Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 4. Отображено 3.
26-03-2020 дата публикации

SYSTEM AND METHOD FOR DETECTING BOTS USING SEMI-SUPERVISED DEEP LEARNING TECHNIQUES

Номер: US20200099714A1
Принадлежит: Kaalbi Technologies Private Ltd

A system of method of detecting bots are presented. The method includes receiving access patterns of a visitor accessing a protected web property, encoding each of the access patterns into a fixed length feature vector, determining an offline-trained model based on past data, generating an anomaly score based on the fixed length feature vector and an offline-trained model, and determining the visitor to be a bot, when the generated anomaly score associated with the visitor reaches a predetermined threshold.

Подробнее
26-03-2020 дата публикации

SYSTEM AND METHOD FOR DETECTING BOTS BASED ON ITERATIVE CLUSTERING AND FEEDBACK-DRIVEN ADAPTIVE LEARNING TECHNIQUES

Номер: US20200099713A1
Принадлежит:

A system and method for detecting and blocking bots are presented. The method includes receiving unlabeled data regarding a visitor of a web source, grouping the received unlabeled data with similar characteristics into a group of data, detecting, based on the group of data, at least one anomaly, and determining, based on the at least one detected anomaly, several visitors to be blacklisted. 1. A method for detecting and blocking bots , comprising:receiving unlabeled data regarding a visitor of a web source;grouping the received unlabeled data with similar characteristics into a group of data;detecting, based on the group of data, at least one anomaly; anddetermining, based on the at least one detected anomaly, a number of visitors to be blacklisted.2. The method of claim 1 , wherein saving the detected at least one anomaly further comprises:any one of a conceptual drift, or a clustering of the group of data in a database, andwherein the concept drift is a change in a relationship between input and output over a predetermined period of time.3. The method of claim 1 , further comprising:providing feedback to an adaptive learning component to train a bot detection component.4. The method of claim 1 , further comprising:blocking each visitor added to the blacklist.5. The method of claim 1 , wherein determining the number of visitors to be blacklisted further comprises:identifying a cluster group and determining at least one tuning factor;determining a probability of blacklisted visitor to arrive again;determining a probability of the visitor to solve CAPTCHA;determining probability of the visitor solving captcha when blacklisted;determining a total number of false positive; anddetermining blacklist size of this size.6. The method of claim 5 , wherein the tuning factor is any one of:business limit per day (BLpD);number of iteration to occur per day (NpD);minimum blacklisting bound; ormaximum blacklisting bound.7. The method of claim 5 , wherein determining of the ...

Подробнее
16-05-2023 дата публикации

System and method for detecting bots based on iterative clustering and feedback-driven adaptive learning techniques

Номер: US11652841B2
Принадлежит: Kaalbi Technologies Private Ltd

A system and method for detecting and blocking bots are presented. The method includes receiving unlabeled data regarding a visitor of a web source, grouping the received unlabeled data with similar characteristics into a group of data, detecting, based on the group of data, at least one anomaly, and determining, based on the at least one detected anomaly, several visitors to be blacklisted.

Подробнее