;a heat exchanger operatively associated with the platform and in fluid communication with the cryogen stored in the tank;at least one air circulation device operatively associated with the heat exchanger for moving atmosphere through the heat exchanger;a first exhaust pipe in communication with the heat exchanger for removing gaseous cryogen from the heat exchanger to a location external to the atmosphere;a power source mounted to the platform and connected to the at least one air circulation device for powering said device;a control valve operatively associated with the tank and the heat exchanger to adjust an amount of the cryogen provided to the heat exchanger; anda controller in communication with the heat exchanger and the control valve for generating a signal to the control valve for operation thereof.2. The apparatus of claim 1 , wherein the cryogen is selected from a group consisting of liquid nitrogen claim 1 , liquid carbon ...

Подробнее
30-01-2014 дата публикации

Fuel storage system

Номер: US20140026597A1
Принадлежит: General Electric Co

A cryogenic fuel storage system for an aircraft is disclosed including a cryogenic fuel tank having a first wall forming a storage volume capable of storing a cryogenic liquid fuel; an inflow system capable of flowing the cryogenic liquid fuel into the storage volume; an outflow system adapted to deliver the cryogenic liquid fuel from the cryogenic fuel storage system; and a vent system capable of removing at least a portion of a gaseous fuel formed from the cryogenic liquid fuel in the storage volume.

Подробнее
20-03-2014 дата публикации

PUMPING AND VAPORIZATION SYSTEM FOR ENHANCED OIL RECOVERY APPLICATIONS

Номер: US20140075964A1
Принадлежит:

A cryogenic liquid such as liquid nitrogen or liquid carbon dioxide is pumped via a high pressure pump to a vaporizer where the liquid becomes gas. The higher pressure gas is cooled by a coolant exchanger and can be fed to an onsite unit operation such as an enhanced oil recovery operation. The coolant exchanger is in a thermal exchange relationship with a combustion engine which powers a hydraulic pump which feed hydraulic fluid to drive the high pressure pump. 1. A method for producing a gas for use in an enhanced oil recovery operation comprising the steps:a) Feeding a liquid cryogen to a pump;b) Feeding said liquid cryogen from said pump to a vaporizer whereby said liquid cryogen vaporizes to form a gas and wherein said vaporizer is capable of vaporizing a different liquid cryogen without any or any substantial adjustment to its settings;c) Feeding said gas to a coolant exchanger, wherein said coolant exchanger is capable of cooling a different gas without any or any substantial adjustment to its settings; andd) Feeding said gas to said enhanced oil recovery operation.2. The method as claimed in wherein said liquid cryogen is selected from the group consisting of nitrogen claim 1 , carbon dioxide and mixtures of nitrogen and carbon dioxide.3. The method as claimed in wherein said pump is a high pressure pump.4. The method as claimed in wherein said liquid cryogen is at a pressure of 100 to 500 psia.5. The method as claimed in wherein said liquid cryogen is vaporized to a pressure of 1400 to 5000 psia.6. The method as claimed in further comprising feeding said liquid cryogen to a booster prior to feeding to said pump.7. The method as claimed in wherein said coolant exchanger is in a thermal exchange relationship with a combustion engine.8. The method as claimed in wherein said engine provides hot engine coolant to the coolant exchanger and the coolant exchanger provides cooled engine coolant to the combustion engine.9. The method as claimed in wherein said ...

Подробнее
20-03-2014 дата публикации

Thermodynamic Pump for Cryogenic Fueled Devices

Номер: US20140076290A1
Принадлежит: The Boeing Company

In one embodiment of the disclosure, an apparatus is provided for fueling a device using a cryogenic fluid. The apparatus may comprise: a cryogenic fluid supply container; a vessel connected to the supply container with an entrance valve to regulate flow of cryogenic fluid from the supply container; a heat transfer system capable of transferring heat from a device to the vessel to heat gas in the vessel; and an accumulator connected to the vessel with an exit valve to regulate flow of gas from the vessel to the accumulator. The accumulator may be capable of being connected to a device. In other embodiments, methods are provided of controllably mixing at least one fluid within a fluid mixing device. 1. An apparatus for fueling a device using cryogenic fluid comprising:a cryogenic fluid supply container configured to supply a cryogenic fluid;a vessel connected to the cryogenic fluid supply container with an entrance valve configured to regulate flow of the cryogenic fluid from the cryogenic fluid supply container into the vessel;a device;a heat transfer system configured to transfer heat from the device to the vessel to vaporize the cryogenic fluid in the vessel into a cryogenic gas; andan exit valve configured to regulate flow of the cryogenic gas from the vessel to fuel the device with the cryogenic gas, wherein the cryogenic fluid and the cryogenic gas are not vented to atmosphere or to the cryogenic fluid supply container.2. The apparatus of wherein the device comprises an aircraft claim 1 , a vehicle claim 1 , or an internal combustion engine.3. The apparatus of wherein the vessel is connected to a pressure sensor and to a temperature sensor which are configured to monitor pressure and temperature within the vessel.4. The apparatus of wherein the heat transfer system comprises at least one pipe member.5. The apparatus of further comprising an accumulator connected to the exit valve and to the device claim 1 , wherein the accumulator is connected to a pressure ...

Подробнее
03-04-2014 дата публикации

Multi-function unit for the offshore transfer of hydrocarbons

Номер: US20140090750A1
Принадлежит: Single Buoy Moorings Inc

A hydrocarbon transfer arrangement for transfer of fluids between an offshore unit and a carrier which are placed in an offloading configuration, includes at least one transfer hose and a gas return hose, wherein the end of the at least one transfer hose is connected to a floating multi-function unit allowing for the transport of the transfer hose between the offshore unit and the carrier, wherein the floating multi-function unit can be lifted out of the water and can be held in a fixed position above water-level and is provided with connection elements for making a fluid connection between the transfer hose end and a manifold of the carrier and with emergency disconnect elements for the at least one transfer hose, placed at a distance from the connection elements.

Подробнее
02-01-2020 дата публикации

Anti-leak arrangement applicable to gas supply nozzles

Номер: US20200002155A1
Принадлежит: Transportes Ham SLU

For this reason the invention proposes a solution consisting of channeling the gas from these leaks to a supplementary tank and, from it to the supply tank, recovering all the leaks, for which a pipe is used as main elements of the device, which is coupled to the bayonet by means of a seal connector made of Teflon or similar material and, a check valve at the inlet of the supplementary tank, said seal can be incorporated either in the bayonet or in the receptacle.

Подробнее
04-01-2018 дата публикации

STORAGE SYSTEM FOR FUELS

Номер: US20180003431A1
Принадлежит: Electro-Motive Diesel, Inc.

A condensation system for a reservoir, which stores fuel cryogenically, is disclosed. A portion of the fuel exists as a boil-off gas with a first vapor quality. The condensation system includes an absorption unit coupled to the reservoir and is configured to receive and mix the boil-off gas with a refrigerant, forming a liquid solution. A distillation unit is coupled to the absorption unit to receive the liquid solution at a supplemented pressure, and is configured to separate the fuel to a gaseous state from the liquid solution. Further, a cooling circuit is configured to receive the fuel in the gaseous state from the distillation unit at the supplemented pressure and a supplemented temperature, and deliver the fuel to the reservoir at a lower pressure and a temperature, with a vapor quality lower than the first vapor quality. 1. A condensation system for a reservoir configured to store a fuel cryogenically , a portion of the fuel existing as a boil-off gas in the reservoir with a first vapor quality , the condensation system comprising:an absorption unit fluidly coupled to the reservoir, the absorption unit configured to receive a refrigerant and the boil-off gas and facilitate a mixing therebetween to form a liquid solution;a distillation unit fluidly coupled to the absorption unit to receive the liquid solution at a supplemented pressure, and configured to separate the fuel to a gaseous state from the liquid solution; anda cooling circuit fluidly coupled between the distillation unit and the reservoir, and configured to receive the fuel in the gaseous state from the distillation unit at the supplemented pressure and a supplemented temperature, and deliver the fuel to the reservoir at a pressure and a temperature respectively lower than the supplemented pressure and the supplemented temperature, and with a vapor quality lower than the first vapor quality.2. The condensation system of claim 1 , wherein the cooling circuit includes:a condenser fluidly coupled to ...

Подробнее
13-01-2022 дата публикации

Systems and Methods for Converting Cryogenic Liquid Natural Gas to High Pressure Natural Gas and to Low Pressure Natural Gas using a Sphere Vessel and Retain all Product and to Further Dispense Only by Voluntary Actions of the User

Номер: US20220010930A1
Автор: Kenneth W. Anderson
Принадлежит: Individual

A System to convert and dispense pressurized gas(es) of cryogenic liquids of gas(es), and systems and methods using a sphere pressure vessel to efficiently convert liquid natural gas (LNG) to compressed natural gas (CNG) and low pressure natural gas (NG) and other cryogenic liquids of gas. The system requires one dedicated sphere pressure vessel at the dispensing location and the location of elements according to horizontal and vertical orientation to convert, retain, store, and dispense multiple pressures of gas from a cryogenic liquid supply such as a non-dedicated high pressure cryogenic personal supply tank. The system efficiently modifies and controls parameters of volume, pressure, and temperature in conversion scale to retain all converted product under human control to dispense, without process required waste, for use in commercial, utility and industrial uses, and scaleable for single family residential applications where service can be accomplished by pickup truck and trailer, where semi trucks access is not available.

