Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 34515. Отображено 200.
14-07-2021 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО ЭЛЕКТРОЛИТА, СОДЕРЖАЩЕГО Li3PS4

Номер: RU2751545C2

Изобретение относится к способу получения твердого электролита. Способ получения твердого электролита, содержащего Li3PS4, включает: стадию получения раствора, на которой получают однородный раствор посредством смешивания Li2S и P2S5в органическом растворителе; и стадию осаждения, на которой добавляют дополнительное количество Li2S и смешивают с однородным раствором с получением осадка. В предпочтительном варианте реализации молярное соотношение (Li2S/P2S5) между Li2S и P2S5на стадии получения раствора составляет 1,0-1,85, или в однородный раствор на стадии осаждения добавляют такое дополнительное количество Li2S, что указанное молярное соотношение становится равным Li2S/P2S5=2,7-3,3. Техническим результатом является превосходная эффективность электролита и содержание побочных продуктов в минимально возможном количестве. 7 з.п. ф-лы, 2 пр., 1 табл., 5 ил.

Подробнее
19-01-2022 дата публикации

ТВЕРДОТЕЛЬНЫЙ НАКОПИТЕЛЬ ЭНЕРГИИ ИЗ СУБОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Номер: RU2764662C1

Изобретения могут быть использованы для сбора энергии из окружающей среды. Предложен твердотельный накопитель энергии, содержащий первый слой, содержащий первый субоксид переходного металла и твердый электролит (ТЭ), второй слой, содержащий смесь второго субоксида переходного металла и оксида или диоксида лантаноида, причем эта смесь образует ТЭ, третий слой, содержащий третий субоксид переходного металла и ТЭ, и при этом первый субоксид переходного металла и третий субоксид переходного металла отличаются друг от друга. Твердотельный накопитель энергии может иметь два или три электрода на ячейку и вырабатывает электроэнергию в присутствии водяного пара и кислорода. Изобретения обеспечивают возможность выработки энергии по мере необходимости из окружающей среды для различных применений. 7 н. и 62 з.п. ф-лы, 36 ил., 4 табл.

Подробнее
05-08-2019 дата публикации

АНОД И СУЛЬФИДНАЯ ТВЕРДОТЕЛЬНАЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ

Номер: RU2696596C1

Изобретение относится к аноду и сульфидной твердотельной аккумуляторной батарее, в которой используется сульфидный твердый электролит. Согласно изобретению анод содержит: смешанный анодный слой и токосъемный анодный слой, находящийся в контакте со смешанным анодным слоем, причем смешанный анодный слой содержит активный анодный материал и сульфидный твердый электролит, причем, по меньшей мере, поверхность токосъемного анодного слоя выполнена из материала, содержащего сплав меди и металл, склонность которого к ионизации превышает соответствующий параметр меди, причем поверхность находится в контакте со смешанным анодным слоем. Техническим результатом является снижение реакционной активности токосъемного анодного слоя по отношению к сульфидному твердому электролиту. 2 н. и 5 з.п. ф-лы, 13 ил., 8 пр.

Подробнее
01-07-2024 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДНОГО ТВЕРДОГО ЭЛЕКТРОЛИТА, СОДЕРЖАЩЕГО Sn

Номер: RU2822115C1

Изобретение относится к способу получения твердого электролита на сульфидной основе, который содержит Sn. Способ получения сульфидного твердого электролита включает: стадию получения раствора, на которой получают однородный раствор, содержащий по меньшей мере элементарный литий (Li), элементарное олово (Sn), элементарный фосфор (Р) и элементарную серу (S) в органическом растворителе; стадию сушки, на которой из полученного однородного раствора удаляют органический растворитель с получением предшественника; и стадию термической обработки, на которой нагревают полученный предшественник с получением сульфидного твердого электролита. Техническим результатом является обеспечение способа получения твердого электролита на сульфидной основе с низким содержанием примесей, обеспечивающего стабильную эксплуатацию, который обладает превосходной производительностью. 4 н. и 8 з.п. ф-лы, 3 ил., 1 табл., 6 пр.

