Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 2059. Отображено 199.
27-11-2005 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КОНТАКТНОЙ МАССЫ

Номер: RU2265073C2

FIELD: production of contact mass for reaction of powder silicon, alkyl halide and copper catalyst. SUBSTANCE: proposed method includes forming mass by mixing silicon and copper source, heating to temperature of about 500°C and subjecting to heat treatment at temperature above 500°C where said heat treatment increases content of copper source Cu 3 Si in contact mass. Contact mass thus obtained is used as catalyst in production of alkylhalosilane including reaction between alkyl halide and silicon in presence of contact mass. EFFECT: enhanced efficiency and selectivity. 9 cl, 4 tbl, 3 ex ÐÎÑÑÈÉÑÊÀß ÔÅÄÅÐÀÖÈß (19) RU (51) ÌÏÊ 7 (11) 2 265 073 (13) C2 C 22 C 9/10, C 07 F 7/16 ÔÅÄÅÐÀËÜÍÀß ÑËÓÆÁÀ ÏÎ ÈÍÒÅËËÅÊÒÓÀËÜÍÎÉ ÑÎÁÑÒÂÅÍÍÎÑÒÈ, ÏÀÒÅÍÒÀÌ È ÒÎÂÀÐÍÛÌ ÇÍÀÊÀÌ (12) ÎÏÈÑÀÍÈÅ ÈÇÎÁÐÅÒÅÍÈß Ê ÏÀÒÅÍÒÓ (21), (22) Çà âêà: 2002131157/15, 20.02.2001 (24) Äàòà íà÷àëà äåéñòâè ïàòåíòà: 20.02.2001 (30) Ïðèîðèòåò: 20.04.2000 (ïï.1-9) US 09/553,912 (72) Àâòîð(û): ËÜÞÈÑ Ëýððè Íåéë (US), ÂÎÐÄ Óèëëü ì Äæåññàï III (US), ÁÀÁËÈÍ Äæîí Ìýòòüþ (US) (45) Îïóáëèêîâàíî: 27.11.2005 Áþë. ¹ 33 2 2 6 5 0 7 3 (56) Ñïèñîê äîêóìåíòîâ, öèòèðîâàííûõ â îò÷åòå î ïîèñêå: ÅÐ 0028009 À2, 06.05.1981. ÅÐ 0832895 À2, 01.04.1998. SU 276955 À, 21.03.1972. (85) Äàòà ïåðåâîäà çà âêè PCT íà íàöèîíàëüíóþ ôàçó: 20.11.2002 (86) Çà âêà PCT: US 01/05417 (20.02.2001) 2 2 6 5 0 7 3 R U Àäðåñ äë ïåðåïèñêè: 129010, Ìîñêâà, óë. Á.Ñïàññêà , 25, ñòð.3, ÎÎÎ "Þðèäè÷åñêà ôèðìà Ãîðîäèññêèé è Ïàðòíåðû", ïàò.ïîâ. Å.Å.Íàçèíîé C 2 C 2 (87) Ïóáëèêàöè PCT: WO 01/81354 (01.11.2001) (54) ÑÏÎÑÎÁ ÏÎËÓ×ÅÍÈß ÊÎÍÒÀÊÒÍÎÉ ÌÀÑÑÛ (57) Ðåôåðàò: Èçîáðåòåíè îòíîñ òñ ê îáëàñòè ïîëó÷åíè êîíòàêòíîé ìàññû äë îñóùåñòâëåíè ðåàêöèè ïîðîøêîâîãî êðåìíè , ãàëîèäàëêèëà è ìåäíîãî êàòàëèçàòîðà. Ñïîñîá ïîëó÷åíè êîíòàêòíîé ìàññû âêëþ÷àåò îáðàçîâàíèå ìàññû ïóòåì ñìåøèâàíè êðåìíè è èñòî÷íèêà ìåäè, íàãðåâàíèå äî òåìïåðàòóðû íèæå ïðèáëèçèòåëüíî 500°Ñ è òåïëîâóþ îáðàáîòêó óêàçàííîé ìàññû ïðè òåìïåðàòóðå âûøå ïðèáëèçèòåëüíî 500°Ñ, ãäå óêàçàííà òåïëîâà îáðàáîòêà ïîâûøàåò ...

Подробнее
20-12-2009 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СИЛИЦИДА МАГНИЯ

Номер: RU2376243C2

Изобретение может быть использовано для получения моносилана в производстве кремния полупроводникового или электронного качества и синтеза кремнийорганических соединений. Способ заключается во взаимодействии дисперсных частиц кремниевой кислоты и кремнекислого магния с кусковыми фрагментами магния в инертной среде при непрерывном перемешивании и температуре 650-800°С. Соотношение масс перемешиваемых компонентов смеси: M(H2SiO3):M(MgSiO3):M(Mg)=1,0:(0÷1,0):(1÷1,5). Максимальный размер частиц кремнийсодержащих компонентов не превышает 2 мм, а соотношение размеров последних с размерами кусковых фрагментов магния: D(MgSiO3) (H2SiO3):D(Mg)=1:(10÷20). Изобретение позволяет получать силицид магния с повышенной чистотой. 1 з.п. ф-лы.

Подробнее
27-03-1997 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СИЛИЦИДОВ ТУГОПЛАВКОГО МЕТАЛЛА

Номер: RU2076065C1

Изобретение относится к порошковой металлургии и электронной промышленности и может быть использовано при изготовлении из силицидов тугоплавких металлов деталей, изделий методами порошковой металлургии, при нанесении защитных покрытий и для изготовления токопроводящих и резистивных элементов интегральных схем. Цель изобретения - получение монофазных дисилицидов тугоплавких металлов ( Ме = Мо, W, Ta, Ti, Fe) в порошкообразном состоянии, при упрощении способа получения, ускорении процесса синтеза и расширении концентрационной области образования монофазных дисилицидов металлов. Смесь порошков кремния и соответствующего металла (Ме = Моб W, Ta, Ti, Fe) с соотношением компонентов: металл - 23, 0-38,0 ат. % и кремний - 62,0-77, 0 ат. % подвергают обработке в механохимическом реакторе в течении 20 - 40 мин при центробежном ускорении мелющих тел 400 - 1000 м/с2 и степени заполнения реактора меляющими телами от 0,3 до 0,6 от объема реактора. 6 табл.

Подробнее
27-12-2019 дата публикации

СПОСОБ СОЗДАНИЯ ДВУМЕРНОГО ФЕРРОМАГНИТНОГО МАТЕРИАЛА ДИСИЛИЦИДА ГАДОЛИНИЯ СО СТРУКТУРОЙ ИНТЕРКАЛИРОВАННЫХ СЛОЕВ СИЛИЦЕНА

Номер: RU2710570C1

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSiсо структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением P(от 0,1 до менее 1)⋅10Торр или P(от более 1 до 10)⋅10Торр на предварительно очищенную поверхность подложки Si(111), нагретую до T=350 ÷ менее 400°С или T=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм. Технический результат заключается в формировании эпитаксиальных пленок двумерного магнитного материала GdSiкристаллической модификации hP3 со структурой интеркалированного гадолинием многослойного силицена на подложках кремния. Такие структуры являются однородными по толщине, не содержат посторонних фаз, являются ферромагнитными. 5 ил., 4 пр.

Подробнее
20-10-1996 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЛИТОГО ДИСИЛИЦИДА МОЛИБДЕНА

Номер: RU94043974A
Принадлежит:

Изобретение относится к области получения литого дисилицида молибдена, позволяет ускорить и упростить процесс его получения. Сущность способа: способ получения включает приготовление исходной смеси из оксида молибдена (6), алюминия и кремния, загрузку ее в герметичный реактор, размещение вокруг исходной смеси внешнего слоя смеси из оконца алюминия, оксида кремния (4) и алюминия при следующем соотношении компонентов,мас.%: исходная смесь: оксид молибдена (6) 55-60, алюминий 10-20, кремний 25-30 внешний слой смеси: оксид алюминия 65-70 оксид кремния 20-30 алюминий 5-10, при этом соотношение их масс соответственно равно 0,6-0,8: 0,2-0,4, а воспламенение проводят локальным инициированием исходной смеси при избыточном давлении инертного газа не менее 4 МПа.

Подробнее
20-10-1996 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЛИТОГО ДИСИЛИЦИДА МОЛИБДЕНА

Номер: RU94043974A1
Принадлежит:

Изобретение относится к области получения литого дисилицида молибдена, позволяет ускорить и упростить процесс его получения. Сущность способа: способ получения включает приготовление исходной смеси из оксида молибдена (6), алюминия и кремния, загрузку ее в герметичный реактор, размещение вокруг исходной смеси внешнего слоя смеси из оконца алюминия, оксида кремния (4) и алюминия при следующем соотношении компонентов,мас.%: исходная смесь: оксид молибдена (6) 55-60, алюминий 10-20, кремний 25-30 внешний слой смеси: оксид алюминия 65-70 оксид кремния 20-30 алюминий 5-10, при этом соотношение их масс соответственно равно 0, 6-0,8: 0,2-0,4, а воспламенение проводят локальным инициированием исходной смеси при избыточном давлении инертного газа не менее 4 МПа.

Подробнее
07-02-1992 дата публикации

Способ изготовления брикетов для получения кремния, карбида кремния или ферросилиция в низкошахтных электроплавильных печах

Номер: SU1711668A3

Изобретение относится к металлургии , в частности к способу изготов ления брикетов для получения кремния карбида кремния и ферросилиция в низкошахтных электроплавильных печах. , Целью изобретения является упрощение процесса прц обеспечении высокого качества брикетов за счет снижения загрязнения. Из смеси кварцевого песка, карбюризатора и битумного связующего прессуют заготовки. Насыпной вес сформированных заготовок должен превышать насыпной вес кварцевого песка. Заготовки подвергают термообработке во вращающейся трубчатой печи в засыпке из кварцевого песка. Заготовки формуют из смеси, содержащей масД кварцевого песка, и с удельным весом 1,-1,6 г/см3. Термообработку проводят при нагреве слоя засыпки до 500°С. В предложенном способе заготовки, сформованные без применения горячего брикетирования с помощью битумного связующего и имеющие сравнительно низкую прочность в непросушенном состоянии, удовлетворительно отверждаются во вращающейся печи и готовые брикеты соответствуют всем физическим ...

Подробнее
07-06-2018 дата публикации

Thermoelektrisches Material, thermoelektrisches Element, optischer Sensor und Verfahren zur Herstellung eines thermoelektrischen Materials

Номер: DE112016002978T5

Die vorliegende Erfindung betrifft ein thermoelektrisches Material, das aus Nanostrukturen gebildet ist, ein thermoelektrisches Element und einen optischen Sensor, die dieses enthält, sowie ein Verfahren zur Herstellung eines thermoelektrischen Materials, das aus Nanostrukturen besteht. Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Nanoteilchen enthaltendes thermoelektrisches Material bereitzustellen, das verbesserte thermoelektrische Eigenschaften erzielt. Das thermoelektrische Material umfasst ein erstes Material mit einer Bandlücke und ein zweites Material, das sich von dem ersten Material unterscheidet. Das thermoelektrische Material enthält mehrere Nanoteilchen, die in einem Basismaterial verteilt sind, das ein Gemisch aus dem ersten Material und dem zweiten Material ist. Eine Zusammensetzung des zweiten Materials in dem thermoelektrischen Material ist nicht kleiner als 0,01 Atom-% und nicht größer als 2,0 Atom-% des thermoelektrischen Materials.

Подробнее
13-11-1986 дата публикации

Номер: DE0003322836C2

Подробнее
11-05-1977 дата публикации

PREPARATION OF FINELY-DIVIDED REFRACTORY POWDERS

Номер: GB0001473513A
Автор:
Принадлежит:

... 1473513 Borides; carbides; silicides; nitrides; sulphides PPG INDUSTRIES Inc 1 May 1974 [2 May 1973] 19036/74 Heading C1A In a process for preparing borides, carbides, silicides, nitrides and sulphides of B, Al, Si, Ti, Zr, Hf, Ta, V, Nb, Cr, and Mo by the vapour phase reaction of a halide of the selected metal or metalloid, and a source of B, C, Si, N or S, a reducing agent and anhydrous hydrogen halide are introduced into the "principal reactant mixing zone", the hydrogen halide in amounts sufficient to retard the growth of powdery product on exposed surfaces of the reactor; the halogen of the metal of metalloidmust be the same element as that of the hydrogen halide and the reaction is performed out of contact with the exposed surfaces of the reactor. Sources of the non-metallic element include C 1 -C 12 hydrocarbons and halogenated hydrocarbons ; N 2 and NH 3 , gaseous sulphur, H 2 S, and halides of sulphur; and the halides and hydrides of silicon and boron. The examples describe the ...

Подробнее
01-02-1989 дата публикации

Preparation of green briquettes for silicon etc. production

Номер: GB0002207441A
Принадлежит:

A process and apparatus for the preparation of green briquettes for the production of silicon or silicon carbide or ferrosilicon in electric pit furnaces, quartz sand, a carbon carrier and a bituminous binder being mixed together, the mixture being shaped into blanks from which the green briquettes are formed by heat treatment. The process is performed with the use of blanks which are free from melted bituminous caking coal and whose specific weight is made greater than the bulk density of quartz sand by adjustment of the proportions of the mixture and by compacting. The blanks are introduced for the heat treatment into a heated rotating drum furnace whose lower part is filled with quartz sand to an extent such that the heat treatment proceeds in a dip bed of quartz sand.

Подробнее
13-12-1967 дата публикации

Physically stable alumino-silicate zeolite catalysts

Номер: GB0001094994A
Автор:
Принадлежит:

An aluminosilicate zeolite is stabilized by calcining at 350-1200 DEG F. in air or an inert gas, e.g. H2 or He, containing >10-50% water. The zeolite may be natural, e.g. fanjasite or mordenite, or synthetic, of formula 0.7-1.1 M2/nO.Al2O3.2.2-14 SiO2, where M is alkali metal; NH4, CO, Ni, Zn, Mg, Ca, Cd, Cu, or Ba (obtained by ion-exchange of the Na form); or H (obtained by calcining the NH4 form). It may, after the calcination, be impregnated with a Pt group metal, e.g. Pd; Co, Fe, Ni, Cu, Ag, Au, Mo, W, V, Zr, Ca, Mg, Hg, Pb or a rare earth metal, or compound thereof. The preparation of 13<\>rA fanjasite from NaOG, Na aluminate, and SiO2 sol is described (Example 1) which was exchanged with a solution of NH4Cl and NH4(OH) (Example 2), dried, and calcined for 16 hours at 650 DEG F. and 2 hours at 950 DEG F. in air containing 16% water (Example 4).

Подробнее
04-12-1968 дата публикации

One-step method of converting uranium hexafluoride to uranium compounds

Номер: GB0001135170A
Автор:
Принадлежит:

... 1,135,170. Uranium compounds. UNITED STATES ATOMIC ENERGY COMMISSION. 3 May, 1967 [28 Oct., 1966], No. 20444/67. Heading C1A. Uranium nitride, carbide, sulphide, silicide or phosphide is prepared from uranium hexafluoride by mixing UF 6 and an oxygen-free gas containing nitrogen, carbon, sulphur, silicon or phosphorus with 100 to 200% (by volume) excess of an alkali metal (or mixture of alkali metals) vapour at a temperature of 800- 1300‹ C. and a pressure below 25 torr. The gaseous component furnishing the other element of the uranium compound product is preferably in a stoichiometric excess of 25-200% (by volume) and it may be the gas of that element or any gaseous compound which forms such an element under the conditions of temperature and pressure involved. Typical examples of the gaseous component are N 2 and NH3, organic hydrocarbons, H 2 S, the silicon halides and PH 3 . Preferably the UF 6 and the gaseous component are introduced into the reaction zone together followed by alkali ...

Подробнее
30-01-1963 дата публикации

Improvements in and relating to the manufacture of semiconductive devices and materials

Номер: GB0000916881A
Принадлежит:

A method of manufacturing a semi-conductive device or a semi-conductive material comprises a step of heating in a chamber in an atmosphere of or containing hydrogen which is supplied to the chamber in a purified state by way of passage through a heated palladium membrane. In the production of silicon from a halogenated silane compound, e.g. silicon chloroform, commercial hydrogen is supplied to a first chamber which communicates with a second chamber via a heated palladium tube, and a flow of hydrogen into the second chamber is effected either by supplying the commercial hydrogen at a pressure greater than ambient pressure and providing the second chamber with a relief valve or by evacuating the second chamber. The purified hydrogen leaving the palladium membrane is caused to pass through a liquid containing the volatile silane compound, so that a gaseous mixture of purified hydrogen and volatile compound is delivered to the second chamber where it is heated, as by electrically heated members ...

Подробнее
21-02-1962 дата публикации

Improvements in and relating to thorium disilicide

Номер: GB0000889775A
Принадлежит:

A so-called true b -phase ThSi2 containing substantially p 66,7 at. per cent Si is obtained by heating a -ThSi2 (tetragonal) at 700 DEG -1050 DEG C. in vacuo, or inert gas. The b -ThSi2 is hexagonal crystal, space group C6/mmm, and has structure cell dimensions The a -ThSi2 is prepared by arc melting, or sintering at 1400 DEG -1600 DEG C., a mixture of Th and Si in the required proportions in vacuo, or in inert gas, e.g. A. The b -ThSi2 may be slurried in Bi or a Bi/Pb alloy for use as a breeding material in a nuclear reactor. The slurry may be prepared by heating a mixture of Th and Si containing substantially 66,7 at. per cent Si at 700 DEG -1050 DEG C. in vacuo or inert gas. Specification 842,173 is referred to.ALSO:A so-called true b -phase ThSi2 containing substantially 66,7% at , Si is obtained by heating a -ThSi2 (tetragonal) at 700-1050 DEG C. in vacuo, or inert gas. The b -ThSi2 is hexagonal crystal, space group C6/mm, and has structure cell dimensions a0=4,136 ...

Подробнее
02-11-1960 дата публикации

Improvements in or relating to electrolytic cells

Номер: GB0000853366A
Автор:
Принадлежит:

... 853,366. Electrolytic apparatus. UNITED STATES BORAX & CHEMICAL CORPORATION. June 5,1959 [June 17,1958], No. 19246/59. Class 41 An electrolytic apparatus comprises a receptacle constituting the cathode, a removable main anode, a similar receptacle adapted to be clamped to the first in mouth-to-mouth register after removing the main anode, and means for inverting the clamped receptacles to transfer the electrolyte to the second receptacle prior to removal of the first receptacle for recovery of the electro-deposited material. As shown (Fig 2) a cell 3 has a removable main anode 1; a subsidiary anode 2, attached to a ring 7 which may be placed on an annular insulator 8 around the mouth of the cell has an upwards-extending portion 21. A similar cell 31 (Fig. 1) may be clamped to the first, rim to rim. so that the part 2 of the subsidiary anode extends thereinto. The assembly is then swung about the trunnions 51 so as to invert the receptacles, the cell 3 is removed ...

Подробнее
06-07-1966 дата публикации

Improvements in or relating to the manufacture of refractory hard metal material

Номер: GB0001035106A
Автор:
Принадлежит:

A high-melting refractory hard metal material is manufactured by mixing suitable reactants, forming into a hollow-shaped mass, e.g. a cylinder, with a central passageway having cross-sectional area 0.04-0.75 that of the total; passing it through a heating zone, and removing the products. The mixture may be composed of a metal (or boron) oxide and a carbonaceous material to give a carbide; or with boric oxide, boric acid, or boron carbide in addition to give a boride (of at least 95% purity). Boric oxide is used in excess, e.g. 5%, to provide for loss by volatilization, and any remaining is removed after reaction by leaching with water. A binder, e.g. kerosene, in which the reactants are not soluble, may be included. The mixture may be extruded, ram packed, tamped, or compacted by vibration, into the hollow shape, which is placed in a graphite boat or tubular sleeve, passed through a horizontal, vertical, or inclined tube furnace at 1850-2250 DEG C and cooled, e.g. in an inert atmosphere ...

Подробнее
30-03-1971 дата публикации

Continuous casting of metals.

Номер: OA0000003427A
Автор:
Принадлежит:

Подробнее
25-05-1937 дата публикации

Procedure for the production of carbides, Karbonitriden, nitrides, Boriden, Siliziden and Titaniden, particularly for hard alloys.

Номер: AT0000149652B
Автор:
Принадлежит:

Подробнее
15-03-1996 дата публикации

PURIFY-HASTY NICHTOXID KERAMIKPULVER ONES

Номер: AT0000134361T
Принадлежит:

Подробнее
15-03-1988 дата публикации

DEVICE FOR COATING A CARBON VOLUME WITH SILICON.

Номер: AT0000032754T
Принадлежит:

Подробнее
10-12-1968 дата публикации

Procedure for the production of spherical particles

Номер: AT0000267008B
Принадлежит:

Подробнее
06-11-1979 дата публикации

PROCESS FOR PREPARING FINELY-DIVIDED REFRACTORY POWDERS

Номер: CA0001065576A1
Принадлежит:

Подробнее
24-05-1988 дата публикации

METAL BORIDES, CARBIDES, NITRIDES, SILICIDES, OXIDE MATERIALS AND THEIR METHOD OF PREPARATION

Номер: CA1236968A

METAL BORIDES, CARBIDES, NITRIDES, SILICIDES, OXIDE MATERIALS AND THEIR METHOD OF PREPARATION Precursors, particularly of non-oxide ceramics, are prepared by special seeding, under carefully controlled conditions. Such procedures can lead to the preparation of unique powders, which may be useful, for example as abrasives, or further processed in special manner to prepare a variety of metal substances. Such procedures can permit final firing to sintered product.

Подробнее
07-07-1992 дата публикации

PROCESS AND APPARATUS FOR THE PRODUCTION OF GREEN BRIQUETTES FOR THE FORMATION OF SILICON, SILICON CARBIDE OR FERROSILICON

Номер: CA0001304586C
Принадлежит: LASK GERT WILHELM, LASK, GERT-WILHELM

A process and apparatus for the preparation of green briquettes for the production of silicon or silicon carbide or ferrosilicon in electric pit furnaces, quartz sand, a carbon carrier and a bituminous binder being mixed together, the mixture being shaped into blanks from which the green briquettes are formed by heat treatment. The process is performed with the use of blanks which are free from melted bituminous caking coal and whose specific weight is made greater than the bulk density of quartz sand by adjustment of the proportions of the mixture and by compacting. The blanks are introduced for the heat treatment into a heated rotating drum furnace whose lower part is filled with quartz sand to an extent such that the heat treatment proceeds in a dip bed of quartz sand.