Подробнее
08-01-2015 дата публикации

Systems and Methods for Maintaining Pressure in Cryogenic Storage Tanks

Номер: US20150007585A1
Автор: Kawai Ronald Tatsuji
Принадлежит:

A system for maintaining a substantially constant pressure within an ullage space of a cryogenic storage tank is provided. The system includes a compressor configured to receive fuel gas from the cryogenic storage tank, and compress the fuel gas to produce heated fuel gas. The system further includes a heat exchanger in flow communication with the compressor and configured to cool the heated fuel gas to produce cooled fuel gas, and a turbine in flow communication with the heat exchanger and configured to expand the cooled fuel gas to produce a gas and liquid mixture having a predetermined liquid to gas ratio, and discharge the gas and liquid mixture into the cryogenic storage tank. 1. A system for maintaining a substantially constant pressure within an ullage space of a cryogenic storage tank , said system comprising: receive fuel gas from the cryogenic storage tank; and', 'compress the fuel gas to produce heated fuel gas;, 'a compressor configured toa heat exchanger in flow communication with said compressor and configured to cool the heated fuel gas to produce cooled fuel gas; and expand the cooled fuel gas to produce a gas and liquid mixture having a predetermined liquid to gas ratio; and', 'discharge the gas and liquid mixture into the cryogenic storage tank., 'a turbine in flow communication with said heat exchanger and configured to2. A system in accordance with claim 1 , further comprising a fan configured to provide a cooling flow to said heat exchanger to facilitate cooling the heated fuel gas.3. A system in accordance with claim 2 , further comprising:a sensor configured to monitor a pressure within the ullage space; and instruct said fan to increase the cooling flow when said sensor monitors an increase in the pressure; and', 'instruct said fan to decrease the cooling flow when said sensor monitors a decrease in the pressure., 'a controller communicatively coupled to said sensor and said fan, said controller configured to4. A system in accordance with ...

Подробнее
09-01-2020 дата публикации

VAPORISER HEAD FOR AN INHALER, IN PARTICULAR FOR AN ELECTRONIC CIGARETTE PRODUCT

Номер: US20200008473A1
Принадлежит:

The invention relates to a vaporiser head for an inhaler, in particular for an electronic cigarette product, comprising a heating element-wick structure assembly consisting of an electrically operable heating element, which has at least one liquid-conducting through-channel and a porous and/or capillary wick structure arranged at an inlet side of the heating element, and a support plate for retaining the heating element-wick structure assembly. The vaporiser head has a liquid-conducting cannula having a preferably protruding piercing region. 1. A vaporiser head for an inhaler , comprising:a heating element-wick structure assembly, an electrically operable heating element, which has at least one liquid-conducting through-channel; and', 'a porous and/or capillary wick structure arranged at an inlet side of the electrically operable heating element;, 'wherein the heat element-wick structure comprisesa support plate for retaining the heating element-wick structure assembly; anda liquid-conducting cannula having a piercing region.2. The vaporiser head according to claim 1 ,wherein the wick structure and/or the electrically operable heating element is/are arranged on an attachment side of the liquid conducting cannula.3. The vaporiser head according to claim 1 ,wherein the wick structure is arranged at least in part inside the liquid conducting cannula.4. The vaporiser head according to claim 1 ,wherein the heating element-wick structure assembly is formed as a layered assembly.5. The vaporiser head according to claim 1 ,wherein the liquid conducting cannula has a sheath extending between an attachment side of the liquid conducting cannula and a pricking side of the liquid conducting cannula, andwherein the sheath circumferentially encases the heating element-wick structure assembly at least in part.6. The vaporiser head according to claim 1 ,wherein the piercing region is configured to pierce an external component.7. The vaporiser head according to claim 1 ,wherein the ...

Подробнее
14-01-2021 дата публикации

VAPOR MIXING APPARATUS

Номер: US20210008303A1
Автор: Bahl Darran
Принадлежит:

A vapor blending device is provided, generally having a base, a carrier removably couplable to the base for carrying a first and second vapor generating system. The first and second vapor generating systems including airflow generators and controllers configured to vary voltage to each of the first and second vapor generating devices and the airflow generators. A container is positioned in fluid communication with the first and second vapor generating systems and configured to retain a quantity of vapor. In some examples, one controller is configured to cause the first vapor generating system to generate a quantity of a first vapor, and another controller is configured to cause the second vapor generating system to generate a quantity of a second vapor in a predetermined ratio to the quantity of the first vapor. The vapor in the predetermined ratio is stored in the container for later removal. 1. A vapor blending device , comprising:a base;a carrier removably couplable to the base and having a first aperture and a second aperture; a first vapor generating device having a first heating element positioned within the first aperture, the first vapor generating device having a portion protruding through the carrier away from the base;', 'a first airflow generator positioned in the base and in fluid communication with the first vapor generating device; and', 'a first controller in electrical communication with the first heating element of the first vapor generating device and the first airflow generator, the first controller configured to vary voltage to one or more of the first heating element of the first vapor generating device and the first airflow generator;, 'a first vapor generating system comprising a second vapor generating device having a second heating element positioned within the second aperture, the second vapor generating device having a portion protruding through the carrier away from the base;', 'a second airflow generator positioned in the base and in ...

Подробнее
12-01-2017 дата публикации

CRYOGENIC POWER EXTRACTION

Номер: US20170009607A1
Принадлежит:

Various examples are provided for cryogenic power extraction. In one example, among others, a system for cryogenic power extraction includes a heat exchanger that can heat a cryogenic working fluid using exhaust heat from a heat source, and a turbine that can generate power from the heated cryogenic working fluid. In another example, a method includes heating a cryogenic working fluid with waste heat from a heat source and driving a turbine with the heated cryogenic working fluid. Power produced by the turbine can be used drive a mechanical load and/or generate electricity for use by an electrical load. For example, waste heat from a combustion engine of a vehicle can be used to generate power for driving mechanical loads of the engine and/or to generate electricity for charging a battery of the vehicle. 1. A system for cryogenic power extraction , comprising:a heat exchanger configured to heat a cryogenic working fluid using exhaust heat from a heat source; anda turbine configured to generate power from the heated cryogenic working fluid.2. The system of claim 1 , wherein the cryogenic working fluid is liquid nitrogen (LN2).3. The system of claim 2 , wherein the LN2 is exhausted to the atmosphere after passing through the turbine.4. The system of claim 1 , wherein the cryogenic working fluid is liquid hydrogen (LH2).5. The system of claim 1 , wherein the heat source is a combustion engine.6. The system of claim 5 , wherein the system is in a vehicle including the combustion engine.7. The system of claim 6 , wherein the vehicle is a hybrid electric car.8. The system of claim 6 , wherein the generated power charges a battery of the vehicle.9. The system of claim 6 , wherein the generated power drives a mechanical load of the vehicle.10. The system of claim 5 , wherein the heat exchanger heats the cryogenic working fluid using the exhaust heat generated during operation of the combustion engine.11. The system of claim 10 , wherein the heat exchanger heats the ...

Подробнее
11-01-2018 дата публикации

FUEL MANAGEMENT METHOD FOR STATIONARY TRUCK USE

Номер: US20180009650A1
Автор: HARRINGTON Jeffrey K.
Принадлежит:

A fuel management method for long term stationary truck use is provided. This method includes a truck with at least a first saddle tank or a second saddle tank integral to the truck. Each saddle tank has a fuel level sensor to measure the fuel level. A fuel trailer provides supplemental fuel, and a fuel pump downstream of the fuel trailer and upstream of the truck pressurizes the fuel from the fuel trailer. The method includes supplying fuel to local users from saddle tanks, activating the fuel pump when the fuel level of both the saddle tanks is less than a first predetermined threshold, thereby transferring fuel from the fuel trailer to the first saddle tank and the second saddle tank, deactivating the fuel pump when the fuel level of either the saddle tanks is greater than a second predetermined threshold. 2. The fuel management method of claim 1 , wherein the first predetermined threshold is 50% of the tank capacity.3. The fuel management method of claim 1 , wherein the second predetermined threshold is 70% of the tank capacity.4. The fuel management method of claim 1 , wherein the fuel pump is pneumatic.5. The fuel management method of claim 1 , wherein the fuel pump is a pneumatic diaphragm pump. High purity nitrogen is normally obtained by cryogenic means. For small consumptions, the construction of a self-contained known production unit represents a prohibitive investment, in the case of automated installations, and a more limited investment but with high labor expenses in the opposite case which always represents a high cost for the nitrogen produced.A more economical solution consists in utilizing a container for liquid nitrogen with large capacity, for example many tens of thousands of liters, from which liquid nitrogen is withdrawn and vaporized. As this is often an around the clock field operation, it is very demanding on the operator, who often must function as a repair man and field engineer as well. Typically these operations may last for days or ...

Подробнее
10-01-2019 дата публикации

Boil-off gas supply device

Номер: US20190011179A1
Принадлежит: Kobe Steel Ltd

A boil-off gas supply device is provided with: a storage tank configured to store a liquefied gas; a first compression mechanism configured to suck in the boil-off gas of the liquefied gas stored in the storage tank and compress the sucked boil-off gas; a second compression mechanism configured to compress the boil-off gas after being compressed by the first compression mechanism; a discharge path in which the boil-off gas discharged from the second compression mechanism flows; a first drive source configured to drive the first compression mechanism; and a second drive source that is different from the first drive source and configured to drive the second compression mechanism.

Подробнее
15-01-2015 дата публикации

CRYOGENIC PUMPS

Номер: US20150013351A1
Принадлежит:

A reciprocating cryogenic pump comprises a piston reciprocable within a pumping chamber The pumping chamber has an inlet suction valve for cryogenic liquid to be pumped and an outlet for high pressure cryogenic liquid. The inlet valve for the cryogenic liquid communicates with a cryogenic liquid reception chamber in the cold end or head of the pump The pump head is at least partially surrounded by a first jacket retaining primary vacuum insulation. The first jacket is itself at least partly surrounded by a second jacket The jacket defines a chamber for the reception of a coolant fluid such as liquid nitrogen and the second jacket has an inlet and an outlet for the liquid nitrogen. The thermal insulation can be further enhanced by a trapped gas space between the first jacket and an inner sleeve the latter defining with an outer sleeve vacuum insulation for the pumping chamber 1. A reciprocating cryogenic pump including a pump head , comprising:a pumping chamber and a piston reciprocable within the pumping chamber;an inlet to the pumping chamber for cryogenic liquid;an outlet from the pumping chamber for high pressure cryogenic liquid; anda cryogenic liquid reception chamber in the pump head for the cryogenic liquid, the cryogenic liquid reception chamber including a degassing outlet for evacuating vaporised cryogenic liquid from the cryogenic liquid reception chamber during cool down, a first jacket retaining insulation and at least partially surrounding said pump head, and a second jacket at least partially surrounding the first jacket, the second jacket defining a chamber for receiving a coolant fluid and including an inlet and an outlet for the coolant fluid.2. The cryogenic pump according to claim 1 , further comprising an inlet suction valve intermediate the cryogenic liquid reception chamber and the pumping chamber for permitting the passage of the cryogenic liquid from the cryogenic liquid reception chamber o the pumping chamber.3. The cryogenic pump according ...