Подробнее
27-11-2006 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ВТОРИЧНОГО ТВЕРДОТЕЛЬНОГО ИСТОЧНИКА ТОКА

Номер: RU2005111721A
Принадлежит:

... 1. Способ изготовления вторичного твердотельного источника тока путем нанесения на одну стороны твердого электролита анодного, на другую - катодного материалов с последующим обжигом и термоэлектрическим воздействием при пропускании электрического тока с поляризацией на электродах ниже напряжения разложения электролита, отличающийся тем, что анод и катод выполняют из материалов, соответствующих по составу анодному и катодному материалу полностью разряженного источника тока, а термоэлектрическое воздействие проводят переменным электрическим током. 2. Способ изготовления вторичного твердотельного источника тока по п.1, отличающийся тем, что термоэлектрическое воздействие проводят переменным током различной полярности. 3. Способ изготовления вторичного твердотельного источника тока по п.2, отличающийся тем, что термоэлектрическое воздействие проводят переменным током синусоидальной формы. 4. Способ изготовления вторичного твердотельного источника тока по п.3, отличающийся тем, что термоэлектрическое ...

Подробнее
29-12-2016 дата публикации

VERFAHREN ZUM HERSTELLUNG EINES SULFIDFESTELEKTROLYTEN

Номер: DE102016111598A1
Принадлежит:

Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Herstellen solch eines Sulfidfestelektrolyten, der eine hohe Lithiumionenleitfähigkeit aufweist und bei dem die Gesamtmenge an Wärme, die durch die Reaktion mit dem geladenen Anodenmaterial, die bei etwa 315 °C auftritt, erzeugt wird, verringert ist. Offenbart wird ein Verfahren zum Herstellen eines Sulfidfestelektrolyten, wobei das Verfahren beinhaltet: einen ersten Schritt des Bereitstellens von Li3PS4 mit einer γ-Struktur, und einen zweiten Schritt, in welchem eine Mischung eines zweiten Schritts, die Li3PS4 mit der γ-Struktur, das im ersten Schritt erhalten ist, und LiX (wobei X ein Halogen ist) entkristallisiert wird, und die entkristallisierte Mischung des zweiten Schritts in einem Temperaturbereich von mehr als 150°C und weniger als 190°C erwärmt wird.

Подробнее
24-10-2013 дата публикации

Nichtwässrige Elektrolytbatterie

Номер: DE112012000513T5

Angegeben wird eine nichtwässrige Elektrolytbatterie, die eine hohe Kapazität und hohe Volumenpulverdichte hat und eine verstärkte Ladungs-Entladungs-Zyklus-Fähigkeit aufweisen kann. Die nichtwässrige Elektrolytbatterie umfasst eine positive Elektrodenschicht, eine negative Elektrodenschicht und eine Festelektrolytschicht, die zwischen diesen Schichten angeordnet ist. Die negative Elektrodenschicht umfasst ein Pulver aus einem positiven Elektroden-Aktivmaterial und ein Pulver aus einem festen Elektrolyten. In dem negativen Elektroden-Aktivmaterial ist ein Ladungs-Entladungsvolumen-Änderungsverhältnis 1% oder weniger und das Pulver hat eine durchschnittliche Teilchengröße von 8 m oder weniger. Die Festelektrolytschicht wird durch ein Dampfphasenverfahren gebildet. Beispiele des negativen Elektroden-Aktivmaterials mit einem Ladungs-Entladungsvolumen-Änderungsverhältnis von 1% oder weniger umfassen Li4Ti5O12 und nicht-graphitierbaren Kohlenstoff.

Подробнее
02-01-2020 дата публикации

FESTKÖRPER-LITHIUMIONEN-SEKUNDÄRBATTERIE

Номер: DE112018001662T5
Принадлежит: TDK CORP, TDK CORPORATION

Eine Festkörper-Lithiumionen-Sekundärbatterie enthält eine Vielzahl von Elektrodenschichten, die mit einer Festelektrolytschicht dazwischen laminiert sind, eine Stromabnehmerschicht und eine Aktivmaterialschicht, die in jeder der Elektrodenschichten laminiert ist, wobei die Stromabnehmerschichten Cu enthalten und Cu-haltige Bereiche an Korngrenzen gebildet sind, die nahe der Stromabnehmerschicht unter Korngrenzen von Teilchen vorhanden sind, die die Aktivmaterialschicht bilden.

