Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 829. Отображено 100.
27-09-2012 дата публикации

Method and system for a self-calibrated multi-magnetometer platform

Номер: US20120245875A1
Принадлежит: Broadcom Corp

A multi-magnetometer device comprises at least two z-axis aligned and physically rotated magnetometer triads utilized for measuring corresponding earth's magnetic field. The magnetic field measurements are utilized to measure rotation measurements of a single orthogonal axis along the 360 degrees of the complete circle without user's assistance and/or magnetometer movement for magnetometer calibration. The multi-magnetometer device may compute its magnetic heading utilizing the magnetic field measurements if no magnetic perturbations are detected. When magnetic perturbations are detected, a perturbation mitigation process may be performed. The rotation measurements may be generated by selectively combining the magnetic field measurements. Hard-iron components are determined utilizing the rotation measurements, and are removed from the magnetic field measurements. Soft-iron components are determined utilizing the hard-iron free magnetic field measurements, and are removed from the hard-iron free magnetic field measurements. The resulting perturbation free magnetic field measurements are utilized to compute magnetic heading.

Подробнее
06-12-2012 дата публикации

Measurement device for minimizing external magnetic disturbance

Номер: US20120310581A1

Provided is a ΔE measuring device minimizing external magnetic disturbance, more particularly, a ΔE measuring device measuring a change (ΔE) in elastic modulus under a magnetic field by removing a bias effect by the earth's magnetic field and a magnetic tool and device and using a magneto acoustic resonance method. With the ΔE measuring device, a space minimizing external magnetic disturbance using three-axis Helmholtz coils is provided and the ΔE measuring device having a plurality of coil structures is inserted into the space, thereby making it possible to minimize external magnetic field disturbance.

Подробнее
27-06-2013 дата публикации

METHOD OF TERRAIN CORRECTION FOR POTENTIAL FIELD GEOPHYSICAL SURVEY DATA

Номер: US20130166212A1
Автор: Zhandov Michael S.
Принадлежит: TechnoImaging, LLC

A method for terrain correction of potential field geophysical survey data measured above an examined medium having density and/or magnetization is described, using potential field data including but not limited to gravity and/or magnetic total field and/or vector and/or tensor data. The potential field sensors may measure the gravity and/or magnetic total field and/or vector and/or tensor data at least one receiving position with respect to the examined medium. The terrain of the examined medium may be described by a spatially variable analytic function of the material properties of the examined medium. The terrain response for at least one component of the measured potential field in at least one receiver location (potential field data) may be calculated using special form of surface integral over the terrain based on 3D analog of the Cauchy-type integrals. This surface integration ensures accurate representation of the terrain response.

Подробнее
21-11-2013 дата публикации

GEOMAGNETIC APPLICATION DEVICE

Номер: US20130307547A1
Принадлежит: Aichi Micro Intelligent Corporation

A geomagnetic application device including a triaxial magnetic sensor, a measurement point acquiring mechanism, a calibration mechanism calibrating offset of the magnetic sensor, and an azimuth calculator. The calibration mechanism includes an offset calculation measurement point selector selecting at least six measurement points of the geomagnetic vectors from among a data set stored in the measurement point storage unit by the measurement point acquiring mechanism and storing the selected measurement points in an offset calculation measurement point storage unit. The offset calculation measurement point selector selects the measurement points from among the data set stored in the measurement point storage unit to include at least six points, component values of which are maximum or minimum in each of three orthogonal axes. 1. A geomagnetic application device applying earth magnetism using a value of the earth magnetism determined by measurement , the device comprising:a triaxial magnetic sensor orthogonally arranged to detect triaxial components of a geomagnetic vector which vary with movement of the geomagnetic application device or with postural change of the geomagnetic application device, as orthogonal triaxial component data;a measurement point acquiring means for acquiring a predetermined number of geomagnetic vectors using the triaxial magnetic sensor and storing acquired data in a measurement point storage unit;a calibration means for calibrating offset of the triaxial magnetic sensor; andan azimuth calculation means for calculating an azimuth which the geomagnetic application device faces, correcting the geomagnetic vectors based on a calibrated offset value obtained by the calibration means,wherein the calibration means is provided with an offset calculation measurement point selection means for selecting at least six measurement points of the geomagnetic vectors from among a data set stored in the measurement point storage unit by the measurement point ...

Подробнее
07-01-2016 дата публикации

OCEAN EXPLORATION APPARATUS AND OCEAN EXPLORATION METHOD

Номер: US20160001860A1
Принадлежит:

An ocean exploration apparatus including: a probe body; a buoyancy adjusting section that adjusts buoyancy generated in the probe body; a posture adjusting section that adjusts a posture of the probe body; a position information acquiring section that acquires position information of the probe body; a wing section that moves the probe body using a lifting force applied from seawater; a sensor section that is provided in the probe body and measures an electromagnetic field; and a control section that controls operations of the buoyancy adjusting section, the posture adjusting section, the position information acquiring section, and the sensor section according to predetermined conditions. 1. An ocean exploration apparatus comprising:a probe body;a buoyancy adjusting section that adjusts buoyancy generated in the probe body;a posture adjusting section that adjusts a posture of the probe body;a position information acquiring section that acquires position information of the probe body;a wing section that moves the probe body using a lifting force applied from seawater;a sensor section that is provided in the probe body and measures an electromagnetic field; anda control section that controls operations of the buoyancy adjusting section, the posture adjusting section, the position information acquiring section, and the sensor section according to predetermined conditions.2. The ocean exploration apparatus according to claim 1 ,wherein the sensor section includes an MI sensor.3. The ocean exploration apparatus according to claim 1 ,wherein the wing section is formed as a glider type.4. The ocean exploration apparatus according to claim 1 ,wherein the sensor section detects the electromagnetic field through an electrode provided at an endpoint of an arm that protrudes from the probe body in a horizontal direction, andat least a part of the arm overlaps the wing section in a vertical direction.5. The ocean exploration apparatus according to claim 1 ,wherein the position ...

Подробнее
17-01-2019 дата публикации

System and Method for Airborne Geophysical Exploration

Номер: US20190018164A1
Принадлежит: Slocum Geophysics LLC

A system and method for airborne geophysical exploration over the ground are disclosed. In one embodiment of the system, two towing bodies are towed behind an aircraft in flight in a vertically spaced-apart relation above a ground station. Respective magnetometer measurement instruments are located within each of the towing bodies and the ground station. Each magnetometer measurement instrument collects total field magnitude data to contribute to the magnetic vertical gradient data relative to magnetic crustal anomalies of geological origin and variations in an ambient magnetic field above the surface area of the survey. Each magnetometer measurement instrument also collects location, time, and inertial data substantially simultaneously with the total field magnitude data to provide position-correlated measurements thereof.

Подробнее
21-02-2019 дата публикации

Ifr1 survey methodology

Номер: US20190055834A1
Автор: Son V. Pham
Принадлежит: ConocoPhillips Co

An improved IFR1 technique wherein a single mid-lateral well measurement of local magnetic field is used instead of single wellhead or BHA points of measurement, or a plurality of wellbore measurement methods.

Подробнее
19-06-2014 дата публикации

Hall sensor and method of manufacturing the same

Номер: US20140167749A1
Принадлежит: Samsung Electro Mechanics Co Ltd

Disclosed herein are a Hall sensor and a method of manufacturing the Hall sensor. The Hall sensor includes: a flexible substrate in which a groove is formed; a magnetic field flux concentrator formed in the groove of the flexible substrate; an electrode that is patterned to contact the magnetic field flux concentrator; a passivation layer formed around the electrode; and a sensor layer stacked on the passivation layer.

Подробнее
07-04-2016 дата публикации

Compensation of Magnetic Data for Autonomous Underwater Vehicle Mapping Surveys

Номер: US20160097875A1
Автор: Peter Kowalczyk
Принадлежит: Ocean Floor Geophysics Inc

Embodiments of the present invention are generally related to compensation of magnetic data, and, in particular, to a system and method for compensation of magnetic data as collected during autonomous underwater vehicle mapping surveys.

Подробнее
28-05-2015 дата публикации

Magnetic field generating device and offset calculating method

Номер: US20150145625A1
Принадлежит: Aichi Steel Corp

A magnetic field generating device includes a triaxial Helmholtz coil 3 , amounting table 4 on which a portable device 2 is mounted, a current supplying part 5 and a controlling part 6 . The current supplying part 5 supplies current I to individual three monoaxial Helmholtz coils 30 which construct the triaxial Helmholtz coil 3 . The controlling part 6 changes the current flowing through the individual monoaxial Helmholtz coils 30 in such a manner that a synthetic magnetic field of a magnetic field generated within the triaxial Helmholtz coil 3 by the current I and an external magnetic field which acts from the outside into the triaxial Helmholtz coil 3 acts on a triaxial magnetic sensor 20 within the portable device 2 mounted on the mounting table 4 from a plurality of predetermined directions.

Подробнее
02-06-2016 дата публикации

A High Precision Field Measurement Method for Geomagnetic Vectors and a Device Thereof

Номер: US20160154135A1
Автор: Gao Jiandong
Принадлежит:

A tripod, a vertical coil and a total-field magnetometer are utilized to measure a geomagnetic field Twithout an additional magnetic field imposed, as well as two composite magnetic field values Tand Twhen the geomagnetic field is added with a vertical upward magnetic field Tand a double vertical upward magnetic field 2T, respectively. Calculate a vertical component Z, a horizontal component H and a geomagnetic inclination I of the geomagnetic field. Set up a horizontal coil such that a geometric center of the horizontal coil coincides with a geometric center of the vertical coil. Use the total-field magnetometer to measure two composite magnetic field values Tand Tafter the geomagnetic field has been added with a horizontal forward magnetic field and a horizontal reverse magnetic field, respectively. Calculate a geomagnetic declination D. 6. A device for high precision field measurement of geomagnetic vectors , comprising:a tripod;a horizontal dial mounted on the tripod;a tumbler mounted on the horizontal dial;a fixed column mounted in the tumbler;a coil holder mounted on the fixed column;two half-shaft brackets mounted on the coil holder;two half-shafts each mounted at a top end of a respective one of the two half-shaft brackets;a vertical coil frame connected to each of the two half-shafts via a corresponding connecting plate;a horizontal coil frame connected with the vertical coil frame;a horizontal coil wound along the horizontal coil frame;a vertical coil wound along the vertical coil frame, with geometric centers of the vertical coil and the horizontal coil coinciding with each other;a coil excitation power supply connected to both the vertical coil and the horizontal coil through conducting wires; anda probe connected via a conducting wire to a total-field magnetometer, the probe mounted at a location where the geometric centers of the vertical coil and the horizontal coil coincide.7. The device for high precision field measurement of geomagnetic vectors of ...

Подробнее
09-06-2016 дата публикации

Method To Predict Local Geomagnetic Disturbance Field And Its Practical Application

Номер: US20160161626A1
Принадлежит:

A method for correcting geomagnetic reference field includes measuring Earth magnetic field elements at least one F G known geodetic position. Earth magnetic field elements are measured at a position proximate the location. A disturbance function is determined from the Earth magnetic field measurements made at the at least one known geodetic position. A magnetic disturbance field measurement transfer function is estimated between the at the at least one known geodetic and proximate positions to estimate a disturbance function at the proximate position. The estimated magnetic disturbance function is used to correct geomagnetic reference field or measurements made at the location. 1. A method for computing a local geomagnetic disturbance field , comprising:measuring Earth magnetic field elements at at least one known geodetic position;measuring Earth magnetic field elements at a position proximate a location where the local geomagnetic disturbance field is to be computeddetermining a disturbance function from the Earth magnetic field measurements made at the at least one known geodetic position; andcalculating a magnetic disturbance field measurement transfer function between the at least one known geodetic position and the proximate position to estimate the local geomagnetic disturbance field at the proximate position.2. The method of further comprising using the estimated geomagnetic disturbance field is used to correct a geomagnetic reference field at the location.3. The method of wherein the estimated geomagnetic disturbance field is used to correct geomagnetic measurements made at the location.4. The method of wherein the measuring the Earth magnetic field elements at the proximate position comprises using a variometer.5. The method of wherein the variometer comprises a flux gate magnetometer.6. The method of wherein the flux gate magnetometer comprises three mutually orthogonal magnetic field sensors.7. The method of wherein the calculating the magnetic ...

Подробнее
11-09-2014 дата публикации

GEOMAGNETIC SENSOR

Номер: US20140253113A1
Автор: SUZUKI Toshikazu

A geomagnetic sensor includes: a core that constitutes a closed magnetic circuit; a pair of coils that are wound around the core in positions facing each other and are connected in series to generate magnetic flux in the same circumferential direction in the core; an excitation power supply that applies an alternating current with a superimposed direct current to the pair of coils; and a detection circuit that is connected to a connection point of the pair of coils. Unlike a conventional flux gate type geomagnetic sensor, it is not required to excite the core until the core is magnetically saturated, and it is therefore possible to reduce power consumption.

Подробнее
21-05-2020 дата публикации

AIRBORNE ELECTROMAGNETIC SURVEY APPARATUS AND AIRBORNE ELECTROMAGNETIC SURVEY METHOD

Номер: US20200159211A1
Автор: JOHMORI Akira
Принадлежит: NeoScience Co., Ltd.

A transmitter loop is carried by a first aircraft. A receiver sensor is carried by a second aircraft. The first aircraft and the second aircraft fly away from each other. The transmitter loop transmits a primary magnetic field. The transmitted primary magnetic field induces a current in the earth. The induced current generates a secondary magnetic field in the air. The receiver sensor receives the generated secondary magnetic field, and detects strength of the received secondary magnetic field. 1. An airborne electromagnetic survey apparatus comprising:a first aircraft;a second aircraft capable of flying away from the first aircraft;a transmitter loop carried by the first aircraft, and transmitting a primary magnetic field; anda receiver sensor carried by the second aircraft, and receiving a secondary magnetic field generated in air by a current induced in earth by the primary magnetic field and detecting strength of the secondary magnetic field.2. The airborne electromagnetic survey apparatus according to claim 1 , further comprisinga position maintaining device maintaining a position of the second aircraft relative to the first aircraft in a set position.3. The airborne electromagnetic survey apparatus according to claim 2 , wherein a first positioning device carried by the first aircraft, and measuring a position of the first aircraft;', 'a second positioning device carried by the second aircraft, and measuring a position of the second aircraft; and', 'a flight control device carried by at least one of the first aircraft and the second aircraft, and performing, on at least one of the first aircraft and the second aircraft, flight control of maintaining the position of the second aircraft relative to the first aircraft in the set position based on the position of the first aircraft and the position of the second aircraft., 'the position maintaining device includes4. The airborne electromagnetic survey apparatus according to claim 3 , whereinthe first positioning ...