Подробнее
15-01-2015 дата публикации

FLUID DELIVERY SYSTEM AND METHOD

Номер: US20150013834A1
Принадлежит:

A fluid supply system adapted for vacuum and pressure cycling of fluid, including a transfer vessel adapted to supply a process canister with fluid drawn from a bulk canister under a vacuum, wherein delivery of fluid from the transfer vessel to the process canister is accomplished with positive pressure. A method is also disclosed of delivering fluid, including drawing fluid under vacuum from a bulk canister and pressurizing the transfer vessel to effect dispensing of the fluid into a process canister for delivery to a location of use. 111.-. (canceled)13. The method of claim 12 , further comprising any one or more of:closing a valve disposed in a fluid flow line between the at least one bulk container and the process container;terminating the drawing of fluid under vacuum;maintaining sufficient pressure in the process canister to effect a constant supply of fluid to the location of use;reducing an amount of entrained gas in fluid in the at least one bulk canister by maintaining a negative pressure in the at least one bulk canister; andsensing a signal from a pressure transducer in the at least one bulk canister indicative of an increased rate of change of pressure correlative to onset of exhaustion of fluid in the at least one bulk canister, when said at least one bulk canister is at onset of exhaustion of fluid.14. (canceled)15. The method of claim 12 , wherein fluid holding volume of the transfer vessel is less than fluid holding volume of any one of the at least one bulk canister and the process canister.16. The method of claim 12 , wherein the location of use comprises a semiconductor manufacturing location.17. (canceled)18. The method of claim 12 , wherein at least one of the at least one bulk canister claim 12 , transfer vessel and process canister is of non-stainless steel construction.19. The method of claim 18 , wherein the at least one bulk canister is of non-stainless steel construction.20. The method of claim 12 , further comprising sensing pressure of ...

Подробнее
19-01-2017 дата публикации

Liquid Air Energy Storage Systems, Devices, and Methods

Номер: US20170016577A1
Принадлежит: MADA ENERGIE LLC

Liquid air energy storage (LAES) systems with increased efficiency and operating profit obtained through rational selection and configuration of the equipment used and optimization of the configuration/parameters of such equipment. In various embodiments, the LAES system is intended for operation preferably in an environmentally-friendly stand-alone regime with recovery of hot thermal energy extracted from compressed charging air and cold thermal energy extracted from discharged air.

Подробнее
15-01-2015 дата публикации

CRYOGENIC SYSTEM AND METHOD OF USE

Номер: US20150018810A1
Принадлежит:

A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen interconnected with cryotreatment devices including cryoprobes and catheters. The cryogenic medical device promotes subcooling to the tips of various external cryogenic instrument configurations. 1. A cryogenic system comprising:a container having cryogen within said container;one or more cryoprobes outside said container for use in cryotherapeutic procedures;a heat exchanger surrounded by a subcooling chamber;a pump which delivers the cryogen to said heat exchanger to subcool the cryogen;at least one supply line connected to said heat exchanger and to said exit port, said supply line directing the cryogen to said one or more cryoprobes;at least one return line which returns the cryogen from said one or more cryoprobes to said container; andat least one pressurized apparatus having one or more heaters arranged therein, at least one inlet port for filling said pressurized apparatus, at least one outlet port for releasing pressurized cryogen, and one or more control valves;wherein said one or more cryoprobes is interconnected with said at least one supply line and said at least one return line; andwherein said pressurized apparatus is configured to provide continuous delivery of said pressurized cryogen to said heat exchanger and through to said one or more cryoprobes.2. ...

Подробнее
18-01-2018 дата публикации

SYSTEM, DEVICE AND METHOD FOR MODIFYING TEMPERATURE AND HUMIDITY

Номер: US20180017980A1
Автор: HALEVI Hanoch
Принадлежит:

The present invention provides devices, machines, systems and methods for generating a desired humidity and temperature condition within a room. 1) A temperature and humidity generating system comprising:a) a cabinet housing having an air entry window;b) at least one cold vaporizing moisture source having at least one vapor opening;c) at least one hot vaporizing moisture source having at least one vapor opening;d) an air blower associated with said air entry window;e) at least one sensor for measuring humidity and/or temperature within said cabinet housing, a room, and/or water within said at least one vaporizing moisture sources; and a water tank, optionally divided into two independent tanks;', 'a vaporizing moisture generator;', 'a cover with at least one opening for air to enter and at least one vapor opening for the vapors to exit;', 'at least one buoy to measure the water level within said water tank;', 'optionally, an additional buoy for protecting the system from complete depletion of water from said vaporizing moisture sources;', 'at least one thermostat for measuring the temperature within said water tank; and', 'at least one faucet, and, 'f) a control unit for controlling said vaporizing moisture sources and said air blower, wherein each of said vaporizing moisture sources compriseswherein said system is designed to generate a desired climate within a room by blowing cold and hot vapors into the room according to need, thereby generating an environment within said room having a predefined humidity and temperature.2) The system of further comprising a computer comprising a processor and a memory claim 1 , coupled to said control unit and said at least one sensor.3) The system of claim 1 , wherein said air blower is designed to blow air into said cabinet housing and across said vaporizing sources.4) The system of further comprising a sterilization unit.5) The system of claim 1 , wherein said at least one cold vaporizing moisture source uses ultrasonic ...

Подробнее
28-01-2016 дата публикации

TEMPERATURE CONTROL OF A FLUID DISCHARGED FROM A HEAT EXCHANGER

Номер: US20160025042A1
Принадлежит:

A reciprocating piston cryogenic pump has been suspended from stroking when process fluid discharge temperature from a vaporizer dropped below a threshold to prevent freezing of a heat exchange fluid circulating through the vaporizer and damage to downstream components. Suspension of the pump results in a decrease of process fluid pressure downstream of the vaporizer, which is undesirable. In the present technique, a temperature is monitored correlating to process fluid temperature downstream of the vaporizer. The amount of process fluid discharged from the pump in each cycle is adjusted as a function of the temperature such that the average residence time of the process fluid in the vaporizer is increased as the discharge amount decreases, increasing process fluid discharge temperature. The average mass flow rate of the process fluid through the vaporizer is unchanged regardless of pump discharge amount such that process fluid pressure downstream of the vaporizer is maintained. 1. A method of controlling discharge temperature of a heat exchanger that vaporizers a fluid , said method comprising:monitoring a temperature that correlates to a fluid temperature downstream of said heat exchanger;operating a pump in a plurality of modes, a first mode pumping a first amount of said fluid in each cycle through said heat exchanger when said temperature is above a predetermined minimum value; anda second mode pumping a second amount of said fluid in at least one cycle through said heat exchanger when said temperature is equal to or less than said predetermined minimum value, wherein said second amount is less than said first amount whereby said average residence time of said fluid inside said heat exchanger increases such that said fluid temperature downstream of said heat exchanger increases.2. The method of claim 1 , wherein said heat exchanger converts said fluid into a supercritical state.3. The method of claim 1 , wherein at least one of:said fluid is a gaseous fuel; ...

Подробнее
26-01-2017 дата публикации

A mobile co2 filling system for filling onsite co2 storage and dispensing systems with co2

Номер: US20170023179A1
Автор: Daniel E. Schneider
Принадлежит: BEVTECH Inc, Green CO2 IP LLC

A mobile CO2 filling system selectively fills onsite CO2 storage and dispensing systems with CO2. The system includes a mobile platform; a tank holding liquid CO2 mounted on the mobile platform; a flexible dispensing hose coupled to the tank and configured to be selectively coupled to the filling inlet of an onsite CO2 storage and dispensing system; A pump selectively coupled to the tank; and a controller for controlling the filling of an onsite CO2 storage and dispensing systems with CO2 from the tank, wherein the controller is selectively designated by the user to operate in at least one pump assisted filling state and at least one gravity feed filling state.

Подробнее
10-02-2022 дата публикации

DUAL STIRLING CYCLE LIQUID AIR BATTERY

Номер: US20220042478A1
Принадлежит:

The invention relates to a liquid air energy storage system. The storage system includes a cryocooler, a dewar, and a Sterling engine. The cryocooler cools a tip of a cold head to cryogenic temperatures, the cryocooler further includes a heat sink to reject heat from the cryocooler and a cold head that protrudes into a dewar through a cryocooler cavity, the cold head to condense ambient air to create liquified air in the dewar. The dewar holds the liquified air at low temperatures, the dewar having the cryocooler cavity and a Stirling cavity. The Stirling engine drives an electric generator, the Stirling engine further including a cold finger protruding into the dewar through the Stirling cavity, the cold finger to move the liquified air from the dewar to a Stirling heat sink; the Stirling heat sink to expand the liquified air; and the electric generator to generate output electricity. 1. A recovery engine comprising: a heat sink to reject heat from the cryocooler, and', 'the cold head that protrudes into a dewar through a cryocooler cavity, the cold head to condense ambient air to create liquified air in the dewar;, 'a cryocooler to cool a tip of a cold head to cryogenic temperatures, the cryocooler further comprisingthe dewar to hold the liquified air at low temperatures, the dewar having the cryocooler cavity and a Stirling cavity; and a cold finger protruding into the dewar through the Stirling cavity, the cold finger to move the liquified air from the dewar to a Stirling heat sink,', 'the Stirling heat sink to expand the liquified air and to drive the electric generator, and', 'the electric generator to generate output electricity., 'the Stirling engine to drive an electric generator, the Stirling engine further comprising2. The recovery engine of claim 1 , wherein the dewar is a vacuum insulated container.3. The recovery engine of claim 1 , wherein the Stirling heat sink rests at ambient temperature.4. The recovery engine of claim 3 , wherein the Stirling ...