Подробнее
18-03-2021 дата публикации

LITHIUMKALIUMTANTALAT-VERBINDUNGEN ALS LI-SUPERIONENLEITER, FESTELEKTROLYT UND DECKSCHICHT FÜR LITHIUMMETALLBATTERIE UND LITHIUMIONENBATTERIE

Номер: DE102020123735A1
Принадлежит:

Es werden Festkörper-Lithiumionenelektrolyten von Verbindungen auf Lithiumkaliumtantalat-Basis bereitgestellt, die ein anionisches Gerüst enthalten, das in der Lage ist, Lithiumionen zu leiten. Eine Aktivierungsenergie der Lithiummetallsilikat-Verbundmaterialien beträgt von 0,12 bis 0,45 eV und Leitfähigkeiten betragen von 10-3bis 40 mS/cm bei 300 K. Es werden Zusammensetzungen konkreter Formeln bereitgestellt, und es werden Verfahren zum Ändern der Materialien unter Einschluss aliovalenter Ionen gezeigt. Lithiumbatterien, welche die zusammengesetzten Lithiumionenelektrolyte enthalten, werden ebenfalls bereitgestellt. Elektroden, welche die Materialien auf Lithiumkaliumtantalat-Basis enthalten, und Batterien mit solchen Elektroden werden ebenfalls bereitgestellt.

Подробнее
11-02-2021 дата публикации

VERFAHREN ZUM HERSTELLEN EINES SULFIDFESTSTOFFELEKTROLYTEN UND DADURCH HERGESTELLTER SULFIDFESTSTOFFELEKTROLYT

Номер: DE102020114050A1
Принадлежит:

Verfahren zum Herstellen eines Sulfidfeststoffelektrolyten und dadurch hergestellter Sulfidfeststoffelektrolyt, in welchen der Sulfidfeststoffelektrolyt zwei oder mehrere Sulfidverbindungen aufweist, wodurch die atmosphärische Stabilität des Feststoffelektrolyten verbessert und die Bildung von toxischem Gas verringert wird.

Подробнее
08-03-2018 дата публикации

Verfahren zum Herstellen von hochdichtem Festelektrolytdünnfilm und Verwendung eines Raumtemperatur-Hochgeschwindigkeitspulverbeschichtungsverfahrens

Номер: DE102016224974A1
Принадлежит:

Ein Verfahren zum Herstellen eines Festelektrolytdünnfilms mit hoher Dichte unter Verwendung eines Raumtemperatur-Hochgeschwindigkeitspulverbeschichtungsverfahrens kann umfassen: (a) Bereitstellen von Festelektrolytpulver auf Oxidbasis mit einer durchschnittlichen Teilchengröße von 0,1 bis 10 μm; (b) Wärmebehandeln des Festelektrolytpulvers auf Oxidbasis; und (c) Ausbilden eines Festelektrolytdünnfilms auf Oxidbasis durch auf eine Anodenschicht oder eine Kathodenschicht Sprühen des Festelektrolytpulvers auf Oxidbasis mittels eines Raumtemperatur-Hochgeschwindigkeitspulverbeschichtungsverfahrens.

Подробнее
22-03-2012 дата публикации

Lithiumionen leitende Glaskeramik und Verwendung der Glaskeramik

Номер: DE102011013018B3
Принадлежит: SCHOTT AG

Die Glaskeramik weist wenigstens eine Lithiumionen leitende Kristallphase und einen Gesamtgehalt an Ta2O5 von mindestens 0,5 Gew.-% auf. Die Glaskeramik eignet sich bevorzugt als Bestandteil einer Lithiumionenbatterie, als Elektrolyt in einer Lithiumionenbatterie, als Teil einer Elektrode in einer Lithiumionenbatterie, als Additiv zu einem Flüssigelektrolyten in einer Lithiumionenbatterie oder als Beschichtung auf einer Elektrode in einer Lithiumionenbatterie.