Подробнее
09-11-1993 дата публикации

PRODUCTION OF CERAMIC MATERIALS BY PYROLYZING THE REACTION MIXTURE CONTAINING AN ALUMINUM COMPOUND

Номер: CA0001323976C
Принадлежит: BIRCHALL JAMES D, BIRCHALL, JAMES D.

A process for the production of a refractory compound, e.g. a carbide or nitride, of a metallic or non-metallic element, by reacting a mixture of a compound of the metallic or non-metallic element having at least two groups reactive with hydroxyl groups and an organic compound having at least two hydroxyl groups to produce an oxygen-containing polymeric product, and pyrolysing the polymeric product, e.g. in an inert atmosphere to produce a carbide or in an atmosphere of reactive nitrogen compound to produce a nitride, in which the reaction mixture contains an aluminium compound containing at least one group reactive with hydroxyl groups. The presence of the aluminium compound in the reaction mixture leads to an increase in the proportion of carbon in the product initially produced by pyrolysis, and to a higher purity in the refractory compound which is ultimately produced.

Подробнее
11-05-1982 дата публикации

CATALYSIS

Номер: CA0001123177A1
Автор: SERMON PAUL A
Принадлежит:

Подробнее
28-02-1978 дата публикации

Номер: CH0000595880A5
Принадлежит: PPG INDUSTRIES INC, PPG INDUSTRIES, INC.

Подробнее
31-03-1980 дата публикации

[...] DE [...][...] D' [...][...][...][...].

Номер: CH0000616347A5
Принадлежит: PPG INDUSTRIES INC, PPG INDUSTRIES, INC.

Подробнее
29-02-1984 дата публикации

PROCEDURE FOR THE PRODUCTION OF SILICON OR FERROSILICON.

Номер: CH0000641424A5
Автор: THOMAS JOHANSSON
Принадлежит: KEMA NORD AB, KEMANORD AB

Подробнее
10-08-2009 дата публикации

агГрегированный кристаллический порошкообразный кремний, СПОСоБ еГО получения и применения

Номер: UA0000087672C2
Принадлежит: ДЕГУССА АГ, DE

Предложен аггрегированный кристаллический порошкообразный кремний, имеющий площадь поверхности БЭТ от 20 до 150 м2/г, который получают при помощи нагревания, как минимум, одного парообразного или газообразного силана и необязательно, как минимум, одного парообразногом или газообразного легирующего вещества, инертного газа и водорода в реакторе с горячими стенками, охлаждения реакционной смеси или предоставления реакционной смеси возможности остыть и отделения продукта реакции от газообразных веществ в виде порошка, в котором доля силана находится в диапазоне между 0,1 и 90 масс. % в пересчете на суммарное количество силана, легирующего вещества и инертных газов, и в котором доля водорода в пересчете на суммарное количество водорода силана, инертных газов и легирующего вещества находится в диапазоне от 1 до 96 мол. %. Продукт можно использовать для изготовления электронных компонентов.

Подробнее
14-12-2012 дата публикации

СПОСОБ ПЕРЕРАБОТКИ ФЕРРОФОСФОРА

Номер: KZ0000026454A4

Изобретение относится к области переработки фосфорсодержащего сырья, в частности к переработке феррофосфора - побочного продукта получения желтого фосфора посредством электроплавки фосфоритов совместно с кварцитом и коксом. Задачей изобретения является разработка способа переработки феррофосфора обеспечивающего уменьшение расхода энергии с получением ферросилиция и отгонкой фосфора в газовую фазу. Поставленная задача решается тем, что в предлагаемом способе переработки феррофосфора электроплавкой, согласно изобретению, процесс проводят в присутствии ферросилиция марки ФС65 с отношением ферросилиций ФС65: феррофосфор, равным 1,65-1,75. Предлагаемое нами техническое решение позволяет уменьшить расход энергии на переработку 1 кг феррофосфора в 26,81-27,27 раза.

Подробнее
14-08-2009 дата публикации

КРЕМНИЕВЫЙ ФОТОЭЛЕКТРОД

Номер: KZ0000021611A4

Изобретение относится к энергетической промышленности, а именно к солнечно-водородной энергетике и может быть использовано в установках фотоэлектрического аккумилирования солнечной энергии. Техническим результатом является повышение эффективности аккумулирования солнечной энергии за счет развитой поверхности пористого кремния, снижение величины перенапряжения и увеличение скорости выделения водорода за счет проявления квантово-размерных эффектов. Это достигается тем, что кремниевый фотоэлектрод, выполненный из кремния р-типа, включающий силицидовое покрытие, согласно изобретению, поверхность фотоэлектрода выполнено в виде пор.

Подробнее
24-03-2020 дата публикации

Uranium-silicon-carbon ternary compound fuel pellet and preparation method and application thereof

Номер: CN0107082430B
Автор:
Принадлежит:

Подробнее
19-08-2009 дата публикации

Electromagnetic field assisted fast combustion unit and method for synthesizing material

Номер: CN0100529534C
Принадлежит:

Подробнее
22-08-1997 дата публикации

Obtaining mechanical alloy materials brittle and hard mills satellite.

Номер: FR0002699431B1
Автор:
Принадлежит:

Подробнее
01-12-1995 дата публикации

Silicon alloy for the synthesis of the alkyl or aryl halogénosilanes containing aluminium, ducalcium and copper

Номер: FR0002720385A1
Принадлежит:

L'invention concerne un alliage de silicium destiné à la synthèse des alkyl ou aryl halogénosilanes à l'aide de la réaction de ROCHOW, caractérisé par la composition suivante (en % en poids): (CF DESSIN DANS BOPI) avec x = 3,2 (% Ca) + 9,4 (% Al) reste silicium. L'alliage selon l'invention permet d'améliorer la réactivité et la sélectivité de la réaction.

Подробнее
11-08-2006 дата публикации

NEW MATERIALS FOR the STORAGE OF HYDROGEN INCLUDING/UNDERSTANDING a SYSTEMEEQUILIBRE BETWEEN a SILICON AND ALKALINE METAL ALLOY AND the HYDRURECORRESPONDANT

Номер: FR0002881736A1
Принадлежит:

De nouveaux matériaux pour le stockage de l'hydrogène comprennent au moins un système équilibré entre un alliage de métal alcalin et de silicium et l'hydrure correspondant, ledit système répondant plus particulièrement à l'une des formules : LiXLiSi = LiXLiSiHn, NaXNaSi = NaXNaSiHn et KXKSi = KXKSiHn. dans lesquelles les rapports atomiques XM prennent les valeurs suivantes: 1,5≤XLi≤2,5 1≤XNa≤3 0,5≤XK≤2 n est le nombre d'atomes d'hydrogène correspondant à la stoechiométrie de l'hydrure ou des hydrures formés.

Подробнее
13-03-2017 дата публикации

NANOCOMPOSITE, ELASTIC/FLEXIBLE COMPOSITE INCLUDING SAME, AND METHOD FOR PRODUCING NANOCOMPOSITE AND ELASTIC/FLEXIBLE COMPOSITE

Номер: KR1020170028081A
Принадлежит:

The present invention relates to a nanocomposite, an elastic/flexible composite including the same, and a method for producing the nanocomposite and the elastic/flexible composite. According to an embodiment of the present invention, the nanocomposite includes crumpled graphene and a nanomaterial formed on a surface of the crumpled graphene. COPYRIGHT KIPO 2017 ...

Подробнее
14-01-2014 дата публикации

METHOD FOR MANUFACTURING METAL-SILICON USING LOW-GRADE SILICA-MATERIALS AND METAL-SILICON MANUFACTURED BY USING THE SAME

Номер: KR1020140004869A
Автор:
Принадлежит:

Подробнее
14-11-2012 дата публикации

THERMOELECTRIC COMPOSITION OF MAGNESIUM SILICIDE AND A SYNTHESIZING METHOD OF THE SAME CAPABLE OF SUPPRESSING THE VOLATILIZATION OF MAGNESIUM

Номер: KR1020120125125A
Принадлежит:

PURPOSE: A thermoelectric composition of magnesium silicide and a synthesizing method of the same are provided to control the pollution of the thermoelectric composition due to impurities from atmospheric gas. CONSTITUTION: A thermoelectric composition of magnesium silicide includes the following steps: magnesium and silicon are respectively weighed and mixed to prepare a mixture; and the mixture is sealed under a vacuum condition and is thermally treated and synthesized under the sealed state. The thermally treating and synthesizing process is arranges the mixture in a crucible and introduces the crucible in a quartz container to be sealed. COPYRIGHT KIPO 2013 ...

Подробнее
18-08-2010 дата публикации

HYDROGEN IS ADDED UNDER THE METALLIC CATALYST BY USING THE METALLIC SILICON AND SILICON TETRACHLORIDE AS THE RAW MATERIAL THE MANUFACTURING METHOD OF THE TRICHLOROSILANE AND APPARATUS THEREOF

Номер: KR1020100090842A
Принадлежит:

PURPOSE: The high conversion yield can be obtained since consecutively manufacturing trichlorosilane. By the metallic catalyst being in reactor mount and using the conversion ratio of trichlorosilane is enhanced and the manufacture possible under the low reaction temperature and the low reaction pressure. CONSTITUTION: The trichlorosilane manufacturing device using the metallic catalyst. With the hydrogen supply source(7) for supplying the hydrogen to the silicon tetrachloride tank(8). With the silicon tetrachloride tank for the hydrogen being provided from the hydrogen supply source through the piping and making the bubbling [bubbling] and injecting to the barrel-type reactor(9). It reacts to the bubbled fluid which is inserted from the silicon tetrachloride tank through the piping and trichlorosilane is created. COPYRIGHT KIPO 2010 ...

Подробнее
30-06-1993 дата публикации

PREPARATION OF GREEN BRIQUETTES FOR SILICON &C PRODUCTION

Номер: AR0000242936A1
Автор:
Принадлежит:

Подробнее
08-05-2008 дата публикации

COMPOSITION OF MOSI2 AND THE APPLICATION OF THE SAME

Номер: WO2008054040A1
Принадлежит:

The present invention relates to a molybdenum disilicide composition for preventing a low- temperature deterioration phenomenon and the application thereof. The present invention provides a molybdenum disilicide composition, which can improve the sinterability characteristics of a molybdenum disilicide heating element and a thick film paste heating element using the same by adding silicon (Si) to molybdenum (Mo) such that the ratio of the silicon (Si) to the molybdenum (Mo) ranges from 1:2.01 to 1:2.5, which is not a chemical quantitative ratio thereof of 1:2, at the time of self-propagating high-temperature synthesis (SHS) of the molybdenum disilicide, can reduce a low-temperature oxidation phenomenon because the added silicon component is oxidized in the atmosphere and thus forms an oxide film, and can efficiently prevent a low-temperature deterioration phenomenon, and the application thereof.

Подробнее
14-09-2017 дата публикации

SULFIDE SOLID ELECTROLYTE

Номер: WO2017155119A1
Принадлежит:

Provided is a sulfide solid electrolyte material that does not contain Ge, and is provided with both excellent electrochemical stability and high lithium ion conductivity. The sulfide solid electrolyte contains a sulfide-based solid electrolyte represented by compositional formula Li4–4z–x[SnySi1–y]1+z–xPxS4, where 0.5 ≤ x ≤ 0.6, y = 0.2, and 0 ≥ z ≥ –0.2, and has a peak at a position 2θ = 29.58°±0.50° with X-ray diffraction measurement using CuKα rays, and does not have a peak at a position 2θ = 27.33°±0.50° with X-ray diffraction measurement using CuKα rays, or, in a case having a peak at the abovementioned position 2θ = 27.33°±0.50°, when the diffracted intensity of the peak of the abovementioned 2θ = 29.58°±0.50° is IA, and the diffracted intensity of the peak of the abovementioned 2θ = 27.33°±0.50° is IB, the value of IB/IA is less than 0.50.

Подробнее
02-12-2021 дата публикации

METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD

Номер: WO2021241522A1
Принадлежит:

This metal-Si based powder contains metal-Si based particles including multiple crystal phase particles. The crystal phase particles include a crystal phase containing a compound of a metal and Si. The crystal phase particles have an average particle diameter of, for example, 20 μm or less. The metal-Si based particles have an average particle diameter of, for example, 5-100 μm.

Подробнее
23-02-2017 дата публикации

NANO-FEATURED POROUS SILICON MATERIALS

Номер: WO2017030995A1
Принадлежит:

Porous silicon and methods for preparation and use of the same are disclosed. The porous silicon materials have utility either alone or in combination with other materials, for example, combined with carbon particles for energy storage applications.

Подробнее
20-07-2006 дата публикации

MATERIAL OF NEGATIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, NEGATIVE ELECTRODE UTILIZING THE MATERIAL, LITHIUM SECONDARY BATTERY UTILIZING THE NEGATIVE ELECTRODE, AND PROCESS FOR PRODUCING THE MATERIAL OF NEGATIVE ELECTRODE

Номер: WO2006075552A1
Принадлежит:

A material of negative electrode for lithium secondary battery, comprising base material particles having either an A-phase composed mainly of silicon or a mixed phase of the A-phase and a B-phase consisting of an intermetallic compound of transition metal element and silicon, wherein the A-phase and mixed phase are microcrystalline or amorphous, and wherein a carbon material adheres to part of the surface of the base material particles while the rest of the surface is coated with a film containing silicon oxide. The lithium secondary battery having this material of negative electrode for lithium secondary battery applied thereto excels in charge discharge cycle characteristics, being reduced in irreversible capacity, and has a capacity strikingly higher than that of the lithium secondary battery utilizing conventional carbon material in the negative electrode material.

Подробнее
24-10-2002 дата публикации

PRODUCTION OF MG2 SI AND TERNARY COMPOUNDS MG2 (SI,E); (E=GE, SN, PB AND TRANSITION METALS; <10 WT.%) MADE OF MGH2 AND SILICON AND THE PRODUCTION OF MAGNESIUM SILICIDE MOULDED BODIES BY PULSE-PLASMA-SYNTHESIS

Номер: WO2002083561A2
Принадлежит:

The invention relates to the production of magnesium silicide (Mg2Si) from magnesium hydride, in addition to compounds which are derived from magnesium silicide by substituting part of the magnesium or/and the silicon by other elements. The invention also relates to the production of moulded bodies made of said compounds.

Подробнее
08-02-1990 дата публикации

MECANOCHEMICAL PREPARATION OF CARBIDES AND SILICIDES

Номер: WO1990001016A1
Принадлежит:

The invention relates to a method allowing to prepare carbides and silicides of transition metals and/or elements of column IIIA and/or elements of column IVA of the Periodical Table. The method comprises the mixing of a carbon or silicon powder with a powder of one or a plurality of elements selected amongst transition metals and/or elements of column IIIA and/or elements of column IVA of the Periodical Table, the proportions being so selected as to combine the totality of the element or elements, and to subject the mixture of powders to mechanical grinding during a time sufficient to obtain the carbide or silicide, the grinding being carried out with a high power grinder. The method allows to obtain known products and new products in a more simple way.

Подробнее
04-05-2017 дата публикации

Thermoelectric Conversion Element and Thermoelectric Conversion Module

Номер: US20170125658A1

A thermoelectric conversion element in which one end of an n-type thermoelectric conversion material and one end of a p-type thermoelectric conversion material are each bonded to a conductive substrate using a bonding agent, the n-type thermoelectric conversion material and the p-type thermoelectric conversion material being specific silicides, the bonding agent being a conductive paste containing conductive metals consisting of silver and at least one noble metal selected from the group consisting of gold, platinum, and palladium, as well as a thermoelectric conversion module comprising a plurality of these thermoelectric conversion elements and having a specific structure, achieve excellent thermoelectric conversion performance in an intermediate temperature range of room temperature to about 700° C., and performance degradation hardly occurs even when electric generation is repeated, making it possible to maintain the excellent performance over a long period of time.

Подробнее
14-07-1998 дата публикации

Carbon or boron modified titanium silicide

Номер: US0005779823A1

A titanium silicide material based on Ti5 Si3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti5 Si3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000° C. Boron is added to a Ti5 Si3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

Подробнее
12-06-2003 дата публикации

Refsicoat heat resistant material and high-temperature electric heaters using said material

Номер: US20030106888A1
Принадлежит:

The present invention relates to the provision of materials intended for use in an oxidative medium at high temperatures, including the manufacture of high-temperature electric heaters, parts, sensors and tools operating at temperatures of up to 1900° C. and higher. On the basis of suicides—solid solutions (Mo,W)5Si3and (Mo,W)Si2as well as Novotn{grave over (y)} phase (Mo,W)5Si3C containing molybdenum and tungsten, a heat-resistant material is proposed, which makes it possible to produce parts fully made therefrom and a broad range of other heat-resistant materials for the provision of protective coatings and soldered joints: “REFSIC” composite materials, carbon, silicon carbide materials, refractory metals and their alloys. Extensive property-varying potentialities by controlling the phase composition, a large diversity of the structural features of single-layered and multilayered protective coatings make it possible to control the heat-resistance, resistance to thermal shocks and resistance ...

Подробнее
15-01-2019 дата публикации

Form of silicon and method of making the same

Номер: US0010179740B2

The invention relates to a new phase of silicon, Si24, and a method of making the same. Si24 has a quasi-direct band gap, with a direct gap value of 1.34 eV and an indirect gap value of 1.3 eV. The invention also relates to a compound of the formula Na4Si24 and a method of making the same. Na4Si24 may be used as a precursor to make Si24.

Подробнее
19-04-2022 дата публикации

Process for synthesis of MG2SI/MGO nanocomposites

Номер: US0011306002B2
Принадлежит: TOYOTA MOTOR EUROPE, UNIVERSITÄT SALZBURG

The present invention relates to a process for the synthesis of a composite material comprising steps of: (a) reacting gaseous magnesium (Mg) and silica (SiO2) in an inert atmosphere; (b) washing the product obtained in step (a) in an acidic medium; and (c) reacting further gaseous magnesium (Mg) with the silica (SiO2) and silicon (Si) product obtained in step (b). The process of the invention allows Mg2Si/MgO nanocomposites to be prepared without too many separate steps, and wherein the MgO phase is homogeneously dispersed within the Mg2Si matrix. The nanocomposites obtained may for example find practical application as thermoelectric materials in thermoelectric generators.

Подробнее
05-10-1983 дата публикации

Process for the selective deposition of layered structures consisting of silicides of high melting metals on substrates essentially consisting of silicon, and their use

Номер: EP0000090319A1
Принадлежит:

Structured layers composed of high melting point metal silicides, such as tantalum silicide, are selectively deposited on substrates having at least some silicon and some non-silicon regions, such as are used in thin-film and semiconductor technology, by thermal decomposition of gaseous silicon and halogen compounds containing a high melting point metal in a reaction gas and depositing the metal silicide onto the silicon regions of the substrates while providing a gaseous hydrogen halide, such as hydrogen chloride, to the reaction gas and adjusting the substrate deposition temperature and the composition of the reaction gas to values at which a silicide nucleation in substrate regions, other than silicon regions, is suppressed during deposition of the metal silicide from the gaseous phase due to the presence of the hydrogen halide. The invention is useful for producing contact track levels in VLSI circuits.

Подробнее
31-10-2000 дата публикации

FERROMAGNETIC SILICON COMPOUND INDUCED IN MAGNETIC FIELD

Номер: JP2000302433A
Принадлежит:

PROBLEM TO BE SOLVED: To obtain a magnetic field-induced ferromagnetic silicon compound which comprises a combination of more general elements such as Zr, Fe, Co, and Si, exhibits a ferromagnetism-inducing characteristic at a specific temperature or higher, and does not contain an expensive rare earth element that is unstable in air and is difficult in handling. SOLUTION: This magnetic field-induced ferromagnetic silicon compound is expressed by the formula [(x) is 0.15 to 0.30] and exhibits a ferromagnetism- inducing characteristic at a temperature of ≥1,000°C. The magnetic field-induced ferromagnetic silicon compound fundamentally has the structure of a ThCr2Si2 crystal, can very easily be produced, and has a magnetic property of magnetic field-induced ferromagnetism, wherein the ferromagnetism is generated at a high temperature of ≥1,000°C. The synthesis and single phase formation of the silicon compound can be carried out by mixing and melting raw materials in a conventional arc melting ...

Подробнее
04-10-1989 дата публикации

PRODUCTION OF METAL SILICIDE TARGET HAVING HIGH MELTING POINT

Номер: JP0001249619A
Принадлежит:

PURPOSE: To simply obtain the subject dense target having high quality, strictly controlled compsn. and ideally dense structure, by heat-treating a sintered compact obtd. by hot-pressing and reacting mixed powder of a metal having high melting point and Si powder, in an inert gas atmosphere. CONSTITUTION: The mixed powder of the metal powder having high melting point and 1-100μ mean particle size (e.g., W) and the Si powder in 2.1-3.0times mol as much as the amt. of the metal powder, is packed in a graphite mold, set in a vacuum hot-press furnace, heated up to 1000°C without pressing after making vacuous to 0.0001Torr, thereafter further heated up to a fixed temp. (1100-1400°C) and hot-pressed and reacted while keeping at the temp. for fixed time (0.15-8.0hr). Then, the obtd. sintered compact is heat-treated in the inert gas atmosphere by hot-pressing, etc. COPYRIGHT: (C)1989,JPO&Japio ...

Подробнее
10-09-1979 дата публикации

DEACIDIFYING ALLOY FOR MOLTEN STEEL

Номер: JP0054116316A
Принадлежит:

Подробнее
30-09-1988 дата публикации

Номер: JP0063048840B2
Принадлежит:

Подробнее
02-12-1998 дата публикации

BETA-FESI2 MATERIAL AND ITS PRODUCTION

Номер: JP0010317086A
Принадлежит:

PROBLEM TO BE SOLVED: To obtain a β-FeSi2 thermoelectric semiconductor material of high quality by an extremely simple method by directly bringing high purity iron into contact with high purity silicon in such a manner that the ambient atmospheric pressure and te mp. are specified and specifying the concn. of impurities other than Mn, Al, Co, Cr and Ni and the optical direct energy gap therein. SOLUTION: High purity iron having ≥99.9% purity is brought into contact with high purity silicon having ≤99.99% purity in an inert gas atmosphere under ≥10-1 Pa gas pressure or in a vacuum atmosphere under ≤10-1 Pa ambient pressure or in a reducing atmosphere under ≤1 Pa partial pressure of an oxidizing gas, and the contact part is heated at 700 to 900°C for ≥1 min. In this way, the silicon atoms infiltrate into the inside of the iron material to cause solid phase silicide reaction, by which the β-FeSi2 material in which the concn. of impurities other than Mn, Al, Co, Cr and Ni is regulated to ≤100 ...