Подробнее
23-01-2020 дата публикации

Systems And Methods For Transporting Liquefied Natural Gas

Номер: US20200025334A1
Принадлежит:

Systems and methods for transporting and managing LNG are contemplated. A source of LNG is pumped to a pressure higher than a consumer pressure, and is vaporized to provide vaporized LNG. The vaporized LNG is transported from a first location to a second location without the need for cryogenic equipment. At the second location, the vaporized LNG is expanded to the consumer pressure or a second pressure below the consumer pressure to generate refrigeration content suitable to reliquefy at least a portion of the vaporized LNG. A reliquefied natural gas is generated at the second location while providing a natural gas product to a downstream consumer at the consumer pressure. 1. A method of providing a reliquefied natural gas product at a second location , comprising:providing liquefied natural gas (“LNG”) from an LNG source;pumping the LNG to a pressure above a consumer pressure to thereby form pressurized LNG;vaporizing the pressurized LNG at a first location to thereby form a pressurized natural gas;transporting the pressurized natural gas from the first location to the second location;expanding, at the second location, at least a portion of the pressurized natural gas to a second pressure to generate refrigeration content; andreliquefying the at least portion of the pressurized natural gas using the refrigeration content to thereby form the reliquefied natural gas product.2. (canceled)3. The method of claim 1 , wherein the pressure of the pressurized LNG is between 10 and 100 bar.4. The method of claim 1 , wherein the first location is offshore and the second location is onshore.5. (canceled)6. The method of claim 5 , wherein the second location is an LNG production plant claim 5 , an LNG regasification plant claim 5 , or a natural gas distribution plant.78-. (canceled)9. The method of claim 1 , wherein the step of expanding further comprises steps of (i) cooling the pressurized natural gas in a heat exchanger to thereby generate a cooled product stream claim 1 , ( ...

Подробнее
02-02-2017 дата публикации

Method of discharging residual liquid in liquefied gas tank

Номер: US20170030525A1
Автор: Hirotomo SETAKA
Принадлежит: IHI Corp

Water is injected into a top of a liquefied gas tank (water injection step); residual stored liquid in the tank is vaporized by heats of water injected in the water injection step so that the vaporized gas discharges from the top of the tank (residual liquid vaporization/discharge step); even after all of the stored liquid is vaporized in the residual liquid vaporization/discharge step, the injection of the water into the tank is continued to melt ice solidified through cold heat appropriation of the stored liquid in the residual liquid vaporization/discharge step and return the temperature in the tank to normal temperature (hot-up step); and attained is water discharge from'a bottom of the tank having the temperature in the tank returned to normal temperature in the hot-up step while inert gas is supplied into the tank (water discharge step).

Подробнее
01-05-2014 дата публикации

METHOD AND SYSTEM FOR COMBUSTING BOIL-OFF GAS AND GENERATING ELECTRICITY AT AN OFFSHORE LNG MARINE TERMINAL

Номер: US20140116062A1
Автор: Hartono John Surjono
Принадлежит: Chevron U.S.A. INC.

A system for combusting boil-off gas and generating electricity at an offshore LNG marine terminal distant from an onshore LNG facility is disclosed. BOG produced as a result of LNG transfer between an onshore LNG facility and an LNG carrier, is combusted to produce power which drives an electrical generator producing electricity. None or a reduced amount of BOG needs to be returned to an onshore LNG facility, as some of the BOG is combusted at the offshore marine terminal. 2. The offshore marine terminal further comprising:at least one electrical conduit for transferring electricity between the offshore terminal and an onshore site.3. The offshore marine terminal of further comprising:a BOG conduit adapted for receiving BOG from an LNG carrier and transferring the BOG to the BOG storage tank.4. The offshore marine terminal system of further comprising:a pump receiving power from the electrical generator which is used to pump LNG.5. The offshore marine terminal of further comprising:a vaporizer to vaporize LNG, the vaporizer being in fluid communication with the offshore BOG storage tank to supply BOG to the BOG storage tank.6. The offshore marine terminal of wherein:the platform is one of a jetty extending to onshore and a fixed platform supported upon legs anchored to the sea floor, and a floating structure anchored relative to the sea floor.7. A system for combusting boil-off gas and generating electricity at an offshore LNG marine terminal claim 1 , the system comprising:a) an onshore LNG facility including at least one LNG storage tank; i.) a platform anchored relative to a sea floor;', 'ii.) a BOG storage tank for storing BOG and supported by the platform;', 'iii.) a combustor, in fluid communication with the offshore BOG storage tank to receive BOG there from and for combusting BOG; and', 'iv.) an electrical generator for generating electricity which is powered by the combustor; and, 'b) an offshore marine terminal comprising i.) a main LNG transfer conduit ...

Подробнее
31-01-2019 дата публикации

APPARATUS AND METHOD FOR COMPRESSING EVAPORATED GAS

Номер: US20190032851A1
Принадлежит: Cryostar SAS

The invention provides an apparatus comprising a storage tank, a liquid piston compressor and a gas-fed device. The storage tank is configured to store liquefied gas therein. The liquid piston compressor is disposed downstream of, and in fluid communication with, the storage tank and is configured to receive boil-off gas from the storage tank and to compress the gas. The gas-fed device is disposed downstream of, and in fluid communication with, the liquid piston compressor, and is configured to receive compressed gas from the liquid piston compressor. 1. An apparatus comprising a storage tank configured to store liquefied gas therein; a liquid piston compressor disposed downstream of , and in fluid communication with , the storage tank and configured to receive boil-off gas from the storage tank and to compress the gas; and a gas-fed device disposed downstream of , and in fluid communication with , the liquid piston compressor , wherein the gas-fed device is configured to receive compressed gas from the liquid piston compressor.2. An apparatus according to claim 1 , wherein the storage tank is configured to store a flammable liquefied gas comprising liquefied hydrogen claim 1 , liquefied natural gas (LNG) claim 1 , liquefied methane claim 1 , liquefied ethane and/or liquefied propane.3. An apparatus according to claim 1 , wherein the storage tank is configured to store the liquefied gas at a pressure of less than 10 bara.4. An apparatus according to claim 1 , wherein the apparatus comprises a pre-compressor configured to receive the boil-off gas from the storage tank and to increase the pressure of the boil-off gas to between 2 bara and 20 bara claim 1 , wherein the pre-compressor is disposed downstream of claim 1 , and in fluid communication claim 1 , with the storage tank claim 1 , and disposed upstream of claim 1 , and in fluid communication with claim 1 , the liquid piston compressor.5. An apparatus according to claim 1 , wherein the liquid piston compressor ...

Подробнее
31-01-2019 дата публикации

SHIP INCLUDING GAS RE-VAPORIZING SYSTEM

Номер: US20190032852A1
Принадлежит:

A ship including a gas re-vaporizing system according to the present invention includes: a ship body; a vaporizer which is arranged in an upper portion of the ship body, and vaporizes liquefied gas and supplies the vaporized liquefied gas to a demander; and a heat source supply apparatus which is arranged inside the ship body and supplies a heat source to the vaporizer. 1. A ship including a gas re-vaporizing system , the ship comprising:a ship body;a vaporizer which is arranged in an upper portion of the ship body, and vaporizes liquefied gas and supplies the vaporized liquefied gas to a demander; anda heat source supply apparatus which is arranged inside the ship body and supplies a heat source to the vaporizer.2. The ship of claim 1 , further comprising:at least one deck which vertically divides an internal space of the ship body.3. The ship of claim 2 , wherein the heat source supply apparatus includes:a heat source pump, which supplies the heat source;a seawater heat exchanger, which heat exchanges the heat source and seawater; anda heat source circulation line, which is provided with the heat source pump and the seawater heat exchanger, andthe heat source pump and the seawater heat exchanger are sectioned and disposed at an upper side or a lower side by the deck.4. The ship of claim 3 , further comprising:a seawater pump, which supplies the seawater to the seawater heat exchanger; anda seawater line, in which the seawater flows and which is provided with the seawater pump and the seawater heat exchanger,wherein the heat source circulation line is formed to have a smaller diameter than a diameter of the seawater line.5. The ship of claim 4 , wherein the seawater line has one end claim 4 , which is connected to a seawater inlet formed on a lateral surface of the ship body claim 4 , and the other end claim 4 , which is connected to a seawater outlet formed on a lateral surface of the ship body claim 4 , andthe heat source supply apparatus is disposed in a section ...

Подробнее
04-02-2021 дата публикации

MODULAR AND SEPARABLE CRYOGENIC SHIPPING SYSTEM

Номер: US20210033330A1
Автор: Moon William G., Tran Bao
Принадлежит:

A modular shipping system includes a bulk shipping space; and a base to support a pair of stackable cryogenic shipping subunits positioned in the bulk shipping space during long distance shipment, each subunit having a plurality of feet on a subunit bottom adapted to rest above a plurality of corresponding foot receptacles on a subunit lid, each subunit having its own cryogen connection source to maintain temperature during transit. 1. A shipping system , comprising:a. a bulk shipping space; andb. a base to support a pair of stackable cryogenic shipping subunits positioned in the bulk shipping space during long distance shipment, each subunit having a plurality of feet on a subunit bottom adapted to rest above a plurality of corresponding foot receptacles on a subunit lid, each subunit having its own cryogen connection source to maintain temperature during transit.2. The system of claim 1 , comprising insulated walls in a reefer.3. The system of claim 1 , comprising a supply line coupled to a vaporizer claim 1 , wherein the supply line comprises a vacuum insulated piping (VIP) line.4. The system of claim 1 , wherein the cryogen flows in parallel and introduces equal amounts of cryogen to tubings.5. The system of claim 1 , wherein the cryogen is proportionally flow controlled into the heat exchanger based on real time expander data.6. The system of claim 1 , wherein a cryogen flow is based on the cryogen liquid temperature and a shipping container heat load.7. The system of claim 1 , comprising a shipping unit including:a shipping foundation;a cryogenic tank secured to the shipping foundation,a payload bay to receive products therein;a tube connected to the cryogenic tank and thermally coupled to the payload bay;a housing secured to the shipping foundation, said housing covering the tube and the payload bay to thermally seal the payload bay from outside environment;a controller mounted on the housing and having a sensor to determine temperature in a closed-loop and ...