Подробнее
15-01-2012 дата публикации

LITHIUM ION SECONDARY BATTERY AND SOLID ELECTROLYTE FOR IT

Номер: AT0000541333T
Принадлежит:

Подробнее
15-12-2006 дата публикации

LITHIUM ION BATTERY WITH INORGANIC LIIONENLEITENDEN SOLID ELECTROLYTE

Номер: AT0000346392T
Автор: YSUHI INDA
Принадлежит:

Подробнее
15-07-1983 дата публикации

ELECTRO-CHEMICAL GENERATOR WITH NOT WAESSRIGEM ONE ELECTROLYTES.

Номер: AT0000004151T
Принадлежит:

Подробнее
19-03-2020 дата публикации

Method for producing LGPS-based solid electrolytex

Номер: AU2018326844A1
Принадлежит: FB Rice Pty Ltd

According to the present invention, a method for producing an LGPS-based solid electrolyte can be provided, the method being characterized by comprising: a solutionization step for preparing a homogeneous solution by mixing and reacting Li ...

Подробнее
21-05-2020 дата публикации

Production method for all-solid-state battery

Номер: AU2018352671A1
Принадлежит: FB Rice Pty Ltd

The present invention makes it possible to provide a production method for an all-solid-state battery having a solid electrolyte layer between a positive electrode layer and a negative electrode layer, the production method being characterized by including: a step for coating or impregnating the positive electrode layer and/or the negative electrode layer with a solid electrolyte solution in which a boron hydride compound serving as the solid electrolyte has been dissolved in a solvent; and a step for removing the solvent from the coated or impregnated solid electrolyte solution and causing the solid electrolyte to precipitate on the positive electrode layer and/or the negative electrode layer.

Подробнее
22-11-2012 дата публикации

Sold state electrolytes having high lithium ion conduction

Номер: AU2011238903A1
Принадлежит:

A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400°C using a spray deposition system. The deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500 °C, to obtain a high lithium ion conducting inorganic solid state electrolyte. The electrolyte is incorporated into a lithium ion battery. The Li ion battery comprises: a cathode comprising a material selected from the group consisting of : LiMn204, LiMnNiCoA/02, LiCo02, LiNiCo02, and LiFeP04; an anode comprising a material selected from the group consisting of :Li, Li alloys, and metal oxide doped with Li; and, a solid Li -ion conducting electrolyte selected from the group consisting of: LixAlz. y [GanBl ...

Подробнее
07-04-2016 дата публикации

Graphene current collectors in batteries for portable electronic devices

Номер: AU2016201673A1
Принадлежит:

The disclosed embodiments provide a battery cell. The battery cell includes a cathode current collector containing graphene, a cathode active material, an electrolyte, an anode active material, and an anode current collector. The graphene may reduce the manufacturing cost and/or increase the 5 energy density of the battery cell.

Подробнее
19-08-2021 дата публикации

Sodium-ion electrolyte composition

Номер: AU2016363672B2
Принадлежит:

A sodium-ion electrolyte composition for use in an electrochemical cell, the electrolyte composition comprising a mixture of a phosphonium salt and a sodium salt, wherein the electrolyte composition presents as a solid up to at least 25°C.

Подробнее
08-10-2001 дата публикации

Method and apparatus for integrated-battery devices

Номер: AU0004775301A
Принадлежит:

Подробнее
10-04-2018 дата публикации

METHOD FOR PREPARING A SOLID-STATE BATTERY BY SINTERING UNDER PULSATING CURRENT

Номер: CA0002789580C

La présente invention a pour objet un procédé de préparation d'une batterie tout solide Li-ion à corps monolithique dans lequel l'assemblage de la batterie est réalisé en une seule étape par superposition d'au moins une couche d'un mélange pulvérulent comprenant un matériau actif d'électrode positive et un électrolyte solide, au moins une couche intermédiaire d'un électrolyte solide et au moins une couche d'un mélange pulvérulent comprenant un matériau actif d'électrode négative et un électrolyte solide, et frittage simultané des trois couches à une pression d'au moins 20 MPa, sous courant puisé. L'invention a également pour objet la batterie Li-ion obtenue par un tel procédé.