Подробнее
26-04-1980 дата публикации

Номер: JP0055015838B1
Автор:
Принадлежит:

Подробнее
27-08-2015 дата публикации

СПОСОБ ПОЛУЧЕНИЯ МИКРОТРУБОК

Номер: RU2561380C2

Изобретение относится к способам, специально предназначенным для изготовления или обработки микроструктурных устройств или систем, и может быть использовано при изготовлении композитных материалов. Способ получения микротрубок включает приготовление исходной смеси, в качестве которой используют эвтектический сплав кремния и алюминия (Si - 12,5%, Al - 87,5%), осуществляют размещение этой смеси на вольфрамовой проволоке, которую затем нагревают в вакууме до температуры плавления смеси, в результате чего получают смачивание расплавленной смеси и растекание ее по поверхности вольфрамовой проволоки, после чего вольфрамовую проволоку с растекшейся по ее поверхности исходной смесью нагревают до температуры 900±10°C и выдерживают при этой температуре не более 10 секунд, получая при этом рост микроструктур силицида алюминия на поверхности вольфрамовой проволоки, после чего вольфрамовую проволоку с находящимися на ней микроструктурами охлаждают до комнатной температуры и отделяют микроструктуры в ...

Подробнее
01-08-2018 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ МНОГОСЛОЙНОГО СИЛИЦЕНА, ИНТЕРКАЛИРОВАННОГО ЕВРОПИЕМ

Номер: RU2663041C1

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно EuSiкристаллической модификации hP3 (пространственная группа N164,) со структурой интеркалированных европием слоев силицена, которые могут быть использованы для проведения экспериментов по исследованию силиценовой решетки. Способ основан на стабилизации требуемой фазы EuSiпутем ее эпитаксиального роста на предварительно сформированном на Si(001) или Si(111) буферном слое SrSi. Способ заключается в осаждении методом молекулярно-лучевой эпитаксии атомарного потока стронция с давлением P=(0,5÷3)⋅10торр на предварительно очищенную и нагретую до T=500±20°С поверхность подложки кремния до формирования пленки дисилицида стронция, а затем в осаждении атомарного потока европия с давлением P=(0,5÷10)⋅10торр на подложку при температуре T=430÷550°С до формирования пленки дисилицида европия толщиной не более 8 нм. При этом слои силицидов образуются за счет диффузии атомов. Изобретение позволяет получать однородные ...

Подробнее
20-12-2009 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СИЛИЦИДОВ ЦИНКА

Номер: RU2008121989A
Принадлежит:

Способ получения силицидов цинка с помощью многокомпонентных реакций, отличающийся тем, что в расплаве стекла со взвесью диоксида кремния с использованием цинка в качестве восстановителя происходит образование силицидов цинка, а также сложных силикатов натрия и силиката цинка.

Подробнее
20-04-2015 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ ИЗ СИЛИЦИДА МАГНИЯ

Номер: RU2013145332A
Принадлежит:

Способ получения кремния из силицида магния, включающий получение силицида магния и термическое разложение силицида магния, отличающийся тем, что получение силицида магния осуществляют в смеси диоксида кремния с магнием, которая соответствует стехиометрическому соотношению 1:1 для восстановления диоксида кремния до силицида магния, процесс термического разложения силицида магния осуществляют термической обработкой в кислородсодержащей атмосфере при температуре выше 650°С.

Подробнее
10-01-2008 дата публикации

НАНОМЕТРОВЫЙ КРИСТАЛЛИЧЕСКИЙ ПОРОШКООБРАЗНЫЙ КРЕМНИЙ

Номер: RU2006121436A
Принадлежит:

... 1. Агрегированный кристаллический порошкообразный кремний, характеризующийся тем, что он обладает площадью поверхности БЭТ, равной от 20 до 150 м2/г. 2. Агрегированный кристаллический порошкообразный кремний по п.1, отличающийся тем, что площадь поверхности БЭТ находится в диапазоне между 40 и 120 м2/г. 3. Агрегированный кристаллический порошкообразный кремний по п.1 или 2, отличающийся тем, что он легирован с помощью фосфора, мышьяка, сурьмы, висмута, бора, алюминия, галлия, индия, таллия, европия, эрбия, церия, празеодима, неодима, самария, гадолиния, тербия, диспрозия, гольмия, тулия, лютеция, лития, иттербия, германия, железа, рутения, осмия, кобальта, родия, иридия, никеля, палладия, платины, меди, серебра, золота, цинка. 4. Агрегированный кристаллический порошкообразный кремний по п.3, отличающийся тем, что доля легирующих компонентов фосфора, мышьяка, сурьмы, висмута, бора, алюминия, галлия, индия, таллия, европия, эрбия, церия, празеодима, неодима, самария, гадолиния, тербия, диспрозия ...

Подробнее
10-04-2005 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВА ДЛЯ ПРЯМОГО ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ

Номер: RU2004110233A
Принадлежит:

... 1. Способ изготовления устройства для прямого термоэлектрического преобразования энергии, состоящего из отвода или термоэлемента р-типа, отвода или термоэлемента n-типа, горячего перехода и холодного перехода, отличающийся тем, что используют состав при изготовлении отвода n-типа и/или отвода р-типа указанного устройства, который содержит магний, кремний, свинец, и барий. 2. Способ по п.1, отличающийся тем, что состав содержит один или насколько дополнительных легирующих материалов. 3. Способ по п.1, отличающийся тем, что атомарная пропорция бария по отношению к максимальной атомарной стехиометрической пропорции магния, в отсутствие бария, изменяется от 0,1 до 0,4, а атомарная пропорция свинца по отношению к максимальной атомарной стехиометрической пропорции кремния, в отсутствии свинца, изменяется от 0,1 до 0,3. 4. Способ по п.2, отличающийся тем, что атомарная пропорция бария по отношению к максимальной атомарной стехиометрической пропорции магния, в отсутствие бария, изменяется от 0,1 ...

Подробнее
01-01-1949 дата публикации

Способ получения силицида натрия

Номер: SU77421A1
Автор: Боом Е.А.
Принадлежит:

Подробнее
18-04-2013 дата публикации

CYCLIC PREPARATION METHOD FOR PRODUCING TITANIUM BORIDE FROM INTERMEDIATE FEEDSTOCK SODIUM-BASED TITANIUM-BORON-FLUORINE SALT MIXTURE AND PRODUCING SODIUM CRYOLITE AS BYPRODUCT

Номер: US20130095020A1

A cyclic preparation method for producing titanium boride from intermediate feedstock sodium-based titanium-boron-fluorine salt mixture and producing sodium cryolite as byproduct, which comprises the steps: a) boric acid or boric anhydride is added with hydrofluoric acid and then with sodium carbonate solution for concentration and crystallization to generate sodium fluoborate; titanium-iron concentrate is added with hydrofluoric acid and then with sodium carbonate and sodium hydroxide to obtain sodium fluotitanate; B) the sodium fluoborate is mixed with the sodium fluotitanate, and the mixture reacts with aluminum to generate titanium boride and sodium cryolite; C) the sodium cryolite is sucked out and then fed into a rotary reaction kettle together with concentrated sulfuric acid, hydrogen fluoride gas as well as sodium sulfate and sodium aluminum sulfate are generated by reaction in the rotary reaction kettle, and the hydrogen fluoride gas is collected and then dissolved in water to obtain hydrofluoric acid aqueous solution; and D) the obtained hydrofluoric acid aqueous solution is recycled. 1. A cyclic preparation method for producing titanium boride from intermediate feedstock sodium-based titanium-boron-fluorine salt mixture and producing sodium cryolite as byproduct , wherein the method comprises the following steps:A) boric acid or boric anhydride is added with hydrofluoric acid to generate fluoroboric acid by reaction at 100-200° C., the fluoroboric acid is then added with sodium carbonate aqueous solution for reaction to generate sodium fluoborate solution, and the sodium fluoborate solution is concentrated, crystallized and bleached to obtain sodium fluoborate; titanium-iron concentrate is added with hydrofluoric acid to generate fluotitanic acid by reaction at 100-200° C.; the fluotitanic acid is then added with the mixed salt aqueous solution of sodium carbonate and sodium hydroxide, pH is controlled within a range from 3 to 4, and after water and ...

Подробнее
18-04-2013 дата публикации

CYCLIC PREPARATION METHOD FOR PRODUCING TITANIUM BORIDE FROM INTERMEDIATE FEEDSTOCK POTASSIUM-BASED TITANIUM-BORON-FLUORINE SALT MIXTURE AND PRODUCING POTASSIUM CRYOLITE AS BYPRODUCT

Номер: US20130095021A1

A cyclic preparation method including the following steps: a) boric acid or boric anhydride is added with hydrofluoric acid and then with potassium sulfate for reaction to generate potassium fluoborate; titanium-iron concentrate is added with hydrofluoric acid and then with potassium sulfate for reaction to generate potassium fluotitanate; B) the potassium fluoborate is mixed with the potassium fluotitanate, and the mixture reacts with aluminum to generate titanium boride and potassium cryolite; C) the potassium cryolite is sucked out and then fed into a rotary reaction kettle together with concentrated sulfuric acid, hydrogen fluoride gas as well as potassium sulfate and potassium aluminum sulfate are generated by reaction in the rotary reaction kettle, and the hydrogen fluoride gas is collected and then dissolved in water to obtain hydrofluoric acid aqueous solution; and D) the obtained hydrofluoric acid aqueous solution and potassium sulfate aqueous solution are recycled. 1. A cyclic preparation method for producing titanium boride from intermediate feedstock potassium-based titanium-boron-fluorine salt mixture and producing potassium cryolite as byproduct , wherein the method comprises the following steps:A) boric acid or boric anhydride is added with hydrofluoric acid to generate fluoroboric acid by reaction at 100-200° C., the fluoroboric acid is then added with potassium sulfate aqueous solution to generate potassium fluoborate precipitates by reaction, and the potassium fluoborate precipitates are centrifuged and bleached to obtain potassium fluoborate; titanium-iron concentrate is added with hydrofluoric acid to generate fluotitanic acid by reaction at 100-200° C.; the fluotitanic acid is then added with potassium sulfate solution to generate potassium fluotitanate precipitates, and the potassium fluotitanate precipitates are centrifuged and bleached to obtain potassium fluotitanate;B) the potassium fluoborate and the potassium fluotitanate are put in a ...

Подробнее
18-04-2013 дата публикации

PREPARATION PROCESS OF TRANSITION METAL BORIDE AND USES THEREOF

Номер: US20130095022A1

The invention provides a preparation process of transition metal boride, comprising the following steps: A) aluminum is put in a reactor, inert gas is fed into the reactor after evacuation, the reactor is heated up to 700 to 800° C. and then added with dry potassium fluoborate or sodium fluoborate, monomer boron and cryolite are generated by rapid stirring and reaction for 4 to 6 hours, and the molten liquid at the upper layer is sucked out and the monomer boron is obtained by means of separation; and B) the obtained monomer boron is added with transition metal for reaction at the temperature from 1800 to 2200° C. in order to generate corresponding transition metal boride. 1. A preparation process of transition metal boride , characterized in that: the method comprises the following steps:A) aluminum is put in a reactor, inert gas is fed into the reactor after evacuation, the reactor is heated up to 700 to 800° C. and then added with dry potassium fluoborate or sodium fluoborate, monomer boron and cryolite are generated by rapid stirring and reaction for 4 to 6 hours, and the molten liquid at the upper layer is sucked out and the monomer boron is obtained by means of separation; andB) the obtained monomer boron is added with transition metal for reaction at the temperature from 1800 to 2200° C. in order to generate corresponding transition metal boride.2. The preparation process of transition metal boride according to claim 1 , wherein the transition metal is selected from titanium claim 1 , zirconium claim 1 , chromium or vanadium.3. The preparation process of transition metal boride according to claim 1 , wherein the inert gas is argon.4. Use of the transition metal boride prepared by the preparation process of transition metal boride according to in preparing cathode coating material of low-temperature aluminum electrolytic cell.5. Use of the transition metal boride prepared by the preparation process of transition metal boride according to in preparing cathode ...

Подробнее
26-09-2013 дата публикации

Methods of making titanium diboride powders

Номер: US20130251595A1
Принадлежит: Alcoa Inc

The present disclosure is directed towards methods of making titanium diboride products in various sizes. An aspect of the method provides (a) selecting a target average particle size for a target titanium diboride product; (b) selecting at least one processing variable from the group consisting of: an amount of sulfur, an inert gas flow rate, a soak time, and a reaction temperature; (c) selecting a condition of the processing variable based upon the target average particle size; and (d) producing an actual titanium diboride product having an actual average particle size using the at least one processing variable, wherein due to the at least one processing variable, the actual average particle size corresponds to the target average particle size.

Подробнее
10-10-2013 дата публикации

BORIDE HAVING CHEMICAL COMPOSITION Na-Si-B, AND POLYCRYSTALLINE REACTION SINTERED PRODUCT OF BORIDE AND PROCESS FOR PRODUCTION THEREOF

Номер: US20130266499A1
Принадлежит:

Provided are: a novel bonds useful as a highly-functional material; and a novel production method for a polycrystalline sintered product of a bonds, of which the energy cost is low, which does not require a sintering promoter, which enables the product to be worked into complicated forms and which enables a development to a polynary boride. 1. A ternary boride having a composition Na—Si—B.2. The boride having a composition Na—Si—B as claimed in claim 1 , wherein the boride is a compound represented by a general formula NaSiB(0 Подробнее

12-12-2013 дата публикации

RECYCLE OF TITANIUM DIBORIDE MATERIALS

Номер: US20130330256A1
Принадлежит:

A method to recycle TiB2 articles, and in particular, a method to recycle a TiB2 feedstock including TiB2 articles and Ti-ore and/or Ti-slag by chlorination. 1. A method to produce a titanium product , comprising:preparing a TiB2 feedstock; andchlorinating the prepared TiB2 feedstock to produce a titanium chloride product.2. The method of claim 1 , wherein the TiB2 feedstock comprises TiB2 articles claim 1 , and the preparing of the TiB2 feedstock comprises crushing the TiB2 articles to a predetermined average TiB2 particle size or TiB2 particle size distribution.3. The method of claim 2 , wherein the TiB2 articles comprise at least one of TiB2 armor products claim 2 , TiB2 tool products claim 2 , TiB2 coatings claim 2 , TiB2 electrodes claim 2 , and TiB2 powders.4. The method of wherein the TiB2 feedstock consists essentially of crushed TiB2 articles.5. The method of claim 4 , wherein the crushed TiB2 articles comprise at least one of sodium and fluorine residues.6. The method of claim 5 , wherein the crushed TiB2 articles comprise no more than 2% sodium and fluorine residues.7. The method of claim 2 , wherein the preparing of the TiB2 feedstock further comprises combining the TiB2 articles with at least one of Ti-containing ores and Ti-slag.8. The method of claim 3 , wherein preparing of the TiB2 feedstock further comprises crushing the combination of TiB2 articles with at least one of Ti-containing ores and Ti-slag to a predetermined average particle size or particle size distribution to prepare the TiB2 feedstock.9. The method of claim 8 , wherein the Ti-containing ore comprises Ilmenite.10. The method of claim 9 , wherein the Ti-containing ore comprises has a TiO2 content of at least 80% by weight.11. The method of claim 10 , wherein the Ti-slag comprises smelting products of ilmenite ore processed to lower the iron content thereof.12. The method of claim 11 , wherein the Ti-slag has a TiO2 content of at least 85%.13. The method of claim 12 , wherein the TiB2 ...

Подробнее
02-01-2020 дата публикации

Tin-Containing Precursors and Methods of Depositing Tin-Containing Films

Номер: US20200002814A1
Принадлежит: Applied Materials Inc

Tin containing precursors and methods of forming tin-containing thin films are described. The tin precursor has a tin-diazadiene bond and is homoleptic or heteroleptic. A suitable reactant is used to provide one of a metallic tin film or a film comprising one or more of an oxide, nitride, carbide, boride and/or silicide. Methods of forming ternary materials comprising tin with two or more of oxygen, nitrogen, carbon, boron, silicon, titanium, ruthenium and/or tungsten are also described.

Подробнее
01-01-2015 дата публикации

Processes for the Preparation of Silicon Containing Intermetallic Compounds and Intermetallic Compounds Prepared Thereby

Номер: US20150005156A1
Принадлежит: Dow Corning Corp

Intermetallic compounds, such as metal silicides, e.g., PdSi and/or Pd 2 Si, can be selectively prepared in a two step process including the steps of (1) vacuum impregnating silicon with a metal halide, and (2) ball milling the product of step (1).

Подробнее
25-01-2018 дата публикации

METHOD FOR FLUIDIZING COPPER SILICIDE AND PROCESS FOR PREPARING A HALOSILANE USING THE METHOD

Номер: US20180021747A1
Принадлежит: Dow Corning Corporation

A method is useful for maintaining a uniformly fluidized bed in a fluidized bed apparatus. The method includes the steps of charging a mixture of particles including copper silicide particles and fluidization additive particles into the fluidized bed apparatus, and uniformly fluidizing the particles at a temperature of at least 400° C. in the fluidized bed apparatus. 1. A method maintaining a uniformly fluidized bed in a fluidized bed apparatus comprises:(A) heating, at a temperature of at least 400° C., a mixture of particles comprising greater than 80 weight % to less than 100% copper silicide particles and greater than 0 to 20 weight % fluidization additive particles in the fluidized bed apparatus, and(B) feeding a fluid into the fluidized bed apparatus at a velocity sufficient to maintain uniform fluidization.2. The method of claim 1 , where the copper silicide particles have a particle size of 10 μm to 150 μm.3. The method of claim 1 , where the additive particles are present in an amount of greater than 0 weight % to 10 weight % claim 1 , based on total weight of the mixture.4. The method of claim 1 , where the copper silicide particles are present in an amount of 95 weight % to 98 weight % of the mixture claim 1 , and the fluidization additive particles are present in an amount of 2 weight % to 5 weight % of the mixture.5. The method of claim 1 , where the copper silicide is selected from the group consisting of (i) CuSi claim 1 , (ii) CuSi claim 1 , (iii) CuSi claim 1 , and (iv) CuSi claim 1 , and a mixture of two or more of (i) claim 1 , (ii) claim 1 , (iii) claim 1 , (iv).6. The method of claim 1 , where the copper silicide comprises CuSi.7. The method of claim 1 , where the copper silicide has empirical formula CuSiCrCoFeIrNiPdPtReRu claim 1 , where subscripts b claim 1 , c claim 1 , d claim 1 , e claim 1 , f claim 1 , g claim 1 , h claim 1 , i claim 1 , j claim 1 , k claim 1 , and m represent the molar amounts of each element present claim 1 , and b>0 ...

Подробнее
21-01-2021 дата публикации

ACTIVE MATERIAL

Номер: US20210020938A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A main object of the present disclosure is to provide an active material wherein an expansion upon intercalation of a metal ion such as a Li ion is suppressed. The present disclosure achieves the object by providing an active material comprising a silicon clathrate type crystal phase, and the active material includes a Na element, a Si element and a M element that is a metal element with an ion radius larger than the Si element, and a proportion of the M element to a total of the Si element and the M element is 0.1 atm % or more and 5 atm % or less. 1. An active material comprising a silicon clathrate type crystal phase , andthe active material includes a Na element, a Si element and a M element that is a metal element with an ion radius larger than the Si element, anda proportion of the M element to a total of the Si element and the M element is 0.1 atm % or more and 5 atm % or less.2. The active material according to claim 1 , wherein the M element includes at least one kind of Ge claim 1 , Ga and Al.3. The active material according to claim 1 , wherein the M element includes at least Ge.4. The active material according to claim 1 , wherein the proportion of the M element is 0.5 atm % or more and 3 atm % or less.5. The active material according to claim 1 , wherein the active material has a composition represented by NaMeMSi claim 1 , wherein Me is a metal element other than the Na element and the M element claim 1 , w claim 1 , x claim 1 , y and z satisfy 0 Подробнее

24-04-2014 дата публикации

Inorganic-Compound Particles and Process for Producing Same

Номер: US20140113139A1
Принадлежит:

A method of producing inorganic compound particles is provided. It includes a step of impregnating a melt liquid of second raw particles into first raw particles by heating a raw material including them at a temperature, which equals to or higher than an eutectic temperature between a region-II (solid-liquid phase range) and a region-I (solid phase range) in a phase diagram and lower than the melting temperature of the inorganic compound. The first raw particles contain an element with a melting point equals to or higher than a melting point of the inorganic compound. The second raw particles contain an element with a melting point lower than the inciting point of the inorganic compound. The method also includes a step of synthesizing inorganic compound particles by a synthetic reaction in the first raw particles between the elements contained in the first and second raw particles. 1. A method of producing inorganic compound particles which is a composite including a plurality of elements with different melting points , the method comprising the steps of:impregnating a melt liquid of second raw particles into first raw particles by heating a raw material including the first raw particles, which contain an element among the plurality of elements with a melting point equals to or higher than a melting point of the inorganic compound, and the second raw particles, which contain an element among the plurality of elements with a melting point lower than the melting point of the inorganic compound, at a temperature, which equals to or higher than an eutectic temperature between a region-II (solid-liquid phase range) and a region-I (solid phase range) in a phase diagram of the element contained in the first raw particles and the element contained in the second raw particles, and lower than the melting temperature of the inorganic compound; andsynthesizing the inorganic compound particles by a synthetic reaction in the first raw particles between the element contained in ...

Подробнее
17-02-2022 дата публикации

Tetrakis(trichlorosilyl)germane, process for the preparation thereof and use thereof

Номер: US20220048777A1
Принадлежит: EVONIK OPERATIONS GMBH

A novel process provides for the preparation of the chlorinated, uncharged substance tetrakis(trichlorosilyl)germane, and for the use thereof. 2: The process according to claim 1 , wherein in step (b) the reaction is conducted at room temperature claim 1 , and/or in step (d) the nonpolar solvent is removed at room temperature.3: The process according to claim 1 , wherein claim 1 , in step (b) claim 1 , the chlorinated hydrocarbon is dichloromethane CHCl.4: The process according to claim 1 , wherein claim 1 , in step (c) claim 1 , the at least one nonpolar solvent is at least one selected from the group consisting of hexane claim 1 , n-hexane claim 1 , pentane claim 1 , and benzene.5: The process according to claim 1 , wherein claim 1 , in step (a) claim 1 ,{'sub': 3', '3', '3, 'the mixing of [X][Ge(SiCl)] and AlClcomprises stirring,'}and, in step (b),the mixture obtained in step (a) is dissolved completely in the at least one chlorinated hydrocarbon, and, after a time of 0.1 to 24 hours,the at least one chlorinated are hydrocarbon is removed.6: The process according to claim 1 , wherein claim 1 ,in step (c), after the introducing of the crude product, the temperature of the at least one nonpolar solvent is brought for from 1 to 5 times from room temperature to elevated temperature, and subsequently the at least one nonpolar solvent is allowed to cool.7: The process according to claim 1 , further comprising:depositing at least one Si—Ge layer with the tetrakis(trichlorosilyl)germane as precursor.8: A Si—Ge layer deposition process claim 1 , comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'depositing at least one Si—Ge layer with, as a precursor, a tetrakis(trichlorosilyl)germane obtained by the process according to .'}9: The process according to claim 1 , wherein claim 1 , in step (c) claim 1 , the at least one nonpolar solvent comprises n-hexane.10: The process according to claim 1 , wherein claim 1 , in step (a) claim 1 ,{'sub': 3', '3', '3', '3', '3', ...