Подробнее
28-06-2018 дата публикации

Automated Mobile Geotechnical Mapping

Номер: US20180180415A1
Принадлежит:

Provided are apparatus and methods for generating a representation of a physical environment, comprising: a mobile sensor platform (MSP) including sensors that output sensor signals relating to parameters such as range, gravity, direction of the Earth's magnetic field, and angular velocity. The MSP is adapted to be moved through the environment. The sensor signals are processed and observations of axes in the environment are generated for a sequence of time steps, the orientation of the MSP is estimated for each of the time steps, observed axes are identified at each orientation, and similar axes are associated. The orientations, the axes in the environment, and the directions of gravity and the Earth's magnetic field are linked such that each observation is predicted based on the estimates of the orientations. An estimate of the orientations is optimized and an output of the representation of the physical environment is generated based on the optimized orientation estimates. The output may be an axis map, a visual representation, and/or a data set. In one embodiment the output device may produce an output comprising a stereonet. 1. Apparatus for generating a representation of a physical environment , comprising:a mobile sensor platform (MSP) including sensors that output sensor signals, wherein the sensors sense and/or measure range, gravity, direction of the Earth's magnetic field, and angular velocity, and the MSP is adapted to be moved through the environment;a processor that:(i) receives the sensor signals and generates observations of axes in the environment for a sequence of time steps;(ii) estimates orientation of the MSP for each time of the sequence of time steps, identifies observed axes at each orientation, and associates similar axes; and(iii) links the orientations, the axes in the environment, and the directions of gravity and the Earth's magnetic field, such that each observation is predicted based on the estimates of the orientations, and optimizes ...

Подробнее
05-07-2018 дата публикации

ELECTRONIC MAGNETOMETER AND METHOD FOR MEASURING MAGNETIC FIELD

Номер: US20180188337A1
Принадлежит:

An electronic magnetometer and a method for measuring a magnetic field are provided. A Gunn diode with magnetic shielding and a Gunn diode without magnetic shielding generate different induced high-frequency oscillating currents in various environments. The high-frequency oscillating current of the Gunn diode with magnetic shielding and the high-frequency oscillating current of the Gunn diode without magnetic shielding are processed by circuits and subsequently compared. The difference of frequencies in the two currents is proportional to the magnitude of magnetic field, and the magnitude of magnetic field is obtained. 1. An electronic magnetometer , comprising a magnetic sensor , a circuit processing module and a processor module ,wherein the magnetic sensor comprises a gunn diode with magnetic shielding and a gunn diode without magnetic shielding, the magnetic sensor is configured for generating an induced high-frequency oscillating current by the gunn diode with magnetic shielding in an environment of shielding magnetic fields as a first high-frequency oscillating current and outputting the first high-frequency oscillating current to the circuit processing module, and the magnetic sensor is further configured for generating an induced high-frequency oscillating current by the gunn diode without magnetic shielding in an ambient magnetic field as a second high-frequency oscillating current and outputting the second high-frequency oscillating current to the circuit processing module;wherein the circuit processing module is configured for processing the first high-frequency oscillating current and outputting stable square-wave signals with an identical precession frequency recorded as a first precession frequency to the processor module;wherein the circuit processing module is further configured for processing the second high-frequency oscillating current and outputting stable square-wave signals with another identical precession frequency recorded as a second ...

Подробнее
20-06-2019 дата публикации

OBTAINING LONG-PERIOD MAGNETOTELLURIC MARINE SURVEY DATA USING A TOWED STREAMER SYSTEM

Номер: US20190187322A1
Принадлежит:

Techniques are disclosed for generating a time series representation of passive electromagnetic (EM) fields via towed streamer measurements without dependence on water-bottom measurement equipment. Such techniques may include storing records of respective time series measurements of passive EM fields measured by individual receivers as the individual receivers pass over a first measurement point, where the respective time series measurements correspond to respective measurement intervals, and where the respective time series measurements are synchronized with respect to a reference clock. The records of the respective time series measurements may be combined to generate a time series representation of passive EM fields observed at the first measurement point over a combination of the respective measurement intervals. The time series representation of passive EM fields observed at the first measurement point may, in turn, be used to identify one or more characteristics of subsurface structure. 1. A system , comprising:an electromagnetic (EM) streamer that includes a plurality of receivers distributed along its length;a vessel configured to tow the EM streamer through a body of water over a first measurement point; and generate a record of a first time series of measurements of passive EM fields measured at a first one of the receivers, wherein the first time series of measurements corresponds to a first measurement interval during which the first receiver passes over the first measurement point, wherein the first time series of measurements is synchronized with respect to a reference clock;', 'generate a record of a second time series of measurements of passive EM fields measured at a second one of the receivers, wherein the second time series of measurements corresponds to a second measurement interval during which the second receiver passes over the first measurement point, wherein the second time series of measurements is synchronized with respect to the reference ...

Подробнее
29-07-2021 дата публикации

METHOD OF CONTROLLING AEROSOL GENERATING DEVICE WITH A PLURALITY OF GEOMAGNETIC SENSORS AND AEROSOL GENERATING DEVICE CONTROLLED THEREBY

Номер: US20210227889A1
Принадлежит: KT&G CORPORATION

An aerosol generating device according to an embodiment includes a heater generating an aerosol by heating an aerosol generating substrate; a controller for controlling power supplied to the heater; at least one detachable element that is attachable to and detachable from an inner space or an outer space of the aerosol generating device; and a plurality of geomagnetic sensors for detecting changes in the strength of an internal magnetic field of the aerosol generating device, wherein the controller detects detachment of the detachable element based on a detection result from at least one of the plurality of geomagnetic sensors. 1. An aerosol generating device comprising:a heater configured to generate aerosol by heating an aerosol generating substrate;a controller configured to control power supplied to the heater;at least one detachable element that is attachable to and detachable from an inner space or an outer space of the aerosol generating device; anda plurality of geomagnetic sensors configured to detect a change in strength of an internal magnetic field of the aerosol generating device;wherein the controller is further configured to detect detachment of the at least one detachable element based on a detection result from at least one of the plurality of geomagnetic sensors.2. The aerosol generating device of claim 1 , wherein the controller claim 1 , based on the change in the strength of the internal magnetic field strength of the aerosol generating device exceeding a preset value claim 1 , identifies a combination of the geomagnetic sensors detecting the change claim 1 , and identifies a detachable element that has been detached from the aerosol generating device based on the identified combination.3. The aerosol generating device of claim 1 , wherein the at least one detachable element includes a cigarette containing the aerosol generating substrate claim 1 , andthe controller determines whether the cigarette has passed through a cigarette insertion port ...

Подробнее
30-07-2015 дата публикации

INPUT DEVICE

Номер: US20150212651A1
Принадлежит:

An apparatus is provided that includes an electromagnetic sensing unit to sense an electromagnetic field. The apparatus also includes a shielding layer to shield at least a portion of the electromagnetic field, the shielding layer including a magnetic material. 1. An apparatus comprising:an electromagnetic sensing unit to sense an electromagnetic field; anda shielding layer to shield at least a portion of the electromagnetic field, the shielding layer including a magnetic material.2. The apparatus of claim 1 , further comprising:a display operatively coupled with the apparatus, the display being disposed over the electromagnetic sensing unit.3. The apparatus of claim 1 , wherein the magnetic material comprises a permeability characteristic being maintained at a specified range between a zero frequency band and an operating frequency band to be received or transmitted using the electromagnetic sensing unit.4. The apparatus of claim 1 , wherein the magnetic material comprises powder.5. The apparatus of claim 1 , wherein the magnetic material comprises at least one of ferrite claim 1 , MolyPermalloy material claim 1 , Fe—Si—Al-based material (Sandust) claim 1 , or Ni—Fe-based material (Highflux).6. The apparatus of claim 1 , wherein the shielding layer comprises a mixture of at least the magnetic material and an adhesive material.7. The apparatus of claim 1 , wherein the shielding layer is formed by being spread onto a surface of the electromagnetic sensing unit.8. The apparatus of claim 1 , wherein the shielding layer is formed at least from an adhesive film on which the magnetic material is coated.9. The apparatus of claim 1 , wherein the electromagnetic field comprises an input signal generated by an electronic device external to the apparatus.10. An apparatus comprising:an electromagnetic sensing unit to sense an electromagnetic field generated by an electronic device external to the apparatus; anda shielding layer to shield at least a portion of the ...

Подробнее
04-07-2019 дата публикации

Apparatus and Method for Detecting the Rotation of a Rod-String in a Wellbore

Номер: US20190203579A1
Автор: Phillips Walter
Принадлежит:

An apparatus for monitoring rod rotation in a rod lift system. The apparatus comprises one or more sensors that reside on the rod string of the rod lift system. The sensor is configured via a processor to generate a signal indicative of radial position of the sensor relative to an external frame of reference. The signal may be sent to a wireless I/O module, with the signals being indicative of at least partial rotation or, alternatively, a lack of rotation, of the rod-string. The processor is configured to generate an alarm if an absence of rod rotation is detected while the rod lift system is running and transmit this signal to the nearby wireless I/O module. A method for monitoring a reciprocating rod lift system is also provided. 1. An apparatus for monitoring a rod lift system at a well , comprising:a sensor placed on the rod lift system, wherein the sensor is configured to generate a signal indicative of radial orientation of a rod-string extending down into the well; anda processor configured to:receive electrical signals from the sensor indicative of the rate of rotation of the rod-string; andgenerate an alarm if the rod lift system is operational but invalid rotation of the polished rod is detected.2. The apparatus of claim 1 , wherein the sensor and the processor are located together in a housing claim 1 , serving as an integrated sensing device.3. The apparatus of claim 1 , further comprising:an I/O module located remote from a wellhead associated with the well, wherein the I/O module is in electrical communication with the processor.4. The apparatus of claim 3 , wherein the processor is in electrical communication with the I/O module by means of (i) a wired connection claim 3 , or (ii) a wireless communication link.5. The apparatus of claim 4 , wherein:the I/O module is located proximate a pump-off controller associated with the well; andthe processor is configured to determine an absence of change in orientation of the polished rod over a period of time, ...

Подробнее
20-08-2015 дата публикации

METHOD OF ASSIGNING GEOPHYSICAL REFERENCE VALUES TO A WELL TRAJECTORY

Номер: US20150234081A1
Автор: Croke Ryan, Maus Stefan
Принадлежит: Magnetic Variation Services LLC

A method of assigning geophysical reference values to a well trajectory includes defining a set of geophysical reference parameters and assigning a range threshold to each geophysical reference parameter. A Geomodel is processed to determine values of the geophysical reference parameters at a plurality of locations along the well trajectory. The well trajectory is partitioned into a plurality of segments such that variations in the values of the geophysical reference parameters within each segment do not exceed the respective range thresholds. A representative value of each geophysical reference parameter is calculated for each segment and stored or displayed along with the segments. 1. A method of assigning geophysical reference values to a well trajectory , comprising:defining a set of geophysical reference parameters;assigning a range threshold to each geophysical reference parameter to be applied over a select measured depth range of the well trajectory;processing a Geomodel to determine values of the geophysical reference parameters at a plurality of locations in the select measured depth range of the well trajectory;partitioning the well trajectory in the select measured range into a plurality of segments such that variations in the values of the geophysical reference parameters within each segment do not exceed the respective range thresholds;calculating a representative value of each geophysical reference parameter for each segment; andat least one of displaying and storing the segments with the corresponding representative values of the geophysical reference parameters.2. The method of claim 1 , wherein the geophysical reference parameters are geomagnetic reference field parameters.3. The method of claim 2 , wherein the geomagnetic reference field parameters comprise total magnetic field claim 2 , dip and declination.4. The method of claim 2 , wherein the Geomodel is a three-dimensional geomagnetic reference field model.5. The method of claim 1 , further ...

Подробнее
19-08-2021 дата публикации

METHOD OF CALCULATING TEMPERATURE OF A GEOLOGICAL STRUCTURE

Номер: US20210255352A1
Принадлежит:

A method of calculating the temperature of a geological structure is disclosed, wherein there is provided a magnetic parameter of the geological structure. The method includes inverting the magnetic parameter to estimate the temperature of the geological structure. 1. A method of calculating the temperature of a geological structure , wherein there is provided at least one magnetic parameter of the geological structure , the method comprising: inverting only the at least one magnetic parameter to estimate the temperature of the geological structure; wherein the at least one magnetic parameter comprises the total magnetization of the geological structure.2. (canceled)3. (canceled)4. A method as claimed in claim 1 , wherein the total magnetization of the geological structure comprises both the induced magnetization and the remnant magnetization of the geological structure.5. A method as claimed in claim 1 , further comprising providing magnetic data and inverting the magnetic data to provide the at least one magnetic parameter.6. A method as claimed in claim 5 , wherein the magnetic data comprises magnetic potential field data.7. A method as claimed in claim 5 , wherein inverting the magnetic data to provide the at least one magnetic parameter is performed using a map inversion method.8. A method as claimed in claim 5 , wherein inverting the magnetic data to provide the at least one magnetic parameter provides laterally varying magnetization averaged over a depth interval.9. A method as claimed claim 5 , wherein the magnetic data is acquired with a magnetometer.10. A method as claimed in claim 1 , wherein inverting the at least one magnetic parameter to estimate the temperature of the geological structure is performed using a Bayesian inversion method and a phenomenological model.11. A method as claimed in claim 10 , wherein the phenomenological model provides a relationship between the at least one magnetic parameter and the temperature of the geological structure.12 ...

Подробнее
10-09-2015 дата публикации

APPARATUS AND METHOD FOR RECOGNIZING ZONE IN PORTABLE TERMINAL

Номер: US20150257119A1
Принадлежит:

An apparatus and method for recognizing an indoor zone in which a user is located by using an Earth's magnetic field that is generated naturally instead of the conventional method of combining a magnetic field generator and a magnetic field sensor. The apparatus includes a zone evaluator configured to primarily recognize a location of the portable terminal by using first and second components of an Earth's magnetic field and to finally recognize the location of the portable terminal by using first and second images. 128-. (canceled)29. A portable terminal comprising:a memory unit configured to store first environment information corresponding to a predetermined indoor zone to control a function of the portable terminal, and information of the function to be executed at the predetermined indoor zone; and acquire second environment information corresponding to a current location of the portable terminal;', 'determine whether the portable terminal is located within the predetermined indoor zone by comparing the first environment information and the second environment information; and', 'when the portable terminal is located within the predetermined indoor zone, execute the function corresponding to the predetermined indoor zone where the portable terminal is located., 'a controller coupled to the memory unit, the controller configured to30. The terminal of claim 29 , wherein the memory unit is further configured to store first auxiliary environment information claim 29 , and where the controller is further configured to:acquire second auxiliary environment information corresponding to the predetermined indoor zone where the portable terminal is located, andwhen the portable terminal is located within the predetermined indoor zone using the first and second environment information, determine whether the portable terminal is located within the predetermined indoor zone by comparing the first auxiliary environment information and the second auxiliary environment ...