Подробнее
25-08-2011 дата публикации

METHOD FOR PREPARING A SOLID-STATE BATTERY BY SINTERING UNDER PULSATING CURRENT

Номер: CA0002789580A1
Принадлежит:

La présente invention a pour objet un procédé de préparation d'une batterie tout solide Li-ion à corps monolithique dans lequel l'assemblage de la batterie est réalisé en une seule étape par superposition d'au moins une couche d'un mélange pulvérulent comprenant un matériau actif d'électrode positive et un électrolyte solide, au moins une couche intermédiaire d'un électrolyte solide et au moins une couche d'un mélange pulvérulent comprenant un matériau actif d'électrode négative et un électrolyte solide, et frittage simultané des trois couches à une pression d'au moins 20 MPa, sous courant puisé. L'invention a également pour objet la batterie Li-ion obtenue par un tel procédé.

Подробнее
21-03-1989 дата публикации

SOLID-STATE ELECTROLYTIC BATTERY

Номер: CA1251512A
Автор: MOHRI MOTOO, MOHRI, MOTOO
Принадлежит: SHARP KK, SHARP KABUSHIKI KAISHA

There is disclosed a unique solid-state electrolytic battery featuring high reliability and an extremely durable service life. The battery is capable of generating a large amount of dischargeable current and can be satisfactorily charged and discharged using activated hydrogenstored alloy/materials. This unique solid-state electrolytic battery incorporates a cathode comprised of activated hydrogen-stored alloy storing metallic-hydrogenated hydrogen; a solid-state electrolyte comprised of hydrogen-ion conductive elements; and an anode containing an activated guest material, primarily hydrogen-ions.

Подробнее
05-04-2002 дата публикации

NON-AQUEOUS ELECTROLYTE CELL AND SOLID ELECTROLYTE CELL

Номер: CA0002358259A1
Принадлежит:

A cell which is not deteriorated in cell characteristics and which maintains a cell shape encapsulated in a laminate film even when overdischarged to a cell voltage of 0V. The cell includes a cathode containing a compound having the formula Li x Fe1- y M y PO4, where M is at least one selected from the group consisting of Mn, Cr, Co, Cu, Ni, V, MO, Ti, Zn, Al, Ga, Mg, B and Nb, with 0.05 .ltoreq. x .ltoreq. 1.2 and 0 .ltoreq. y .ltoreq. 0.8, an anode and a solid electrolyte. An electrode member 1 comprised of the cathode, and the anode, layered together with the interposition of a solid electrolyte, is encapsulated in a laminate film 2.

Подробнее
17-09-2020 дата публикации

HYBRID SOLID-LIQUID ELECTROLYTE LITHIUM STORAGE BATTERY

Номер: CA3132595A1
Принадлежит:

The present invention belongs to the technical field of solid-state lithium storage batteries, and particularly discloses a hybrid solid-liquid electrolyte lithium storage battery. The lithium storage battery comprises a positive electrode sheet, a negative electrode sheet, and a composite solid-state electrolyte sheet arranged between the positive electrode sheet and the negative electrode sheet, wherein the composite solid-state electrolyte sheet comprises a solid-state electrolyte core layer and adhesive buffer layers arranged on two sides of the solid-state electrolyte core layer; and the solid-state electrolyte core layer is mainly formed by means of mixing a core layer inorganic solid-state electrolyte, an electrolyte polymer and an electrolyte additive, and each adhesive buffer layer is mainly formed by means of mixing an adhesive buffer layer inorganic solid-state electrolyte, an adhesive buffer layer lithium salt and an adhesive buffer layer additive. During the preparation of ...