Подробнее
09-02-2017 дата публикации

COLD UTILIZATION SYSTEM, ENERGY SYSTEM COMPRISING COLD UTILIZATION SYSTEM, AND METHOD FOR UTILIZING COLD UTILIZATION SYSTEM

Номер: US20170038008A1
Автор: TADA Masashi
Принадлежит:

A cold energy power generation system increases the efficiency in utilizing the cold exergy of liquefied gas while freely controlling the gas supply pressure on the outlet side of a secondary expansion turbine. The system includes a pressure-increasing pump for increasing the pressure of a low-temperature liquefied gas to a pre-overboost pressure while maintaining the liquid gas in a liquid state, a Rankine-cycle-type primary power generation apparatus, a heater for heating a vaporized gas, and a direct-expansion-type secondary power generation apparatus. Since the cold exergy of the liquefied gas is more efficiently utilized as pressure exergy than as temperature exergy, the system converts the cold exergy more preferentially to pressure exergy, and the optimal operating conditions that maximize the conversion efficiency can be determined by the composition of the liquefied gas, the temperature of the heating source, and the gas supply pressure. 1. A cold energy power generation system comprising:a pressure-increasing pump that is configured to increase the pressure of a low-temperature liquefied gas stored in a storage tank to a pre-overboost pressure while maintaining the liquefied gas in a liquid state;a primary power generation apparatus which includes a vaporizer that is configured to exchange heat between a predetermined cold exchange object and the liquefied gas whose pressure has been increased by the pressure-increasing pump, to thereby cool the cold exchange object and vaporize the liquefied gas, and which generates electric power through use of the cooled cold exchange object;a heater for heating the vaporized gas flowing out of the vaporizer to thereby increase the temperature of the vaporized gas; anda direct-expansion-type secondary power generation apparatus which includes a secondary turbine that is configured to be driven by the vaporized gas whose temperature has been increased by the heater and which generates electric power when the secondary ...

Подробнее
08-02-2018 дата публикации

METHOD FOR RECOVERING ENERGY FROM DRY ICE AT INFRA-ATMOSPHERIC PRESSURE

Номер: US20180038548A1
Принадлежит: CRYO PUR

A method of recovering energy produced by the change of phase of dry ice using a device having an enclosure () containing dry ice at an infra-atmospheric pressure and at a solidification temperature corresponding to the infra-atmospheric pressure; and a primary energy recovery circuit (), in which a heat transfer fluid circulates, passing through the enclosure. The method involves passage of the heat transfer fluid into the primary circuit (), this step causing the heating of the dry ice and its change of phase into CO2 and the cooling of the heat transfer fluid; extraction of the CO2 contained in the enclosure (); and substantially continuous lowering of the pressure of the enclosure () to an infra-atmospheric pressure. 11. A method of recovering energy produced by the change of phase of dry ice , said method being implemented by a device () comprising:{'b': '2', 'an enclosure () containing the dry ice at an infra-atmospheric pressure;'}{'b': 3', '2, 'a primary energy recovery circuit (), in which a heat transfer fluid circulates, passing through the enclosure ();'}the method comprising the following steps:{'b': '3', 'sub': '2', 'passage of the heat transfer fluid into the primary circuit (), this step causing the heating of the dry ice and its change of phase into COand the cooling of the heat transfer fluid;'}{'sub': '2', 'b': '2', 'extraction of the COcontained in the enclosure ();'}{'b': '2', 'a substantially continuous lowering of the pressure of the enclosure () to an infra-atmospheric pressure.'}22. The method according to claim 1 , wherein the COextracted from the enclosure () is gaseous.32914. The method according to claim 1 , comprising conveyance of the COextracted from the enclosure () into a heat exchanger () in which it transfers part of its heat to a heat transfer fluid circulating in a secondary circuit ().478. The method according to claim 1 , comprising substantially continuously measuring the pressure in a suction line () by a pressure sensor (). ...

Подробнее
07-02-2019 дата публикации

Compressor-Less Cooling System

Номер: US20190041005A1
Принадлежит:

An apparatus includes a separator tank, a heat exchanger, a compressor-less heat separator, and a fluid cooler. The separator tank separates a first refrigerant into a vapor component and a liquid component. The heat exchanger is exposed to a load. The heat exchanger uses the liquid component of the first refrigerant to remove heat from a space proximate the load. The space includes at least one of a refrigeration unit and walk-in cooler or freezer. The compressor-less heat separator extracts heat from the vapor component of the first refrigerant and uses electrical power to move the heat to a second refrigerant. The fluid cooler removes heat from the second refrigerant. 1. An apparatus , comprising:a separator tank configured to separate a first refrigerant into a vapor component and a liquid component;a heat exchanger exposed to a load configured to use the liquid component of the first refrigerant to remove heat from a space proximate the load, wherein the space comprises at least one of a refrigeration unit and walk-in cooler or freezer;a compressor-less heat separator configured to extract heat from the vapor component of the first refrigerant and use electrical power to move the heat to a second refrigerant; anda fluid cooler configured to remove heat from the second refrigerant.2. The apparatus of claim 1 , wherein the compressorless heat separator is configured to use a third fluid to extract heat from the first refrigerant and move the heat to the second refrigerant.3. The apparatus of claim 1 , further comprising:a first pump configured to control a rate of flow of the liquid component of the first refrigerant from the separator tank to the heat exchanger exposed to the load; anda second pump configured to control a rate of flow of the second refrigerant between the fluid cooler and the compressor-less heat separator.4. The apparatus of claim 1 , wherein the first refrigerant comprises carbon dioxide and the second refrigerant comprises water and glycol.5. ...

Подробнее
18-02-2021 дата публикации

REGASIFICATION DEVICE

Номер: US20210048147A1
Принадлежит: WGA Water Global Access, S.L.

A device for regasifying liquefied natural gas (LNG) and co-generating cool freshwater and cool dry air, which device comprises at least one hermetic outer recipient containing an intermediate fluid in liquid phase and gaseous phase, the fluid having high latent heat and high capillary properties, traversed by at least one intermediate fluid evaporation tube inside the tube flows moist air whose moisture condenses, at least partly, in a capillary condensation regime on its inner face and on its outer face the liquid phase of the intermediate fluid evaporates, at least partially, in a capillary evaporation regime, and traversed by at least one LNG evaporation tube on which outer face the gaseous phase of the intermediate fluid condenses at least partially, under a capillary condensation regime, and inside the tube, the LNG is heated and changes phase and the regasified natural gas (NG) is heated to a temperature greater than 5° C. 1. A regasification device for liquefied natural gas (LNG) and co-generation of cool freshwater and cool dry air , the device comprising at least one external hermetic container containing an intermediate fluid in its liquid and gaseous phases , crossed by at least one intermediate fluid evaporation tube inside which a fluid that provides caloric energy to the device flows and on whose outer face the liquid phase of the intermediate fluid evaporates , and crossed by at least one LNG evaporation tube that on its outer face the gaseous phase of the intermediate fluid condenses and in its interior LNG is heated and changes phase and the resulting regasified natural gas (NG) is heated up to a temperature greater than about 5° C. , wherein the fluid flowing in the interior of at least one intermediate fluid evaporation tube is moist air and the inner face of at least one intermediate fluid evaporation tube is coated at least in part with microslots , microgrooves , sintering , or other capillary structure on which the water vapor contained in ...

Подробнее
15-02-2018 дата публикации

LNG GASIFICATION SYSTEMS AND METHODS

Номер: US20180045441A1
Принадлежит:

A skid for capturing refrigeration from liquefied natural gas vaporization is disclosed comprising a first heat exchanger mounted on the skid, the first heat exchanger having a natural gas inlet, a natural gas outlet, a process fluid inlet, and a process fluid outlet. The process fluid is configured to flow from the process fluid inlet through the first heat exchanger to the process fluid outlet and then to the process fluid inlet. Other embodiments of the system for capturing refrigeration from vaporization of liquid natural gas, and methods for its use, are described herein. 1. A method for capturing refrigeration comprising:providing a predetermined flowrate of liquefied natural gas to a first heat exchanger;providing a process fluid to the first heat exchanger, wherein the process fluid is warmer than the liquefied natural gas;heating at least a portion of the liquefied natural gas with at least a portion of the process fluid;calculating an amount of energy transferred in the first heat exchanger from the process fluid to the liquefied natural gas;utilizing the process fluid for cooling.2. The method of claim 1 , further comprising displaying on a user display the amount of energy transferred in the first heat exchanger from the liquefied natural gas to the process fluid.3. The method of claim 1 , further comprising changing the predetermined flowrate of liquefied natural gas to the first heat exchanger based on the temperature of process fluid entering the heat exchanger.4. The method of claim 1 , further comprising changing the predetermined flowrate of liquefied natural gas to the first heat exchanger based on the temperature of process fluid leaving the heat exchanger.5. The method of claim 1 , further comprising:calculating an amount of energy of the liquefied natural gas;adding the calculated amount of energy transferred in the first heat exchanger from the process fluid to the liquefied natural gas to the calculated amount of energy of the liquefied ...

Подробнее
08-05-2014 дата публикации

Utilizing Locomotive Electrical Locker to Warm Liquid Natural Gas

Номер: US20140123916A1
Принадлежит: Electro-Motive Diesel, Inc.

A system for the exchange of thermal energy generated by electrical components in an electrical locker to a flow of a liquefied gas is provided. The system includes a storage container for cryogenically storing the liquefied gas at low pressure, a heat exchanger configured into the electrical locker, and a cryogenic pump in fluid communication with the storage container. The cryogenic pump pressurizes the liquefied gas received from the storage container to a higher pressure and pumps the pressurized liquefied gas to a location where vaporization of the liquefied gas into a gaseous form is performed using the thermal energy drawn from the electrical locker by the heat exchanger. 1. A system for the exchange of thermal energy generated by electrical components in an electrical locker to a flow of a liquefied gas , the system comprising:a storage container for cryogenically storing the liquefied gas at low pressure;a heat exchanger configured into the electrical locker; anda cryogenic pump, in fluid communication with the storage container, for pressurizing the liquefied gas received from the storage container to a higher pressure and for pumping the pressurized liquefied gas to a location where vaporization of the liquefied gas into a gaseous form is performed using the thermal energy drawn from the electrical locker by the heat exchanger.2. The system of claim 1 , wherein the electrical components include an A/C power inverter.3. The system of claim 1 , further comprising an accumulator in fluid communication with the heat exchanger for storing the gaseous form of the liquefied gas.4. The system of claim 1 , wherein the location is the heat exchanger.5. The system of claim 3 , further comprising a prime mover source in fluid communication with the accumulator to receive the gaseous form of the liquefied gas as fuel.6. The system of claim 5 , further comprising a vaporizer in fluid communication with the cryogenic pump for receiving the pressurized liquefied gas from ...