Подробнее
07-09-2017 дата публикации

EARTH SURVEYING WITH TWO OR MORE MARINE VEHICLES FOR IMPROVED DRILLING APPLICATIONS

Номер: US20170254915A1
Автор: Pai Sudhir, Poedjono Benny
Принадлежит:

Methods and apparatuses for geophysical surveying are disclosed. In one embodiment, a vehicle may obtain magnetic measurements in a location around a drilling site while a marine vehicle maintains an approximately stationary position nearby. The magnetic measurements from the two vehicles may be used to calculate a localized magnetic crustal field. The localized magnetic crustal field may be used to calculate a geomagnetic reference field that may be used to calculate and/or adjust wellbore position with improved accuracy. 1. A method , comprising:receiving, from a first vehicle at a first location, a first set of magnetic field measurements corresponding to an area, wherein the magnetic field corresponds to measurements below a surface level;receiving, from a second vehicle at an approximately stationary second location, a second set of magnetic field measurements for the second location, wherein the magnetic field corresponds to measurements below a surface level, and wherein the area is in the vicinity of the second location; andcalculating a localized magnetic crustal field based on the received first set of magnetic field measurements by subtracting the second set of magnetic field measurements from the first set of magnetic field measurements.2. The method of claim 1 , further comprising calculating a geomagnetic reference field based claim 1 , at least in part claim 1 , on the calculated localized magnetic crustal field.3. The method of claim 1 , further comprising receiving a plurality of measured magnetic field values from the first vehicle for a plurality of locations arranged along a grid pattern.4. The method of claim 1 , in which the step of calculating a localized magnetic crustal field comprises:calculating a main field;calculating a magnetic disturbance field; andcalculating the localized magnetic crustal field based on the main field and the magnetic disturbance field.5. The method of claim 1 , further comprising calculating a declination for subsea ...

Подробнее
30-09-2021 дата публикации

Distributed Airborne Electromagnetic Detection System

Номер: US20210302613A1
Принадлежит:

The present disclosure discloses a distributed airborne electromagnetic detection system, and relates to an airborne electromagnetic detection technology. The distributed airborne electromagnetic detection system comprises at least one transmitting system, at least one receiving system, at least one trunk module, and an earth station, and also a plurality of Unmanned Aerial Vehicles (UAVs) for carrying the transmitting system, the receiving system, and the trunk module. The distributed airborne electromagnetic detection system does not require high performance or high economical efficiency for a single UAV; under precise synchronous flight conditions, the distance between a type I UAV and a transmitting loop structure can be greatly reduced, thereby significantly reducing the length of unwanted transmitting cable; and in addition, due to the better low-altitude low-speed performance of UAVs, the traveling speed of the entire system can be further reduced, thus obtaining higher quality data. 1. A distributed airborne electromagnetic detection system , comprising at least one transmitting system , at least one receiving system , at least one trunk module and an earth station , and also a plurality of Unmanned Airborne Vehicles (UAVs) for carrying the transmitting system , the receiving system , and the trunk module.2. The distributed airborne electromagnetic detection system according to claim 1 , wherein the transmitting system comprises at least one airborne transient electromagnetic transmitter claim 1 , a power module that provides power for the airborne transient electromagnetic transmitter claim 1 , and a transmitting antenna claim 1 , and a plurality of UAVs are used as carrying platforms to carry the airborne transient electromagnetic transmitter claim 1 , the power module and the transmitting antenna claim 1 , respectively.3. The transmitting antenna of the distributed airborne electromagnetic detection system according to claim 2 , wherein the transmitting ...

Подробнее
27-11-2014 дата публикации

Methods And Systems For The Inversion Of Magnetic Data From Remnant And Induced Sources In Geophysical Exploration

Номер: US20140350903A1
Автор: Ellis Robert G.
Принадлежит: Geofoft Inc.

A method for modeling a subsurface anomalous magnetization zone including the steps of generating a magnetic field model of the subsurface anomalous magnetization zone, inverting the magnetic field model; and generating a model of the sub-surface anomalous magnetization zone based on the inversion. The step of generating the magnetic field model include generating the magnetic field model from induced magnetization sources and remnant magnetization sources. 1. A method for modeling a subsurface anomalous magnetization zone comprising:i. generating a magnetic field model of said subsurface anomalous magnetization zone;ii. inverting said magnetic field model; andiii. generating a model of said subsurface anomalous magnetization zone based on said inversion;wherein said first generating step includes generating said magnetic field model from induced magnetization sources and remnant magnetization sources.2. A method according to claim 1 , wherein said inverting step includes an inversion wherein induced magnetization portions of said magnetic field model are modified by remnant magnetization portions of said magnetic field model.3. A method according to claim 1 , wherein said magnetic field model comprises a total magnetic intensity model.4. A method according to claim 1 , wherein said inverting step includes applying a vector conversion to induced magnetization portions of said magnetic field model.6. A method for modeling a subsurface anomalous magnetization zone comprising:i. generating an induced magnetic field model of said subsurface anomalous magnetization zone;ii. generating a remnant magnetic field model of said subsurface anomalous magnetization zone;iii. combining said remnant and induced magnetic field models to form a total magnetic field model;iv. inverting said total magnetic field model; andv. generating a model of said subsurface anomalous magnetization zone based on said inverting.7. A method according to claim 6 , wherein said inverting step includes ...

Подробнее
20-09-2018 дата публикации

ELECTROMAGNETIC SURVEY SYSTEM BUCKING SYSTEM ENHANCEMENT

Номер: US20180267193A1
Автор: Dodds Jack
Принадлежит: GEOTECH LTD.

A bucking system for an electromagnetic survey system which uses a network to interconnect the turns of a transmitter coil with the turns of one or more bucking coils in which the network includes passive circuit elements which to provide accurate bucking of the transmitter coil field at a sensor location, both when the current through the loop is steady and when the current is changing rapidly. 1. An electromagnetic surveying system comprising:a transmitter driver for generating a time varying waveform;a multi-turn transmitter coil for generating a primary field in response to the time varying waveform;a bucking coil for generating a cancelling field that reduces the primary field within a cancellation region;a receiver sensor for sensing a magnetic field within the cancellation region;a data acquisition system for acquiring signals from the receiver sensor; andan interconnect network that interconnects the transmitter coil and the bucking coil, the interconnect network including circuit elements to reduce an effect of parasitic capacitance between turns of the transmitter coil on the cancelling field generated by the bucking coil.2. The system of wherein the circuit elements include passive elements configured to match current in the bucking coil to current in the transmitter coil.3. The system of wherein the interconnect network connects the bucking coil in series with the transmitter coil and the circuit elements include one or more capacitor devices shunting at least some of the turns of the transmitter coil.4. The system of wherein an equal length of the transmitter coil is connected in series to each end of the bucking coil.5. The system of wherein the capacitor devices include a first capacitor device connected between one end of the bucking coil and a first output of the transmitter driver and a second capacitor device connected between an opposite end of the bucking coil and a second output of the transmitter driver claim 4 , the first and second capacitor ...

Подробнее
23-12-2021 дата публикации

SYSTEM AND METHOD FOR REDUCING A FEASIBLE REGION OF SOLUTIONS IN A RELATIVE PERMEABILITY AND CAPILLARY PRESSURE CURVE

Номер: US20210396904A1
Принадлежит:

A method, computer program product, and computing system for receiving downhole logging data for a porous media. A pore size distribution index may be estimated based upon, at least in part, nuclear magnetic resonance data (NMR) from the downhole logging data of the porous media. A relative permeability and capillary pressure curve may be generated with a feasible region of solutions based upon, at least in part, the pore size distribution index. 1. A computer-implemented method for reducing a feasible region of solutions of a relative permeability and capillary pressure curve , comprising:receiving, on a computing device, downhole logging data for a porous media;estimating a pore size distribution index based upon, at least in part, nuclear magnetic resonance data (NMR) from the downhole logging data of the porous media; andgenerating a relative permeability and capillary pressure curve with a feasible region of solutions based upon, at least in part, the pore size distribution index.2. The computer-implemented method of claim 1 , wherein estimating the pore size distribution index includes estimating the pore size distribution index on one or more of a fully-saturated and partially-saturated porous media.3. The computer-implemented method of claim 1 , wherein estimating the pore size distribution index includes integrating the NMR data claim 1 , dielectric measurements claim 1 , and resistivity measurements to estimate residual saturation for normalization in oil/brine partially saturated porous media.4. The computer-implemented method of claim 1 , wherein generating the relative permeability and capillary pressure curve includes defining one or more of an upper bound on an oil relative permeability of the relative permeability and capillary pressure curve and a lower bound on a water relative permeability of the relative permeability and capillary pressure curve based upon claim 1 , at least in part claim 1 , a modified Brooks-Corey model.5. The computer- ...

Подробнее
11-10-2018 дата публикации

MARINE MAGNETISM DETECTION METHOD AND DEVICE

Номер: US20180292564A1
Принадлежит:

The present invention discloses a marine magnetism detection device and a detection method. The device comprises a surveying ship, an onboard laboratory magnetism measurement portion arranged on the surveying ship, an aerostat shell and an aerostat magnetism measurement portion arranged inside the aerostat shell, wherein the aerostat shell is connected to the surveying ship via a rope, and the aerostat shell floats in air; the aerostat magnetism measurement portion comprises a magnetic sensor, an electronic magnetism data acquisition unit and an aerostat transmission unit; and, the onboard laboratory magnetism measurement portion comprises a data recording computer and a laboratory transmission unit. The marine magnetism detection device and method of the present invention will not be limited by the working sea area and can also operate with other onboard devices and dragging devices. 1. A marine magnetism detection device , comprising:a surveying ship,an onboard laboratory magnetism measurement portion arranged on the surveying ship,an aerostat shell and an aerostat magnetism measurement portion arranged inside the aerostat shell,wherein the aerostat shell is connected to the surveying ship via a rope, and the aerostat shell floats in air;the aerostat magnetism measurement portion comprises a magnetic sensor, an electronic magnetism data acquisition unit and an aerostat transmission unit;the onboard laboratory magnetism measurement portion comprises a data recording computer and a laboratory transmission unit;the magnetic sensor acquires marine magnetism and transmits a marine magnetism signal to the electronic magnetism data acquisition unit;the electronic magnetism data acquisition unit converts the marine magnetism signal into a digital signal and then transmits the digital signal to the aerostat transmission unit;the aerostat transmission unit transmits the digital signal to the laboratory transmission unit over a wireless or wired network and transmits a ...

Подробнее
19-10-2017 дата публикации

Air-ground integrated earth magnetic field combined observation method and system

Номер: US20170299761A1

The invention discloses an air-ground integrated geomagnetic field combined observation method and system. The method comprises the following steps of validating local geomagnetic field model parameters using the geomagnetic field data collected by a mobile earth station before the geomagnetic field survey mission is executed; getting a dynamic model along the flight path using the geomagnetic field data collected by the airborne console over the flight path and the model parameters when the geomagnetic field survey mission is executed; getting a measuring error model along the flight path using the attitude measuring error obtained by the airborne console when the aircraft flies as per the preset attitude; getting the estimation of the geomagnetic field data collected over the flight path in a geographic coordinate frame using the dynamic model and the measuring error model. In the invention, the measuring accuracy of a geomagnetic field vector expressed in the geographic coordinate frame can be improved, and the geomagnetic field anomaly detection can be implemented.

Подробнее
24-09-2020 дата публикации

Magnetic compensation method based on aeromagnetic compensation error model

Номер: US20200301040A1

The present disclosure discloses a magnetic compensation method for performance quality assessment by using an aeromagnetic compensation error model, comprising: acquiring an upper limit of an error of a magnetic noise by using the aeromagnetic compensation error model, before an aeromagnetic flight, wherein the magnetic noise is caused by both an environmental background field in an exploration area and an aeromagnetic flight platform; determining, according to the upper limit of the error of the magnetic noise, whether the environmental background field and the aeromagnetic flight platform are suitable for an aeromagnetic survey flight, and if so, performing a calibration flight to acquire a compensation coefficient; and acquiring data of an attitude term by performing an actual flight, calculating an interference magnetic field by the data of the attitude term and the compensation coefficient acquired during the calibration flight, and performing magnetic compensation.

Подробнее
26-11-2015 дата публикации

DETERMINATION DEVICE, ELECTRICAL DEVICE, AND METHOD OF DETERMINING MOVING STATE

Номер: US20150338544A1
Автор: FUJIWARA Kazunori
Принадлежит:

A determination device includes a geomagnetism value obtaining unit for obtaining a geomagnetism value detected with a geomagnetism sensor; and a geomagnetism value determining unit for determining a type of moving object among a plurality of types of moving objects according to the geomagnetism value obtained with the geomagnetism value obtaining unit. 1. A determination device , comprising:a geomagnetism value obtaining unit for obtaining a geomagnetism value detected with a geomagnetism sensor; anda geomagnetism value determining unit for determining a type of moving object among a plurality of types of moving objects according to the geomagnetism value obtained with the geomagnetism value obtaining unit.2. The determination device according to claim 1 , wherein said geomagnetism value determining unit is configured to determine the type of the moving object according to whether a magnitude of a change in the geomagnetism value is greater than a predetermined threshold value.3. The determination device according to claim 1 , wherein said geomagnetism value determining unit is configured to determine the type of the moving object according to at least one of a dispersion of the geomagnetism value claim 1 , a difference between a minimum value and a maximum value of the geomagnetism value claim 1 , the maximum value of the geomagnetism value claim 1 , and the minimum value of the geomagnetism value using a magnitude of a change in the geomagnetism value. This is a continuation application of a prior application Ser. No. 14/037,502, filed on Sep. 26, 2013, allowed.The present invention relates to a determination device, an electrical device having the determination device, and a method of determining a moving state of a user.Patent References 1 and 2 have disclosed a conventional determination device for determining a moving state of a user. In the conventional determination device, an acceleration sensor is disposed in a smartphone and the like for detecting a ...