Подробнее
29-05-2004 дата публикации

LITHIUM ION SECONDARY BATTERY AND METHOD FOR MANUFACTURING THE SAME

Номер: CA0002451181A1
Автор: INDA, YASUSHI
Принадлежит:

A lithium ion secondary battery includes a positive electrode, a negative electrode and a thin film solid electrolyte including lithium ion conductive inorganic substance. The thin film solid electrolyte has thickness of 20,.mu.m or below and is formed directly on an electrode material or materials for the positive electrode and/or the negative electrode. The thin film solid electrolyte has lithium ion conductivity of 10-6Scm-1 or over and contains lithium ion conductive inorganic substance powder in an amount of 40 weight % or over in a polymer medium. The average particle diameter of the inorganic substance powder is 0.5 .mu.m or below .According to a method for manufacturing the lithium ion secondary battery, the thin film solid electrolyte is formed by coating the lithium ion conductive inorganic substance directly on the electrode material or materials for the positive electrode and/or the negative electrode.

Подробнее
29-10-2013 дата публикации

ELECTRODE ACTIVE MATERIAL AND USE THEREOF

Номер: CA0002543711C
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

... ²²²Disclosed is an electrode active material which mainly contains a metal ²phosphate complex and exhibits good charge/discharge characteristics. Also ²disclosed is a method for producing such an electrode active material. The ²electrode active material mainly contains an amorphous metal complex ²represented by the general formula: AxM(PO4)y. In the formula, A represents an ²alkali metal, M represents one or more metal elements selected from transition ²metals, 0 = x = 2 and 0 < y = 2. Such an electrode active material can be ²produced at a lower cost and in a shorter time than the conventional electrode ²active materials using a crystalline metal complex, and still exhibits battery ²characteristics equivalent to those of the conventional electrode active ²materials.² ...

Подробнее
19-01-2010 дата публикации

METHOD OF FORMING THIN FILM OF INORGANIC SOLID ELECTROLYTE

Номер: CA0002360719C
Принадлежит: SUMITOMO ELECTRIC INDUSTRIES, LTD.

A method of producing a thin film of an inorganic solid electrolyte having a relatively high ionic conductance is provided. In the method, a thin film made of an inorganic solid electrolyte is formed, by a vapor deposition method, on a base member being heated. The thin film obtained through the heat treatment exhibits an ionic conductance higher than that of the thin film formed on the base member not being heated. The ionic conductance can also be increased through the steps of forming the thin film made of the inorganic solid electrolyte on the base member at room temperature or a temperature lower than 40.degree.C and then heating the thin film of the inorganic solid electrolyte.

Подробнее
04-01-2011 дата публикации

THIN FILM LITHIUM BATTERY

Номер: CA0002594455C
Принадлежит: SUMITOMO ELECTRIC INDUSTRIES, LTD.

A thin film lithium battery is provided which can realize a high yield by solving various problems caused by a pin hole formed in a solid electrolyte layer. A thin film lithium battery according to the present invention is a thin film lithium battery in which a positive electrode layer 20, a negative electrode layer 50, a solid electrolyte layer 40 provided therebetween, and a collector 10 electrically connected to at least one of the positive electrode layer 20 and the negative electrode layer 50 are laminated to each other. When this battery is viewed in plan along the lamination direction of the above individual layers, the positive electrode layer 20 and the negative electrode layer 50 are disposed at positions so as not to be overlapped with each other. By the structure as described above, even if a pin hole is formed in the solid electrolyte layer 40, short-circuiting between the two electrode layers 20 and 50, which is caused by this pin hole, can be prevented.

Подробнее
09-06-2016 дата публикации

STANDALONE SULFIDE BASED LITHIUM ION-CONDUCTING GLASS SOLID ELECTROLYTE AND ASSOCIATED STRUCTURES, CELLS AND METHODS

Номер: CA0002969113A1
Принадлежит:

A standalone lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.

Подробнее
21-05-2002 дата публикации

LITHIUM SECONDARY BATTERY

Номер: CA0002209531C

The invention provides a lithium secondary battery, comprising a cathode ( 3) having a spinel-structured lithium-manganese complex oxide as the active material, which is characterized in that the particles of said spinel- structured lithium-manganese complex oxide are hollow, spherical secondary particles by sintering of primary particles, and said secondary particles have a mean particle size of from 1 to 5 micrometer and a specific surface area of from 2 to 10 m2/g. The lithium secondary battery has a high capacity and excellent charge- discharge cycle characteristics.