Подробнее
17-02-2022 дата публикации

THERMOELECTRIC CONVERSION TECHNIQUE

Номер: US20220052245A1
Принадлежит:

The present disclosure provides a thermoelectric conversion material having a composition represented by a chemical formula of LiMgSi. In this thermoelectric conversion material, either requirement (i) in which 0≤a≤0.0001 and 0.0001≤b≤0.25-or requirement (ii) in which 0.0001≤a≤0.25 and 0≤b≤0.25-is satisfied. The thermoelectric conversion material has an LiAlSitype crystalline structure. 1. A thermoelectric conversion material having a composition represented by a chemical formula of LiMgSi ,wherein{'claim-text': ['Requirement (i): 0≤a≤0.0001 and 0.0001≤b≤0.25-a', 'Requirement (ii): 0.0001≤a≤0.25 and 0≤b≤0.25-a, and'], '#text': 'either the following requirement (i) or (ii) is satisfied:'}{'sub': ['8', '3', '5'], '#text': 'the thermoelectric conversion material has an LiAlSitype crystalline structure.'}2. The thermoelectric conversion material according to claim 1 ,wherein the thermoelectric conversion material has a p-type polarity.3. The thermoelectric conversion material according to claim 1 ,wherein the thermoelectric conversion material has a polycrystalline structure, andthe polycrystalline structure includes crystalline grains having an average grain diameter of larger than or equal to 064 nm and smaller than or equal to 100 nm.4. The thermoelectric conversion material according to claim 3 ,wherein the average grain diameter is larger than or equal to 0.64 nm and smaller than or equal to 10 nm.5. A p-type thermoelectric conversion element comprising:a thermoelectric conversion portion,{'claim-ref': {'@idref': 'CLM-00001', '#text': 'claim 1'}, '#text': 'wherein the thermoelectric conversion portion comprises the thermoelectric conversion material according to .'}6. A thermoelectric conversion element comprising:a p-type thermoelectric conversion portion;an n-type thermoelectric conversion portion;a first electrode;a second electrode; anda third electrode,whereinone end of the p-type thermoelectric conversion portion and one end of the n-type thermoelectric ...

Подробнее
09-02-2017 дата публикации

METHODS OF MAKING TITANIUM DIBORIDE POWDERS

Номер: US20170036919A1
Автор: McMillen James C.
Принадлежит:

The present disclosure is directed towards methods of making titanium diboride products in various sizes. An aspect of the method provides (a) selecting a target average particle size for a target titanium diboride product; (b) selecting at least one processing variable from the group consisting of: an amount of sulfur, an inert gas flow rate, a soak time, and a reaction temperature; (c) selecting a condition of the processing variable based upon the target average particle size; and (d) producing an actual titanium diboride product having an actual average particle size using the at least one processing variable, wherein due to the at least one processing variable, the actual average particle size corresponds to the target average particle size. 118-. (canceled)20. The method of claim 19 , wherein the sulfur-containing compound additives are metal sulfides and metal sulfates claim 19 ,21. The method of claim 19 , wherein the reacting step comprises carbothermicaily reacting the precursor mixture.22. The method of claim 19 , wherein the condition of the at least one processing variable is based on the target average particle size and/or the amount of sulfur.23. The method of claim 19 , wherein reacting the precursor mixture further comprises selecting at least one processing variable from a group claim 19 , comprising a soak time claim 19 , a reaction temperature and an inert gas flow rate claim 19 , and selecting a condition of the at least one processing variable claim 19 , wherein the at least one processing variable comprises the reaction temperature claim 19 , wherein the reaction temperature is at least about 1300° C.; and/or wherein the at least one processing variable comprises the soak time claim 19 , wherein the soak time is at least about 0.5 h; and/or wherein the at least one processing variable comprises the inert gas flow rate claim 19 , wherein the inert gas flow rate is in the range of at least about 0.5 liters per minute through a reaction vessel ...

Подробнее
15-05-2014 дата публикации

PREPARATION PROCESS OF TRANSITION METAL BORIDE AND USES THEREOF

Номер: US20140134090A1

The invention provides a preparation process of transition metal boride, comprising the following steps: A) aluminum is put in a reactor, inert gas is fed into the reactor after evacuation, the reactor is heated up to 700 to 800° C. and then added with dry potassium fluoborate or sodium fluoborate, monomer boron and cryolite are generated by rapid stirring and reaction for 4 to 6 hours, and the molten liquid at the upper layer is sucked out and the monomer boron is obtained by means of separation; and B) the obtained monomer boron is added with transition metal for reaction at the temperature from 1800 to 2200° C. in order to generate corresponding transition metal boride. 1. A method of preparing an inert anode material of a low-temperature aluminum electrolytic cell , comprising:preparing the inert anode material of the low-temperature aluminum electrolytic cell using a transition metal boride prepared by a preparation process, the preparation process of the transition metal boride comprising the following steps:A) aluminum is put in a reactor, an inert gas is fed into the reactor after evacuation, the reactor is heated up to 700 to 800° C. and then added with dry potassium fluoborate or sodium fluoborate, monomer boron and cryolite are generated by rapid stirring and reaction for 4 to 6 hours, and the molten liquid at the upper layer is sucked out and the monomer boron is obtained by means of separation; andB) the obtained monomer boron is added with transition metal for reaction at the temperature from 1800 to 2200° C. in order to generate corresponding transition metal boride.2. The method of claim 1 , wherein the transition metal is selected from titanium claim 1 , zirconium claim 1 , chromium or vanadium.3. The method of claim 1 , wherein the inert gas is argon. The invention relates to transition metal borides, more particularly to a preparation process of transition metal boride and uses thereof.The traditional Hall-Heroult method has still been employed in ...

Подробнее
29-05-2014 дата публикации

Sonochemical Synthesis of Boron and Boron-Carbon Nanomaterials by Alkali Metal Reduction

Номер: US20140147364A1
Автор: Purdy Andrew P.
Принадлежит:

A method of preparing a nanomaterial comprising boron includes sonicating a boron trihalide and/or boron alkoxide in a hydrocarbon solvent with an alkali metal under an inert atmosphere to form a dark solid, and annealing the dark solid at a temperature sufficient to sublime alkali metal salt therein, thereby obtaining a boron nanomaterial. Reacting with a Group IVB metal produces a metal boride, and combining an alkali metal salt of a hydrocarbon with the boron trihalide prior to sonicating produces a carbonaceous boron material. 1. A method of preparing a nanomaterial comprising boron , the method comprising:sonicating a boron trihalide and/or boron alkoxide in a hydrocarbon solvent with an alkali metal under an inert atmosphere to form a dark solid, andannealing the dark solid at a temperature sufficient to sublime alkali metal salt therein, thereby obtaining a boron nanomaterial.2. The method of claim 1 , wherein the annealing is conducted at a pressure of less than one atmosphere.3. The method of claim 1 , wherein the boron trihalide is selected from the group consisting of boron trichloride claim 1 , boron trifluoride claim 1 , and etherates thereof.4. The method of claim 1 , wherein the alkali metal is selected from the group consisting of sodium claim 1 , potassium claim 1 , lithium claim 1 , and combinations thereof.5. The method of claim 1 , wherein the hydrocarbon solvent is selected from the group consisting of hexane claim 1 , heptane claim 1 , toluene claim 1 , and combinations thereof.6. The method of claim 1 , wherein the boron alkoxide is used and the alkali metal is lithium.7. The method of claim 5 , wherein the boron alkoxide is B(OEt).8. The method of claim 1 , wherein the boron nanomaterial has a surface area of at least 300 m/g.9. The method of claim 1 , further comprising reacting with a Group IVB metal to produce a metal boride10. The method of claim 1 , further comprising combining an alkali metal salt of a hydrocarbon with the boron ...

Подробнее
05-05-2022 дата публикации

LOW-TEMPERATURE FORMATION OF GROUP 13-15 CERAMICS AND GROUP 13-15-16 CERAMICS

Номер: US20220135412A1
Принадлежит:

Methods of making a ceramic of a Group 13-15 type or a Group 13-15-16 type by thermolyzing a discrete molecular precursor to the ceramic in an oxygen-containing atmosphere. In some embodiments, the discrete molecular precursor is bench-stable and comprises a Lewis acid-base pair or small cyclic compound containing at last one Group 13 element and at least one Group 15 element but does not include indium and phosphorus in combination with one another unless a Group 16 element is present. The thermolysis can be carried out in air, at atmospheric pressure, and at a temperature below about 400° C., if desired. In some embodiments, the discrete molecular precursor can be placed in a mold having a desired shape and the thermolysis performed while the discrete molecular precursor is in the mold so as to produce a ceramic product having the desired shape.

Подробнее
05-05-2022 дата публикации

LIGHT-EMITTING OR LIGHT-ABSORBING COMPONENT

Номер: US20220135878A1
Принадлежит:

The invention relates to a light-emitting component comprising a light-emitting section consisting of a Hex-SiGecompound material, said Hex-SiGecompound material having a direct band gap for emitting light.

Подробнее
09-04-2015 дата публикации

STABLE COMPLEXES OF MULTIPLE ZERO-VALENT METALS AND HYDRIDE AS NOVEL REAGENTS

Номер: US20150098884A1
Автор: Rowe Michael Paul

A composition and its method of production are provided. The composition includes at least one zero-valent metal atom in complex with at least one hydride molecule. In some instances, the composition includes a first zero-valent metal atom and a second zero-valent metal atom in complex with at least one hydride molecule. The method of production includes ball-milling an elemental metal in a high-surface area form, with a hydride. The composition can be useful as a reagent for the synthesis of zero-valent metal alloy nanoparticles. 2. The reagent complex of wherein each of the first zero-valent metal and the second zero-valent metal is selected from the group that consists of a zero-valent transition metal and a zero-valent post-transition metal.3. The reagent complex of wherein the first zero-valent metal is bismuth or tin.4. The reagent complex of wherein the first zero-valent metal is tin and the second zero-valent metal is bismuth.5. The reagent complex of wherein the hydride is a complex metal hydride or a complex metalloid hydride.6. The reagent complex of wherein the hydride is lithium borohydride.7. The reagent complex of wherein y is about 4 or less.8. A method for synthesizing a reagent complex claim 1 , comprising:ball-milling a mixture including a hydride, a preparation containing a first zero-valent metal, and a preparation containing a second zero-valent metal.9. The method of wherein the hydride is a complex metal hydride or a complex metalloid hydride.10. The method of wherein the hydride is lithium borohydride.11. The method of wherein the preparation containing a first zero-valent metal and the preparation containing a second zero-valent metal are mixed in substantially equimolar proportion.12. The method of wherein the hydride is mixed with the preparation containing a zero-valent metal in about four-fold or lower molar excess.13. The method of wherein the hydride is mixed in about two-fold or lower molar excess relative to the molar sum of the ...

Подробнее
19-03-2020 дата публикации

MGB2 SUPERCONDUCTIVE THIN FILM WIRE MATERIAL AND PRODUCTION METHOD THEREFOR

Номер: US20200091397A1
Принадлежит: Hitachi, Ltd.

Provided is an MgBsuperconductive thin film wire material allowing for lower costs while maintaining superconductive properties that are equal to or greater than those of the MgBsuperconductive thin film wire material of prior art, and to provide a production method for the superconductive thin film wire material. The MgBsuperconductive thin film wire material according to the present invention is a superconductive wire material comprising an MgBthin film formed over an elongated metal base material, characterized in that the MgBthin film exhibits a critical temperature of 30 K or higher, and has a microscopic organization wherein MgBcolumnar crystal grains stand densely packed on the surface of the elongated metal base material, and a layer of Mg oxide is formed in such a manner as to surround the MgBcolumnar crystal grains in the grain boundary regions of the MgBcolumnar crystal grains. 1. An MgBsuperconductive thin film wire material comprising: a long metal substrate; and an MgBthin film formed on the long metal substrate , wherein:{'sub': 2', '2', '2', '2, 'the MgBthin film has a critical temperature of 30 K or higher, and has a microscopic organization in which MgBcolumnar crystal grains densely stand on a surface of the long metal substrate, and an Mg oxide layer is formed in such a manner as to surround the MgBcolumnar crystal grains in a grain boundary region of the MgBcolumnar crystal grains.'}2. The MgBsuperconductive thin film wire material according to claim 1 , wherein the Mg oxide layer has an average thickness of 1 nm or more and less than 7 nm.3. The MgBsuperconductive thin film wire material according to claim 1 , wherein a total area ratio of the Mg oxide layer in a plane parallel to a surface of the MgBthin film is 2% or more and 20% or less.4. The MgBsuperconductive thin film wire material according to claim 1 , wherein the MgBcolumnar crystal grains on a surface of the MgBthin film have an average particle diameter of 25 nm or more and 250 nm ...

Подробнее
23-04-2015 дата публикации

NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY

Номер: US20150111103A1
Принадлежит: SANTOKU CORPORATION

Provided are an anode active material for lithium ion rechargeable batteries and an anode, which are capable, when used in a lithium ion rechargeable battery, of providing excellent charge/discharge capacity and cycle characteristics, and also high rate performance, as well as a lithium ion rechargeable battery using the same. The anode active material contains particles having a crystal phase represented by RAx, wherein R is at least one element selected from the group consisting of rare earth elements including Sc and Y but excluding La, A is Si and/or Ge, and x satisfies 1.0≦x≦2.0, and a crystal phase consisting of A. The material is thus useful as an anode material for lithium ion rechargeable batteries. 1. An anode active material for a lithium ion rechargeable battery comprising particles having a crystal phase represented by RAx , wherein R is at least one element selected from rare earth elements including Sc and Y but excluding La , A is Si and/or Ge , and x satisfies 1.0≦x≦2.0 , and a crystal phase consisting of A.2. The anode active material according to claim 1 , wherein R comprises at least one element selected from the group consisting of Ce claim 1 , Pr claim 1 , Nd claim 1 , Sm claim 1 , Gd claim 1 , Dy claim 1 , and Y.3. The anode active material according to claim 1 , wherein x satisfies 1.4≦x≦1.9.4. The anode active material according to claim 3 , wherein x satisfies 1.4≦x≦1.75.5. The anode active material according to claim 1 , wherein the crystallite size of the crystal phase represented by RAx is not larger than 60 nm.6. The anode active material according to claim 1 , wherein a composition of RAx:A in the particles claim 1 , assuming that the composition is composed of RAand A claim 1 , is 20:80 to 80:20 by mass as a raw material mixing ratio.7. An anode for a lithium ion rechargeable battery comprising a collector and an active material layer comprising the anode active material of .8. A method of producing an anode suitable for use in a ...

Подробнее
17-07-2014 дата публикации

MECHANOCHEMICAL SYNTHESIS OF HEXAGONAL OsB2

Номер: US20140199226A1

The presently disclosed and/or claimed inventive concept(s) relates generally to hexagonal osmium boride, OsB, and methods of producing the same. In one non-limiting embodiment, hexagonal OsBis produced by mechanochemical synthesis of osmium and boron in a high energy ball mill. 1. A composition , comprising OsBhaving a hexagonal lattice structure , wherein the hexagonal OsBcomprises unit cell dimensions of:i) a, b, and c, wherein a and b are in a range of from about 2.90 Å to about 2.92 Å, and c is in a range of from about 7.3 Å to about 7.5 Å; andii) α=β=90°, γ=120°.2. The composition of claim 1 , wherein the hexagonal OsBcomprises a P6/mmc space group.3. The composition of claim 1 , wherein the hexagonal OsBhas a hardness value of at least 52 GPa with a standard deviation of about 10% or less claim 1 , wherein the hardness value is calculated by Oliver and Pharr's method using a spherical indentor having a radius of about 0.222 μm and a nanoindentation loading of 8 mN.4. The composition of claim 1 , wherein the hexagonal OsBhas a hardness value of at least about 34 GPa with a standard deviation of about 10% or less claim 1 , wherein the hardness value is calculated by dividing an applied load of 8 mN by the indentation contact area of a spherical indentor having a radius of about 0.222 μm and an applied force of 8 mN.5. The composition of claim 1 , wherein the hexagonal OsBhas a Young's modulus in a range of from about 523 GPa to about 627 GPa with a standard deviation of about 10% or less claim 1 , and wherein the Young's modulus is calculated with a Poisson's ratio selected from at least one of 0.18 and 0.27.6. The composition of claim 1 , wherein the hexagonal OsBis in the form of a powder.7. The composition of claim 6 , wherein the hexagonal OsBis stable at temperatures in a range of from about −223° C. to about 875° C.8. The composition of claim 6 , wherein the hexagonal OsBundergoes negative thermal expansion at a temperature range of from about 300° C. to ...

Подробнее
04-05-2017 дата публикации

ROOM TEMPERATURE FERROMAGNETIC GADOLINIUM SILICIDE NANOPARTICLES

Номер: US20170119909A1

A particle usable as Tand Tcontrast agents is provided. The particle is a gadolinium silicide (GdSi) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 μm in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (GdSi) particles that are less than 1 μm in diameter is also provided. A method for creating gadolinium silicide (GdSi) particles is also provided. The method includes the steps of providing a GdSibulk alloy; grinding the GdSibulk alloy into a powder; and milling the GdSibulk alloy powder for a time of approximately 20 minutes or less. 1. A ferromagnetic material , comprising:{'sub': 5', '4', '5', '4', '5', '4, 'a gadolinium silicide (GdSi) particle, wherein the GdSiparticle is ferromagnetic at temperatures up to 290 K and wherein the GdSiparticle is less than 2 μm in diameter.'}2. The material according to claim 1 , wherein the GdSiparticle remains ferromagnetic at temperatures up to 310 K.3. The material according to claim 1 , wherein the GdSiparticle is less than 1 μm in diameter.4. The material according to claim 1 , wherein the GdSiparticle is less than 500 nm in diameter.5. The material according to claim 1 , wherein the GdSiparticle includes 5 wt % or less GdSi.6. An MRI contrast agent claim 1 , wherein the MRI contrast agent comprises:{'sub': 5', '4', '5', '4, 'a plurality of gadolinium silicide (GdSi) particles, wherein the GdSiparticles are less than 1 μm in diameter.'}7. The MRI contrast agent according to claim 6 , wherein the GdSiparticles are ferromagnetic at temperatures up to 310 K.8. A method for creating gadolinium silicide (GdSi) particles comprising the steps of:{'sub': 5', '4, 'providing a GdSibulk alloy;'}{'sub': 5', '4', '5', '4, 'grinding the GdSibulk alloy into a GdSibulk alloy powder; and'}{'sub': 5', '4, 'milling the GdSibulk alloy powder for a time of approximately 20 minutes or less.'}9. The method of claim 8 , wherein the grinding and milling steps further comprise using an ...

Подробнее
02-05-2019 дата публикации

SYSTEMS AND METHODS FOR MAKING CERAMIC POWDERS AND CERAMIC PRODUCTS

Номер: US20190127282A1
Принадлежит:

Systems and methods for making ceramic powders are provided. The method for forming a ceramic powder includes: preparing a precursor mixture, wherein the preparing comprises adding at least one additive to a plurality of reagents, wherein the at least one additive includes at least one of: an oxide, a salt, a pure metal, or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and carbothermically reacting the precursor mixture to form a ceramic powder, wherein, due to the preparing step, the precursor mixture comprises a sufficient amount of the at least one additive to form the ceramic powder, wherein the ceramic powder comprises: (a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof; and (b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof. 1. A method , comprising:preparing a precursor mixture, wherein the preparing comprises adding at least one additive to a plurality of reagents, wherein the at least one additive includes at least one of: an oxide, a salt, a pure metal, or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof; and', 'b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof., 'carbothermically reacting the precursor mixture to form a ceramic powder, wherein, due to the preparing step, the precursor mixture comprises a sufficient amount of the at least one additive to form the ceramic powder, wherein the ceramic powder comprises2. The method of claim 1 , wherein the sufficient amount of the at least one additive is less than 0.75 wt. % based on a total weight of the ceramic powder.3. The method of claim ...

Подробнее
30-04-2020 дата публикации

Methods of Producing Cobalt Nanoparticles and Hollow Metal Nanospheres

Номер: US20200129619A1
Автор: Lindley Sarah, ZHANG Jin
Принадлежит:

Provided are methods of producing cobalt-based nanoparticles (CoBNPs) of a pre-selected diameter. The methods include reducing Co ions with a sodium borohydride (NaBH) solution having a selected ratio of tetrahydroxyborate (B(OH)) to tetrahydroborate (BH) based on the pre-selected diameter, where the ratio of B(OH) to BH is positively correlated with the pre-selected diameter. Also provided are methods of using the CoBNPs to produce hollow metal nanospheres (HMNs). Methods of producing CoBNP core/metal shell structures are also provided, such methods including combining in an anaerobic galvanic exchange reaction a deaerated solution including CoBNP scaffolds and a deaerated solution including a metal. Also provided are methods of producing HMNs from the CoBNP core/metal shell structures. Compositions and kits that find use in practicing the methods of the present disclosure and using HMNs produced in accordance with the methods of the present disclosure, are also provided. 1. A method of producing cobalt-based nanoparticles (CoBNPs) of a pre-selected diameter , comprising:{'sup': 2+', '−', '−', '−', '−, 'sub': 4', '4', '4', '4', '4, 'nucleating Co ions with a sodium borohydride (NaBH) solution having a selected ratio of tetrahydroxyborate (B(OH)) to tetrahydroborate (BH) based on the pre-selected diameter, wherein the ratio of B(OH)to BHis positively correlated with the pre-selected diameter,'}{'sub': x', 'y, 'to produce CoBNPs of the pre-selected diameter.'}2. The method according to claim 1 , wherein the pre-selected diameter is from about 10 to about 100 nm.3. The method according to or claim 1 , wherein the nucleating comprises: [{'sup': '2+', 'a cobalt salt comprising the Co ions;'}, 'a capping agent; and', {'sub': 4', '4', '4, 'sup': −', '−, 'the NaBHsolution having the selected ratio of B(OH)to BH.'}], 'combining4. The method according to claim 3 , wherein the combining comprises: a deaerated solution comprising the cobalt salt and the capping agent; and', {' ...

