Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 2. Отображено 2.
17-06-2021 дата публикации

Distributed training of neural network models

Номер: US20210182660A1
Принадлежит: SoundHound Inc

Systems and methods for distributed training of a neural network model are described. Various embodiments include a master device and a slave device. The master device has a first version of the neural network model. The slave device is communicatively coupled to a first data source and the master device, and the first data source is inaccessible by the master device, in accordance with one embodiment. The slave device is remote from the master device. The master device is configured to output first configuration data for the neural network model based on the first version of the neural network model. The slave device is configured to use the first configuration data to instantiate a second version of the neural network model. The slave device is configured to train the second version of the neural network model using data from the first data source and to output second configuration data for the neural network model. The master device is configured to use the second configuration data to update parameters for the first version of the neural network model.

Подробнее
17-06-2021 дата публикации

Neural Network Training From Private Data

Номер: US20210182661A1
Принадлежит: SoundHound, Inc.

Training and enhancement of neural network models, such as from private data, are described. A slave device receives a version of a neural network model from a master. The slave accesses a local and/or private data source and uses the data to perform optimization of the neural network model. This can be done such as by computing gradients or performing knowledge distillation to locally train an enhanced second version of the model. The slave sends the gradients or enhanced neural network model to a master. The master may use the gradient or second version of the model to improve a master model. 1. A method of training a neural network model , the method comprising:receiving, at a slave device, first configuration data for the neural network model from a master device, the master device being remote from the slave device, the master device including a first version of the neural network model;instantiating, at the slave device, a second version of the neural network model using the first configuration data;training, at the slave device, the second version of the neural network model using data from a first data source, the first data source being inaccessible by the master device; andreceiving, at the master device, second configuration data for the neural network model, from the slave device, based on the trained second version of the neural network model,wherein the master device is configured to use the second configuration data to update parameters for the first version of the neural network model.2. The method of further comprising:instantiating, at the slave device, the second version of the neural network model as a student model;instantiating, at the slave device, the first version of the neural network as a teacher model;using, at the slave device, the teacher model to train the student model; andgenerating the second configuration data to include parameters for the trained student model.3. The method of claim 2 , wherein the first configuration data ...

Подробнее