Подробнее
15-11-1982 дата публикации

ELECTRIC CURRENT SUPPLYING CELL.

Номер: CH0000633131A5

Подробнее
15-12-2020 дата публикации

Separation element for separating a cathode space from an anode compartment.

Номер: CH0000716315A1
Принадлежит:

Die Erfindung betrifft ein Trennelement (11) zur Trennung eines Kathodenraumes (33) von einem Anodenraum (31) einer Reaktorzelle (25) umfassend ein Trägerelement (12) und ein auf das Trägerelement aufgebrachtes Trennmaterial. Das Trägerelement (12) ist aus einem keramischen Werkstoff mit als Kanälen ausgeführten Poren aufgebaut. Das Trennmaterial ist auf die Innenoberfläche der Poren aufgebracht, indem das Trennmaterial in die Poren eingebracht ist. Die Erfindung betrifft auch eine Reaktorzelle (25) sowie ein Verfahren zur Herstellung von elektrischen Strom und/oder Wasserstroff.

Подробнее
31-01-2023 дата публикации

Matériau particulaire pour une électrode composite et procédé de production du matériau particulaire.

Номер: CH0000718845A2
Принадлежит:

La présente invention concerne un procédé de production d'un matériau particulaire pour une électrode composite, le procédé comprenant le broyage par billes d'un composant actif d'électrode comprenant un métal de transition M présentant un état d'oxydation d'origine de 5+ et facultativement de 4+ et/ou 3+, et d'un premier composé de sulfure comprenant du lithium comprenant un élément X, X étant P, Ge, Si ou Sn, un composant électroniquement conducteur étant ajouté au composant actif d'électrode et au premier composé de sulfure comprenant du lithium, pour ainsi obtenir le matériau particulaire. La présente invention concerne en outre un tel matériau particulaire comprenant une ou plusieurs des liaisons suivantes : X-S x -X, M y S z , M u X v , x étant entre 0 et 2, y étant entre 0 et 2, z étant entre 0 et 4 et u étant entre 0 et 2. La présente invention concerne également une cathode composite comprenant le matériau particulaire et une cellule de batterie comprenant la cathode composite.

Подробнее
29-07-2022 дата публикации

Wiederaufladbare Li-Se-basierte Batterie mit Möglichkeit zur lichtunterstützten Ladung und Entladung.

Номер: CH0000718270A2
Принадлежит:

Die vorliegende Erfindung beschreibt eine wiederaufladbare Li-Se-basierte Batterie oder Zelle (1) als Festkörper-Aufbau mit Dünnschichttechnik, bestehend aus einzelnen Schichten mit einer Dicke von 5 Nanometer bis 5 Mikrometer. Die Batterie besteht aus verschiedenen Schichten in der folgenden Reihenfolge: Stromabnehmer (11'), Photoelektrode (12) auf Selen-Basis, eine flüssige oder feste lithiumhaltige Elektrolyt-Schicht (13), eine Zellelektrode mit Lithium (14) und ein Stromabnehmer (15'), der für zusätzliche Entladekapazität und/oder zusätzliche Auflademöglichkeit sorgt. Die Li-Se-basierte Batterie oder Zelle (1) ist an der einen Seite transparent oder transluzent. An dieser Seite befindet sich eine transparente Substratschicht (10) und der nachfolgend angeordnete Stromabnehmer (11'), der als transparenter leitender Stromabnehmer (11') transparent oder transluzent ist, um mindestens 10 % des einfallenden Lichts durch beide Schichten (10, 11') hindurchtreten zu lassen, bis die Photoelektrode ...