Подробнее
23-06-2016 дата публикации

FORM OF SILICON AND METHOD OF MAKING THE SAME

Номер: US20160176716A1
Принадлежит:

The invention relates to a new phase of silicon, Si, and a method of making the same. Sihas a quasi-direct band gap, with a direct gap value of 1.34 eV and an indirect gap value of 1.3 eV. The invention also relates to a compound of the formula NaSiand a method of making the same. N4Simay be used as a precursor to make Si. 1. A method of producing Sicomprising:{'sub': 4', '24, 'forming an NaSiprecursor by reacting a mixture of silicon and sodium at a pressure from about 7 GPa to about 15 GPa and a temperature from about 320° C. to about 1500° C.;'}{'sub': 4', '24', '24, 'subjecting the NaSiprecursor to vacuum conditions at a temperature from about 40° C. to about 500° C. to produce Si.'}2. The method of claim 1 , wherein the precursor NaSiis dynamically stable at a temperature of about 25° C. and a pressure of about 1 atmosphere.3. The method of wherein the NaSiprecursor contains 24 silicon atoms and 4 sodium atoms claim 1 , has a space group of Cmcm claim 1 , and has the following lattice constants: a=4.106 Å claim 1 , b=10.563 Å and c=12.243 Å.4. The method of wherein Sihas a quasi-direct band gap claim 1 , with a direct gap value of 1.34 eV and an indirect gap value of 1.3 eV.5. The method of wherein the ratio of sodium to silicon used to form NaSiis from about 10 to about 30 mol %.6. The method of wherein the mixture of sodium and silicon is heated in two steps claim 1 , first to about 400° C. for about 30 minutes and second to about 800° C. for about 1.5 to 24 hours.7. A method of producing NaSiby reacting a mixture of silicon and sodium at a pressure of greater than about 8 GPa and a temperature of greater than about 700° C.8. The method of wherein NaSicontains 24 silicon atoms and 4 sodium atoms claim 7 , has a space group of Cmcm claim 7 , and has the following lattice constants: a=4.106 Å claim 7 , b=10.563 Å and c=12.243 Å.9. The method of wherein the ratio of sodium to silicon in the reaction is about 20 mol %.10. A compound of the formula Si.11. The ...

Подробнее
02-07-2015 дата публикации

METHOD FOR PREPARING ZIRCONIUM BORIDE AND SYNCHRONOUSLY PREPARING CRYOLITE

Номер: US20150183645A1
Принадлежит:

A method for preparing zirconium boride and synchronously preparing a cryolite is provided which includes the following steps: Step A: placing aluminum in a reactor, heating the reactor to 700-850 degrees centigrade, and adding the mixture of fluorozirconate and fluoborate; and Step B: stirring the reactants for 4-6 hours and extracting the upper molten liquid to obtain a cryolite, wherein the lower substance is zirconium boride. The disclosure has the following beneficial effects: the new zirconium boride preparation method provided herein is simple in preparation flow and the device used, short in preparation period and high in reaction efficiency, the prepared zirconium boride with many contact angles has a large specific surface area and contains a controllable amount of aluminum. 1. A method for preparing zirconium boride and synchronously preparing a cryolite , comprising: the following steps:Step A: placing aluminum in a reactor, heating the reactor to 700-850 degrees centigrade, and adding the mixture of fluorozirconate and fluoborate; andStep B: stirring the reactants for 4-6 hours and extracting the upper molten liquid to obtain a cryolite, wherein the lower substance is zirconium boride.2. The method according to claim 1 , wherein the molar ratio of the fluorozirconate to the fluoborate is 2:1.3. The method according to claim 2 , wherein the fluorozirconate is potassium fluozirconate claim 2 , and the fluoborate is potassium fluoborate.4. The method according to claim 2 , wherein the fluorozirconate is sodium fluozirconate claim 2 , and the fluoborate is sodium fluoborate.5. The method according to claim 3 , wherein the cryolite obtained in Step B is a potassium cryolite the molecular formula of which is mKF·AlF claim 3 , in which m is 1.2.6. The method according to claim 4 , wherein the cryolite obtained in Step B is a sodium cryolite the molecular formula of which is nNaF·AlF claim 4 , in which n is 1.2. The disclosure relates to a method for preparing ...

Подробнее
21-06-2018 дата публикации

THIN FILM METAL SILICIDES AND METHODS FOR FORMATION

Номер: US20180174851A1

The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, PtSi, or PtSi. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing. 1. A thin film comprising PtSi.2. The thin film of claim 1 , wherein the thin film is selected from a group consisting of at least 40% PtSi claim 1 , at least 45% PtSi claim 1 , at least 50% PtSi claim 1 , at least 55% PtSi claim 1 , at least 60% PtSi claim 1 , at least 65% PtSi claim 1 , at least 70% PtSi claim 1 , at least 74% PtSi claim 1 , at least about 75% PtSi claim 1 , at least about 80% PtSi claim 1 , at least about 85% PtSi claim 1 , and at least about 88% PtSi.3. The thin film of claim 1 , wherein the thin film comprises a film formed by at least one of a source-limited method and a kinetically-limited method.4. A thin film including a metal silicide having a phase claim 1 , comprising:a substrate;a first layer comprising a first amount of amorphous silicon deposited on said substrate; anda second layer comprising a second amount of a metal deposited on the first layer;wherein a ratio of the amount of the amorphous silicon and the amount of the metal correspond to the phase upon annealing thereof; and5. ...

Подробнее
28-06-2018 дата публикации

MANUFACTURING METHOD OF SILICON CARBIDE AND SILICON CARBIDE MANUFACTURED USING THE SAME

Номер: US20180179071A1
Принадлежит:

A method of preparing silicon carbide according to the present invention includes reacting a silicon-containing compound with carbon dioxide, wherein a reducing agent is optionally used. 1. A method of preparing silicon carbide , the method comprising:reacting a silicon-containing compound with carbon dioxide,wherein a reducing agent is used.2. The method according to claim 1 , further comprising using a heat scavenger.3. The method according to claim 1 , wherein the reacting is represented by Reaction Scheme 1 below:{'br': None, 'sub': 2', '2, '4Mg+SiO+CO(g)→4MgO+SiC.\u2003\u2003[Reaction Scheme 1]'}4. The method according to claim 1 , wherein the reacting is a two-stage reaction represented by Reaction Scheme 2 below:{'br': None, 'sub': 2', '2, 'First stage: 4Mg+SiO→MgSi+2MgO'}{'br': None, 'sub': 2', '2, 'Second stage: MgSi+2MgO+CO(g)→4MgO+SiC.\u2003\u2003[Reaction Scheme 2]'}5. The method according to claim 1 , wherein the reacting is represented by Reaction Scheme 3 below:{'br': None, 'sub': 2', '2, 'MgSi+2MgO+CO(g)→4MgO+SiC.\u2003\u2003[Reaction Scheme 3]'}6. The method according to claim 1 , wherein the silicon-containing compound is amorphous silica (SiO).7. The method according to claim 6 , wherein the amorphous silica is chaff-derived silica.8. The method according to claim 1 , wherein the reacting is performed at a temperature of 1 claim 1 ,400° C. to 1 claim 1 ,700° C.9. The method according to claim 1 , wherein silicon carbide prepared using the method has a yield of 90% or more.10. The method according to claim 1 , further comprising post-treating silicon carbide prepared using the method.11. Silicon carbide prepared using the method according to and having a BET surface area of 50 m/g or more.12. The silicon carbide according to claim 11 , wherein the silicon carbide comprises α-silicon carbide and β-silicon carbide.13. The silicon carbide according to claim 12 , wherein a content of the β-silicon carbide is 40 wt % or more with respect to a total ...

Подробнее
13-07-2017 дата публикации

COPPER-CONTAINING SILICON MATERIAL, METHOD FOR PRODUCING SAME, NEGATIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY

Номер: US20170200949A1
Принадлежит: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI

A negative electrode active material having improved electron conductivity is provided. 1. A method for producing a copper-containing silicon material , the method comprising:{'sub': x', 'y, 'a first step of preparing a calcium source, a copper source, and a silicon source, preparing a molten metal by mixing and melting the calcium source, the copper source, and the silicon source such that calcium (Ca), copper (Cu), and silicon (Si) have a predetermined ratio as an atom ratio, and cooling the molten metal, to form a copper-containing calcium silicide having a composition of Ca, Cu, and Si represented by a formula CaCuSi(x and y satisfy 0.1≦x≦0.7, 1.33≦y≦2.1, and 1.8≦x+y≦2.2);'}a second step of causing a reaction between the copper-containing calcium silicide and an acid that extracts calcium (Ca) from the copper-containing calcium silicide, to form a silicon precursor; anda third step of performing a heat treatment in a non-oxidizing atmosphere on the silicon precursor.2. The method for producing the copper-containing silicon material according to claim 1 , wherein the calcium source claim 1 , the copper source claim 1 , and the silicon source are metal calcium claim 1 , metal copper claim 1 , and metal silicon claim 1 , respectively.3. The method for producing the copper-containing silicon material according to claim 1 , wherein a heat treatment temperature in the third step is 350° C. to 950° C.4. The method for producing the copper-containing silicon material according to claim 1 , wherein the copper-containing calcium silicide has a crystal structure that belongs to P6/mmm space group.5. A copper-containing silicon material obtained by the method according to .6. The copper-containing silicon material according to claim 5 , wherein the copper-containing silicon material contains 1 to 50 mass % of copper (Cu).7. The copper-containing silicon material according to claim 5 , wherein the copper-containing silicon material contains an amorphous phase and copper ...

Подробнее
19-07-2018 дата публикации

ELECTRODE, METHOD FOR PRODUCING ELECTRODE, BATTERY, AND METHOD FOR USING CLATHRATE COMPOUND

Номер: US20180205082A1
Принадлежит:

An electrode containing a clathrate compound is disclosed that is more likely to withstand load involved in repetition of penetration and desorption of, e.g., lithium ions compared to no guest substance-encapsulating silicon clathrate compounds. An electrode active material making up the electrode according to the present invention includes a clathrate compound. The clathrate compound contains a crystal lattice and a guest substance. The guest substance is encapsulated in the crystal lattice. It is preferable that the clathrate compound be a main component of the electrode active material that makes up the electrode. 116-. (canceled)17. An electrode , comprising an electrode active material containing a clathrate compound containing a crystal lattice and a guest substance encapsulated in the crystal lattice.18. The electrode according to claim 17 , wherein the electrode further comprises:a conductivity providing agent,a binder, anda foil.19. The electrode according to claim 17 , wherein the clathrate compound is nanoparticulated.20. The electrode according to wherein:the guest substance contains at least one element selected from a group consisting of barium (Ba), calcium (Ca) and lithium (Li); andthe crystal lattice contains at least one element selected from a group consisting of gallium (Ga), aluminum (Al), indium (In), silver (Ag), gold (Au), copper (Cu), nickel (Ni) and cobalt (Co), and at least one element selected from a group consisting of silicon (Si) and tin (Sn).21. The electrode according to claim 20 , wherein:{'sub': x', 'y', 'z, 'the clathrate compound has a composition of ABC;'}the A contains at least one element selected from a group consisting of barium (Ba), calcium (Ca) and lithium (Li);the B contains at least one element selected from a group consisting of indium (In), silver (Ag), gold (Au), copper (Cu), nickel (Ni) and cobalt (Co);the C contains at least one element selected from a group consisting of silicon (Si) and tin (Sn);the x is 7 to 9; ...

Подробнее
11-07-2019 дата публикации

THERMOELECTRIC CONVERSION MATERIAL, THERMOELECTRIC CONVERSION ELEMENT AND THERMOELECTRIC CONVERSION MODULE

Номер: US20190214538A1
Принадлежит:

A thermoelectric conversion material includes: a base material that is a semiconductor; and an additive element that differs from an element constituting the base material. An additional band formed of the additive element is present within a forbidden band of the base material. A density of states of the additional band has a ratio of greater than or equal to 0.1 relative to a maximum value of a density of states of a valence band adjacent to the forbidden band of the base material. 1. A thermoelectric conversion material , comprising:a base material that is a semiconductor; andan additive element that differs from an element constituting the base material, whereinan additional band formed of the additive element is present within a forbidden band of the base material, anda density of states of the additional band has a ratio of greater than or equal to 0.1 relative to a maximum value of a density of states of a valence band adjacent to the forbidden band of the base material.2. The thermoelectric conversion material according to claim 1 , wherein an electric conductivity is greater than or equal to 50 kS/m and less than or equal to 1.5 MS/m.3. The thermoelectric conversion material according to claim 1 , wherein a half bandwidth of the additional band is less than or equal to 50 meV.4. The thermoelectric conversion material according to claim 1 , wherein the additive element has an unoccupied orbital in d orbital or f orbital located inside an outermost shell.5. The thermoelectric conversion material according to claim 1 , wherein the additive element is a transition metal.6. The thermoelectric conversion material according to claim 1 , wherein the additional band lies in a region within 100 meV from the valence band or a conduction band of the base material.7. The thermoelectric conversion material according to claim 1 , wherein the base material is an SiGe-based material.8. The thermoelectric conversion material according to claim 7 , wherein the additive ...

Подробнее
09-08-2018 дата публикации

Electronically Abrupt Borophene/Organic Lateral Heterostructures and Preparation Thereof

Номер: US20180222755A1
Принадлежит:

Articles comprising a boron allotrope and an organic compound having a lateral interface one with the other, together with method(s) of preparation of such articles. 1. An article of manufacture comprising a substrate; a boron allotrope comprising an elemental boron layer of boron atoms comprising a boron atomic thickness dimension; and an organic compound layer , said boron allotrope and said organic compound layer coupled to said substrate , laterally adjacent one to the other and providing a lateral interface one with the other.2. The article of wherein said boron allotrope is borophene.3. The article of wherein said organic compound layer comprises a self-assembly product of perylene-3 claim 1 ,4 claim 1 ,9 claim 1 ,10-tetracarboxylic dianhydride (PTCDA).4. The article of wherein said substrate is silver.5. The article of wherein said substrate comprises single crystal Ag(111).6. The article of wherein said boron allotrope comprises a homogeneous boron phase.7. The article of wherein said boron allotrope is metallic.8. The article of wherein said organic compound is semiconducting.9. The article of wherein said organic compound is PTCDA.10. An article of manufacture comprising a silver substrate; a metallic boron allotrope comprising an elemental boron layer of boron atoms comprising a boron atomic thickness dimension; and a semiconducting organic compound monolayer comprising a self-assembly product of PTCDA claim 8 , said boron allotrope and said organic compound layer coupled to said substrate claim 8 , laterally adjacent one to the other and providing a non-covalent lateral interface one with the other.11. The article of wherein said boron allotrope is borophene.12. The article of wherein said substrate comprises single crystal Ag(111).13. The article of wherein said boron allotrope comprises a homogeneous boron phase.14. An article of manufacture comprising a substrate; a boron allotrope comprising an elemental boron layer of boron atoms comprising a boron ...

Подробнее
11-08-2016 дата публикации

THIN FILM METAL SILICIDES AND METHODS FOR FORMATION

Номер: US20160233097A1
Принадлежит:

The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, PtSi, or PtSi. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing. 1. A method for forming a thin film comprising a metal silicide , comprising:providing a substrate;depositing at least two film layers on the substrate, the at least two film layers comprising a first layer comprising amorphous silicon and a second layer comprising metal contacting the first layer; andannealing the at least two film layers to form a metal silicide.2. The method of claim 1 , wherein the substrate comprises silicon.3. The method of claim 1 , further comprising depositing a diffusion barrier between the substrate and the at least two film layers.4. The method of claim 3 , wherein the diffusion barrier comprises at least one of aluminum nitride and silicon nitride.5. The method of claim 1 , wherein depositing comprises first depositing the first layer and subsequently depositing the second layer on top of the first layer.6. The method of claim 1 , wherein depositing comprises sputter depositing.7. The method of claim 1 , wherein the metal comprises platinum.8. The method of claim 1 , wherein the metal ...

Подробнее
25-07-2019 дата публикации

Carbide, Nitride And Silicide Enhancers For Laser Absorption

Номер: US20190225000A1
Принадлежит:

A universal or all-purpose laser marking composition for forming satisfactorily dark laser marks on a wide variety of substrates is provided. The marking composition comprises an enhancer of nitrides, carbides, silicides, and combinations thereof. The enhancer may be selected one or more of ferromanganese, ferrosilicon, FeSiwhere X can range from about 0.005 to 0.995, FeSi, MgFeSi, SiC, CaSi, (Co)Mo, MoSi, TiSi, ZrSi, WSi, MnSi, YSi, CuSi, NiSi, FeC, FeCand FeC, MoC, MoC, MoC, YC, WC, AlC, MgC, MgC, CaC, LaC, TaC, FeN, FeN, FeN, FeN, FeN, MoN, MoN, WN, WN, WN, and combinations thereof and combinations thereof. Upon disposing the marking composition on a substrate and exposing the marking composition to laser radiation, the marking composition absorbs the laser radiation, increases in temperature, chemically bonds with the substrate, and when formed on each of a metal, glass, ceramic, stone, and plastic substrates, the mark has a negative ΔL dark contrast value of at least −1 compared to a mark formed by the marking composition without the enhancer. 1. A marking composition for forming marks or indicia on a substrate upon laser irradiation , the marking composition comprising an enhancer selected from the group consisting of nitrides , carbides , silicides , and combinations thereof , upon disposing the marking composition on a substrate and exposing the marking composition to laser radiation, the marking composition absorbs the laser radiation, increases in temperature, chemically bonds with the substrate, and forms a fused mark on the substrate having a luminance, color value, or degrees of opacity that provides visual contrast with the substrate, and', 'when formed on each of a metal, glass, ceramic, stone, and plastic substrates, the mark has a negative ΔL dark contrast value of at least −1 compared to a mark formed by the marking composition without the enhancer., 'wherein2. The marking composition according to claim 1 , wherein the enhancer is selected from the ...

Подробнее
27-11-2014 дата публикации

MAGNETIC MATERIAL AND METHOD FOR PRODUCING SAME

Номер: US20140346388A1
Принадлежит: ROBERT BOSCH GMBH

The invention relates to a method for producing a magnetic material, said magnetic material consisting of a starting material that comprises a rare earth metal (SE) and at least one transition metal. The method has the following steps: —hydrogenating the starting material, —disproportioning the starting material, —desorption, and —recombination. A magnetic field is applied during at least one step such that a textured magnetic material is obtained and the formation of a texture is promoted in the magnetic material. 1. A process for producing a magnetic material from a starting material , where the starting material comprises at least one rare earth metal (RE) and at least one transition metal , which comprises the steps:hydrogenation of the starting material,disproportionation of the starting material and formation of a disproportionated phase,desorption andrecombination,wherein a magnetic field is applied during at least one step in such a way that a textured magnetic material is obtained and the formation of a texture in the magnetic material is promoted.2. The process as claimed in claim 1 , characterized in that the magnetic field is applied during the desorption step and recombination step.3. The process as claimed in claim 1 , characterized in that the magnetic field is applied during an equilibrium state between the step of disproportionation and the step of desorption/recombination.4. The process as claimed in claim 1 , characterized in that the magnetic field strength of the applied magnetic field is from >0 to 100 tesla.5. The process as claimed in claim 1 , characterized in that the equilibrium state is brought about by reducing the hydrogen partial pressure.6. The process as claimed in claim 5 , characterized in that the temperature is initially kept constant at the commencement of desorption/recombination.7. The process as claimed in claim 1 , characterized in that the temperature during the hydrogenation step is from about 20° C. to 350° C. claim 1 , ...

Подробнее
07-10-2021 дата публикации

Preparation of metal diboride and boron-doped powders

Номер: US20210309531A1

A method for producing a metal boride powder includes producing a boriding gas stream from a first powder in a first fluidizing bed reactor, delivering the boriding gas stream to a second fluidized bed reactor through a conduit fluidly connecting the first and second fluidized bed reactors, fluidizing a second powder in the second fluidized bed reactor, mixing the second powder with the boriding gas stream such that a metal boride or boron-doped powder is formed.

Подробнее
06-08-2020 дата публикации

PREPARATION OF METAL DIBORIDE AND BORON-DOPED POWDERS

Номер: US20200247680A1
Принадлежит:

A method for producing a metal boride powder includes producing a bonding gas stream from a first powder in a first fluidizing bed reactor, delivering the bonding gas stream to a second fluidized bed reactor through a conduit fluidly connecting the first and second fluidized bed reactors, fluidizing a second powder in the second fluidized bed reactor, mixing the second powder with the bonding gas stream such that a metal boride or boron-doped powder is formed. 1. A method for producing a metal boride powder , the method comprising:producing a boriding gas stream from a first powder in a first fluidizing bed reactor;delivering the boriding gas stream to a second fluidized bed reactor through a conduit fluidly connecting the first and second fluidized bed reactors, the second fluidized bed reactor containing a second powder;fluidizing the second powder in the second fluidized bed reactor; andmixing the second powder with the boriding gas stream such that a metal boride or boron-doped powder is formed.2. The method of claim 1 , and further comprising fluidizing the boron carbide in a first chamber of the fluidized bed reactor claim 1 , wherein the first power comprises boron carbide.3. The method of claim 2 , wherein the second powder is selected from the group consisting of metal oxides claim 2 , metal hydroxides claim 2 , and alloys.4. The method of claim 3 , and further comprising heating the first chamber to a temperature ranging from approximately 600 to 1500 degrees Celsius to promote decomposition of the boron carbide and formation of the boriding gas stream.5. The method of claim 4 , wherein the first powder has a particle size ranging from approximately 10 microns to 1.4 millimeters.6. The method of claim 4 , and further comprising sampling a first exhaust gas from the first fluidized bed reactor to detect the formation of the boriding gas stream.7. The method of claim 4 , and further comprising delivering a mixture of the boriding gas stream and an inert gas ...