Подробнее
24-11-2016 дата публикации

3-dimensional airborne magnetic survey system and 3-dimensional airborne magnetic survey method using the same

Номер: US20160341845A1

The present invention relates to a 3-dimensional airborne magnetic survey system that includes an unmanned aerial vehicle for magnetic survey moving along coordinate areas desired to survey while varying altitudes for each of the coordinate areas, a magnetic survey unit mounted on the unmanned aerial vehicle for magnetic survey and surveying 3D magnetic data of the earth or strata according to the altitudes, a 3-dimensional magnetic data processing unit processing a inversion on the 3-dimensional magnetic data of the earth or the strata according to the altitude for each coordinate area, a VSAT interface, a wireless controller interacting with the VSAT interface, a flight control signal for controlling the unmanned aerial vehicle of magnetic survey, and a magnetic survey signal through an internal navigation program.

Подробнее
24-11-2016 дата публикации

METHOD AND SYSTEM FOR MEASURING TOTAL EARTH'S MAGNETIC FIELD FOR OCEAN MAGNETIC SURVEY THROUGH ELIMINATION OF GEOMAGNETIC DISTURBANCE AND RECORDING MEDIUM THEREFOR

Номер: US20160341846A1
Автор: Kang Moo Hee, KIM Kyong-o
Принадлежит:

Provided are ocean magnetic survey measurement method and system. The ocean magnetic survey measurement method includes a measuring operation for measuring an earth's magnetic field value using a magnetometer according to a heading angle of a probe, which is measured in clockwise direction on a basis of the true north, while the probe moves along a circular path based on a center point in an exploration target area with the magnetometer taken in tow, a data input operation for receiving, by a calculation unit, data for the heading angle of the probe and data for the earth's magnetic field value measured at the heading angle, a calculating operation for setting, by the calculation unit containing a calculation program therein, a magnetic disturbance value induced by the probe, which is included in the measured earth's magnetic field value, and calculating an actual earth's magnetic field value by subtracting the magnetic disturbance value from the measured earth's magnetic field value. 1. A method for measuring a total earth's magnetic field for an ocean magnetic survey , the method comprising:a measuring operation for measuring an earth's magnetic field value using a magnetometer according to a heading angle of a probe, which is measured in clockwise direction on a basis of the true north, while the probe moves along a circular path based on a center point in an exploration target area with the magnetometer taken in tow;a data input operation for receiving, by a calculation unit, data for the heading angle of the probe and data for the earth's magnetic field value measured at the heading angle;a calculating operation for setting, by the calculation unit containing a calculation program therein, a magnetic disturbance value induced by the probe, which is comprised in the measured earth's magnetic field value;calculating an actual earth's magnetic field value by subtracting the magnetic disturbance value from the measured earth's magnetic field value; and {'br': None, ...

Подробнее
22-12-2016 дата публикации

CRUSTAL AND DISTURBANCE FIELD SURVEY CORRECTION

Номер: US20160369625A1
Принадлежит:

A system and method for magnetic survey uses an autonomous vehicle configured to traverse over the area in a grid pattern with a magnetometer coupled to the autonomous vehicle and configured to obtain magnetic measurements at a controlled rate, the magnetometer obtaining a uniform sampling of the magnetic measurements in each grid of the grid pattern; and a processor configured to obtain the magnetic survey based on the magnetic measurements. 1. A system to continuously control drilling in an area based on a real-time on-site magnetic survey of the area , the system comprising:an autonomous vehicle configured to traverse over the area;a magnetometer coupled to the autonomous vehicle and configured to obtain magnetic measurements at a controlled rate, the magnetometer obtaining a uniform sampling of the magnetic measurements over the area;a processor configured to obtain the magnetic survey from the magnetic measurements; anda controller configured to control a drill bit based on the magnetic survey.2. The system according to claim 1 , further comprising a second autonomous vehicle configured to traverse a circular path.3. The system according to claim 2 , further comprising a second magnetometer coupled to the second autonomous vehicle and configured to obtain another set of magnetic measurements over the circular path.4. The system according to claim 3 , wherein the another set of magnetic measurements indicates a disturbance field.5. The system according to claim 3 , wherein the controller controls the drill bit based additionally on the another set of magnetic measurements.6. The system according to claim 1 , wherein the magnetic measurements indicate a crustal field.7. The system according to claim 1 , further comprising one or more other magnetometers coupled to the autonomous vehicle.8. The system according to claim 1 , wherein the magnetometer is configured to continuously obtain the magnetic measurements at the controlled rate claim 1 , and the controller ...

Подробнее
20-12-2018 дата публикации

Gyro-Magnetic Wellbore Surveying

Номер: US20180363445A1
Принадлежит:

Various implementations described herein are directed to a method for surveying a wellbore. A statistical estimation process that combines magnetic survey measurement data and gyroscopic survey measurement data to form error estimates in a magnetic survey system is applied. The error estimates are used to correct magnetic survey data provided by the magnetic survey system. Magnetic only survey data is used when convergence of the error estimates has occurred. Information that facilitates drilling the wellbore is provided. 1. A method for surveying a wellbore , comprising:applying a statistical estimation process that combines magnetic survey measurement data and gyroscopic survey measurement data to determine error estimates in a magnetic survey system;using the error estimates to correct magnetic survey data provided by the magnetic survey system;using magnetic only survey data when convergence of the error estimates has occurred; andproviding information that facilitates drilling the wellbore to a user based on one of the corrected magnetic survey data and the magnetic only survey data.2. The method of claim 1 , further comprising determining a gyroscopic survey from the gyroscopic survey measurement data.3. The method of claim 2 , further comprising determining magnetometer measurement estimates from the gyroscopic survey and a plurality of parameters.4. The method of claim 3 , further comprising comparing the magnetometer measurement estimates and the magnetic survey measurement data.5. The method of claim 4 , wherein the error estimates are determined from the comparison claim 4 , a sensor noise factor and a magnetic sensor uncertainty factor.6. The method of claim 3 , wherein the plurality of parameters comprise total Earth's field claim 3 , dip angle and declination.7. The method of claim 3 , wherein the magnetometer measurement estimates are determined from the gyroscopic survey claim 3 , the plurality of parameters claim 3 , and Earth's field correction ...

Подробнее
19-12-2019 дата публикации

Magnetotelluric measurement system

Номер: US20190383960A1

Disclosed is a magnetotelluric measurement system, comprising: a magnetic sensor probe for collecting an electromagnetic signal as an impulse response of an earth and transmitting the same to a signal readout circuit; the signal readout circuit configured for receiving and amplifying the electromagnetic signal collected by the magnetic sensor probe; a data acquisition and processing module configured for receiving and processing electromagnetic signal amplified by the signal readout circuit; a storage module configured for storing the electromagnetic signals amplified by the signal readout circuit and processed by the data acquisition and processing module; a first casing for enclosing the magnetic sensor probe and the signal readout circuit; and a second casing for enclosing the data acquisition and processing module and the storage module. The disclosure realizes the detection of low-noise wide-frequency band magnetic field signal, and solves problems involving deep detection of the mineral resources in complex areas.

Подробнее
15-04-2014 дата публикации

Use of magnetic field-based navigation

Номер: FI124153B
Автор: Janne Haverinen
Принадлежит: IndoorAtlas Oy

Подробнее
16-08-2022 дата публикации

METHOD FOR MAGNETIC DATA COMPENSATION

Номер: BR112015030293B1
Автор: Peter Kowalczyk
Принадлежит: Ocean Floor Geophysics, Inc

COMPENSAÇÃO DE DADOS MAGNÉTICOS PARA INSPEÇÕES DE MAPEAMENTO DE VEÍCULO SUBMARINO AUTÔNOMO. A presente invenção refere-se à compensação de dados magnéticos e, em particular, a um sistema e um método para a compensação de dados magnéticos conforme coletados durante as inspeções de mapeamento de veículo subaquático autônomo. MAGNETIC DATA COMPENSATION FOR AUTONOMOUS SUBMARINE VEHICLE MAPPING INSPECTIONS. The present invention relates to magnetic data compensation and, in particular, to a system and method for compensating magnetic data as collected during autonomous underwater vehicle mapping inspections.

Подробнее
24-08-2018 дата публикации

地磁背景下弱磁信号噪声抑制与信号提取装置及方法

Номер: CN108445545A

一种地磁背景场下弱磁信号噪声抑制与信号提取装置及方法,包括磁探测器,用于探测弱磁信号数据采集卡,用于采集磁探测器的信号并传输给频谱分析仪;以及频谱分析仪,用于采集到的信号进行频谱分析和相应的信号滤波处理。本发明通过提高被探测目标与探测传感器之间相对运动速度提升磁异信号频率,使得磁异信号处于较高频段,而地磁信号处于0Hz频率附近,故通过提升目标信号的频率,在频谱上分离出弱磁信号和地磁背景场,然后采用高通滤波器滤除地磁噪声,达到噪声抑制和信号提取的目的。

Подробнее
02-04-2014 дата публикации

磁检测装置

Номер: CN102356328B
Принадлежит: Aichi Steel Corp

本发明的磁检测装置的特征在于,具备:至少一对第一磁敏体,该第一磁敏体由沿第一轴向延伸的软磁性材料构成且对第一轴向的外部磁场进行感应;由软磁性材料构成的磁场变向体,将与第一轴向不同的其他轴向的外部磁场向具有第一轴向的分量的测定磁场变向而能够由至少一对第一磁敏体进行感应。根据该磁检测装置,还能通过第一磁敏体检测其他轴向的外部磁场。其结果是,能够进行高精度的磁检测,并且省略在其他轴向上变长的磁敏体而实现磁检测装置的小型化或薄型化。

Подробнее
30-11-2018 дата публикации

Method and apparatus for creating magnetic field map based on floor plan information of building

Номер: KR101923939B1
Принадлежит: 삼성전자주식회사

일 실시예에 따르면, 건물에 대한 도면 정보로부터 건물에 대한 자기장 정보를 추출하고, 도면 정보 및 자기장 정보를 이용하여 건물에 대한 자기장 지도를 생성하는 자기장 지도를 생성하는 방법 및 장치를 제공할 수 있다. According to one embodiment, a method and apparatus for generating a magnetic field map for generating a magnetic field map for a building using drawing information and magnetic field information may be provided, by extracting magnetic field information about the building from the drawing information about the building .

Подробнее
27-12-2009 дата публикации

Bottom station (versions)

Номер: RU2377606C2

FIELD: physics; geophysics. SUBSTANCE: group of inventions (versions) relates to exploration geophysics, in particular to the systems of equipment for conducting sea geoelectrical exploration and is meant for predicting accumulation of hydrocarbons and other minerals, as well as for studying deep structure of the earth's crust. Proposed is a modular bottom station based on combining a basic module for measuring electromagnetic characteristics of sea bottom rocks with additional modules containing equipment for measuring other parametres of the rocks. The additional modules are fitted by the basic module and a weight. All the recording and power supply systems are accommodated in the basic module and are connected to the other modules via pressure-sealed connectors in the housing of the module, and the modules themselves are fixed on the weight using Kevlar sheets which are fitted with an electrochemical releasing element. The additional modules of the bottom station are modules for magnetic and/or seismic measurements. "Rods" can be fastened at the lower part of the housing of the station and in the initial state they are directed upwards at an angle not less than 15° from the vertical and are held using retainers, which are joined to the releasing element of a hoisting device (HD). The "rods" can be telescopic. In another version of the proposed bottom station, the basic module can be used independently. In that case, a hard conical element "basin", made non-conducting material for example polyethylene, polyurethane etc can be placed between the module and the weight. The basic module can also be connected on a semi-rigid rod to a module for magnetic measurements. EFFECT: measuring different parametres of sea bottom rocks in a single launch, provision for sensitivity of detectors, which exceeds that of stations with such single type measuring devices, compactness and convenient use. 8 cl, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 377 606 ...

Подробнее
12-06-2018 дата публикации

지자기 데이터 관리 장치, 지자기 데이터 관리 방법 및 이를 이용한 실내 측위 시스템

Номер: KR101866664B1
Принадлежит: 주식회사 포스코아이씨티

지자기 데이터에 영향을 미치는 주변 상황을 반영하여 지자기 맵을 동적으로 갱신할 수 있는, 본 발명에 따른 지자기 데이터 관리 장치 및 지자기 데이터 관리 방법은 기 설정된 지자기 포인트 별 지자기 데이터를 나타내는 지자기 맵을 구축하고, 제품의 적치 상태 변동시 지자기 맵 시뮬레이션 모델에 기초하여 적치 상태의 변동에 따른 지자기 데이터를 시뮬레이션하고, 시뮬레이션 결과를 반영하여 지자기 맵을 갱신하는 것을 특징으로 한다.

Подробнее
28-01-2015 дата публикации

Method and system for a self-calibrated multi-magnetometer platform

Номер: KR101485142B1
Принадлежит: 브로드콤 코포레이션

멀티-자기력계 디바이스는 상응하는 지구 자기장 측정을 위해 이용되는 적어도 두개의 z축 정렬(aligned)되고 그리고 물리적으로 회전되는 3축 자기력계들을 포함한다. 자기장 측정량은 자기력계 보정을 위해 유저의 지원 및/또는 자기력계 움직임 없이 360도의 완전한 원을 따라 단일 직교 축의 회전 측정량을 측정하기 위해 이용된다. 멀티-자기력계 디바이스는 만약 자기 섭동들이 감지되지 않으면 자기장 측정량을 이용하여 그것의 자기 방위(magnetic heading)을 계산할 수 있다. 자기 섭동들이 감지될 때, 섭동 완화 프로세스는 수행될 것이다. 회전 측정량은 자기장 측정량을 선택적으로 결합함으로써 생성될 수 있다. 하드-아이런(hard-iron)성분들은 회전 측정량을 이용하여 결정되고 그리고 자기장 측정량으로부터 제거될 수 있다. 소프트-아이런 성분들은 하드-아이런 없는 자기장 측정량을 이용하여 결정될 수 있고, 그리고 하드-아이런 없는 자기장 측정량으로부터 제거될 수 있다. 결과적인 섭동 없는 자기장 측정량은 자기 방위(magnetic heading)를 계산하기 위해 이용될 수 있다. The multi-magnetometer device includes at least two z-axis aligned and physically rotated 3-axis magnetometers used for corresponding geomagnetic field measurements. Magnetic field measurements are used to measure the rotation measurements of a single orthogonal axis along a complete circle of 360 degrees without user assistance and / or magnetometer movement for magnetometer calibration. A multi-magnetometer device can calculate its magnetic heading using a magnetic field measurement if no magnetic perturbations are detected. When self-perturbations are detected, the perturbation mitigation process will be performed. The rotation measurer can be generated by selectively combining the magnetic field measurer. Hard-iron components can be determined using a rotational measurement and removed from the magnetic field measurement. The soft-iron components can be determined using a hard-ironsless magnetic field measurement, and can be removed from the hard-irons-free magnetic field measurement. The resulting perturbed magnetic field measurements may be used to calculate magnetic headings.