Подробнее
03-03-2022 дата публикации

LIQUID NATURAL GAS PROCESSING WITH HYDROGEN PRODUCTION

Номер: US20220065160A1
Принадлежит:

Devices, systems, and methods for liquefied natural gas production facilities are disclosed herein. A liquefied natural gas (LNG) production facility includes a liquefaction unit, a gas turbine, and a hydrogen generation unit. The liquefaction unit condenses natural gas vapor into liquefied natural gas. The hydrogen generation unit generates hydrogen. At least a portion of the hydrogen formed in the hydrogen generation unit is combusted, along with hydrocarbons, as fuel in the gas turbine.

Подробнее
03-03-2022 дата публикации

LIQUID NATURAL GAS PROCESSING WITH HYDROGEN PRODUCTION

Номер: US20220065161A1
Принадлежит:

Devices, systems, and methods for liquefied natural gas production facilities are disclosed herein. A liquefied natural gas (LNG) production facility includes a liquefaction unit, a gas turbine, and a hydrogen generation unit. The liquefaction unit condenses natural gas vapor into liquefied natural gas. The hydrogen generation unit generates hydrogen. At least a portion of the hydrogen formed in the hydrogen generation unit is combusted, along with hydrocarbons, as fuel in the gas turbine.

Подробнее
03-03-2022 дата публикации

Methods and compositions for delivery of carbon dioxide

Номер: US20220065527A1
Принадлежит: Carboncure Technologies Inc

Provided herein are methods, apparatus, and systems for delivering carbon dioxide as a mixture of solid and gaseous carbon dioxide to a destination.

Подробнее
15-05-2014 дата публикации

Liquefied Gas Supply Conditioning System and Method

Номер: US20140130522A1
Принадлежит: CATERPILLAR INC.

A conditioning system for a liquefied gas includes a source of liquefied gas, the liquefied gas provided from the source at a first temperature. A first heater is disposed to heat a flow of the liquefied gas to a second temperature. An accumulator is disposed to collect and store a quantity of the liquefied gas at the second temperature. A second heater is disposed to receive a flow of gas from the accumulator and the first heater, the second heater operating to heat the gas to a third temperature and provide the heated gas at the third temperature to a gas outlet. 1. A conditioning system for a liquefied gas , comprising:a source of gas in a liquefied state, the gas provided from the source at a first temperature;a first heater disposed to heat a flow of the gas passing therethrough to a second temperature;an accumulator disposed to collect and store a quantity of the gas at the second temperature;a second heater disposed to receive a flow of gas from the accumulator and the first heater, the second heater operating to heat the gas to a third temperature and provide the heated gas at the third temperature to a gas outlet;wherein the gas at the third temperature is in a gaseous state.2. The conditioning system of claim 1 , further comprising a pressure regulator device for regulating a pressure of the flow of gas provided by the second heater.3. The conditioning system of claim 1 , further comprising a pump for pressurizing the flow of gas from the source to an operating pressure claim 1 , wherein the pump is disposed upstream of the first heater relative to a direction of flow of the gas from the source to the first heater.4. The conditioning system of claim 1 , further comprising a sensor disposed to measure a temperature of the gas at the outlet of the second heater claim 1 , and a controller associated with the sensor and disposed to receive a gas temperature signal indicative of the temperature of the gas at the outlet of the second heater from the sensor claim ...

Подробнее
03-03-2016 дата публикации

COMPACT LIQUID NITROGEN PUMP

Номер: US20160061384A1
Автор: Caldwell Shane A., Li Gang
Принадлежит: UCHICAGO ARGONNE, LLC

The invention provides a cryogenic liquid pump system, having a first end with at least an insulating lid and motor; a second end, wherein the second end is a pump, said pump comprising an impeller; and a gas release plate upstream of the impeller; and a shaft disposed between the first end and the second end, wherein the motor imparts mechanical energy to the pump through the shaft. Also provided is a method for preventing cavitation of a cryogenic liquid in a cryogenic pump, the method having the steps of constantly maintaining pressure on the liquid in the pump and evacuating gas bubbles that form within the pump. 1. A cryogenic liquid pump system , said pump system comprising:a first end having at least an insulating lid and motor; an impeller; and', 'a gas release plate upstream of the impeller; and, 'a second end, wherein the second end is a pump, said pump comprisinga shaft disposed between the first end and the second end, wherein the motor imparts mechanical energy to the pump through the shaft.2. The pump system of claim 1 , wherein the pump further comprises an inducer downstream of the impeller claim 1 , wherein the inducer increases the pressure of the liquid at the impeller.3. The pump system of claim 1 , wherein the impeller is comprised of:a flat, circular disc; anda plurality of vanes arranged on a surface of the disc.4. The pump system of claim 3 , wherein the plurality of vanes comprises three vanes.5. The pump system of claim 4 , wherein each vane has a curvature approximately equal to Archimedes spiral.6. The pump system of claim 1 , wherein the shaft is substantially enclosed in a support tube.7. The pump system of claim 1 , further comprising:a cryogenic liquid container, wherein the second end of the pump system is inserted into the cryogenic liquid container and wherein the insulating lid covers the cryogenic liquid container; andat least one cryogenic conduit in fluid communication with the pump, wherein the cryogenic conduit runs from the ...

Подробнее
04-03-2021 дата публикации

Boil-off gas re-liquefying device and method for ship

Номер: US20210061434A1

Disclosed is a re-liquefying device using a boil-off gas as a cooling fluid so as to re-liquefy the boil-off gas generated from a liquefied gas storage tank provided in a ship. A boil-off gas re-liquefying device for a ship comprises: a multi-stage compression unit for compressing boil-off gas generated from a liquefied gas storage tank; a heat exchanger in which the boil-off gas generated from the storage tank and the boil-off gas compressed exchange heat; a vaporizer for heat exchanging the boil-off gas cooled by the heat exchanger and a separate liquefied gas supplied to a fuel demand source of a ship, and thus cooling the boil-off gas; an intermediate cooler for cooling the boil-off gas that has been cooled by the heat exchanger; and an expansion means for branching a part of the boil-off gas, which is supplied to the intermediate cooler, and expanding the same.

Подробнее
05-03-2015 дата публикации

Method of heating a cryogenic liquid

Номер: US20150063409A1
Принадлежит: SNECMA SAS

A method of heating a cryogenic liquid contained in a cryogenic tank including a gas headspace. The method includes heating the cryogenic liquid by injecting gas at higher temperature under a free surface of the cryogenic liquid.

Подробнее
02-03-2017 дата публикации

Energy recovery from reduction in pressure of a dense phase hydrocarbon fluid

Номер: US20170059091A1
Принадлежит: Chevron USA Inc

Disclosed are processes in which the pressure of a dense phase fluid stream containing hydrocarbons is reduced to produce a two-phase fluid stream, and energy is recovered. The process includes passing the dense phase fluid stream at a pressure greater than the cricondenbar pressure of the dense phase fluid stream through an expander where the dense phase fluid stream is expanded isentropically such that a two phase fluid stream having a pressure lower than the pressure of the dense phase fluid stream leaves the expander. The expander is coupled to a rotating mechanical power user, such that the expander drives the rotating mechanical power user. The process further includes passing the two phase fluid stream leaving the expander to a separator such that the two phase fluid stream is separated into a vapor phase stream and a liquid phase stream. The composition or quantity of liquid formed can be adjusted to control the dew point of the gas produced from the dense-phase fluid.

Подробнее
04-03-2021 дата публикации

SEALED AND THERMALLY INSULATING TANK WITH ANTI-CONVECTIVE FILLER ELEMENT

Номер: US20210062972A1
Принадлежит:

The invention relates to a sealed and thermally insulating tank for storing a fluid, wherein a tank wall comprises, successively in a thickness direction, a secondary thermal insulation barrier (), a secondary sealing membrane (), a primary thermal insulation barrier () and a primary sealing membrane (), wherein the secondary sealing membrane () is a corrugated metal membrane comprising a series of parallel corrugations () forming channels and flat portions located between said corrugations (), and wherein anti-convection filler elements () are disposed in the corrugations () of the secondary sealing membrane () to generate a head loss in said channels. 11223421566475425262526642416202225264. A sealed and thermally insulating tank for storing a fluid , wherein a tank wall comprises , successively in a thickness direction , a secondary thermal insulation barrier () comprising a plurality of juxtaposed secondary insulating elements () , the secondary insulating elements () being retained against a support wall () , a secondary sealing membrane () supported by the secondary insulating elements () of the secondary thermal insulation barrier () , a primary thermal insulation barrier () comprising a plurality of juxtaposed primary insulating elements () , the primary insulating elements () being retained against the secondary sealing membrane () , and a primary sealing membrane () supported by the primary thermal insulation barrier () and intended to be in contact with the cryogenic fluid contained in the tank , wherein the secondary sealing membrane () is a corrugated metal membrane comprising a series of parallel corrugations ( , ) forming channels and flat portions located between said corrugations ( , ) , the primary insulating elements () having an external face covering the flat portions of the secondary sealing membrane () , the secondary insulating elements () having an internal face supporting the flat portions of the secondary sealing membrane () , wherein anti- ...

Подробнее
12-03-2015 дата публикации

METHOD FOR RE-LIQUEFYING BOIL-OFF GAS GENERATED AT LIQUID HYDROGEN STORAGE TANK

Номер: US20150068222A1
Принадлежит: KAWASAKI JUKOGYO KABUSHIKI KAISHA

The boil-off gas discharged from a liquid hydrogen storage tank on a liquid hydrogen transport vessel () is introduced into the liquid hydrogen stored within liquid hydrogen storage tanks () disposed on the ground by passing through a boil-off gas introduction path (). At least a portion of the boil-off gas is re-liquefied by means of the cold temperature of the liquid hydrogen. The boil-off gas that was not re-liquefied and the gasified hydrogen generated as a consequence of the liquid hydrogen within the liquid hydrogen storage tanks () gasifying are mixed with raw material hydrogen by being supplied to the raw material hydrogen path () of a liquid hydrogen production device (HS) by passing through a gasified hydrogen discharge path (). The boil-off gas and the gasified hydrogen are re-liquefied by means of the liquid hydrogen production device (HS). 1. A method of re-liquefying boil-off gas generated in a primary liquid hydrogen reservoir , the method comprising:introducing the boil-off gas into liquid hydrogen stored in a secondary liquid hydrogen reservoir so as to liquefy at least a part of the boil-off gas by means of cryogenic heat energy of the liquid hydrogen; 'liquefying the remaining not-liquefied part of the boil-off gas and the vaporized hydrogen gas by means of the liquid hydrogen producing apparatus.', 'supplying the remaining not-liquefied part of the boil-off gas and vaporized hydrogen gas generated in said secondary liquid hydrogen reservoir, to a liquid hydrogen producing unit of a liquid hydrogen producing apparatus for producing the liquid hydrogen from gaseous hydrogen, said liquid hydrogen producing apparatus including a refrigeration cycle unit in which circulating hydrogen flows as a refrigerant, in addition to said liquid hydrogen producing unit; and'}2. The method according to claim 1 , wherein the temperature of the liquid hydrogen stored in said secondary liquid hydrogen reservoir is lower than the saturation temperature of the liquid ...

