08-08-2013 дата публикации
Номер: US20130201747A1
A permanent solid state memory device is disclosed. Recording data in the permanent solid state memory device forms voids in a data layer between a first wire array and a second wire array. Wires of the first wire array extend transversely to wires in the second wire array. The material is made of a carbon allotrope such that when current is passed through the carbon allotrope, the carbon is quickly oxidized (burned) leaving a complete gap (void) where the fuse once was. One of the advantages of this method is that the fuse material is fully oxidized in the particular “neck region of the bowtie”, such that there is no material left over from which dendrites can grow. In other embodiments, the data layer is a metal or metal oxide selected from the following metals: Tungsten (W), Rhenium (Rh), Osmium (Os), Iridium (Ir), Molybdenum (Mo), Ruthenium (Ru), Rhodium (Rh), Chromium (Cr), and Manganese (Mn). 1. A solid state memory device , comprising:at least one first array of wires in a first layer;at least one second array of wires extending transverse to the first array of wires in a second layer that is generally parallel to the first layer; andat least one data layer disposed between the first layer and the second layer such that a voltage applied to a first wire in the first array and to a second wire in the second array heats the data layer at a location between the first wire and the second wire and forms a data point comprising a void when data is written to the solid state memory device,wherein the data layer is an allotrope of carbon or a metal, a metal alloy, or a metallic oxide comprising one or more of the following metals: Tungsten (W), Rhenium (Rh), Osmium (Os), Iridium (Ir), Molybdenum (Mo), Ruthenium (Ru), Rhodium (Rh), Chromium (Cr), and Manganese (Mn).2. The solid state memory device of claim 1 , wherein the data layer is an allotrope of carbon selected from the group consisting of single-wall nanotubes claim 1 , multi-wall nanotubes claim 1 , graphene ...
Подробнее