Подробнее
05-07-2019 дата публикации

一种宽频复合磁传感器

Номер: CN106885996B
Принадлежит: Jilin University

本发明涉及一种宽频复合磁传感器,是由感应式磁传感器初级探头和感应式磁传感器次级探头安装在两端,磁通门传感器探头安装在感应式传感器空心磁芯中间位置,感应式磁传感器初级探头、感应式磁传感器次级探头和磁通门传感器探头固定在外壳内并通过多芯屏蔽线缆连接调理电路构成。宽频复合磁传感器包括高频和低频两种工作模式,磁通门传感器探头固定在感应式磁传感器初级探头与感应式磁传感器次级探头中间位置的复合磁传感器结构,与传统单一磁通门传感器相比,提高了磁通门传感器的灵敏度,克服了单一磁通门传感器高频噪声高,和单一感应式磁传感器低频噪声高以及无法测量静磁场的不足,从而实现了宽频带低噪声的磁场测量。

Подробнее
17-07-2020 дата публикации

基于航磁补偿误差模型的磁补偿方法

Номер: CN111433634A

一种基于航磁补偿误差模型的磁补偿方法,包括步骤:在航磁飞行之前,利用航磁补偿误差模型,获取勘探区域的环境背景场及航磁飞行平台二者引起的磁噪声的误差上限;根据环境背景场及航磁飞行平台二者引起的磁噪声的误差上限,判断是否适合进行航磁探测飞行,适合的话,进行标定飞行,获得补偿系数;以及进行实际飞行获得姿态项数据,结合标定飞行获得的补偿系数,求解出干扰磁场,并进行磁补偿。

Подробнее
02-10-2012 дата публикации

자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법

Номер: KR20120107439A
Принадлежит: 브로드콤 코포레이션

멀티-자기력계 디바이스는 상응하는 지구 자기장 측정을 위해 이용되는 적어도 두개의 z축 정렬(aligned)되고 그리고 물리적으로 회전되는 3축 자기력계들을 포함한다. 자기장 측정량은 자기력계 보정을 위해 유저의 지원 및/또는 자기력계 움직임 없이 360도의 완전한 원을 따라 단일 직교 축의 회전 측정량을 측정하기 위해 이용된다. 멀티-자기력계 디바이스는 만약 자기 섭동들이 감지되지 않으면 자기장 측정량을 이용하여 그것의 자기 방위(magnetic heading)을 계산할 수 있다. 자기 섭동들이 감지될 때, 섭동 완화 프로세스는 수행될 것이다. 회전 측정량은 자기장 측정량을 선택적으로 결합함으로써 생성될 수 있다. 하드-아이런(hard-iron)성분들은 회전 측정량을 이용하여 결정되고 그리고 자기장 측정량으로부터 제거될 수 있다. 소프트-아이런 성분들은 하드-아이런 없는 자기장 측정량을 이용하여 결정될 수 있고, 그리고 하드-아이런 없는 자기장 측정량으로부터 제거될 수 있다. 결과적인 섭동 없는 자기장 측정량은 자기 방위(magnetic heading)를 계산하기 위해 이용될 수 있다.

Подробнее
15-06-2016 дата публикации

地磁数据采集装置

Номер: CN105676303A

本发明公开了一种地磁数据采集装置,包括传感器复位/置位电路、第一磁传感器、第二磁传感器、第三磁传感器、信号处理电路、AD转换电路、ARM处理器、黑匣子、电源模块、放大器底板和传感器板;感器复位/置位电路对三个磁传感器进行复位和置位,复位/置位驱动信号由ARM处理器提供;磁传感器将采集的地磁信号发送给信号处理电路进行放大和滤波处理,再经AD转换电路进行模数转换得到地磁数字信号,ARM处理器对地磁数字信号进行解析,得到地磁数据并发送给黑匣子存储。本发明解决了传统惯性器件无法测量和测量精度不高的问题,采用三个两轴磁传感器替代三轴磁传感器,大大节省了成本。

Подробнее
10-03-2016 дата публикации

Magnetic detection methods, systems and apparatus

Номер: RU2576627C1
Автор: Пол Ф. РОДНИ

Использование: для идентификации состава и распределения материала. Сущность изобретения заключается в том, что способ и изделие могут работать, получая первый сигнал с первого магнитометра, по меньшей мере частично расположенного в катушке Гельмгольца, получая второй сигнал со второго магнитометра, имеющего чувствительность по меньшей мере в одну тысячу раз меньше, чем у первого магнитометра, обрабатывая второй сигнал для определения сигнала возбуждения, приводящего в действие катушку Гельмгольца, использующую сигнал возбуждения для обнуления магнитного поля Земли, окружающего первый магнитометр, и обрабатывая первый сигнал, являющийся сигналом скважинной локации или сигналом скважинной телеметрии, причем по сигналу локации определяют дальность до подземного объекта и по сигналу телеметрии получают данные операций бурения в скважине. Технический результат: обеспечение возможности подавления части магнитного поля окружающей среды и увеличения чувствительности измерений магнитного поля. 3 н. и 18 з.п. ф-лы, 9 ил., 2 табл. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК G01V 3/40 (13) 2 576 627 C1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2014133909/28, 19.01.2012 (24) Дата начала отсчета срока действия патента: 19.01.2012 (72) Автор(ы): РОДНИ Пол Ф. (US) (73) Патентообладатель(и): ХЭЛЛИБЕРТОН ЭНЕРДЖИ СЕРВИСИЗ, ИНК. (US) R U Приоритет(ы): (22) Дата подачи заявки: 19.01.2012 (45) Опубликовано: 10.03.2016 Бюл. № 7 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 19.08.2014 (86) Заявка PCT: US 2012/021875 (19.01.2012) 2 5 7 6 6 2 7 (56) Список документов, цитированных в отчете о поиске: US 2010225313 A1 09.09.2010. US 4071815 A 31.01.1978. RU 2390803 C2 27.05.2010. US 7994932 B2 09.08.2011. SU 1117480 A1 07.10.1984. (87) Публикация заявки PCT: 2 5 7 6 6 2 7 R U Адрес для переписки: 129090, Москва, ул. Б. Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) ...

Подробнее
23-06-2017 дата публикации

A kind of wideband compound magnetic sensor

Номер: CN106885996A
Принадлежит: Jilin University

本发明涉及一种宽频复合磁传感器,是由感应式磁传感器初级探头和感应式磁传感器次级探头安装在两端,磁通门传感器探头安装在感应式传感器空心磁芯中间位置,感应式磁传感器初级探头、感应式磁传感器次级探头和磁通门传感器探头固定在外壳内并通过多芯屏蔽线缆连接调理电路构成。宽频复合磁传感器包括高频和低频两种工作模式,磁通门传感器探头固定在感应式磁传感器初级探头与感应式磁传感器次级探头中间位置的复合磁传感器结构,与传统单一磁通门传感器相比,提高了磁通门传感器的灵敏度,克服了单一磁通门传感器高频噪声高,和单一感应式磁传感器低频噪声高以及无法测量静磁场的不足,从而实现了宽频带低噪声的磁场测量。

Подробнее
08-02-2018 дата публикации

Method for calculation of local geomagnetic perturbing field and its practical application

Номер: RU2644179C2

FIELD: measuring equipment. SUBSTANCE: method for calculation of a local geomagnetic disturbance field is proposed, according to which: the Earth's magnetic field elements are measured in at least one known geodetic position; the Earth's magnetic field elements are measured in a position near the location for which the local geomagnetic disturbing field must be calculated; the perturbation function is determined based on the Earth's magnetic field measurements performed in at least one known geodetic position and the transfer function of magnetic disturbance field measurement is calculated between at least one known geodetic position and an adjacent position to calculate the local geomagnetic disturbance field in the adjacent position. At that, the calculation of the transfer function of the magnetic disturbance field includes calculation of the Fourier window transformation, measurements in at least one known geodetic position, and measurements in the adjacent position by the least-square inversion. EFFECT: increased accuracy of geomagnetic survey results obtaining in order to increase the efficiency of its application in the field of directional drilling of wells. 25 cl, 6 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 644 179 C2 (51) МПК G01V 3/08 (2006.01) E21B 47/022 (2012.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G01V 3/087 (2016.08); E21B 47/022 (2016.08) (21)(22) Заявка: 2016105641, 24.07.2014 (24) Дата начала отсчета срока действия патента: 08.02.2018 Приоритет(ы): (30) Конвенционный приоритет: 24.07.2013 US 61/858,014 (43) Дата публикации заявки: 29.08.2017 Бюл. № 25 (56) Список документов, цитированных в отчете о поиске: SU 1264122 A1, 15.10.1986. SU 1087662 A1, 23.04.1984. SU 266051 A1, 17.03.1970. RU 2363965 C1, 10.08.2009. SU 1377377 A1, 29.02.1988. RU 2226283 C1, 27.03.2004. US 6021577 A1, 08.02.2000. (45) Опубликовано: 08.02.2018 Бюл. № 4 (85) Дата начала рассмотрения заявки PCT на ...

Подробнее
06-01-2016 дата публикации

The 3-dimention airborne magnetic survey system using multicopter and magnetic survey method using the same

Номер: KR101582959B1
Автор: 오석훈, 이희순
Принадлежит: (주)지오룩스

멀티콥터 비행체를 이용한 3차원 항공자력탐사 시스템 및 이를 이용한 항공자력탐사 방법을 개시한다. 상기 멀티콥터 비행체를 이용한 3차원 항공자력탐사 시스템은 내부에 정밀 좌표를 수신하는 RTK DGPS 이동국 모듈(230)을 구비하며, 측정하고자 하는 지표 또는 지층 상에 정밀하게 이동한 후, 상기 지표 또는 지층 내의 3차원 자력데이터를 측정하는 멀티콥터 비행체(110); 무선통신 인터페이스(130); 및 상기 무선통신 인터페이스(130)와 연동되어, 상기 멀티콥터 비행체(110)의 고도, 탐사 진행방향을 관찰하고, 상기 멀티콥터 비행체(110)에서 측정된 3차원 자력데이터를 제공받아 분석한 후, 사용자에게 표시하는 휴대단말기(140)를 포함한다. A three-dimensional airborne magnetic force exploration system using a multi-copter flight vehicle and an air force magnetic field exploration method using the system are disclosed. The three-dimensional aeronautical magnetic field exploration system using the multi-copter flight vehicle includes an RTK DGPS mobile station module 230 for receiving precise coordinates therein, and precisely moves on an indicator or a stratum to be measured, A multi-copter flight vehicle 110 for measuring three-dimensional magnetic force data; A wireless communication interface (130); And the wireless communication interface 130 to observe the altitude and the traveling direction of the multi-copter flight vehicle 110. The multi-copter flight vehicle 110 receives and analyzes the three-dimensional magnetic force data measured by the multi- And a portable terminal 140 for displaying to the user.

Подробнее
26-11-2021 дата публикации

Geomagnetic detection method for submarine cable

Номер: CN113064209B
Принадлежит: Hangzhou Dianzi University

一种海底电缆的地磁探测方法,涉及海底探测技术领域。方法应用于探测控制端,包括:步骤S01,控制安装有质子磁力仪的水下机器人进行初步探测,并确定初步电缆走向和初步位置信息;步骤S02,根据初步位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水,基于地磁总场,控制水下机器人驶向电缆上方,并确定电缆的具体位置信息;基于磁通门磁力仪获得的X轴分量梯度值,控制水下机器人的艏向沿着初步电缆走向运动;步骤S03,根据具体位置信息,控制安装有质子磁力仪和两个磁通门磁力仪的水下机器人下水;基于地磁总场的Z轴分量值和水下机器人的下水深度数据,判断海底电缆是否存在故障以及故障点位置。本发明探测准确,且实现简单。

Подробнее
21-02-2020 дата публикации

Body magnetism correction method of three-axis magnetic sensor

Номер: CN110824570A
Автор: 何欢, 章雪挺

本发明公开了一种三轴磁传感器的本体磁性校正方法。在磁传感器校正的过程中,因为转变的参数过多,导致解空间的维度过高,从而使得求解变得复杂、计算成本过大。本发明如下:一、用被校正磁传感器在其工作位置持续进行检测。二、求取磁场变异系数;三、若变异系数S<0.5,则进入步骤四;否则,进入步骤五。四、利用“基于乌鸦搜索算法的弱干扰模型”校正磁传感器。五、通过常规校正方法在强干扰模型下校正磁传感器。本发明通过引入磁场变异系数的方式,将磁传感器的校正分为两种不同的情况;从而变异系数较小的情况下利用基于乌鸦搜索算法的弱干扰模型进行磁传感器标定,提高标定的效率。

Подробнее
11-05-2018 дата публикации

Management apparatus and method of geomagnetic data and indoor positioning system using the same

Номер: KR20180049467A
Принадлежит: 주식회사 포스코아이씨티

지자기 데이터에 영향을 미치는 주변 상황을 반영하여 지자기 맵을 동적으로 갱신할 수 있는, 본 발명에 따른 지자기 데이터 관리 장치 및 지자기 데이터 관리 방법은 기 설정된 지자기 포인트 별 지자기 데이터를 나타내는 지자기 맵을 구축하고, 제품의 적치 상태 변동시 지자기 맵 시뮬레이션 모델에 기초하여 적치 상태의 변동에 따른 지자기 데이터를 시뮬레이션하고, 시뮬레이션 결과를 반영하여 지자기 맵을 갱신하는 것을 특징으로 한다.

Подробнее
03-06-2014 дата публикации

3-dimention airborne magnetic survey system and 3-dimention airborne magnetic survey method using the same

Номер: KR101403296B1
Автор: 박계순, 조성준
Принадлежит: 한국지질자원연구원

Disclosed are a three-dimensional airborne magnetic survey system and a method using the same. The three-dimensional airborne magnetic survey system comprises: an unmanned vehicle (110) for magnetic survey which moves along the coordinate region of a ground surface or geological stratum to be measured, by varying the altitudes based on the coordinate region; a magnetic force measuring unit (120) installed on the unmanned vehicle (110) for magnetic survey to measure the three-dimensional magnetic force data of the ground surface or the geological stratum according to the altitudes; a three-dimensional magnetic force data processing unit (130) for carrying out inverse operation of the three-dimensional magnetic force data of the ground surface or the geological stratum according to the altitudes for each coordinate region; a VSAT interface (300); and a wireless control unit (140) for receiving the three-dimensional magnetic force data in association with the VSAT interface (300), and outputting flight control signals, station coordinate signals and magnetic force measurement signals to the unmanned vehicle (110) for magnetic survey through the automatic navigation programs incorporated therein, wherein the wireless control unit (140) is provided with an image data display unit (141) for displaying the three-dimensional magnetic force data to a user for each of the coordinates of the target ground surface to be measured or the target geological stratum to be measured.