Подробнее
17-03-2022 дата публикации

SYSTEM AND METHOD FOR TRANSPORTING HYDROGEN PRODUCED FROM SEAWATER BASED ON EXISTING OFFSHORE WIND POWER PLANT

Номер: US20220081781A1
Принадлежит: Zhejiang University

The present invention belongs to the field of offshore wind power and, in particular, relates to system for transporting hydrogen produced from seawater and method based on an existing offshore wind power plant. The system comprises a wind generator, a seawater electrolytic cell device and a hydrogen transporting unit, wherein the wind generator is configured for converting wind energy into electric energy, the seawater electrolytic cell device is configured for electrolyzing seawater by making using of electric energy supplied by the wind generator and the hydrogen transporting unit is configured for transporting hydrogen produced by the seawater electrolytic cell device to a land. According to the present invention, by combining offshore wind power with seawater hydrogen production, resource advantages of the offshore wind power plant is utilized fully, so that the seawater hydrogen production cost is lowered. 1. A system for transporting hydrogen produced from seawater based on an existing offshore wind power plant , the system comprising:{'b': '1', 'a wind generator () configured for converting wind energy into electric energy;'}{'b': 2', '1, 'a seawater electrolytic cell device () configured for electrolyzing seawater by making use of electric energy supplied by the wind generator (); and'}{'b': '2', 'a hydrogen transporting unit configured for transporting hydrogen produced by the seawater electrolytic cell device () to a land.'}238383. The system for transporting hydrogen produced from seawater based on the existing offshore wind power plant according to claim 1 , wherein the hydrogen transporting unit comprises a large hydrogen storage tank () and a transport ship () claim 1 , the large hydrogen storage tank () being used for storing hydrogen and the transport ship () being used for extracting hydrogen in the large hydrogen storage tank () periodically and transporting the hydrogen to the land.34754171557. The system for transporting hydrogen produced from ...

Подробнее
17-03-2022 дата публикации

Method for Operating a Liquid Air Energy Storage

Номер: US20220082092A1
Автор: SINATOV STANISLAV
Принадлежит: Newpolygen Technologies Ltd.

A method for operating the liquid air energy storage (LAES) includes production of the storable liquid air through consumption of a low-demand power and recovery the liquid air for co-production of an on-demand power and a high-grade saleable cold thermal energy which may be used, say, for liquefaction of the delivered natural gas; in so doing zero carbon footprint is provided both for fueled augmentation of the LAES power output and for LNG co-production at the LAES facility. 1. A method for operating a liquid air energy storage (LAES) , comprising in combination:charging the LAES through consuming a low-demand power from a co-located renewable energy source or a grid for after-cooled compressing a process air, as a mixture of a pressurized pre-treated feed air and a recirculating air, further boost after-cooled compressing said process air, work expanding and accompanied refrigerating a recirculating part of the process air, recovering said work of expanding for powering the boost compressing and using a refrigerated recirculating air for in-direct cryogenic cooling a rest of the process air, and further depressurizing, partial liquefying and separating said cryogenically cooled rest of the process air into a liquid air and a cold vapor with combining the refrigerated recirculating air and said cold vapor;storing a liquid air in a storage tank;delivering a natural gas (NG) into the LAES;discharging the LAES through producing and delivering an on-demand power into the grid by means of pumping the liquid air from the storage tank, sequential re-gasifying said liquid air and heating a re-gasified air by a LAES exhaust with further work partial expanding the re-gasified air in a power block and recovering the expanded air as an oxidant for a burning of a minor part of said delivered NG in a fueled prime mover being used in said power block for augmentation of the LAES on-demand power and selected from a group consisting of, but not limited to an industrial rotating ...

Подробнее
28-02-2019 дата публикации

Method for Liquid Air and Gas Energy Storage

Номер: US20190063265A1
Автор: SINATOV STANISLAV
Принадлежит: Newpolygen Technologies Ltd.

A method for liquid air and gas energy storage (LAGES) which integrates the processes of liquid air energy storage (LAES) and regasification of liquefied natural gas (LNG) at the import terminal through the exchange of thermal energy between the streams of air and natural gas (NG) in their gaseous and liquid states and includes harnessing the LNG as an intermediate heat carrier between the air streams being regasified and liquefied, recovering a compression heat from air liquefier for LNG regasification and utilizing a cold thermal energy of liquid air being regasified for reliquefaction of a part of send-out NG stream with its return to LNG terminal. 1. A method for liquid air and gas energy storage (LAGES) comprising in combination:pumping the liquefied natural gas (LNG) from the tanks of LNG Storage and Regasification (LNGSR) terminal into a co-located Liquid Air Energy Storage (LAES) system for continuous regasifying the LNG in the said system and final injecting the regasified LNG into a transmission pipeline;interchanging a waste thermal energy between the LNG being regasified and the process air being continuously liquefied in the LAES system;consuming a required power from the grid and/or other energy source for production of the liquid air with its storing only in the periods of low demand for energy in the grid;on-demand discharging the said LAES system with generation of the on-peak power delivered into grid through consuming both a stored and directly produced liquid air at a rate exceeding a rate of its direct production; andwherein the improvement comprises in combination:pumping the whole amount of LNG destined for regasification and its delivering into LAES system at the first low pressure and first low temperature during the LAES system discharging;using a minor part of cold thermal energy of discharged liquid air for deep cooling the said delivered LNG down to the second low temperature, which is below the first one;controlled dividing the deeply ...

Подробнее
28-02-2019 дата публикации

SHIP HAVING GAS REGASIFICATION SYSTEM

Номер: US20190063684A1
Принадлежит:

According to the present invention, a ship including a gas re-vaporizing system including a re-vaporizing apparatus, which re-vaporizes liquefied gas through seawater supplied by a seawater supply apparatus, supplies a fluid inside a seawater storage tank, which maintains pressure of seawater flowing in a circulation connection line, to the circulation connection line, in order to implement the switch of an operation mode of the seawater supply apparatus from an open loop mode to a close loop mode non-stop. 1. A ship including a gas re-vaporizing system including a re-vaporizing apparatus , which re-vaporizes liquefied gas through seawater supplied by a seawater supply apparatus , whereinthe seawater supply apparatus includes:a seawater supply line which supplies the seawater to the re-vaporizing apparatus;a seawater discharge line which discharges the seawater from the re-vaporizing apparatus;a circulation connection line which is branched from the seawater discharge line and connects the seawater supply line;a seawater storage tank which is provided on the circulation connection line, and maintains pressure of the seawater flowing in the circulation connection line; anda tank connection line which connects the seawater storage tank and the circulation connection line, andthe tank connection line supplies a fluid inside the seawater storage tank on the circulation connection line before the seawater flowing in the seawater discharge line is switched to flow the circulation connection line without being discharged to the outside.2. The ship of claim 1 , further comprising:a first opening/closing valve which is disposed closer to a point of the circulation connection line connected with the seawater supply line; anda second opening/closing valve which is disposed closer to a point of the circulation connection line branched from the seawater discharge line.3. The ship of claim 2 , further comprising:a seawater pump which is provided on the seawater supply line and ...

Подробнее
28-02-2019 дата публикации

Method for Liquid Air and Gas Energy Storage

Номер: US20190063685A1
Автор: Stanislav Sinatov
Принадлежит: Newpolygen Technologies Ltd

A method for liquid air and gas energy storage (LAGES) which integrates the processes of liquid air energy storage (LAES) and regasification of liquefied natural gas (LNG) at the Floating Storage, Regasification and Power (FSRP) facilities through the exchange of thermal energy between the streams of air and natural gas (NG) in their gaseous and liquid states and includes recovering a compression heat from air liquefier and low-grade waste heat of power train for LNG regasification with use of an intermediate heat carrier between the air and LNG streams and utilizing a cold thermal energy of liquid air being regasified for increase in LAGES operation efficiency through using a semi-closed CO2 bottoming cycle.

Подробнее
11-03-2021 дата публикации

LIQUEFIED GAS STORAGE AND DELIVERY SYSTEM

Номер: US20210071816A1
Автор: PARFITT Stefan Witold
Принадлежит:

A self-pressurising storage vessel is provided comprising a storage tank for storing a cryogen and a cooling jacket, wherein the cooling jacket is for holding a substance suitable for cooling the cryogen, arranged such that, in use, vapour evaporated from the substance in the cooling jacket pressurises the storage tank. 1134. A self-pressurising storage vessel () comprising:{'b': '108', 'a storage tank () for storing a cryogen; and'}{'b': 138', '138', '138, 'a cooling jacket (), wherein the cooling jacket () is for holding a substance suitable for cooling the cryogen, arranged such that, in use, vapour evaporated from the substance in the cooling jacket () pressurises the storage tank.'}2. The self-pressurising storage vessel of claim 1 , wherein the cooling jacket is positioned around and in contact with said storage tank.3. The self-pressurising storage vessel of claim 1 , comprising control means for feeding vapour from the cooling jacket into the storage tank claim 1 , utilising a valve and pressure gauge to maintain a positive pressure in the storage tank.4. The self-pressurising storage vessel of claim 1 , wherein the cooling jacket sub-cools the cryogen.5. The self-pressurising storage vessel of claim 4 , comprising sub-cooled cryogen in the solid and/or liquid phase.6. The self pressurising storage vessel of claim 1 , wherein the substance is liquid nitrogen claim 1 , LN2 claim 1 , and wherein the cryogen is one of methane claim 1 , liquid natural gas claim 1 , LNG claim 1 , propane or butane.7. The self pressurising storage vessel of claim 1 , wherein the storage tank further comprises a heating means.8. The self pressurising storage vessel of claim 7 , wherein the heating means comprises a number of individually controlled/heated concentric rings situated within the storage tank.9. The self pressurising storage vessel of claim 8 , wherein the individually controlled/heated concentric rings are formed of a porous metal matrix.10700. A method () for ...