Подробнее
14-10-2021 дата публикации

Composite Uranium Silicide-Uranium Dioxide Nuclear Fuel

Номер: US20210319919A1
Принадлежит: UNIVERSITY OF SOUTH CAROLINA

Described herein are Uranium silicide materials as advanced nuclear fuel replacements for uranium dioxide fuel in light water reactors (LWRs) that have advantages over currently used uranium dioxide (UO) via a substantially higher thermal conductivity and, thus, are capable of operating in a reactor at significantly lower temperatures for the same level of power production, plus the heat capacity of a silicide is lower than that of an oxide so that less heat is stored in the fuel that would need to be removed under accident conditions. 1. A replacement nuclear fuel pellet comprising:at least one silicide;uranium dioxide powder;wherein the at least one silicide has higher thermal conductivity than uranium dioxide; andwherein the uranium dioxide powder at least partially surrounds the at least one silicide in a body of the fuel pellet.2. The replacement nuclear fuel of claim 1 , wherein the at least one silicide comprises a uranium silicide.3. The replacement nuclear fuel of claim 1 , wherein the uranium silicide comprises USi.4. The replacement fuel of claim 1 , wherein the at least one silicide is at least one particle sized from 1 μm to 100 μm.5. The replacement fuel of claim 1 , wherein an outer layer of uranium dioxide powder is provided as the exterior layer of the fuel pellet.6. The replacement fuel of claim 1 , wherein the at least one silicide is present by at least 51% by volume in the pellet.7. The replacement fuel of claim 1 , wherein size of uranium dioxide powder particles ranges from 1 to 100 microns.8. A method for making a nuclear fuel pellet comprising: at least one silicide;', 'uranium dioxide powder; and', 'at least one ceramic binder;, 'forming a pellet fromforming at least one green body from the above;sintering the at least one green body in a controlled oxygen furnace to form a nuclear fuel pellet; andwherein the at least one silicide comprises at least 51% of the volume of the nuclear fuel pellet.9. The method of claim 8 , wherein the at least ...

Подробнее
27-08-2020 дата публикации

ACTIVATED MAGNESIUM BORIDE MATERIALS FOR HYDROGEN STORAGE

Номер: US20200270127A1
Принадлежит:

Some embodiments described herein provide for methods for synthesizing magnesium borohydride from hydrogenation of magnesium boride at moderate temperature and pressure in the presence of a modifier. The modifier may be in form of hydrides, liquid hydrogen carriers, ammonia borane, metallic species, croconate anion based materials, ethers, amines or imines, metal carbides, borides, graphene, arenes, magnesium, aluminum, calcium or ionic liquids. Some embodiments provide for charging magnesium boride in presence of a modifier at high pressure hydrogen while simultaneously heating the material. The modification in some instances may lead to an improved magnesium boride product with enhanced properties for application in other hydrogen storage systems. 1. A method of making hydrogen storage materials through modifications of magnesium boride , the method comprising milling magnesium boride in the presence of sub-stoichiometric amounts of at least one of an ether , arene , graphene , metal hydride , and metal in an inert atmosphere.2. The method of claim 1 , wherein the ether is tetrahydrofuran.3. The method of claim 1 , wherein the arene is anthracene or phenanthrene.4. The method of claim 1 , wherein the metal hydride is magnesium hydride.5. The method of claim 1 , wherein the metal is magnesium.6. A method for reversible storage of hydrogen based on magnesium boride which has been modified by the method of claim 1 , which has a cycling hydrogen charging pressure ≤400 atm and hydrogen charging/discharging temperature ≤300° C.7. A method for reversible storage of hydrogen based on magnesium boride that has been modified by the method of which stores and releases hydrogen with a maintained hydrogen cycling capacity of ≥4.0 wt. %.8. A method of powering a vehicle apparatus claim 1 , the method comprising:modifying magnesium boride through mechanically mixing the magnesium boride in the presence of sub-stoichiometric amounts of at least one of an ether, arene, graphene, ...

Подробнее
25-12-2014 дата публикации

ULTRA-LIGHTWEIGHT ENERGY STORAGE MATERIAL

Номер: US20140377662A1
Автор: DEB Nilanjan
Принадлежит:

Disclosed are compositions containing a formula of LiTiVBwherein x, y, and z are real numbers greater than zero. In certain embodiments, x is not greater than 7, and y is not greater than 6, or a combination thereof. The composition may be a microporous aerogel, a mesoporous aerogel, a crystalline structure, or a combination thereof. In certain embodiments, the composition may be an aerogel, and a surface of the aerogel comprises microcrystals, nanocrystals or a combination thereof. The compositions have very low densities. Also disclosed are methods to produce the composition and use of the composition in energy storage devices. 1. A composition comprising a material having a formula of LiTiVB , wherein x , y , and z are real numbers greater than 0.2. The composition of claim 1 , wherein x is not greater than 7.3. The composition of claim 1 , wherein y is not greater than 6.4. The composition of claim 1 , wherein z is less than or equal to 10.5. The composition of claim 1 , wherein the composition is a microporous aerogel claim 1 , a mesoporous aerogel claim 1 , a crystalline structure claim 1 , or a combination thereof.6. The composition of claim 1 , wherein the composition is an aerogel selected from a microporous aerogel claim 1 , a mesoporous aerogel claim 1 , and a combination thereof claim 1 , and a surface of the aerogel comprises microcrystals claim 1 , nanocrystals claim 1 , or a combination thereof claim 1 , of the material.7. The composition of claim 1 , wherein the composition is made into a film.8. The composition of claim 1 , wherein the composition is deposited as a layer onto the anode of an energy storage device.9. The composition of claim 1 , wherein the composition has characteristics of sponginess.10. The composition of claim 1 , wherein the composition has a density of about 0.05 gram/mL to about 1 gram/mL on a dried basis.11. The composition of claim 1 , wherein one or more of Li claim 1 , Ti claim 1 , V claim 1 , and B claim 1 , is in an ...

Подробнее
22-10-2015 дата публикации

SILICIDE COMPOSITIONS CONTAINING ALKALI METALS AND METHODS OF MAKING THE SAME

Номер: US20150299625A1
Принадлежит:

The invention relates to a method of making alkali metal silicide compositions, and the compositions resulting from the method, comprising mixing an alkali metal with silicon and heating the resulting mixture to a temperature below about 475° C. The resulting compositions do not react with dry O. Also, the invention relates to sodium silicide compositions having a powder X-ray diffraction pattern comprising at least three peaks with 2Theta angles selected from about 18.2, 28.5, 29.5, 33.7, 41.2, 47.4, and 56.2 and a solid state Na MAS NMR spectra peak at about 18 ppm. Moreover, the invention relates to methods of removing a volatile or flammable substance in a controlled manner. Furthermore, the alkali metal silicide compositions of the invention react with water to produce hydrogen gas. 1. A method of removing a volatile or flammable substance in a controlled manner , the volatile or flammable substance being in the presence of water , the method comprising the step of:exposing the volatile or flammable substance to an alkali metal silicide composition,wherein the alkali metal silicide composition is a sodium silicide powder or a potassium silicide powder; andwherein the alkali metal silicide composition is stable in dry air and reacts exothermically with the water causing a controlled burn, thereby removing the volatile or flammable substance.2. A method of claim 1 , wherein the alkali metal silicide composition comprises NaSior KSi.3. A method of claim 1 , wherein the molar ratio between the alkali metal and the silicon in the alkali metal silicide composition is about 1:1.4. A method of claim 1 , wherein an exothermic reaction between the alkali metal silicide composition and the water consumes the volatile or flammable substance.5. A method of claim 1 , wherein an exothermic reaction between the alkali metal silicide composition and the water cleans the volatile or flammable substance.6. A method of removing a volatile or flammable substance in a controlled ...

Подробнее
22-10-2015 дата публикации

Method for producing protective layers containing silicides and/or oxidized silicides on substrates

Номер: US20150299844A1
Принадлежит:

The invention relates to a method for producing protective layers containing silicides and/or oxidized silicides on a substrate, in which silicide or a precursor thereof is applied to the substrate and the coated substrate is subjected to a temperature treatment above 250° C. without further processing. The layers obtained have a thickness in the nano-range and can simultaneously have various characteristic features, i.e. they are multifunctional. The following characteristic features were found for these nanolayers: scratch resistance, abrasion resistance, corrosion resistance and temperature resistance up to 1500° C., depending in each case on the substrate and the silicide(oxide) used for the coating. 114-. (canceled)15. A method for producing on a substrate a protective layer containing silicides and/or oxidized silicides , the method comprising:applying one or more silicides or precursors thereof onto a substrate to form a coated substrate;subjecting the coated substrate, without further processing, to a heat treatment at a temperature above 250° C.16. The method according to claim 15 , further comprising selecting in the step of applying at least one application method for the one or more silicides or the precursors thereof from the group consisting of PVD (physical vapor deposition) claim 15 , CVD (chemical vapor deposition) claim 15 , an electrostatic method claim 15 , and screen printing.17. The method according to claim 16 , wherein the application method is cathode evaporation (sputter coating).19. The method according to claim 18 , further comprising selecting the silicides from boron silicides claim 18 , carbon-containing silicides claim 18 , and nitrogen-containing silicides.20. The method according to claim 18 , further comprising selecting the silicides from the group consisting of titanium silicides (TiSi claim 18 , TiSi) claim 18 , nickel silicide (NiSi) claim 18 , iron silicides (FeSi claim 18 , FeSi) claim 18 , thallium silicide (ThSi) claim 18 , ...

Подробнее
27-10-2016 дата публикации

METHOD FOR MANUFACTURING MGB2 SUPERCONDUCTOR, AND MGB2 SUPERCONDUCTOR

Номер: US20160314877A1

Provided are a method for manufacturing MgBsuperconductor by pressure molding a mixture of Mg powder or MgHpowder and B powder and heat-treating the mixture, the method including (I) a step of adding a polycyclic aromatic hydrocarbon to the B powder, while heating the mixture to a temperature higher to or equal to the melting point of the polycyclic aromatic hydrocarbon at the time of this addition, and thereby covering the surface of the B powder with the polycyclic aromatic hydrocarbon; and (II) a step of mixing the B powder having the surface covered with the polycyclic aromatic hydrocarbon, with the Mg powder or the MgHpowder, or a step of combining the B powder having the surface covered with the polycyclic aromatic hydrocarbon, with an Mg rod; and an MgBsuperconducting wire which has high critical current density (Jc) characteristics and less fluctuation in the critical current density (Jc). 1. A method for manufacturing MgBsuperconductor by pressure molding a mixture of Mg powder or MgHpowder and B powder and heat-treating the mixture , the method comprising:(I) adding a polycyclic aromatic hydrocarbon to the B powder, while heating the mixture to a temperature higher than or equal to the melting point of the polycyclic aromatic hydrocarbon at the time of this addition, and thereby covering the surface of the B powder with the polycyclic aromatic hydrocarbon; and{'sub': '2', '(II) mixing the B powder having the surface covered with the polycyclic aromatic hydrocarbon, with the Mg powder or the MgHpowder.'}2. The method for manufacturing MgBsuperconductor according to claim 1 , wherein the polycyclic aromatic hydrocarbon is at least one selected from coronene claim 1 , anthanthrene claim 1 , benzo(ghi)perylene claim 1 , circulenes claim 1 , corannulene claim 1 , dicoronylene claim 1 , diindenoperylene claim 1 , helicene claim 1 , heptacene claim 1 , hexacene claim 1 , kekulene claim 1 , ovalene claim 1 , zethrene claim 1 , benzo[a]pyrene claim 1 , benzo[e] ...

Подробнее
26-11-2015 дата публикации

TRANSPARENT CONDUCTOR AND ELECTRONIC DEVICE INCLUDING THE SAME

Номер: US20150340123A1
Принадлежит:

A transparent conductor including a Group 5 transition metal and boron, wherein the compound has a layered structure. 1. A transparent conductor comprising:a compound comprising a Group 5 transition metal and boron, wherein the compound has a layered structure.2. The transparent conductor of claim 1 , wherein the compound is represented by the following Chemical Formula 1:{'br': None, 'sub': x', 'y, 'MB\u2003\u2003Chemical Formula 1'}wherein, in Chemical Formula 1,M is vanadium, niobium, tantalum, or a combination thereof,B is boron, andx and y are stoichiometric ratios of M and B.3. The transparent conductor of claim 2 , wherein x and y of Chemical Formula 1 satisfy x≦y.4. The transparent conductor of claim 2 , wherein a ratio of the x and y of Chemical Formula 1 is about 2:3 claim 2 , about 3:4 claim 2 , about 1:1 claim 2 , about 1:2 claim 2 , or about 5:6.5. The transparent conductor of claim 2 , wherein the compound comprises VB claim 2 , NbB claim 2 , TaB claim 2 , VB claim 2 , NbB claim 2 , TaB claim 2 , VB claim 2 , NbB claim 2 , TaB claim 2 , VB claim 2 , NbB claim 2 , TaB claim 2 , VB claim 2 , NbB claim 2 , TaB claim 2 , or a combination thereof.6. The transparent conductor of claim 1 , wherein the layered structure comprises a plurality of unit crystal layers.7. The transparent conductor of claim 6 , wherein each unit crystal layer comprises:an upper layer and a lower layer, each consisting of the Group 5 transition metal; andboron disposed between the upper layer and the lower layer.8. The transparent conductor of claim 6 , wherein the plurality of unit crystal layers comprises a unit crystal layer consisting of the transition metal of Group 5 alternately disposed with a unit crystal layer consisting of the boron to form the layered structure.9. The transparent conductor of claim 6 , wherein the unit crystal layers have an interlayer bonding force of less than 0.45 electron volts per Angstrom.10. The transparent conductor of claim 1 , wherein a product ...

Подробнее
23-11-2017 дата публикации

MECHANOCHEMICAL SYNTHESIS OF IRIDIUM DIBORIDE AND IRIDIUM MONOBORIDE

Номер: US20170334731A1
Принадлежит:

The present disclosure relates generally to a composition comprising at least one of iridium diboride and iridium monoboride, and methods of making such. The present disclosure also relates to a composition comprising iridium monoboride and at least one of (a) rows of single iridium atoms and/or (b) one or more clusters of iridium atoms, and methods of making such. 1. A composition comprising at least one of iridium diboride and iridium monoboride.2. The composition of claim 1 , wherein the iridium diboride has a hexagonal ReB-type structure.3. The composition of claim 2 , wherein the iridium diboride having a hexagonal ReB-type structure comprises a unit cell dimension having the following lattice parameters:a is in a range of from about 2.9 to about 3.1 Å;b is in a range of from about 2.9 to about 3.1 Å; andc is in a range of from about 7 to about 7.6 Å.4. The composition of claim 2 , wherein the iridium diboride having a hexagonal ReB-type structure comprises a unit cell dimension having the following lattice parameters:a is in a range of from about 2.92 to about 3.07 Å;b is in a range of from about 2.92 to about 3.07 Å; andc is in a range of from about 7.07 to about 7.55 Å.5. The composition of claim 1 , wherein the iridium monoboride has an orthorhombic lattice.6. The composition of claim 5 , wherein the orthorhombic iridium monoboride has a Pnma crystal structure comprising a unit cell dimension having the following lattice parameters:a is in a range of from about 4.4 to about 5.6 Å;b is in a range of from about 2.8 to about 3.3 Å; andc is in a range of from about 6.2 to about 7.1 Å.7. The composition of claim 5 , wherein the orthorhombic iridium monoboride has a Pnma crystal structure comprising a unit cell dimension having the following lattice parameters:a is in a range of from about 4.42 to about 5.55 Å;b is in a range of from about 2.87 to about 3.25 Å; andc is in a range of from about 6.23 to about 7.02 Å.8. The composition of claim 1 , wherein the ...

Подробнее
29-11-2018 дата публикации

ZIRCONIUM BORIDE AND METHOD OF ITS MANUFACTURE

Номер: US20180339909A1
Принадлежит:

In order to provide a zirconium boride that provides high caloric value at the time of its combustion with a compound having radicals such as perchlorate and can combust in a short period of time, while providing high physical stability, an amount of radical derived from lattice defect detected by ESR spectroscopy, is set to 0.1×10spin/mg or more. 1. Zirconium boride having an amount of radical derived from lattice defect detected by ESR spectroscopy , which amount is 0.1×10spin/mg or more.2. The zirconium boride of claim 1 , having an amount of radical derived from lattice defect determined by ESR spectroscopy which amount is 0.5×10spin/mg or more and an amount of total radical derived from both the lattice defect and unpaired electron derived from a distortion of the crystalline structure which total amount is 2.0×10spin/mg or more.3. The zirconium boride of claim 1 , wherein when TG-DTA analysis is performed in a nitrogen atmosphere for a mixture thereof with a perchlorate claim 1 , a resultant characteristic temperature increase curve determined by TG-DTA analysis has a heat generation peak between 400 and 600° C. claim 1 , and its heat generation rate is 10 μV/mg or more.4. The zirconium boride of claim 3 , wherein the perchlorate is at least one of potassium perchlorate and ammonium perchlorate.5. The zirconium boride of claim 1 , wherein carbon is present therein by from 1 to 15% by weight.6. The zirconium boride of claim 1 , having a specific surface area ranging from 5 to 50 m/g.7. A method of manufacturing zirconium boride claim 1 , comprising:a step 1 of mixing zirconium oxide, boron trioxide and carbon such that a mass ratio of the boron trioxide relative to the zirconium oxide in the resultant mixture ranges from 90 to 120% by mass and a mass ratio of the carbon relative to the same ranges from 40 to 60% by mass;a step 2 of sintering the mixture obtained at step 1 at from 400 to 600° C.;a step 3 of melting the sintered product obtained at step 2 in a ...

Подробнее
06-12-2018 дата публикации

Process for the generation of thin inorganic films

Номер: US20180346501A1
Принадлежит: BASF SE

The present invention is in the field of processes for the generation of thin inorganic films on substrates, in particular atomic layer deposition processes. The present invention relates to a process comprising bringing a compound of general formula (I) into the gaseous or aerosol state and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein M is Mn, Ni or Co, X is a ligand which coordinates M, n is 0, 1, or 2, R 1 , R 2 are an alkyl group, an alkenyl group, an aryl group or a silyl group, m is 1, 2, or 3, R 3 , R 4 , and R 5 are an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an aryloxy group, and p is 1, 2 or 3.

Подробнее
14-12-2017 дата публикации

FORM OF SILICON AND METHOD OF MAKING THE SAME

Номер: US20170355605A1
Принадлежит: CARNEGIE INSTITUTION OF WASHINGTON

The invention relates to a new phase of silicon, Si, and a method of making the same. Sihas a quasi-direct band gap, with a direct gap value of 1.34 eV and an indirect gap value of 1.3 eV. The invention also relates to a compound of the formula NaSiand a method of making the same. NaSimay be used as a precursor to make Si. 19-. (canceled)10. A compound of the formula Si.1112-. (canceled)13. The compound of having an indirect band gap of 1.3 eV and a direct band gap of 1.34 eV.1416-. (canceled)17. The compound of wherein the sodium concentration is less than 0.1 atom %.18. The compound of wherein the structure is nanoporous. This invention was made with Government support under Grant Number W911NF-11-1-0300 awarded by the U.S. Army Contracting Command and Grant Number DE-SC0001057 awarded by the U.S. Department of Energy. The U.S. Government has certain rights in the invention.The present invention relates generally to a new form of silicon, precursors that are useful in making a new form of silicon, and methods of making these compounds. More specifically, the invention is concerned with Si, a new form of silicon, and NaSi, a new compound that is useful as a precursor to make Si. The invention also relates to other sodium-silicon compounds, including sodium-silicon clathrate compounds, and new methods of making the same.Silicon is the second most common element found in the earth's surface. It has a wide variety of commercial uses, including in electronics and semiconductors, in metallurgical materials, and in photovoltaics. Silicon has a large impact on the world economy, and much of modern technology depends on it.“Normal” silicon has a diamond structure, d-Si. Despite the prevalence of “normal” silicon in the photovoltaic industry, silicon is actually a relatively poor absorber of sunlight. This is because d-Si has an indirect band gap of 1.1 eV and a direct bandgap of 3.2 eV. That is, d-Si cannot directly absorb photons with an energy level less than 3.2 eV to ...

Подробнее
31-12-2015 дата публикации

ELECTRICALLY CONDUCTIVE THIN FILMS

Номер: US20150376020A1
Принадлежит:

An electrically conductive thin film includes a compound represented by Chemical Formula 1 and having a layered crystal structure: 2. The electrically conductive thin film of claim 1 , wherein the electrically conductive thin film has a light transmittance of greater than or equal to about 80 percent for light at a wavelength of about 550 nanometers at a thickness of less than or equal to 10 nanometers.3. The electrically conductive thin film of claim 1 , wherein the thin film comprises AuB claim 1 , AlB claim 1 , AgB claim 1 , MgB claim 1 , TaB claim 1 , NbB claim 1 , YB claim 1 , WB claim 1 , VB claim 1 , MoB claim 1 , ScB claim 1 , or a combination thereof.4. The electrically conductive thin film of claim 1 , which has an electrical conductivity of greater than or equal to about 5000 Siemens per centimeter.5. The electrically conductive thin film of claim 4 , which has electrical conductivity of greater than or equal to about 10 claim 4 ,000 Siemens per centimeter.6. The electrically conductive thin film of claim 1 , which has a product of an absorption coefficient for light having a wavelength of about 550 nanometers and a resistivity value thereof of less than or equal to about 35 ohms per square.7. The electrically conductive thin film of claim 1 , which has a product of an absorption coefficient for light having a wavelength of about 550 nanometers and a resistivity value thereof of less than or equal to about 6 ohms per square.8. The electrically conductive thin film of claim 1 , which has a transmittance of about 90 percent for light having a wavelength of 550 nanometers and sheet resistance of less than or equal to about 60 ohms per square.9. The electrically conductive thin film of claim 1 , wherein the layered crystal structure belongs to a hexagonal system having a P6/mmm space group.10. The electrically conductive thin film of claim 9 , which maintains the layered crystal structure after being exposed to air for 60 days or more at 25° C.11. The ...

Подробнее
27-12-2018 дата публикации

METHOD TO PRODUCE URANIUM SILICIDES

Номер: US20180370808A1
Принадлежит: WESTINGHOUSE ELECTRIC COMPANY LLC

The method described herein may be characterized as reacting uranium dioxide with carbon to produce uranium carbide, and, reacting the uranium carbide with a silane, a silicon halide, a siloxane, or combinations thereof, and excess hydrogen to produce uranium silicide. 1. A method comprising:forming uranium dioxide;reacting uranium dioxide with carbon to produce uranium carbide; and, reacting uranium carbide with a silicon based reactant comprised of a silane, a silicon halide, a siloxane, and combinations thereof, in the presence of excess hydrogen to form a uranium silicide product.2. The method recited in wherein uranium dioxide is formed from a uranium fluoride.3. The method recited in wherein the uranium fluoride is selected from uranium hexaflouride (UF) claim 2 , uranyl fluoride (UOF) and uranium tetrafluoride (UF).4. The method recited in wherein uranium dioxide is formed by a process selected from the group consisting of an ammonium uranyl carbonate process claim 1 , an ammonium diuranate process claim 1 , and an integrated dry route process.516. The method recited in wherein the silicon based reactant has from to silicon atoms in a linear claim 1 , branched claim 1 , or cyclic configuration.6. The method recited in wherein the silicon based reactant has the general formula SiX claim 1 , where n is an integer from 1 to 6 and X is selected from the group consisting of hydrogen claim 1 , halides claim 1 , and combinations thereof7. The method recited in wherein the uranium silicide is USi.8. The method recited in wherein residual carbon is removed by reacting the residual carbon with a silicon halide and excess halide.9. The method recited in wherein the halide is selected from the group consisting of fluoride claim 8 , chloride claim 8 , bromide claim 8 , iodide claim 8 , and combinations thereof10. The method recited in wherein the ratio of uranium to silicon in the uranium silicide product is varied by the ratio of feed compounds used to form one or more ...