Подробнее
15-02-2018 дата публикации

Method for assessing impact of geomagnetic activity on metrological characteristics of inclinometric and navigation equipment

Номер: RU2644989C1

FIELD: measuring equipment. SUBSTANCE: method for assessing the impact of geomagnetic activity on the metrological characteristics of the inclinometric and navigation equipment comprises measuring and calculating the parameters of the geomagnetic field. Control indices of geomagnetic activity are calculated, characterizing the component of additional error of the inclinometric and navigational equipment, occurring during periods of nonzero geomagnetic activity, the obtained results are compared with the established standards and their difference enables to assess the degree of deviation of metrological characteristics of the inclinometric and navigational equipment. EFFECT: minimization of the geomagnetic activity impact on the metrological characteristics of the inclinometric and navigation equipment during processes of its calibration, verification and operation. 2 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 644 989 C1 (51) МПК G01C 25/00 (2006.01) G01C 9/00 (2006.01) G01C 21/08 (2006.01) G01V 3/40 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G01C 25/00 (2017.08); G01C 9/00 (2017.08); G01C 21/08 (2017.08); G01V 3/40 (2017.08) (21)(22) Заявка: 2016138944, 03.10.2016 (24) Дата начала отсчета срока действия патента: (73) Патентообладатель(и): Воробьев Андрей Владимирович (RU), Воробьева Гульнара Равилевна (RU) Дата регистрации: 15.02.2018 (56) Список документов, цитированных в отчете о поиске: Вестник УГАГУ, 2015, т. 19, (45) Опубликовано: 15.02.2018 Бюл. № 5 2 6 4 4 9 8 9 R U (54) СПОСОБ ОЦЕНКИ ВЛИЯНИЯ ГЕОМАГНИТНОЙ АКТИВНОСТИ НА МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИНКЛИНОМЕТРИЧЕСКОГО И НАВИГАЦИОННОГО ОБОРУДОВАНИЯ (57) Реферат: Изобретение относится к области геофизики навигационного оборудования включает и может быть использовано для оценки влияния измерение и расчет параметров геомагнитного геомагнитной активности на метрологические поля. При этом рассчитывают контрольные характеристики инклинометрического ...

Подробнее
07-09-2016 дата публикации

Aeromagnetic field vector detecting device and detecting method

Номер: CN105929458A
Автор: 张雪, 王言章, 秦佳男, 陈晨
Принадлежит: Jilin University

本发明涉及一种航空磁场矢量检测装置及检测方法,采用激射频率与碱金属原子D1线频率相同的DFB激光器作为泵浦光源,其发出的光通过光隔离器、光衰减器、起偏器和λ/4波片产生光功率可自由调节的圆偏振泵浦光极化碱金属原子,使其具有宏观磁矩。y轴方向的被测弱磁场,使该磁矩绕y轴在xoz平面上产生拉莫尔进动。由于极化原子的圆二向色性导致线偏振光的偏振面旋转,撤去泵浦光,偏转角逐渐震荡衰减至零,采用过零检测装置测量撤去泵浦光时刻与第一个过零点之间的时间差,可得到拉莫尔进动频率,除以旋磁比便可得到磁场矢量值。本发明具有磁场矢量检测精度高,响应频率快,重复性好,适用于航空磁场矢量检测移动平台测磁。

Подробнее
11-06-2019 дата публикации

The interference compensation method and device of geomagnetic sensor

Номер: CN105277995B
Автор: 卢清
Принадлежит: ZTE Corp

本发明公开了一种地磁传感器的干扰补偿方法及装置,其中,该方法包括:确定电源走线上的电流对地磁传感器产生干扰;获取电源走线上的多个电流值,并根据所述地磁传感器的三轴数据变化值与所述电流值的函数对应关系,得到三轴数据补偿值;在当前的地磁传感器的三轴数据中减去所述三轴数据补偿值。通过本发明,解决了相关技术中的PCB电源走线引起的对地磁传感器的干扰难以规避的问题,进而使得输出的地磁三轴数据更加准确,从而使地磁传感器在应用时,带来丰富的体验效果。

Подробнее
30-10-2020 дата публикации

Magnetic measurement data equivalent source pole and type conversion method based on PDE

Номер: CN111856599A
Автор: 左博新
Принадлежит: China University of Geosciences

本发明提供一种基于PDE的磁测数据等效源化极与类型转换方法,包括:S1、获取磁场数据d 0 ,并根据磁场数据所在区域的地形高度信息建立地形起伏曲面;S2、确定网格剖分的空间范围,并进行非均匀多层网格剖分;S3、根据地磁场的磁倾角、磁偏角和磁感应强度,对磁场数据d 0 进行带深度规整化因子、正值约束项以及规整化项的PDE三维反演计算,得到磁异常体的多层等效源模型;S4、给定不同的地磁极参数,利用多层等效源模型进行非线性PDE的磁场三维正演计算,得到化极数据、磁异常总场数据、磁异常分量数据以及磁梯度张量数据中的一种或多种。本发明的有益效果:能对复杂环境中的地下磁异常数据进行自适应、高精度的化极与数据类型转换计算。

Подробнее
23-01-2017 дата публикации

Method and Apparatus of correcting output value of terrestrial magnetism sensor

Номер: KR101698682B1
Принадлежит: 매그나칩 반도체 유한회사

The present invention relates to a method and an apparatus for correcting an output value of a geomagnetic sensor, and more particularly, the present invention relates to a method and an apparatus which can improve accuracy of correction of an output value of a geomagnetic sensor by tracking an estimation error (offset and radius value) when measuring the output value of the geomagnetic sensor each time.

Подробнее
19-02-2019 дата публикации

Curie isotherm depth of location determining method

Номер: RU2680262C1

FIELD: measurement technology.SUBSTANCE: invention relates to the geophysics, in particular to the field of the geomagnetic field magnitudes measuring, intended for the lithosphere magnetic layer geometrical parameters determination. Essence of the invention consists in the fact, that the Curie isotherm depth determining method further comprises the steps, at which, to determine the Earth's lithosphere magnetic active layer center of mass depth of location, performing the geomagnetic field induction modulus gradients aerostatic measurements at altitudes of 20–40 km along the profile, building the obtained data spectrum and by the aerostat profile spectrum logarithm asymptote determining the magnetoactive layer center of mass depth of location, after that, by the magnetic active layer upper boundary and the center of mass depths of location determining the Curie isotherm depth of location.EFFECT: increase in the Curie isotherm depth of location determining accuracy.1 cl РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 680 262 C1 (51) МПК G01V 3/40 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G01V 3/40 (2018.08) (21)(22) Заявка: 2017142693, 07.12.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: 19.02.2019 (45) Опубликовано: 19.02.2019 Бюл. № 5 Адрес для переписки: 108840, Москва, г. Троицк, Калужское ш., 4, ИЗМИРАН, Ружиной Л.Н. О. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tektonophysics, 306 (1999), pp. 461-470. RU 2615515 C2, 05.04.2017. US 6900639 B2, 31.05.2005. WO 2004083898 A1, 30.09.2004. C 1 2 6 8 0 2 6 2 (56) Список документов, цитированных в отчете о поиске: Tanaka A., Okubo Y., Matsubayashi (54) Способ определения глубины залегания изотермы Кюри (57) Реферат: Изобретение относится к геофизике, в модуля индукции геомагнитного поля на высотах частности к области измерения величин 20-40 км вдоль профиля, строят спектр ...

Подробнее
07-12-2012 дата публикации

Autocalibration method and device

Номер: KR101209571B1
Принадлежит: 한국과학기술연구원

본 발명의 일 측면에 따르면, 복수의 센서를 포함하는 다축 감지 장치의 자동 교정 방법이 제공된다. 위 방법은 복수의 센서로부터 벡터 물리량 나타내는 데이터를 획득하는 단계, 획득한 데이터에 미리 정해진 타원 맞춤(fitting) 알고리즘을 수행하여 타원 스케일 인자 값과 교정 바이어스 값을 생성하는 단계, 및 생성된 타원 스케일 인자 값에 미리 정해진 분해(decomposition) 알고리즘을 수행하여 교정 스케일 인자 값을 생성하는 단계를 포함할 수 있다. According to an aspect of the present invention, a method for automatically calibrating a multi-axis sensing device including a plurality of sensors is provided. The method includes acquiring data representing vector physical quantities from a plurality of sensors, performing a predetermined elliptic fitting algorithm on the acquired data to generate an elliptic scale factor value and a calibration bias value, and the generated elliptic scale factor. And generating a calibration scale factor value by performing a predetermined decomposition algorithm on the value.

Подробнее
02-04-2019 дата публикации

Method for determining induced and residual magnetization of rocks according to magnetic exploration data

Номер: RU2683817C1

Изобретение относится к области магниторазведки и может быть использовано при построении разрезов по аномалиям магнитного поля на стадии решения региональных, поисковых и разведочных задач геологии. Технический результат: повышение информативности магниторазведочных работ. Задачей изобретения является повышение эффективности использования магниторазведочных данных за счет их более углубленной интерпретации. Сущность: по наблюденному магнитному полю создают цифровую модель разреза в виде совокупности отдельных цифровых блоков, заполняющих изучаемое пространство и имеющих квазиоднородные магнитные свойства. Каждый блок представляют как неделимый элемент модели, который помимо пространственных параметров характеризуется намагниченностью и углом намагничивания. Для каждого указанного блока на основе решения обратной задачи определяют значения эффективной намагниченности. Затем уточняют геометрические параметры каждого составляющего разрез цифрового блока и соответствующие значения эффективной намагниченности (с углами намагничивания, совпадающими с направлением вектора нормального магнитного поля Земли). Полученную цифровую модель разреза копируют с получением второй, идентичной модели разреза, при этом один разрез обозначают как разрез, характеризуемый только индуцированной намагниченностью, а второй - только остаточной намагниченностью. Далее осуществляют процедуры определения значений индуцированной и остаточной намагниченностей для каждого цифрового блока обоих разрезов путем решения обратных задач, последовательно изменяя направление вектора остаточной намагниченности. 1 з.п. ф-лы, 8 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 683 817 C1 (51) МПК G01V 3/40 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G01V 3/40 (2018.08) (21)(22) Заявка: 2018112370, 05.04.2018 (24) Дата начала отсчета срока действия патента: (73) Патентообладатель(и): Акционерное общество "Сибирский научно-исследовательский институт ...

Подробнее
10-01-1984 дата публикации

Seabottom magnetometer

Номер: JPS593374A
Принадлежит: Shimadzu Corp, Shimazu Seisakusho KK

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
27-11-2018 дата публикации

Method and Apparatus for calculation of angular velocity using acceleration sensor and geomagnetic sensor

Номер: KR101922700B1
Автор: 김동윤, 최성민
Принадлежит: 주식회사 해치텍

The present invention relates to a method and an apparatus for calculating angular velocity, which can calculate angular velocity by using measurement values of acceleration sensors and geomagnetic sensors without using a physical gyro sensor. The method comprises the steps of: deriving distribution of state variables and state variables on the basis of error quaternion and converting a quaternion-based rotational matrix into an error quaternion-based rotational matrix; redefining an output of an acceleration sensor and an output of a geomagnetic sensor by using the error quaternion-based rotational matrix and calculating an observation matrix and an output matrix of a Kalman filter; after transferring the state variable and the distribution of the state variable through a discretized transition matrix, calculating a gain of the Kalman filter on the basis of the distribution of the transferred state variable and the observation matrix of the Kalman filter; after compensating for the distribution of the state variable and the state variable through the gain of the Kalman filter, calculating a quaternion on the basis of the compensated state variable and the estimated quaternion; and calculating an angular velocity on the basis of the quaternion.

Подробнее
10-08-2018 дата публикации

Diamond crystal and inertia motion measuring device based on diamond quantum defect center

Номер: CN108385163A
Автор: 李东宪, 杨承
Принадлежит: Individual

本发明公开一种基于金刚石量子缺陷中心的惯性运动测量装置。所述装置包括:金刚石晶体、微波天线、电磁线圈、激光器、光传感器以及信号处理器;其中,所述金刚石晶体包括分别具有若干NV缺陷中心的第一区域、第二区域和第三区域,所述第一、第二和第三区域在至少一个投影面上的投影互不重叠;所述光传感器的成像平面与该投影面平行,用于感测因所述第一、第二和第三区域各自NV缺陷中心的电子自旋共振产生的光信号;所述信号处理器用于处理所述光传感器感测的所述光信号。实施本发明后,可以利用同一金刚石晶体同时感测多个惯性运动参数,相对于传统惯性传感器,本发明具有较高的集成度、稳定性和测量精度。

Подробнее
12-04-1985 дата публикации

Magnetic detecting apparatus

Номер: JPS6064286A
Принадлежит: Mitsubishi Electric Corp

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
20-07-2016 дата публикации

Measurement circuit for submarine three-component magnetometer

Номер: CN105785461A
Автор: 张明, 王周, 章雪挺, 阮大双
Принадлежит: Hangzhou Dianzi University

本发明涉及一种海底三分量磁力仪的测量电路。本发明包括电源电路、传感器信号采集电路、数据传输与存储电路、主控电路。其中电源电路包括+13V、‑13V、+5V、+3.3V输出电源电路,+6.5V缓冲电压电路、+5V偏置电压输出电路、+2.5V基准电压电源电路。传感器信号采集电路包括数模转换电路和三个结构相同的信号调理电路。本发明采用英国Bartington公司的磁通门传感器,利用了磁通门传感器的高灵敏度、高分辨率、低功耗特点,结合测量电路实现了海底三分量磁力测量。

Подробнее
10-08-2021 дата публикации

Magnetic measurement data equivalent source pole and type conversion method based on PDE

Номер: CN111856599B
Автор: 左博新
Принадлежит: China University of Geosciences

本发明提供一种基于PDE的磁测数据等效源化极与类型转换方法,包括:S1、获取磁场数据d 0 ,并根据磁场数据所在区域的地形高度信息建立地形起伏曲面;S2、确定网格剖分的空间范围,并进行非均匀多层网格剖分;S3、根据地磁场的磁倾角、磁偏角和磁感应强度,对磁场数据d 0 进行带深度规整化因子、正值约束项以及规整化项的PDE三维反演计算,得到磁异常体的多层等效源模型;S4、给定不同的地磁极参数,利用多层等效源模型进行非线性PDE的磁场三维正演计算,得到化极数据、磁异常总场数据、磁异常分量数据以及磁梯度张量数据中的一种或多种。本发明的有益效果:能对复杂环境中的地下磁异常数据进行自适应、高精度的化极与数据类型转换计算。

Подробнее
03-03-2022 дата публикации

Air conditioner and method for controlling for the same

Номер: KR20220025510A
Автор: 김동주
Принадлежит: 엘지전자 주식회사

본 발명은 공기조화기 및 그 제어방법에 관한 것으로, 복수의 토출구가 구비되는 실내기에서 복수의 토출구의 위치를 판단하여 지정된 방향으로 공기가 토출되도록 복수의 토출구를 제어하는 것으로, 방향감지수단을 통해 실내기의 설치방향을 판단하고, 설치방향에 따라 토출구에 번호를 설정하여 설정기준만으로 용이하게 실내기의 토출구를 구분하여, 지정된 방향으로 공기가 토출되도록 토출구에 설치된 베인을 제어함으로써, 실내기의 설치방향에 관계없이 공기의 토출 방향을 제어할 수 있고, 다양한 방향으로 설치되는 복수의 실내기에 대하여, 설치방향에 관계없이 토출구에 설정되는 번호를 이용하여 제어함으로써, 실내 공간에 기류를 용이하게 제어할 수 있다.