Подробнее
19-03-2015 дата публикации

Low-Loss Cryogenic Fluid Supply System and Method

Номер: US20150075189A1
Автор: Witte Thomas Gerard
Принадлежит: AIR PRODUCTS AND CHEMICALS INC.

A low-loss cryogenic fluid supply system having at least one main cryogenic fluid tank and a backup cryogenic fluid tank each having a vent set to a first pressure P1 and a pressure build circuit set to a second pressure P2, a main tank gas supply line configured to supply gas to a junction at a third pressure P3, a main tank liquid supply line configured to supply gas to the junction at a fourth pressure P4, a backup tank liquid supply line configured to supply gas to the junction at a fifth pressure P5, a backup tank backpressure regulator configured to supply gas to a point upstream to the main tank gas supply line at a sixth pressure P6, and an outlet supply line configured to supply gas from the junction at an end use pressure Pu, where P1>P3≧P2, P1≧P6>P2, P6≧P3>P4>P5>Pu. 1. A low-loss cryogenic fluid supply system comprising:at least one main cryogenic fluid tank, the main tank having a gas outlet, a liquid outlet, a pressure build circuit, and a vent, the vent being configured to exhaust pressure from the main tank at a first pressure P1, the pressure build circuit being configured to build pressure in the main tank to a second pressure P2 less than the first pressure P1;a backup cryogenic fluid tank, the backup tank having a gas outlet, a liquid outlet, a pressure build circuit, and a vent, the vent being configured to exhaust pressure from the backup tank at the first pressure P1, the pressure build circuit being configured to build pressure in the backup tank to the second pressure P2;a gas supply line connected to the main tank gas outlet and having a pressure regulator configured to supply gas to a junction at a third pressure P3 greater than or equal to the second pressure P2 and less than the first pressure P1;a main liquid supply line having a heat exchanger to vaporize liquid from the main tank liquid outlet and a pressure regulator configured to supply the vaporized liquid to the junction at a fourth pressure P4 less than the third pressure P3;a ...

Подробнее
15-03-2018 дата публикации

Propellant tank for spacecraft and spacecraft

Номер: US20180072436A1
Принадлежит: Mitsubishi Heavy Industries Ltd

To provide a propellant tank such as a fuel tank and an oxidant tank for a spacecraft, the propellant tank discharging propellant such as liquid hydrogen and liquid oxygen accumulated therein toward a rocket engine by pressurizing an inside thereof by operating gas. The propellant tank includes a tank body that accumulates therein the propellant in a liquid state, and a holding container that is provided inside the tank body and disposed with a predetermined gap from an inner wall of the tank body, so that the propellant in a liquid state can be held therein, when the inside of the tank body is in a microgravity state or a zero-gravity state.

Подробнее
17-03-2016 дата публикации

SEALED AND THERMALLY INSULATED TANK

Номер: US20160076701A1
Принадлежит: GAZTRANSPORT ET TECHNIGAZ

A sealed and thermally insulating tank whose wall is fixed to a carrier wall. The tank wall includes a secondary thermal insulation barrier which is retained on the carrier wall and a secondary sealing barrier which is supported by the thermal insulation barrier. There is also a primary insulation barrier which is fixed to the secondary element of the tank by a fastener which is connected to the secondary insulation barrier. 1311311313303a. A sealed and thermally insulating tank which is integrated in a structure which comprises a carrier wall () , said tank comprising a tank wall which is fixed to said carrier wall , the tank wall comprising , on the one hand , a primary element and , on the other hand , a secondary element which is arranged between the carrier wall and the primary element , each of the primary and secondary elements including , on the one hand , a thermal insulation barrier which is constituted by insulation blocks () , () in the form of rectangular parallelepipeds which are juxtaposed in parallel rows , an insulation block ( , ) of a thermal insulation barrier comprising a layer of plastics material foam which is clamped between two rigid insulation plates ( , ) which delimit the insulation block , the two rigid plates being substantially parallel with the carrier wall in the zone in the region of which they are located and , on the other hand , a sealing barrier which is arranged on each of the thermal insulation barriers , the thermal insulation barrier of the secondary element being fixedly joined to the carrier wall , the thermal insulation barrier of the primary element being fixedly joined to the secondary element of the tank by fastening means which are connected to the thermal insulation barrier of the secondary element , and allowing the primary insulation blocks of the primary element of the tank wall to be pressed onto the secondary insulation blocks of the secondary element of the tank wall , characterized in that the fastening means ...

Подробнее
15-03-2018 дата публикации

SEALED AND THERMALLY INSULATED TANK FITTED WITH A THROUGH-ELEMENT

Номер: US20180073678A1
Принадлежит:

The invention relates to a sealed and thermally insulating tank wherein the distance between two adjacent corrugations of the corrugated metal sheets of the sealing membrane is equal to a predetermined corrugation interval io, the sealing membrane comprising, around a through-element: 1. A sealed and thermally insulating tank intended for the storage of a fluid , said tank comprising a tank wall fixed to a flat bearing wall , the tank wall comprising a sealing membrane and a thermally insulating barrier disposed between the bearing wall and the sealing membrane , the sealing membrane essentially consisting of a plurality of corrugated metal sheets tightly welded to one another which form a first series of equidistant parallel rectilinear corrugations extending in a first direction of the plane of the bearing wall and a second series of equidistant parallel rectilinear corrugations extending in a second direction of the plane of the bearing wall , the second direction being at right angles to the first direction , the distance between two adjacent corrugations of the first series and the distance between two adjacent corrugations of the second series being equal to a predetermined corrugation interval io , the corrugated metal sheets having rectangular forms whose sides are parallel to , respectively , the first direction and the second direction of the plane of the bearing wall and whose dimensions are substantially equal to integer multiples of the corrugation interval , each edge of a corrugated metal sheet being situated between two adjacent corrugations parallel to said edge , the thermally insulating barrier essentially consisting of a plurality of juxtaposed insulating panels each having an inner face which forms a support surface for the sealing membrane , the insulating panels having rectangular parallelepipedal forms whose sides are parallel to , respectively , the first direction and the second direction of the plane of the bearing wall and whose ...

Подробнее
24-03-2022 дата публикации

METHOD AND APPARATUS FOR CALCULATING VOLUME OF COMPRESSED GAS STORAGE VESSEL, COMPUTER, AND MEDIUM

Номер: US20220090952A1
Принадлежит:

Provided are a method and apparatus for calculating a volume of a compressed gas storage vessel, a computer, and a medium. According to the method, three test vessels with known volume and initial pressure are used to establish a pressure equilibrium with a compressed gas storage system, and pressure values in three equilibrium states are respectively detected. In this way, according to the three pressure values and the known volumes and initial pressures, a volume of the compressed gas storage system, a volume of a hose, and a pressure value of the compressed gas storage system in an initial state can be quickly and accurately calculated. By accurately obtaining the volume of the compressed gas storage system, the volume of the hose, and the pressure value of the compressed gas storage system in the initial state, a refueling rate can be increased as much as possible while ensuring safe refueling. 1. A method for calculating a volume of a compressed gas storage vessel , the method comprising:establishing a connection between the compressed gas storage system and a gas dispenser, the gas dispenser comprising a hose and at least three test vessels with known volume and initial pressure, the three test vessels being in communication with the compressed gas storage system via the hose, wherein the three test vessels include a first vessel, a second vessel, and a third vessel, wherein the first vessel is in communication with the hose via a first valve, the second vessel is in communication with the hose via a second valve, the third vessel is in communication with the hose via a third valve, and in an initial state, the first valve, the second valve, and the third valve are in a closed state;opening the first valve so that the first vessel is in communication with the compressed gas storage system, detecting a first pressure value when a pressure equilibrium state is reached between the first vessel, the hose, and the compressed gas storage system, and then closing the ...

Подробнее
16-03-2017 дата публикации

IMPERMEABLE AND THERMALLY INSULATED TANK COMPRISING A METAL MEMBRANE THAT IS CORRUGATED IN ORTHOGONAL FOLDS

Номер: US20170074455A1
Принадлежит:

An impermeable and thermally insulated tank built into a load-bearing structure, the tank wall comprising: 1. An impermeable and thermally insulated tank built into a structure that includes a load-bearing wall , said tank having a tank wall attached to said load bearing wall , the tank wall comprising:a thermal insulation barrier held on the load-bearing wall and made up of cuboid thermally insulating blocks, juxtaposed in parallel rows separated from one another by gaps,an impermeable barrier carried by the thermal insulation barrier, said impermeable barrier comprising a metal membrane formed of metal sheets welded together sealingly,at least some of the thermally insulating blocks of the thermal insulation barrier carrying, on the face of same opposite the load-bearing wall, at least two substantially orthogonal metal connecting strips, arranged parallel to the sides of the thermally insulating blocks, the sheets of the metal membrane carried by said thermally insulating blocks being welded to said strips, said connecting strips being rigidly connected to the thermally insulating blocks bearing same,a plurality of sheets of the metal membrane each having at least two orthogonal folds parallel to the sides of the thermally insulating blocks, said folds being inserted in the gaps formed between the thermally insulating blocks.2. The tank as claimed in claim 1 , wherein the tank wall has a primary element and a secondary element arranged between the load-bearing wall and the primary element claim 1 , both the primary element and the secondary element including a thermal insulation barrier made up of cuboid thermally insulating blocks claim 1 , juxtaposed in parallel rows and both the primary and secondary elements including an impermeable barrier arranged on the thermal insulation barrier claim 1 , the thermal insulation barrier of the secondary element being rigidly connected to the load-bearing wall claim 1 , the thermal insulation barrier of the primary element ...

Подробнее