Подробнее
26-02-2008 дата публикации

Iron silicide powder and method for production thereof

Номер: KR100807525B1
Принадлежит: 닛코킨조쿠 가부시키가이샤

가스 성분인 산소가 1500 ppm 이하인 것을 특징으로 하는 규화철 분말 및 산화철을 수소로 환원하여 철분말을 만들며, 이 철분말과 Si 분말을 비산화성 분위기 중에서 가열하여 주로 FeSi로 이루어진 합성 분말을 만들며, 또 다시 Si 분말을 첨가 혼합하여 비산화성 분위기에서 가열하여 주로 FeSi 2 로 이루어진 규화철 분말을 제조하는 방법. 규화철 분말에 포함되는 가스 성분인 산소가 적고 분쇄가 용이하며, 따라서 분쇄가 불량인 경우에 따른 불순물의 혼입이 적으며, 또한 규화철 분말의 비표면적이 크고, 소결하는 시에 밀도를 올리는 것이 가능한 규화철 분말을 얻는 것을 과제로 한다. The iron silicide powder and the iron oxide are reduced to hydrogen to form iron powder, characterized in that the oxygen as a gas component is 1500 ppm or less, and the iron powder and Si powder are heated in a non-oxidizing atmosphere to make a synthetic powder mainly composed of FeSi. Si powder is further added and mixed, and heated in a non-oxidizing atmosphere to produce iron silicide powder composed mainly of FeSi 2 . The oxygen content of iron silicide powder is low, and the grinding is easy. Therefore, the impurities are not mixed when the grinding is poor, and the specific surface area of the iron silicide powder is large, and the density is increased during sintering. It is a task to obtain a possible iron silicide powder. 규화철 분말 제조방법 Iron silicide powder manufacturing method

Подробнее
26-12-2017 дата публикации

Method for producing carboborides of rare-earth metals

Номер: RU2640121C2

FIELD: metallurgy. SUBSTANCE: initial blank is shaped as a stoichiometric powder charge of low hydride phase of metal, carbon and boron, after that the initial blank is annealed in vacuum at 1100°C for 10 minutes, the blank is cooled, ground and pressed into a rod, which is annealed at 1100°C for 10 minutes in vacuum, then the produced rod is cooled, ground and pressed into a rod, then it is subjected to arc remelting on a cooled copper hearth in argon atmosphere to produce a sample containing carboborides of rare-earth metals, after which the produced sample is heated in a vacuum up to 950°C and kept at such temperature for 12 hours with subsequent hardening of the sample in water. EFFECT: production of single-phase samples of carboborides of rare-earth elements is provided. 2 dwg, 2 tbl, 1 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 640 121 C2 (51) МПК C01B 35/04 (2006.01) C01F 17/00 (2006.01) B22F 9/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C01B 35/04 (2006.01); C01F 17/00 (2006.01); B22F 9/00 (2006.01) (21)(22) Заявка: 2015152008, 27.04.2016 (24) Дата начала отсчета срока действия патента: Дата регистрации: 26.12.2017 (43) Дата публикации заявки: 01.11.2017 Бюл. № 31 (45) Опубликовано: 26.12.2017 Бюл. № 36 2 6 4 0 1 2 1 R U Борокарбiди рiкiсноземельних металiв з плоскими бор-вуглецевими сiтками: Кристалiчна структура DyB2C. Bicтник Львiвского унiверситету. Cepiя xiмiчна, 2011, Выпуск 52, c. 54-61. JP 2002068730 A, 08.03.2002. BY 11640 C1, 28.02.2009. SU 1024153 A1, 23.06.1983. (54) СПОСОБ ПОЛУЧЕНИЯ КАРБОБОРИДОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ (57) Реферат: Изобретение относится к получению перетирают, прессуют в штабик и проводят его карбоборидов редкоземельных металлов. дуговую переплавку на охлаждаемом медном Исходную заготовку формуют в виде поде в среде аргона с получением образца, стехиометрической навески порошка содержащего карбобориды редкоземельных низкогидридной фазы металла, углерода и бора, ...

Подробнее
24-03-2006 дата публикации

manufacturing method for powder of reclaim materials by molybdenum disilicide heater waste for a high temperature

Номер: KR100564155B1
Автор: 나재식, 신동엽
Принадлежит: (주)위너 테크

본 발명은 이규화몰리브덴(MoSi 2 ) 고온용 발열체 폐기물의 재활용 원료분말 제조방법에 관한 것으로, 이미 제품으로의 수명을 완료한 이규화몰리브덴(MoSi 2 ) 고온용 발열체 폐기물을 재활용하기 위한 것이다. The present invention is directed yigyuhwa molybdenum (MoSi 2) to be recycled on the raw material powder production process of high-temperature heating for the waste, already recycle yigyuhwa molybdenum (MoSi 2) a high temperature heat generating element for waste completing the life of the product. 이를 위하여 본 발명은 이규화몰리브덴(MoSi 2 ) 고온용 발열체 폐기물의 표면에 부착된 불순물과 이산화규소(SiO 2 )층을 제거하는 공정과, 상기 표면 불순물과 이산화규소(SiO 2 )층이 제거된 발열체 폐기물을 미분쇄하는 공정과, 상기 미분쇄된 발열체 폐기물에 포함된 철 성분을 제거하는 공정과, 상기 탈철 처리된 발열체 폐기물의 미분쇄물을 분말화하는 공정을 포함하는 이규화몰리브덴 고온용 발열체 폐기물의 재활용 원료분말 제조방법을 제공함으로써, 발열체 제조공정 단순화에 의한 경제적 원가절감과 발열체 폐기물에 의한 환경오염 문제를 해결할 수 있게 한다. To this end, the present invention is a process for removing the impurities and silicon dioxide (SiO 2 ) layer attached to the surface of the molybdenum silicide (MoSi 2 ) high temperature heating element waste, and the heating element from which the surface impurities and silicon dioxide (SiO 2 ) layer is removed Molybdenum disulfide high temperature heating element waste comprising a step of pulverizing the waste, a step of removing the iron component contained in the pulverized heating element waste, and a step of pulverizing the fine pulverized material of the deironed heating element waste. By providing a method for manufacturing recycled raw material powder, it is possible to solve the economic cost reduction by simplifying the heating element manufacturing process and the environmental pollution problem caused by the heating element waste. 이규화몰리브덴, 발열체 폐기물, 재활용, 원료분말 Molybdenum disulphide, heating element waste, recycling, raw material powder

Подробнее
20-07-2018 дата публикации

Hybrid metal oxide and method of forming the same and solar cell including the same

Номер: KR101880153B1

제1 금속, 산소 및 제2 금속이 공유 결합으로 연결되어 있는 부분을 포함하는 망목 구조(network structure)를 가지고 상기 제1 금속 및 상기 제2 금속 중 적어도 하나는 둘 이상의 산화 상태(oxidation state)를 가지는 혼성 금속 산화물 및 그 형성 방법과 상기 혼성 금속 산화물을 포함하는 태양 전지에 관한 것이다. At least one of the first metal and the second metal having a network structure including a portion where a first metal, oxygen and a second metal are connected by covalent bonds, wherein at least one of the first metal and the second metal has an oxidation state The present invention relates to a mixed metal oxide, a method of forming the same, and a solar cell including the mixed metal oxide.

Подробнее
01-01-2022 дата публикации

Process for the generation of thin inorganic films

Номер: IL259154B
Автор:
Принадлежит: BASF SE

Подробнее
25-02-2022 дата публикации

Method for preparing refractory metal boride in two steps

Номер: CN112250080B
Автор: 张国华, 汪宇

一种两步制备难熔金属硼化物的方法,属于无机非金属材料领域。难熔金属硼化物通常都具备高熔点、高硬度、不错的耐磨性以及良好的抗氧化性等特点,当前工业制备难熔金属硼化物的方法存在产品纯度低、粒度大和制备成本高等问题。通常此类金属的单质粉末制备不易,且价格较高。本方法使用难熔金属氧化物、碳质还原剂、碳化硼和金属钙为原料,先经高温碳热还原反应,再经过一定条件的高温硼化反应生成相应的难熔金属硼化物,最终反应产物经酸浸去除可溶性杂质,再经过滤、漂洗、干燥,获得高纯难熔金属硼化物。本发明是一种新的合成难熔金属硼化物粉体的方法,其优点在于:方法具备普遍的适用性,反应产物纯度高,成本低且产品粒度可控,易于规模化生产。

Подробнее
06-07-2017 дата публикации

Dispersion of silicon metal powder and process for producing chlorosilane using same

Номер: KR101754457B1
Принадлежит: 주식회사 엘지화학

본 발명은 액상의 실란계 화합물 및, 액상의 실란계 화합물에 분산된 금속 실리콘 분말을 포함하는 분산액을 제공한다. 상기 금속 실리콘 분말의 분산액은 클로로실란 제조에 사용될 수 있으며, 구체적으로 1) 상기 분산액과 염화수소를 혼합하는 단계; 및 2) 수소 존재 하에 상기 1)단계의 혼합물을 반응시키는 단계;를 포함하는 방법에 의해 클로로실란을 제조할 수 있다. The present invention provides a dispersion comprising a liquid silane compound and a metal silicon powder dispersed in a liquid silane compound. The dispersion of the metal silicon powder may be used for the production of chlorosilane, and specifically 1) mixing the dispersion with hydrogen chloride; And 2) reacting the mixture of step 1) in the presence of hydrogen.

Подробнее
19-09-2000 дата публикации

Process for producing an aggregate suitable for inclusion into a radiation shielding product

Номер: US6120706A
Принадлежит: Bechtel BWXT Idaho LLC

The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U x Si y , wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450° C. and about 1750° C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

Подробнее
20-12-2022 дата публикации

Cr-Si based sintered compact

Номер: CN113165984B
Принадлежит: Tosoh Corp

包含硅化铬(CrSi 2 )、硅(Si)的Cr‑Si系烧结体难以获得高强度。本发明提供一种包含Cr(铬)、硅(Si)的Cr‑Si系烧结体,其特征在于,根据X射线衍射确定的结晶结构由硅化铬(CrSi 2 )、硅(Si)构成,CrSi 2 相在块体中存在60wt%以上,烧结体密度为95%以上,CrSi 2 相的平均粒径为60um以下。

Подробнее
20-04-2016 дата публикации

Preparation method of quasi-one-dimensional lanthanum hexaboride nano-structure array material

Номер: CN105502428A
Автор: 唐东升, 肖立华
Принадлежит: Hunan Normal University

一种六硼化镧准一维纳米结构阵列材料的制备方法,包括如下步骤:(1)将硼源置于管式电炉上气流方向的温区1,镧源置于下气流方向的温区2,硅衬底置于温区2镧源的下气流方向,重复洗气;(2)通入保护性气氛,将温区1和温区2分别升温至500~600℃和800~900℃,保温5~10min后,将温区1和温区2分别升温至900~1100℃和900~1100℃,保温20~120min,自然冷却,得六硼化镧准一维纳米结构阵列材料。本发明方法首次实现六硼化镧准一维纳米结构阵列大规模直接可控生长,其长径比大,单分散性好,可广泛应用于电学领域;固态硼源无腐蚀性、无毒、易运输;本发明方法简单、成本低,便于工业化生产。

Подробнее
01-11-2017 дата публикации

METHOD FOR PRODUCING RARE-EARTH CARBORBORIDES

Номер: RU2015152008A

А 2015152008 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) РЦ (0 = ака << “\&® (50) МПК СОВ 3504 (2006.01) СИЕ 17/00 (2006.01) В22Е 9/00 (2006.0Т) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015152008, 27.04.2016 (71) Заявитель(и): Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский (43) Дата публикации заявки: 01.11.2017 Бюл. № 31 государственный университет имени академика И.Г. Петровского" (КП) Приоритет(ы): (22) Дата подачи заявки: 27.04.2016 Адрес для переписки: 241036, г. Брянск, ул. Бежицкая, 14, ФГБОУ ВПО (72) Автор(ы): "Брянский государственный университет имени Кузнецов Сергей Викторович (КО), академика И.Г. Петровского", УЙЦ "Брянская Новиков Владимир Васильевич (КО), физическая лаборатория", В.В. Новиков Матовников Александр Вячеславович (КП) (54) СПОСОБ ПОЛУЧЕНИЯ КАРБОБОРИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ (57) Формула изобретения Способ получения карбоборидов редкоземельных элементов, включающий формование исходной заготовки в виде стехиометрической навески порошка низкогидридной фазы металла, углерода и бора с дальнейшим отжигом в вакууме и однократной переплавкой в дуге в среде аргона, отличающийся тем, что получение карбоборидов редкоземельных элементов осуществляют в три этапа: на первом осуществляют предварительный синтез при температуре 1100°С в течении 10 минут с промежуточным перетиранием и повторным нагревом при температуре 1100°С в течение 10 минут, на втором этапе образец перетирают и проводят дуговую плавку на охлаждаемом медном поде в среде аргона, на третьем: осуществляют дополнительный нагрев при температуре 950°С в течении 12 часов в вакууме с последующей закалкой образца в воде. Стр.: 1 па 83009‘ ос У

Подробнее
15-03-2022 дата публикации

Method for preparing composition for antibacterial deodorization and neutralizing harmful substances to human body

Номер: KR20220032955A
Автор: 김수원
Принадлежит: 김수원

본 발명은 항균 탈취 및 인체 유해성분 중화용 조성물 제조방법에 관한 것으로, 보다 상세하게는 메탈실리콘과 이산화티타늄이 함유되어 공기 중의 유해성분으로부터 항균 탈취 중화작용을 하며 전자파를 차폐하여 유해 요소를 제거함과 동시에 인체에 유익한 파동에너지를 전달함으로써 건강한 생활을 영위할 수 있도록 개선된 항균 탈취 및 인체 유해성분 중화용 조성물 제조방법에 관한 것이다.

Подробнее
24-12-2015 дата публикации

Method for modifying surface of metal siliside, method for producing trichlorosilane using surface modified metal siliside and apparatus for producing the same

Номер: KR101580171B1

본 발명은 금속 실리사이드 표면개질 방법, 표면개질된 금속 실리사이드를 이용한 삼염화실란의 제조방법 및 제조장치에 관한 것으로, 표면이 개질된 금속 실리사이드 촉매와 금속성 실리콘을 반응부로 공급하는 단계, 상기 반응부에 사염화실란과 수소가스를 공급하는 단계 및 상기 반응부 내 상기 금속성 실리콘 상에 공급된 상기 사염화실란과 상기 수소가스의 반응을 통해 생성된 생성물을 분리부에 공급하여, 삼염화실란성분을 분리하는 단계를 포함한다. The present invention relates to a metal silicide surface modification method, a method of manufacturing a trichlorosilane using the surface-modified metal silicide, and an apparatus for producing the metal tricalcium silicate, Supplying silane and hydrogen gas to the separator and separating the trichlorosilane component by supplying the product produced through the reaction of the hydrogen tetrachloride and the silicon tetrachloride supplied on the metallic silicon in the reaction section to the separator do.

Подробнее
21-04-2022 дата публикации

Method for producing a charge for manufacturing composite boron carbide - zirconium diboride ceramics

Номер: RU2770773C1

FIELD: ceramics.SUBSTANCE: proposed invention relates to manufacturing composite boron carbide - zirconium diboride ceramics and can be used for manufacturing covers of high-temperature thermocouples, evaporators and boats for vacuum metallisation, pipes for pumping molten metals, nozzles of sandblasting equipment, lightweight ceramic armour, anti-friction products. Method for producing a charge for manufacturing composite boron carbide - zirconium diboride ceramics, consisting in obtaining a mixture of boron carbide and zirconium diboride powders, characterised by preparing the mixture with carbide-boron reduction of zirconium dioxide with excess boron carbide with a particle size after heat treatment of 4.9 mcm, at a reaction temperature of 1,600 to 1,700°C for 20 to 25 minutes, wherein crushed nanofibrous carbon is used as a highly dispersed carbon material.EFFECT: proposed method is aimed at reducing the size of boron carbide particles in the charge.1 cl, 1 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 770 773 C1 (51) МПК C04B 35/563 (2006.01) C04B 35/58 (2006.01) C04B 35/626 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C04B 35/563 (2022.02); C04B 35/58078 (2022.02); C04B 35/62675 (2022.02); C04B 2235/3821 (2022.02); C04B 2235/3813 (2022.02); C01B 35/04 (2022.02) (21)(22) Заявка: 2021104688, 25.02.2021 25.02.2021 Дата регистрации: 21.04.2022 (45) Опубликовано: 21.04.2022 Бюл. № 12 Адрес для переписки: 630073, г. Новосибирск, пр. Карла Маркса, Новосибирский государственный технический университет, 20, Батаев Анатолий Андреевич 2 7 7 0 7 7 3 C 1 (56) Список документов, цитированных в отчете о поиске: MESTVIRISHVILI Z. et al., "Thermal and Mechanical Properties of B4C-ZrB2 Ceramic Composite", Journal of Materials Science and Engineering B, 2015, Vol. 5, No. 9-10, р. 385 - 393. RU 2559485 C1, 10.08.2015, с.3-4. KRUTSKII YU.L. et al., "Synthesis of Highly Dyspersed Zirconium Diboride for Fabrication of ...

Подробнее
03-02-2000 дата публикации

Carbonyl iron silicide powder

Номер: DE19834236A1
Принадлежит: BASF SE

Die Erfindung betrifft ein Verfahren zur Herstellung von Carbonyleisensilizid durch Wärmebehandlung einer Eisen-Silizium-Mischung, enthaltend a) 20 bis 99,9 Gew.-% feinteiliges Carbonyleisen und b) 0,1 bis 80 Gew.-% feinteiliges Siliziumpulver, und ein Carbonyleisensilizid, erhältlich durch Legieren von Carbonyleisen mit Silizium sowie Carbonyleisensilizid, das eine im Vergleich zu Carbonyleisenpulver höhere Induktivität aufweist. The invention relates to a process for the production of carbonyl iron silicide by heat treatment of an iron-silicon mixture containing a) 20 to 99.9% by weight of finely divided carbonyl iron and b) 0.1 to 80% by weight of finely divided silicon powder, and a carbonyl iron silicide , obtainable by alloying carbonyl iron with silicon and carbonyl iron silicide, which has a higher inductance than carbonyl iron powder.

Подробнее
15-06-2022 дата публикации

Method for preparing composition for antibacterial deodorization and neutralizing harmful substances to human body

Номер: KR102409400B1
Автор: 김수원
Принадлежит: 김수원

본 발명은 항균 탈취 및 인체 유해성분 중화용 조성물 제조방법에 관한 것으로, 보다 상세하게는 메탈실리콘과 이산화티타늄이 함유되어 공기 중의 유해성분으로부터 항균 탈취 중화작용을 하며 전자파를 차폐하여 유해 요소를 제거함과 동시에 인체에 유익한 파동에너지를 전달함으로써 건강한 생활을 영위할 수 있도록 개선된 항균 탈취 및 인체 유해성분 중화용 조성물 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a composition for antibacterial deodorization and neutralization of harmful components to the human body, and more particularly, metal silicon and titanium dioxide are contained to neutralize antibacterial deodorization from harmful components in the air, and to remove harmful elements by shielding electromagnetic waves At the same time, it relates to a method for producing a composition for improving antibacterial deodorization and neutralizing harmful components in the human body so as to lead a healthy life by transmitting beneficial wave energy to the human body.

Подробнее
27-06-2015 дата публикации

Low lta zeolite aluminosilicate zeolites x

Номер: RU2554642C2
Принадлежит: Юоп Ллк

FIELD: chemistry. SUBSTANCE: invention refers to zeolite adsorbents. What is presented is zeolite-X having Si/Al molar ratio from 1.0 to 1.5, average diameter of no more than 2.7 micron and relative LTA intensity of no more than 0.35 determined by X-ray diffraction (XRD). The relative LTA intensity is determined as a relation of LTA-XRD-intensity of a zeolite-X sample to the reference XRD-intensity of the reference LTA zeolite multiplied by 100. The intensities are summed up for each LTA peak with the Miller index (200), (420) and (622) at 7.27±0.16°, 16.29±0.34° and 24.27±0.50° 2θ. EFFECT: invention provides the high purity of zeolite X and its high selectivity in the process of recovery of para-xylol from alkylaromatic hydrocarbon mixtures. 7 cl, 2 dwg, 1 tbl, 8 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 554 642 C2 (51) МПК C01B 39/02 (2006.01) C01B 39/22 (2006.01) B01J 20/18 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2013144545/05, 05.04.2012 (24) Дата начала отсчета срока действия патента: 05.04.2012 Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): ХУРСТ Джэк И (US), ЧЭН Линда С. (US), БРОУЧ Роберт У. (US) 13.04.2011 US 61/474,931 (43) Дата публикации заявки: 10.04.2015 Бюл. № 10 R U (73) Патентообладатель(и): ЮОП ЛЛК (US) (45) Опубликовано: 27.06.2015 Бюл. № 18 20090326308 A1, 31.12.2009. RU 2323775 C2, 10.06.2008. RU 2203133 C2, 27.04.2003. RU 2283278 C1, 10.09.2006. RU 2124396 C1, 10.01.1999 (86) Заявка PCT: US 2012/032245 (05.04.2012) C 2 C 2 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 03.10.2013 (87) Публикация заявки PCT: 2 5 5 4 6 4 2 WO 2012/141963 (18.10.2012) R U 2 5 5 4 6 4 2 (56) Список документов, цитированных в отчете о поиске: US 20100076243 A1 25.03.2010. US Адрес для переписки: 109012, Москва, ул. Ильинка, 5/2, ООО "Союзпатент" (54) КОМПОЗИЦИИ АЛЮМОСИЛИКАТНЫХ ЦЕОЛИТОВ ТИПА Х С НИЗКИМ СОДЕРЖАНИЕМ ЦЕОЛИТА ТИПА LTA (57) Реферат: Изобретение ...

Подробнее
27-07-2015 дата публикации

METHODS FOR PRODUCING TITANIUM DIBORIDE POWDERS

Номер: RU2014101964A
Принадлежит: Алкоа Инк.

