02-08-2018 дата публикации
Номер: US20180217324A1
Принадлежит:
Disclosed are an optical beam delivery device, systems, and methods for sequentially adjusting, with respect to members of a set of confinement regions, a propagation path for establishing a controllable, temporally apparent intensity distribution. The disclosed techniques entail applying to a variable beam characteristics (VBC) fiber different states perturbation to change the propagation path and the members of the set of confinement regions through which a confined portion of an adjusted optical beam propagates, thereby establishing at an output end of the VBC fiber the controllable, temporally apparent intensity distribution. 1. An optical beam delivery device configured to sequentially adjust , with respect to members of a set of confinement regions , a propagation path for establishing a controllable , temporally apparent intensity distribution , the optical beam delivery device comprising:a first length of fiber having a first refractive index profile (RIP) for propagation of an optical beam, the first RIP enabling, in response to an applied perturbation, modification of the optical beam to form an adjusted optical beam that is movable to propagate along different propagation paths in response to different states of the applied perturbation; anda second length of fiber coupled to the first length of fiber and having a second RIP, different from the first RIP, defining the set of confinement regions in which different members the set occupy different positions to provide different intensity distributions at an output end of the second length of fiber such that, in response to sequential application of different states perturbation, the different members of the set through which the confined portion propagates establish, at the output end of the second length of fiber, the controllable, temporally apparent intensity distribution.2. The optical beam delivery device of claim 1 , in which the set of confinement regions comprises coaxial confinement regions.3. The ...
Подробнее