Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 8. Отображено 8.
22-09-2015 дата публикации

OPTIMIZED CONFIGURATION OF ENGINES FOR AIRCRAFT

Номер: CA0002710065C
Принадлежит: AIRBUS OPERATIONS S.L., AIRBUS OPERATIONS SL

The invention relates to a configuration of engines (3) for aircraft located in the rear part of the fuselage (2) of said aircraft, the engines (3) being attached in a fixed manner by pylons (5) to the structure of the aircraft, said structure comprising a torsion box (14) which traverses the fuselage (2) and is used to attach the pylons (5), the fuselage (2) comprising an opening (4) allowing the passage of the suspension pylons (5) for the engines (3), said configuration further comprising a pivoting area (8), an actuator (7) and a fitting (6) through which the actuator (7) is attached to the suspension pylons (5) and to the torsion box (14) of the aircraft, such that the assembly formed by the actuator (7) and the fitting (6) allow balancing the pylon (5) and engine (3) assembly of the aircraft through the pivoting area (8), thus achieving controllable and optimal thrust vectoring of the aircraft for each flight phase.

Подробнее
02-07-2009 дата публикации

OPTIMIZED CONFIGURATION OF ENGINES FOR AIRCRAFT

Номер: CA0002710065A1
Принадлежит:

The invention relates to a configuration of engines (3) for aircraft located in the rear part of the fuselage (2) of said aircraft, the engines (3) being attached in a fixed manner by pylons (5) to the structure of the aircraft, said structure comprising a torsion box (14) which traverses the fuselage (2) and is used to attach the pylons (5), the fuselage (2) comprising an opening (4) allowing the passage of the suspension pylons (5) for the engines (3), said configuration further comprising a pivoting area (8), an actuator (7) and a fitting (6) through which the actuator (7) is attached to the suspension pylons (5) and to the torsion box (14) of the aircraft, such that the assembly formed by the actuator (7) and the fitting (6) allow balancing the pylon (5) and engine (3) assembly of the aircraft through the pivoting area (8), thus achieving controllable and optimal thrust vectoring of the aircraft for each flight phase.

Подробнее
25-06-2009 дата публикации

Optimized configuration of engines for aircraft

Номер: US2009159741A1
Принадлежит:

The invention relates to a configuration of engines (3) for aircraft located in the rear part of the fuselage (2) of said aircraft, the engines (3) being attached in a fixed manner by pylons (5) to the structure of the aircraft, said structure comprising a torsion box (14) which traverses the fuselage (2) and is used to attach the pylons (5), the fuselage (2) comprising an opening (4) allowing the passage of the suspension pylons (5) for the engines (3), said configuration further comprising a pivoting area (8), an actuator (7) and a fitting (6) through which the actuator (7) is attached to the suspension pylons (5) and to the torsion box (14) of the aircraft, such that the assembly formed by the actuator (7) and the fitting (6) allow balancing the pylon (5) and engine (3) assembly of the aircraft through the pivoting area (8), thus achieving controllable and optimal thrust vectoring of the aircraft for each flight phase.

Подробнее
28-06-2011 дата публикации

Optimized configuration of engines for aircraft

Номер: US0007967243B2

The invention relates to a configuration of engines (3) for aircraft located in the rear part of the fuselage (2) of said aircraft, the engines (3) being attached in a fixed manner by pylons (5) to the structure of the aircraft, said structure comprising a torsion box (14) which traverses the fuselage (2) and is used to attach the pylons (5), the fuselage (2) comprising an opening (4) allowing the passage of the suspension pylons (5) for the engines (3), said configuration further comprising a pivoting area (8), an actuator (7) and a fitting (6) through which the actuator (7) is attached to the suspension pylons (5) and to the torsion box (14) of the aircraft, such that the assembly formed by the actuator (7) and the fitting (6) allow balancing the pylon (5) and engine (3) assembly of the aircraft through the pivoting area (8), thus achieving controllable and optimal thrust vectoring of the aircraft for each flight phase.

Подробнее
10-04-2012 дата публикации

Stabilizing and directional-control surface of aircraft

Номер: US0008152097B2

A stabilizing and directional-control surface of an aircraft includes a vertical stabilizer and a rudder that deflects relative to the vertical stabilizer. The rudder includes an internal profile that is extendable and retractable by an actuating system. An aerodynamic control surface area of the rudder is increased when the internal profile of the rudder is extended as compared to the aerodynamic control surface area of the rudder when the internal profile of the rudder is retracted.

Подробнее
15-10-2009 дата публикации

STABILIZING AND DIRECTIONAL-CONTROL SURFACE OF AIRCRAFT

Номер: US2009256025A1
Принадлежит:

Stabilizing and directional-control surface of an aircraft, said surface comprising a vertical stabilizer (2) and a rudder (3), it being possible for said rudder (3) to be deflected relative to the vertical stabilizer (2), and moreover the rudder (3) comprises an internal profile (10) that can be extended and retracted by means of an actuating system (40) relative to the rest of the structure of the rudder (3), so that the stabilizing and control surface, in the retracted position of the internal profile (10) of the rudder (3), is an excellent aerodynamic surface in normal flying conditions, and at the same time increase of the aerodynamic control surface of the vertical stabilizer (2) is achieved for requirements of controllability of the aircraft at low speeds of said aircraft and against strong yawing moments acting thereon, in the position in which the internal profile (10) of the rudder (3) is extended, and moreover the structure of the rudder (3) can be opened, to permit extension ...

Подробнее
07-01-2010 дата публикации

SYSTEM FOR TILTING A POWER UNIT

Номер: US2010001121A1
Принадлежит:

System for tilting a power unit (4) of an aircraft, said power unit (4) being located in the rear portion of the fuselage (1) of the aircraft, said system comprising a tilting unit (21) and a pivoting unit (6), with said tilting unit (21) permitting the tilting of the power unit (4) in a plane parallel to the vertical plane of the aircraft via the pivoting unit (6), giving rise to deflection of the exhaust gases from power unit (4), thus providing a vectorial thrust controllable independently for each power unit (4) of the aircraft, optimum for each phase of flight or manoeuvre of said aircraft, said component of vector thrust being deflected angularly in a plane parallel to the vertical plane of the aircraft and relative to the longitudinal axis of said aircraft.

Подробнее
09-11-2011 дата публикации

Aircraft directional control and stabilizing surface

Номер: CN0102239083A
Принадлежит:

Provided are aircraft directional control and stabilizing surface, said surface comprising a vertical stabilizer (2) and a rudder (3).The rudder (3) is possible to be deflected with respect to the vertical stabilizer (2) and comprises an inner profile (10) that can be deployed and retracted, by means of an actuation system (40), with respect to the rest of the structure of the rudder (3), such that the control and stabilizing surface, in the retraction position of the inner profile (10) of the rudder (3), is an optimal aerodynamic surface, at the same time as an increase is achieved in the aerodynamic control surface of the vertical stabilizer (2), on account of aircraft controllability requirements when the aforesaid aircraft is travelling at low speed and in the event of strong yawing moments arising thereon, in the position in which the inner profile (10) of the rudder (3) is deployed.

Подробнее