1. Реактор для карботермического получения диборида титана, содержащий:сосуд с перфорированным сепаратором в нем, причем перфорированный сепаратор выполнен с возможностью обеспечивать проточное сообщение между верхней камерой и нижней камерой;нижнюю камеру, образованную сосудом и перфорированным сепаратором и имеющую впуск инертного газа, причем нижняя камера содержит нереакционноспособную среду, удерживаемую в ней и предназначенную для нагревания инертного газа по мере того, как он входит через впуск и проходит через нижнюю камеру к перфорированному сепаратору;верхнюю камеру, образованную сосудом и перфорированным сепаратором, причем верхняя камера выполнена с возможностью помещения в нее смеси предшественников, при этом верхняя камера имеет вентиляционное отверстие для инертного газа, предназначенное для направления инертного газа из верхней камеры;при этом через перфорированный сепаратор нагретый инертный газ проходит из нижней камеры в верхнюю камеру для реагирования смеси предшественников с образованием продукта диборида титана.2. Реактор по п. 1, при этом верхняя камера содержит агломерированную смесь предшественников.3. Реактор по п. 1, при этом нереакционноспособная среда содержит шары из оксида алюминия.4. Реактор по п. 1, при этом температура реактора составляет по меньшей мере примерно 1500°С.5. Реактор по п. 1, при этом смесь предшественников содержит:источник бора;источник углерода; иисточник титана.6. Реактор по п. 1, при этом сосуд содержит графитовый реакционный сосуд.7. Реактор по п. 1, дополнительно содержащий печь, выполненную с возможностью нагрева реактора.8. Реактор по п. 1, дополнительн� РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК C01B 35/04 (13) 2014 101 964 A (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2014101964/05, 22.01.2014 (71) Заявитель(и): АЛКОА ИНК. (US) Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): МАКМИЛЛЕН Джеймс С. (US) (43) Дата публикации заявки: 27.07. ...

Подробнее
14-01-2020 дата публикации

Superfine zirconium diboride-silicon carbide composite powder and preparation method thereof

Номер: CN108622911B
Принадлежит: Shandong University

本发明提供一种超细二硼化锆‑碳化硅复合粉体及其制备方法。本发明以二氧化锆、碳化硼、炭黑和硅粉为原料,将它们充分混合均匀,于常压、保护气体保护下,1300‑1600℃下煅烧30‑90min,制备得到超细二硼化锆‑碳化硅复合粉体。本发明方法工艺简单,无污染,原料廉价易得,成本低,生产周期短,设备简单操作容易,适合工业化生产;所制备的复合粉体具有粒径尺寸小、粒径分布窄、纯度和产率高、质量好、形貌均一的特性。

Подробнее
10-09-2012 дата публикации

Method of making boron-silicon-containing nanoparticles

Номер: RU2460689C1

FIELD: chemistry. SUBSTANCE: method of producing boron-silicon-containing nanoparticles involves feeding a gas mixture into a flow reactor, said mixture containing monosilane (SiH 4 ) with a reagent 'B', and a buffer gas, inducing pyrolysis of the gas mixture using continuous radiation of a CO 2 -laser at pressure of the gas mixture in the reactor below atmospheric pressure. The reactant 'B' used is boron trichloride (BCl 3 ); the process is carried out with gas flow rate ratio monosilane: reactant B: buffer gas equal to 1:(1.2-1.5):(45-55), with power density of the laser radiation of 6000-8000 W/cm 2 . Nanoparticles with boron content of 55-65 at % and silicon content being the balance is obtained. EFFECT: nanoparticles are characterised by high content of boron. 4 cl, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 460 689 (13) C1 (51) МПК C01B 35/00 (2006.01) C01B 33/00 (2006.01) B82B 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2011125141/02, 21.06.2011 (24) Дата начала отсчета срока действия патента: 21.06.2011 (45) Опубликовано: 10.09.2012 Бюл. № 25 C 1 2 4 6 0 6 8 9 R U C 1 Адрес для переписки: 124482, Москва, г.Зеленоград, Савелкинский пр-д, 4, оф.1314, ЗАО "Институт прикладной нанотехнологии", пат.пов. Т.Н. Молочниковой (54) СПОСОБ ПОЛУЧЕНИЯ БОР-КРЕМНИЙСОДЕРЖАЩИХ НАНОЧАСТИЦ при давлении газовой смеси в реакторе ниже атмосферного. В качестве реагента «B» используют трихлорид бора (BCl3), процесс ведут при соотношении расходов газов: моносилан:реагент В:буферный газ как 1:(1,21,5):(45-55), при плотности мощности лазерного излучения 6000-8000 Вт/см 2 . Получают наночастицы с содержанием бора 5565 ат.% и кремния остальное. Наночастицы характеризуются повышенным содержанием бора. 3 з.п. ф-лы, 4 ил. (57) Реферат: Изобретение относится к нанотехнологии, в частности к способу получения боркремнийсодержащих наночастиц, и может быть использовано в медицине. Способ получения бор- ...

Подробнее
18-06-2014 дата публикации

Method and material for purifying iron disilicide for photovoltaic application

Номер: CN101578693B
Принадлежит: CM Manufacturing Inc

一种光电池装置用二硅化铁的制作方法。所述方法包括提供一至少包括一α相实体、一β相实体与一ε相实体的二硅化铁第一样品,所述方法包括在惰性环境中保持所述二硅化铁第一样品,以及加热所述二硅化铁第一样品以形成二硅化铁第二样品。所述二硅化铁第二样品基本包括β相二硅化铁且具有第一粒径的特征。所述方法包括在二硅化铁第二样品中加入有机溶剂,形成含有二硅化铁第二样品与有机溶剂的材料的第一混合物,并对含有二硅化铁第二样品的材料的第一混合物进行研磨加工。所述方法包括将具有第一粒径的二硅化铁第二样品转换为具有第二粒径的二硅化铁第三样品。除去有机溶剂,得到以具有第二粒径且β相实体含量为大约90%或更高为特征的二硅化铁第三样品。

Подробнее
13-04-2018 дата публикации

A kind of Cu doping Emission in Cubic Ca2Si thermoelectric materials

Номер: CN106098922B
Принадлежит: FUZHOU UNIVERSITY

本发明公开了一种Cu掺杂立方相Ca 2 Si热电材料,其是将Ca粉、Si粉和Cu粉在Ar气保护气氛下混合均匀后,将所得混合物粉末与研磨钢球在Ar气保护气氛中放入真空不锈钢球磨罐中密封,经球磨反应后采用等离子烧结的方式进行真空烧结压片,即得片状Cu掺杂立方相Ca 2 Si热电材料。由于Cu元素具有和碱土金属类似的性质,当Cu元素加入后,容易取代Ca位,作为施主掺杂,提供导电电子作为载流子,从而提高材料的电导率与热电性能。本发明具有工艺简单、操作容易、成本低等优势,所得Cu掺杂立方相Ca 2 Si热电材料纯度较高,结合紧密,有较好的产业化前景。

Подробнее
11-12-2018 дата публикации

A kind of liquid phase method prepares the technique of spherical ultra-fine zirconium boride powder and the zirconium boride powder of preparation

Номер: CN108975919A

一种液相法制备类球形超细硼化锆粉体的工艺,具体技术是通过溶胶‑凝胶及热处理工艺制备出超细硼化锆粉体,通过对此方法中工艺参数的调控,可获得尺度可控的硼化锆粉体。其过程是以八水氧氯化锆,硼酸,葡萄糖为起始原料,以无水乙醇和去离子水为溶剂,分别配制锆前驱体溶液、硼酸溶液以及葡萄糖溶液,将各溶液混合均匀得到硼锆前驱体溶胶,其间加入乙酰丙酮及双氧水促进前驱体溶胶的形成;后经干燥、氩气气氛下高温煅烧,制备出纯度高、粒径细小均匀的ZrB 2 陶瓷粉体。本发明具有工艺简单,反应原料成本低,反应过程易控制,合成温度低,所制备的粉体纯度高、粒度均匀、细小、团聚少、有利于成为陶瓷复合材料与陶瓷涂层的优选材料。

Подробнее
08-04-2019 дата публикации

Method of producing titanium boride powder

Номер: RU2684381C1

FIELD: chemistry.SUBSTANCE: invention can be used in chemical industry and metallurgy. Method of producing titanium diboride powder involves preparing a wet reaction mixture by hydrolysis of titanium tetrachloride in distilled water while stirring continuously to obtain hydrated titanium dioxide and hydrochloric acid while adjusting acidity by adding ammonium hydroxide NHOH to pH from 7 to 8. Hydrated titanium dioxide is modified with chlorine to obtain a complex of metatitanic acid. With constant stirring, boric acid and sucrose are added in amounts providing super stoichiometric ratio C/TiO+BOabout 0.5 wt% to obtain hydrated titanium dioxide and hydrochloric acid. Method includes carbothermal reduction of reaction mixture at heating from 950 to 1,000 °C with holding in atmosphere of dynamic vacuum for 3–4 hours.EFFECT: invention provides higher efficiency of production of titanium diboride powder, simplified process of producing titanium diboride powder and low synthesis temperature.1 cl, 1 tbl, 5 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 684 381 C1 (51) МПК C01B 35/04 (2006.01) C01G 23/00 (2006.01) B22F 9/18 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C01B 35/04 (2018.08); C01G 23/00 (2018.08); B22F 9/18 (2018.08) (21) (22) Заявка: 2018100505, 09.01.2018 (24) Дата начала отсчета срока действия патента: 09.01.2018 08.04.2019 Приоритет(ы): (22) Дата подачи заявки: 09.01.2018 (45) Опубликовано: 08.04.2019 Бюл. № 10 2 6 8 4 3 8 1 R U (56) Список документов, цитированных в отчете о поиске: RU 2603407 C1, 27.11.2016. US 4503021 A, 05.03.1985. US 2011104033 A1, 05.05.2011. (54) СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИБОРИДА ТИТАНА (57) Реферат: Изобретение может быть использовано в количествах, обеспечивающих химической промышленности и металлургии. сверхстехиометрическое соотношение C/TiO2 Способ получения порошка диборида титана +B2O3 около 0,5 по массе с получением включает приготовление мокрой реакционной ...

Подробнее
15-10-2013 дата публикации

Core-shell nano-structure, method of fabricating the same and lithium ion battery

Номер: KR101317812B1

본 발명은 금속 실리사이드로 이루어진 나노 선 형상의 코어와 상기 코어의 표면에 실리콘이 덮여진 코어-쉘 구조의 나노 구조체로서 특히 리튬 이온 전지의 음극에 사용되었을 때 고보존력(high retention)과 고충방전(high capacity) 특성을 나타낼 수 있는 나노 구조체와 이의 형성 방법 및 상기 나노 구조체를 적용한 리튬 이온 전지에 관한 것이다. The present invention relates to a nano-linear core structure consisting of a metal silicide and a core-shell structured nano structure in which silicon is covered on the surface of the core, particularly when used in a negative electrode of a lithium ion battery. The present invention relates to a nanostructure, a method for forming the nanostructure, and a lithium ion battery to which the nanostructure is applied.

Подробнее
06-06-2019 дата публикации

Method of extracting metallic silicon from technical grade slag

Номер: RU2690877C1

FIELD: metallurgy.SUBSTANCE: invention relates to non-ferrous metallurgy and can be used in production of technical silicon and ferrosilicon. Method involves preparation of charge from slag produced during refining of silicon with introduction of slag-forming and solvent, melting of charge and maintenance, cooling of melt and separation of metal phase from slag. Slag-forming agents used are aluminum and calcium oxides, and the solvent used is iron in form of steel chips. Melting and maintenance are carried out at temperature not lower than 1,600 °C, wherein metal phase consisting of alloy of silicon and iron is obtained, and secondary slag is as follows, wt%: SiO46.4–52.2; AlO13.3–19.4; CaO 30.2–34.54.EFFECT: separation of metallic phase from slag of technical silicon in form of alloy of silicon and iron.1 cl, 1 tbl, 4 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 690 877 C1 (51) МПК C22B 7/04 (2006.01) C01B 33/06 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК C22B 7/04 (2019.02); C01B 33/06 (2019.02) (21)(22) Заявка: 2018134410, 27.09.2018 (24) Дата начала отсчета срока действия патента: Дата регистрации: 06.06.2019 2 6 9 0 8 7 7 R U Адрес для переписки: 654007, Кемеровская обл., г. Новокузнецк, ул. Кирова, 42, ФГБОУ ВО "Сибирский государственный индустриальный университет", ведущему специалисту по защите интеллектуальной собственности, Володиной О.Ф. (56) Список документов, цитированных в отчете о поиске: RU 2383637 C1, 10.03.2010. RU 2146650 C1, 20.03.2000. RU 2106423 C1, 10.03.1998. EA 29631 B1, 30.04.2018. US 4457903 A, 03.07.1984. (54) СПОСОБ ВЫДЕЛЕНИЯ МЕТАЛЛИЧЕСКОГО КРЕМНИЯ ИЗ ШЛАКА ТЕХНИЧЕСКОГО КРЕМНИЯ (57) Реферат: Изобретение относится к области цветной используют железо в виде стальной стружки. металлургии и может быть использовано в Плавление и выдержку проводят при температуре производстве технического кремния и не ниже 1600°С, при этом получают ферросилиция. Способ включает приготовление ...

Подробнее
10-12-2013 дата публикации

METHODS FOR PRODUCING TITANIUM DIBORIL POWDERS

Номер: RU2012122247A
Принадлежит: Алкоа Инк.

1. Способ, включающий:(a) выбор целевого среднего размера частиц для целевого продукта диборида титана;(b) выбор количества серы, исходя из целевого среднего размера частиц;(c) получение реального продукта диборида титана посредством реакции с данным количеством серы, присутствующей в смеси предшественников, причем продукт диборид титана имеет средний размер частиц, при этом, благодаря данному количеству серы, средний размер частиц соответствует целевому среднему размеру частиц.2. Способ по п.1, причем дополнительно стадия получения включает средний размер частиц в пределах примерно 20% от среднего размера частиц целевого продукта диборида титана.3. Способ по п.1, дополнительно включающий температуру реакции, при этом температура реакции составляет по меньшей мере примерно 1300°С.4. Способ по п.1, дополнительно включающий время выдержки, при этом время выдержки составляет по меньшей мере примерно 0,5 часа.5. Способ по п.1, дополнительно включающий расход инертного газа, при этом расход инертного газа составляет в диапазоне по меньшей мере примерно 0,5 литра в минуту через реакционный сосуд с объемом по меньшей мере 0,7 литра.6. Способ по п.1, причем стадия получения дополнительно включает карботермическое реагирование.7. Способ по п.1, дополнительно включающий деагломерацию реального продукта диборида титана.8. Способ по п.1, причем стадия получения дополнительно включает:примешивание в жидкость с образованием суспензии:источника бора;источника углерода;источника титана; исушку суспензии с получением смеси предшественников, имеющей множество агломератов.9. Способ, включающий:(a) выбор целевого среднего размера частиц для ц РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК C01B 35/04 (13) 2012 122 247 A (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2012122247/05, 29.10.2010 (71) Заявитель(и): АЛКОА ИНК. (US) Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): МАКМИЛЛЕН Джеймс С. (US) 30.10.2009 US 61/256, ...

Подробнее
19-09-2017 дата публикации

Graphene-nano material complex, flexible and stretchable complex comprising the same and methods for manufacturing thereof

Номер: KR101774645B1
Принадлежит: 한국과학기술원

본 발명은 그래핀-나노 물질 복합체, 이를 포함하는 유연 및 신축성 복합체 및 이들의 제조방법에 관한 것으로서, 본 발명의 제1 측면에 따른 그래핀-나노 물질 복합체는, 복수의 그래핀들; 및 상기 복수의 그래핀들 사이에 위치하는 나노 물질들;을 포함하는 복합체로서, 상기 복수의 그래핀들은 동일 평면 상에 위치하지 않는 3차원 그래핀 구조체를 형성하고, 상기 복수의 그래핀, 상기 나노 물질 또는 이 둘이 전기적 네트워크를 형성한다. TECHNICAL FIELD The present invention relates to a graphene-nanomaterial composite, a flexible and stretchable composite including the same, and a method of manufacturing the same. The graphene-nanomaterial composite according to the first aspect of the present invention includes a plurality of graphenes; And nanomaterials positioned between the plurality of grapins, wherein the plurality of grapins form a three-dimensional graphene structure that is not coplanar, and wherein the plurality of graphenes, the nano- The material or both form an electrical network.

Подробнее
01-11-1977 дата публикации

Process for utilizing ferrophosphorus

Номер: US4056388A
Автор: Jurgen Stenzel
Принадлежит: Hoechst AG

Ferrophosphorus is utilized. To this end, a melt of ferrophosphorus is reacted with a melt of calcium silicide so as to obtain ferrosilicon and calcium phosphide.

Подробнее
05-06-1984 дата публикации

Method for removing oxide contamination from titanium diboride powder

Номер: US4452767A
Принадлежит: US Department of Energy

A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB 2 powders with a gaseous boron halide, such as BCl 3 , at temperatures in the range of 500°-800° C. The BCl 3 reacts with the oxides to form volatile species which are removed by the BCl 3 exit stream.

Подробнее
21-08-1990 дата публикации

Production of ceramic materials

Номер: US4950626A
Принадлежит: Imperial Chemical Industries Ltd

A process for the production of a refractory compound, e.g. a carbide or nitride, of a metallic or non-metallic element, by reacting a mixture of a compound of the metallic or non-metallic element having at least two groups reactive with hydroxyl groups and an organic compound having at least two hydroxyl groups to produce an oxygen-containing polymeric product, and pyrolysing the polymeric product, e.g. in an inert atmosphere to produce a carbide or in an atmosphere of reactive nitrogen compound to produce a nitride, in which the reaction mixture contains an aluminium compound containing at least one group reactive with hydroxyl groups. The presence of the aluminium compound in the reaction mixture leads to an increase in the proportion of carbon in the product initially produced by pyrolysis, and to a higher purity in the refractory compound which is ultimately produced.

Подробнее
15-04-1977 дата публикации

REFRACTORY METAL BORIDE SUB-MICRONIC POWDER AND PROCESS FOR ITS PREPARATION

Номер: FR2324590A1
Автор:
Принадлежит: PPG Industries Inc

Подробнее
07-02-2001 дата публикации

Clathrate compounds, manufacture thereof, and thermoelectric materials, thermoelectric modules, semiconductor materials and hard materials based thereon

Номер: EP1074512A1
Принадлежит: IHI Corp

In high-tech fields such as electronics, the development of new high performance materials which differ from conventional materials has received much attention. An object of the present invention is to provide a clathrate compound which can be used as a thermoelectric material, a hard material, or a semiconductor material. Atoms of an element from group 4B of the periodic table are formed into a clathrate lattice, and a clathrate compound is then formed in which specified doping atoms are encapsulated within the clathrate lattice, and a portion of the atoms of the clathrate lattice are substituted with specified substitution atoms. Suitable doping atoms are atoms from group 1A, group 2A, group 3A, group 1B, group 2B, group 3B, group 4A, group 5A, group 6A, and group 8, and suitable substitution atoms are atoms from group 1A, group 2A, group 3A, group 1B, group 2B, group 3B, group 5A, group 6A, group 7A, group 5B, group 6B, group 7B, and group 8 of the periodic table. Suitable manufacturing methods include melt methods and sintering methods, and moreover intercalant intercalation compounds or the like may also be used as raw materials.

Подробнее
31-10-1985 дата публикации

PROCESS FOR MANUFACTURING POROUS PRODUCTS IN BORON OR BORON COMPOUNDS

Номер: FR2563511A1
Принадлежит: Commissariat a lEnergie Atomique CEA

L'INVENTION A POUR OBJET UN PROCEDE DE FABRICATION DE PRODUITS POREUX EN BORE OU EN COMPOSES DU BORE. CE PROCEDE COMPREND LES ETAPES SUIVANTES: 1)METTRE EN SUSPENSION DE LA POUDRE DE BORE DANS UNE SOLUTION D'UN SEL, D'UN HYDROXYDE OU D'UN OXYDE DE METAL ALCALIN; 2)SEPARER LA POUDRE DU LIQUIDE DE LA SUSPENSION PAR DECANTATION; 3)SECHER LA POUDRE AINSI SEPAREE POUR OBTENIR UNE POUDRE AGGLOMEREE, ET 4)SOUMETTRE LA POUDRE AGGLOMEREE AINSI OBTENUE A AU MOINS DEUX TRAITEMENTS THERMIQUES EFFECTUES A DES TEMPERATURES DIFFERENTES, LA DERNIERE ETAPE DU TRAITEMENT THERMIQUE ETANT EFFECTUEE A UNE TEMPERATURE DE 1500 A 2200C ET LA PREMIERE ETAPE ETANT EFFECTUEE A UNE TEMPERATURE INFERIEURE A LA DERNIERE ETAPE. LE TRAITEMENT THERMIQUE PEUT ETRE REALISE EN TROIS ETAPES COMME REPRESENTE SUR LA FIGURE ANNEXEE. THE SUBJECT OF THE INVENTION IS A PROCESS FOR MANUFACTURING POROUS PRODUCTS IN BORON OR BORON COMPOUNDS. THIS PROCESS INCLUDES THE FOLLOWING STEPS: 1) SUSPENDING BORON POWDER IN A SOLUTION OF A SALT, A HYDROXIDE OR AN ALKALINE METAL OXIDE; 2) SEPARATE THE POWDER FROM THE LIQUID OF THE SUSPENSION BY DECANTATION; 3) DRY THE POWDER SO SEPARATED TO OBTAIN AN AGGLOMERATED POWDER, AND 4) SUBMIT THE AGGLOMERATED POWDER SO OBTAINED TO AT LEAST TWO HEAT TREATMENTS CARRIED OUT AT DIFFERENT TEMPERATURES, THE LAST STEP OF THE TREATMENT AT 2200 AND 1500 THERMAL TREATMENT THE FIRST STAGE BEING CARRIED OUT AT A TEMPERATURE LOWER THAN THE LAST STAGE. THE THERMAL TREATMENT CAN BE CARRIED OUT IN THREE STEPS AS SHOWN IN THE ANNEXED FIGURE.

Подробнее
14-01-1966 дата публикации

Nuclear fuel material and its preparation process

Номер: FR1424522A
Принадлежит: Commissariat a lEnergie Atomique CEA

Подробнее
27-08-1976 дата публикации

PERFECTED PROCESS FOR PREPARING REFRACTORY BORIDES IN A FINE DIVISION STATE

Номер: FR2299270A2
Автор:
Принадлежит: PPG Industries Inc

Подробнее
30-11-1962 дата публикации

Production of metallic silicon

Номер: FR1310789A
Автор:
Принадлежит: Union Carbide Corp

Подробнее
14-09-1979 дата публикации

Patent FR2324590B1

Номер: FR2324590B1
Автор: [UNK]
Принадлежит: PPG Industries Inc

Подробнее