Подробнее
24-11-1988 дата публикации

Device for determining strength and direction of magnetic field and usage of said device

Номер: JPS63286785A
Принадлежит: Wild Heerbrugg AG

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
17-04-2018 дата публикации

Method of reproducing magnetic induction in hypogeomagnetic range

Номер: RU2650769C1

FIELD: measuring equipment. SUBSTANCE: invention can be used to obtain standard values of magnetic induction of a constant field in the range about ±1000 nTl. Method of reproduction of magnetic induction in hypogeomagnetic range, including compensation of longitudinal and transverse components of magnetic induction of earth local field, includes steps on which a change of reference frequency of phase frequency comparator is performed in accordance with the value of the reproduced magnetic induction and the measurement of the reproduced magnetic induction of the hypogeomagnetic range at the level of doubled value of the magnetic induction of earth local field with subsequent total compensation of the magnetic induction of earth local field under condition of current stabilization in the vertical winding of the reference three-component measure-comparator with relative instability 3⋅10 -7 . EFFECT: extended lower limit of the reproduction range of the magnetic induction unit. 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 650 769 C1 (51) МПК G01V 3/40 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G01V 3/40 (2006.01) (21)(22) Заявка: 2017122556, 26.06.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 26.06.2017 (45) Опубликовано: 17.04.2018 Бюл. № 11 2 6 5 0 7 6 9 R U (56) Список документов, цитированных в отчете о поиске: В.Я. Шифрин и др. Государственный первичный эталон единиц магнитной индукции, магнитного потока, магнитного момента и градиента магнитной индукции. Измерительная техника, 2012, N 7, стр. 3-7. RU 2545466 C2, 27.03.2015. RU 103656 U1, 20.04.2011. SU 789931 A1, 23.12.1980. CN 1904645 A, 31.01.2007. (54) СПОСОБ ВОСПРОИЗВЕДЕНИЯ МАГНИТНОЙ ИНДУКЦИИ В ГИПОГЕОМАГНИТНОМ ДИАПАЗОНЕ (57) Реферат: Изобретение относится к области метрологии и измерение воспроизводимой магнитной и может быть использовано для получения индукции гипогеомагнитного ...

Подробнее
09-02-2011 дата публикации

Magnetic detector

Номер: JP4626728B2
Принадлежит: Aichi Steel Corp

Подробнее
08-08-2018 дата публикации

Determination of true formation resistivity

Номер: RU2663686C2

Изобретение области нефте- и газодобычи. Способ определения оценки истинного удельного сопротивления пласта включает: получение измеренных значений от первого приемника, прикрепленного к измерительному инструменту, на основе измерения сигнала первого приемника, причем первый приемник имеет первый угол наклона и причем сигнал передается передатчиком, прикрепленным к измерительному инструменту, и при этом получение измеренных значений содержит проведение измерений во время вращения измерительного инструмента, причем вращение измерительного инструмента разделено на количество бинов, при этом общее количество бинов соответствует одному полному обороту измерительного инструмента, причем количество бинов больше одного; определение виртуальных измеренных значений при втором угле наклона на основе измеренных значений, количестве бинов, первого отношения и второго отношения, причем первое отношение основано на первом угле наклона и втором угле наклона, а второе отношение основано на количестве бинов и разнице между первым углом наклона и втором угле наклона и определение оценки истинного удельного сопротивления пласта на основе виртуальных измеренных значений. 15 н. и 60 з.п. ф-лы, 25 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 663 686 C2 (51) МПК G01V 3/18 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G01V 3/18 (2018.02) (21)(22) Заявка: 2015123728, 30.01.2013 (24) Дата начала отсчета срока действия патента: (73) Патентообладатель(и): ХЭЛЛИБЕРТОН ЭНЕРДЖИ СЕРВИСИЗ, ИНК. (US) Дата регистрации: 08.08.2018 (56) Список документов, цитированных в отчете о поиске: WO 2008076130 A1, 26.06.2008. US (43) Дата публикации заявки: 06.03.2017 Бюл. № 7 2011133740 A1, 09.06.2011. US 2010123462 A1, 20.05.2010. US 2012306500 A1, 06.12.2012. (45) Опубликовано: 08.08.2018 Бюл. № 22 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 31.08.2015 (86) Заявка PCT: 2 6 6 3 6 8 6 Приоритет(ы): (22) Дата подачи заявки: 30.01. ...

Подробнее
12-06-2020 дата публикации

Geomagnetic sensor circuit, circuit board and electronic equipment

Номер: CN111273368A
Автор: 贾玉虎

本申请实施例提供一种地磁传感器电路、电路板及电子设备,地磁传感器电路包括第一磁力传感器、第二磁力传感器、放大器、模数转换器和接口单元;第一磁力传感器用于获取第一磁力信号;第二磁力传感器用于获取第二磁力信号,第二磁力传感器获取的磁力信号范围大于第一磁力传感器获取的磁力信号范围;第一磁力传感器和第二磁力传感器均与放大器的输入端连接,放大器用于将输入放大器的信号放大;模数转换器用于获取放大器放大后的信号,并将放大后的信号转换成数字信号;接口单元用于获取模数转换器转换后的数字信号,并将数字信号传输出去。既可以支持小量程高精度的测量,又可以支持大量程的测量。

Подробнее
02-09-2015 дата публикации

Method and System for getting marine magnetic data by elimanating magnetic field disturbance from ship's heading effect and Recording media thereof

Номер: KR101548667B1
Автор: 강무희, 김경오
Принадлежит: 한국지질자원연구원

The present invention relates to a marine magnetic force exploration measuring method and system. According to the present invention, the marine magnetic force exploration measuring method comprises: a measuring step for towing a magnetometer while a probe is progressed by drawing a circular waterway on the basis of a central point in the surveyed area, and for measuring a magnetic field value using the magnetometer according to the progress angle of the probe measured in a clockwise direction on the basis of the true north; a data inputting step for receiving data with respect to the angle of the probe and data with respect to the magnetic field value measured in the angle from all calculating units; a calculating step of setting a disturbance magnetic field value induced by the probe contained in the magnetic field value measured in the calculating unit including a calculating program; and a step of calculating a real magnetic field value by deducting the disturbance magnetic field value from the measured magnetic field value.

Подробнее
05-09-2012 дата публикации

Applied equipment for measuring and using geomagnetism

Номер: JP5017539B1
Принадлежит: Aichi Micro Intelligent Corp

【課題】方位球が楕円球となる場合のオフセット計算に最適な測定点選択方法を備えた地磁気を測定し、利用する応用機器を提供する。 【解決手段】 3軸の磁気センサと、測定点取得手段と、磁気センサのオフセットを校正する校正手段と、方位計算手段からなる地磁気を測定し、利用する応用機器であって、 前記校正手段が、前記地磁気ベクトルの少なくとも6点からなる測定点を前記測定点取得手段により前記測定点格納部に格納されたデータ群の中から選択し、オフセット計算用測定点格納部に選択された測定点を格納するオフセット計算用測定点選択手段を備え、 前記オフセット計算用測定点選択手段は、前記測定点格納部に格納されたデータ群の中から直交する3軸の各軸毎の成分値が最大と最小となる6点を少なくとも含むように選択することを特徴とする。 【選択図】図1

Подробнее
24-01-2007 дата публикации

Electronic compass and electronic watch with electronic compass

Номер: JP3872262B2
Автор: 一雄 加藤
Принадлежит: Seiko Instruments Inc

Подробнее
15-03-2019 дата публикации

A kind of magnetic survey method based on split type suspension spherical coil

Номер: CN109471184A
Автор: 冯志生, 夏忠, 宫杰, 居海华
Принадлежит: JIANGSU PROV SEISMOLOGY BUREAU

本发明公开了一种基于分体式悬挂球形线圈的地磁测量方法,步骤包括:安装测量系统;在未对补偿球形线圈进行供电的情况下,测试仪主机通过补偿球形线圈测得地磁总场;在对补偿球形线圈进行供电的情况下,记录测量值达到最低时为地磁水平分量;由测试仪主机对偏置球形线圈进行供电,偏置球形线圈在东西方向上施加偏置磁场,偏置磁场与地磁总场的合成磁场,计算可得相对磁偏角;利用地磁总场、地磁水平分量以及相对磁偏角计算地磁的其余参数。该地磁测量方法采用的分体式悬挂球形线圈结构十分简单,线圈内部产生磁场均匀度更高,线圈外磁场衰减更快,对外辐射小,能够有效提高采样频率。

Подробнее
15-06-2021 дата публикации

Magnetic measurement data multilayer equivalent source upper extension and lower extension method

Номер: CN111856598B
Автор: 左博新
Принадлежит: China University of Geosciences

本发明提供一种磁测数据多层等效源上延拓与下延拓方法,包括:S1、输入磁场数据,并根据起伏观测曲面所在区域的地形高度信息建立地形起伏曲面;S2、确定网格剖分的空间范围,并进行连续的结构化非均匀网格剖分,进一步确定反演模型求解空间;S3、根据地磁场的磁倾角、磁偏角、磁感应强度,基于反演模型求解空间对磁场数据进行带深度规整化因子、正值约束项以及规整化项的积分方程三维反演计算,得到磁异常体的多层等效源模型;S4、利用多层等效源模型进行基于积分方程的磁场正演计算,得到磁异常体产生的上延拓和/或下延拓后的磁场数据。本发明的有益效果:能对磁异常体进行自适应且快速高效准确地生成所需要的上延拓或下延拓数据。

Подробнее
04-06-2021 дата публикации

Three-axis fluxgate aeromagnetic measurement system and correction compensation method

Номер: CN109541704B
Автор: 卿昊
Принадлежит: Geo Uav Shenzhen Technology Co ltd

本发明公开了一种基于垂直起降固定翼飞行器的三轴磁通门航磁测量系统及矫正补偿方法,通过预先采集一系列飞行中随姿态变化产生的三轴磁通门数字输出读数作为数值输入,求解非线性最小二乘方程组,获得对三轴磁通门磁力仪具有共同影响的12个补偿参数,将获得的补偿参数存储入多数据同步采集及矫正补偿系统内,利用补偿算法对航磁飞行工作测线获得矢量磁场和总场数据进行实时和飞行后矫正补偿。本发明无需光泵磁力仪,即可获得补偿矫正后的磁场总场强度数据,适用于轻小型无人机平台,磁力仪集成于无人机任务仓内,保护到位,拆装方便,所采用的补偿算法极大地提高了三轴矢量高精度磁力仪的精度,大大降低了系统噪声。

Подробнее
06-01-1995 дата публикации

Magnetic mapping method and device.

Номер: FR2699287B1
Принадлежит: Commissariat a lEnergie Atomique CEA

Подробнее
17-06-1994 дата публикации

Method and device for magnetic mapping

Номер: FR2699287A1
Принадлежит: Commissariat a lEnergie Atomique CEA

Selon l'invention, on fait des mesures au moyen de capteurs de champ magnétique placés dans des "poissons" (10) déplacés dans la zone à cartographier, on détermine des gradients à partir de la différence entre des mesures fournies par deux capteurs au même instant, et ce, pour tout couple de capteurs, et/ou à partir de la différence entre des mesures fournies par le même capteur à deux instant différents et ce, pour tout capteur, d'où au moins une carte de gradients que l'on décompose en une carte de gradients de champ régional et une carte de gradients de champ local. A partir de cette dernière, on détermine le champ géologique relatif à la zone, ou les gradients de ce champ, puis le champ total, par addition du champ géologique au champ régional déterminé à partir de ses gradients par une méthode d'inversion et de calcul direct. According to the invention, measurements are made by means of magnetic field sensors placed in "fish" (10) moved in the area to be mapped, gradients are determined from the difference between measurements provided by two sensors at the same instant, and this, for any pair of sensors, and / or from the difference between measurements provided by the same sensor at two different times, for any sensor, hence at least one gradient map that the we decompose into a regional field gradient map and a local field gradient map. From the latter, we determine the geological field relative to the area, or the gradients of this field, then the total field, by adding the geological field to the regional field determined from its gradients by a method of inversion and direct calculation.

Подробнее
18-09-2020 дата публикации

ROBOTIC CARTOGRAPHY EQUIPMENT AND CARTOGRAPHY PROCESS IMPLEMENTING SUCH EQUIPMENT

Номер: FR3093828A1
Автор: Antoine BOCQUEHO
Принадлежит: Geonomie

EQUIPEMENT ROBOTISE DE CARTOGRAPHIE ET PROCEDE DE CARTOGRAPHIE METTANT EN ŒUVRE UN TEL EQUIPEMENT L’invention concerne un équipement robotisé de cartographie (1), comprenant des moyens de déplacement sur une surface, et des moyens de support d’au moins un magnétomètre. Selon l’invention, les moyens de support maintiennent le ou les magnétomètres à une distance prédéterminée et constante de la surface sur laquelle se déplace l’équipement robotisé de cartographie, et l’équipement robotisé de cartographie comprend des moyens de maintien de l’orientation du ou des magnétomètres, indépendamment de la direction de déplacement de l’équipement robotisé de cartographie. The invention relates to robotic cartography equipment (1), comprising means for moving over a surface, and means for supporting at least one magnetometer. According to the invention, the support means maintain the magnetometer (s) at a predetermined and constant distance from the surface on which the robotic mapping equipment moves, and the robotic mapping equipment comprises means for maintaining the orientation of the magnetometer (s), regardless of the direction of movement of the robotic mapping equipment.

Подробнее
27-02-1987 дата публикации

CONDUCTIVE SPEAKER FOR MAGNETOMETERS

Номер: FR2586483A1
Принадлежит: NL Industries Inc

LA PRESENTE INVENTION CONCERNE UN PROCEDE ET UN APPAREIL POUR PROTEGER UN GROUPE DE MAGNETOMETRES CONTRE LES CHAMPS MAGNETIQUES CREES PAR DES COURANTS ELECTRIQUES ADJACENTS ET COMPREND UN ELEMENT CYLINDRIQUE DE FORME ALLONGEE EN MATERIAU CONDUCTEUR D'EPAISSEUR UNIFORME QUI ENTOURE LE GROUPE DE MAGNETOMETRES ET AU TRAVERS DUQUEL LES COURANTS PASSENT D'UNE MANIERE ESSENTIELLEMENT UNIFORME AFIN DE NE PAS CREER DE CHAMP SUPPLEMENTAIRE A L'INTERIEUR DU CYLINDRE. THE PRESENT INVENTION CONCERNS A METHOD AND AN APPARATUS FOR PROTECTING A GROUP OF MAGNETOMETERS AGAINST MAGNETIC FIELDS CREATED BY ADJACENT ELECTRIC CURRENTS AND INCLUDES A CYLINDRICAL ELEMENT OF ELONGATED SHAPE IN CONDUCTING MATERIAL OF UNIFORM THICKNESS AND SURROUNDING THE MAGNET THROUGH THE GROUP. THE CURRENTS ARE PASSED IN AN ESSENTIALLY UNIFORM MANNER SO AS NOT TO CREATE AN ADDITIONAL FIELD WITHIN THE CYLINDER.

Подробнее
01-10-2019 дата публикации

Marine magnetism detection method and device

Номер: CA2990647C

The present invention discloses a marine magnetism detection device and a detection method. The device comprises a surveying ship, an onboard laboratory magnetism measurement portion arranged on the surveying ship, an aerostat shell and an aerostat magnetism measurement portion arranged inside the aerostat shell, wherein the aerostat shell is connected to the surveying ship via a rope, and the aerostat shell floats in air; the aerostat magnetism measurement portion comprises a magnetic sensor, an electronic magnetism data acquisition unit and an aerostat transmission unit; and, the onboard laboratory magnetism measurement portion comprises a data recording computer and a laboratory transmission unit. The marine magnetism detection device and method of the present invention will not be limited by the working sea area and can also operate with other onboard devices and dragging devices.

Подробнее
07-08-2014 дата публикации

Determination of true formation resistivity

Номер: CA2895671A1
Принадлежит: Halliburton Energy Services Inc

Various embodiments include apparatus and methods to determine true formation resistivity. Such apparatus and methods may use techniques to effectively reduce or eliminate polarization horn effects at boundaries between formations of different resistivity. The techniques may use combinations of geosignals and adjustments of measurement data to evaluate true formation resistivity for formation layers investigated. Such techniques and associated analysis may be conducted real time. Additional apparatus, systems, and methods are disclosed.

Подробнее
30-09-2015 дата публикации

Pressure resistant container and probe provided with same

Номер: EP2924321A1

There are provide a pressure-resistant container which is less likely to be damaged due to stress concentration even in deep seas of 1000 m or deeper below sea level, and an exploration machine provided with the same. A pressure-resistant container (1) includes a cylindrical first outer shell member (2); and substantially hemispherical second outer shell members (3) which are respectively connected to both ends (2a, 2b) of the first outer shell member (2), and is constructed by selecting materials so that a Young's modulus E2 of a base material which constitutes the second outer shell members (3) is smaller than a Young's modulus E1 of a base material which constitutes the first outer shell member (2) .

Подробнее
05-08-2020 дата публикации

Magnetic compensation method based on aeromagnetic compensation correction model

Номер: EP3690491A1
Принадлежит: Institute of Electronics of CAS

The present disclosure discloses a magnetic compensation method based on an aeromagnetic compensation error model, comprising: acquiring an upper limit of an error of a magnetic noise by using the aeromagnetic compensation error model, before an aeromagnetic flight, wherein the magnetic noise is caused by both an environmental background field in an exploration area and an aeromagnetic flight platform; determining, according to the upper limit of the error of the magnetic noise, whether the environmental background field and the aeromagnetic flight platform are suitable for an aeromagnetic survey flight, and if so, performing a calibration flight to acquire a compensation coefficient; and acquiring data of an attitude term by performing an actual flight, calculating an interference magnetic field by the data of the attitude term and the compensation coefficient acquired during the calibration flight, and performing magnetic compensation. This method may may estimate an environmental background field in an exploration area before an aeromagnetic compensation calibration flight is performed, and magnetic characteristics of an aeromagnetic exploration platform are estimated effectively in advance, to determine in advance whether the exploration area and an aeromagnetic flight platform are suitable for aeromagnetic exploration, which provides a theoretical basis for the selection and construction of the platform, and avoids occurrence of an invalid flight.

Подробнее
10-08-2016 дата публикации

Method for high-precision geomagnetic vector survey and corresponding device

Номер: RU2593436C1

FIELD: geophysics. SUBSTANCE: invention relates to high-precision vector survey of geomagnetic field. Method for high-precision geomagnetic vector survey is characterised by that, using a tripod, vertical coil and a magnetometer for measuring total magnetic field intensity, normal geomagnetic field intensity in absence of magnetic field T O , total intensity 2 total magnetic field T -1 , T -2 at magnetic field with induction directed vertically upward Tf, and double layer with induction of magnetic field directed vertically upward 2Tf calculating vertical component of Z, horizontal component H, angle of geomagnetic declination I magnetic field, calculation is made as follows: . EFFECT: technical result is high accuracy of geomagnetic vector survey. 10 cl, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК G01V 3/40 (13) 2 593 436 C1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2015111804/28, 09.06.2014 (24) Дата начала отсчета срока действия патента: 09.06.2014 (72) Автор(ы): ГАО Цзяньдун (CN) Приоритет(ы): (30) Конвенционный приоритет: 30.07.2013 CN 201310324884.1 (45) Опубликовано: 10.08.2016 Бюл. № 22 2 5 9 3 4 3 6 (56) Список документов, цитированных в отчете о поиске: CN 1057113 A, 18.12.1991. DE 3316707 A1, 10.11.1983. US 7208951 B2, 24.04.2007. SU 1424516 A1, 10.01.2000. R U (73) Патентообладатель(и): УПРАВЛЕНИЕ МЕТАЛЛУРГИИ И ГЕОЛОГИИ КНР ИНСТИТУТ ГЕОЛОГИЧЕСКОЙ РАЗВЕДКИ ШАНЬДУН ЧЖЭНЮАНЬ (CN) (85) Дата начала рассмотрения заявки PCT на национальной фазе: 01.04.2015 (86) Заявка PCT: CN 2014/079467 (09.06.2014) (87) Публикация заявки PCT: 2 5 9 3 4 3 6 R U C 1 C 1 WO 2015/014161 (05.02.2015) Адрес для переписки: 129090, Москва, пр-кт Мира, 6, ППФ "ЮС", Ловцову С.В. (54) СПОСОБ ВЫСОКОТОЧНОЙ ГЕОМАГНИТНОЙ ВЕКТОРНОЙ СЪЕМКИ И СООТВЕТСТВУЮЩЕЕ УСТРОЙСТВО (57) Реферат: Изобретение относится к технической области рассчитывают вертикальную составляющую Z, высокоточной векторной съемки геомагнитного ...

Подробнее
30-10-2020 дата публикации

Magnetic measurement data multilayer equivalent source upper extension and lower extension method

Номер: CN111856598A
Автор: 左博新
Принадлежит: China University of Geosciences

本发明提供一种磁测数据多层等效源上延拓与下延拓方法,包括:S1、输入磁场数据,并根据起伏观测曲面所在区域的地形高度信息建立地形起伏曲面;S2、确定网格剖分的空间范围,并进行连续的结构化非均匀网格剖分,进一步确定反演模型求解空间;S3、根据地磁场的磁倾角、磁偏角、磁感应强度,基于反演模型求解空间对磁场数据进行带深度规整化因子、正值约束项以及规整化项的积分方程三维反演计算,得到磁异常体的多层等效源模型;S4、利用多层等效源模型进行基于积分方程的磁场正演计算,得到磁异常体产生的上延拓和/或下延拓后的磁场数据。本发明的有益效果:能对磁异常体进行自适应且快速高效准确地生成所需要的上延拓或下延拓数据。

Подробнее
21-01-2015 дата публикации

Geomagnetism sensing device

Номер: CN102510997B
Автор: 山田幸光, 广部希世
Принадлежит: Alps Electric Co Ltd

本发明提供一种具有用于检测地磁力的3轴的传感器、且即使在进行复杂的运动时也能够在各个时刻正确地运算角速度等的地磁力检测装置,其设置了用于检测地磁力矢量的X轴传感器、Y轴传感器和Z轴传感器,根据各个传感器的检测输出而在球面坐标(Bb)上求得地磁力矢量的方向。在球面坐标(Bb)中决定基准轴(zO),根据2个坐标检测点的数据(Sa、Sc)而在基准轴(zO)上求得虚拟中心点(Of),根据从虚拟中心点(Of)到各个数据(Sa、Sb)的矢量(Va)与(Vc)的矢积而求得包含矢量(Va、Vc)的面的垂线(Vg),将与垂线(Vg)平行且通过原点(Og)的轴设为计算转动轴(Ia),确定将该计算转动轴(Ia)设为中心的运动。

Подробнее
23-07-2019 дата публикации

A kind of Kp index based on K index shows reporting method

Номер: CN110046697A
Принадлежит: Beijing Institute of Technology BIT

本发明提供一种基于K指数的Kp指数现报方法,将单个地磁台现报的K指数与神经网络预测Kp指数相结合,即神经网络的输入参数在原有太阳风参数的基础上加入了单个地磁台现报得到的K指数,能够在保证高精度Kp指数现报的实时性基础上,尽可能减少现报所需数据并简化计算流程;由此可见,相比当前阶段的Kp指数预报方法,本发明可以避免太阳风对现报结果的消极影响,更加稳定且可持续现报;相比当前阶段的Kp指数现报方法,本发明可以使用更少的地磁台数据,且精度较高,克服了当前阶段Kp指数现报方法构造复杂、使用地磁台数据较多的缺陷,以及神经网络预测Kp指数时无法稳定、持续高精度预测的不足。

Подробнее
18-12-2018 дата публикации

A kind of geomagnetic diurnal variations numerical value based on difference of latitude and distance determines method and system

Номер: CN109031439A
Принадлежит: 61540 Troops of PLA

本发明公开一种基于纬度差和距离的地磁日变化数值确定方法及系统。所述方法包括:获取已知台站和待求点的经纬度;根据所述台站的经纬度和所述待求点的经纬度,计算已知所述台站和所述待求点的纬度差和距离;根据所述纬度差和所述距离,确定权值;将所述权值代入通化处理观测方程,确定日变化数值。采用本发明的方法或系统,其日变化数值的计算结果与待求点实际测量数据的相关性很高,基本反映了待求点处实际日变数据的基本物理属性,且通化精度受已知台站和待求点之间的距离影响较小,精度较高。

Подробнее
06-03-2017 дата публикации

DETERMINATION OF THE TRUE SPECIFIC RESISTANCE OF THE LAYER

Номер: RU2015123728A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2015 123 728 A (51) МПК G01V 3/18 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015123728, 30.01.2013 (71) Заявитель(и): ХЭЛЛИБЕРТОН ЭНЕРДЖИ СЕРВИСИЗ, ИНК. (US) Приоритет(ы): (22) Дата подачи заявки: 30.01.2013 (43) Дата публикации заявки: 06.03.2017 Бюл. № 07 R U (85) Дата начала рассмотрения заявки PCT на национальной фазе: 31.08.2015 (72) Автор(ы): У Сюй-Сян (US), БИТТАР Майкл С. (US) (86) Заявка PCT: US 2013/023826 (30.01.2013) WO 2014/120150 (07.08.2014) A Адрес для переписки: 129090, Москва, ул. Б. Спасская, 25, стр. 3, ООО "Юридическая фирма Городисский и Партнеры" (54) ОПРЕДЕЛЕНИЕ ИСТИННОГО УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ПЛАСТА R U 1. Способ, включающий: получение измеренных значений от работающего в буровой скважине измерительного инструмента, причем измерительный инструмент содержит конфигурацию передающих и приемных антенн; генерирование новых измеренных значений для модифицированной конфигурации указанных передающей и приемной антенн с помощью обработки измеренных значений, полученных от работающего измерительного инструмента, используя зависимость, учитывающую угол наклона приемной антенны в конфигурации, который отличается от угла наклона указанной приемной антенны в модифицированной конфигурации; и использование новых измеренных значений для определения оценки истинного удельного сопротивления пласта. 2. Способ по п. 1, отличающийся тем, что получение измеренных значений включает получение значений из измерений, получаемых при вращении измерительного инструмента, причем вращение измерительного инструмента разделено на N бинов, при этом общее число N бинов соответствует одному полному обороту измерительного инструмента, причем N≥2, где является общим числом бинов, а генерирование новых измеренных значений включает в себя генерирование Стр.: 1 согласно A 2 0 1 5 1 2 3 7 2 8 (57) Формула изобретения 2 0 1 5 1 2 3 7 2 8 (87) Публикация заявки PCT: для ...

Подробнее
13-05-2022 дата публикации

Ocean drag type low-resistance fixed-depth gravity-magnetic detection towed body

Номер: CN114488329A

一种海洋拖曳式低阻定深重磁探测拖体,用于海洋重力磁力测量领域。为减小拖曳阻力,外观仿鱼雷外形,包括艏部模块、主控舱模块、水翼舱模块、载荷舱模块、尾舱模块和重力仪舱模块,各个模块之间通过法兰固定连接,可根据任务需求增减模块。艏部模块设有承重头和固定连杆,拖曳缆和承重头硫化在一起,母船通过拖曳缆牵引拖体在水中前进。主控舱设有控制通信模块,用于收发拖体姿态控制指令。水翼舱上侧设有天线,下侧设有DVL,重力仪舱模块两侧对称安装平衡水翼。载荷舱安装探测设备,尾舱模块四个十字交叉布置的尾翼。本发明采用模块化设计,组装方便,拖曳阻力低,姿态稳定性好,解决现有技术中拖体姿态稳定差的问题,提高了拖体的可扩展性。

Подробнее