Подробнее
30-05-2013 дата публикации

SOLID ELECTROLYTES WITH HIGH CONDUCTIVITY LITHIUM IONS

Номер: EA0201290999A1
Автор:
Принадлежит:

Подробнее
28-08-2020 дата публикации

Super-ionic conductor solid electrolyte as well as preparation method and application thereof

Номер: CN0111600071A
Автор:
Принадлежит:

Подробнее
06-05-2015 дата публикации

Manganese-cesium-lithium phosphate as well as preparation method and application thereof

Номер: CN104591112A
Автор: GAO JIANHUA, SONG LIMEI
Принадлежит:

Подробнее
01-07-2015 дата публикации

Method for producing all-solid-state battery, and all-solid-state battery

Номер: CN104752774A
Автор: MATSUSHITA YUKI
Принадлежит:

An objective of the invention is to provide a method for producing an all-solid-state battery with fewer steps for minimizing warping than in the prior art, and an all-solid-state battery with lower warping. This is achieved by a method comprising the steps of: (A) disposing a first electrode active material layer on both sides of a first collector to form a first electrode layer, (B) disposing a solid electrolyte layer on each of the first electrode active material layers, (C) disposing a second electrode active material layer and a second collector on the solid electrolyte layers, in such a manner that the second electrode active material layers contact with the solid electrolyte layers, (D) pressing a stack formed in steps (A) to (C), to form a battery unit, (E) repeating steps (A) to (D) to form a plurality of battery units, and (F) stacking the plurality of battery units.

Подробнее
06-07-2018 дата публикации

Solid PVB electrolyte membrane

Номер: CN0207587881U
Автор: YE WEIMIN, XIE HUAIYU
Принадлежит:

Подробнее
10-05-2019 дата публикации

Preparation of garnet type solid electrolyte and secondary battery using garnet type solid electrolyte

Номер: CN0109742442A
Принадлежит:

Подробнее
31-07-2020 дата публикации

Inorganic-organic composite solid electrolyte membrane and processing technology thereof

Номер: CN0111477947A
Автор:
Принадлежит:

Подробнее
10-11-2017 дата публикации

Method for preparing solid electrolyte used for lithium-ion battery

Номер: CN0107342435A
Принадлежит:

Подробнее
03-08-2018 дата публикации

Lithium ion solid electrolyte and preparation method and application thereof

Номер: CN0108365259A
Принадлежит:

Подробнее
24-05-2019 дата публикации

BULK SOLID STATE BATTERIES UTILIZING MIXED IONIC ELECTRONIC CONDUCTORS

Номер: CN0109802172A
Принадлежит:

Подробнее
19-10-2018 дата публикации

Oxygen ion conductor and preparation method and application thereof

Номер: CN0108682882A
Принадлежит:

Подробнее
16-04-2019 дата публикации

Preparation method and preparation mold of all-solid lithium-sulfur battery

Номер: CN0109638360A
Принадлежит:

Подробнее
22-02-2019 дата публикации

Lithium solid battery, lithium solid battery module and method for manufacturing lithium solid battery

Номер: CN0105830269B
Автор:
Принадлежит:

Подробнее
09-10-2020 дата публикации

Electrolyte/electrode interface integrated construction technology in all-solid-state lithium battery

Номер: CN0107742728B
Автор:
Принадлежит:

Подробнее
04-12-2018 дата публикации

Composite solid electrolyte and the all-solid battery

Номер: CN0106104896B
Автор:
Принадлежит:

Подробнее
31-07-2020 дата публикации

Preparation method of thin film solid electrolyte added with buffer layer

Номер: CN0108649264B
Автор:
Принадлежит:

Подробнее
22-09-2020 дата публикации

O

Номер: CN0108511795B
Автор:
Принадлежит:

Подробнее
06-12-2019 дата публикации

Method for producing all-solid-state thin-film lithium battery

Номер: CN0107464913B
Автор:
Принадлежит:

Подробнее
04-05-2011 дата публикации

Total solid rechargeable battery

Номер: CN0101461087B
Принадлежит:

This invention provides a total solid rechargeable battery that can be manufactured by a method, which can realize mass production on a commercial scale, and can realize excellent rechargeable battery performance. The rechargeable battery is a total solid rechargeable battery comprising a laminate. The laminate comprises positive electrode units and negative electrode units provided alternately through an ion conductive inorganic material layer. The total solid rechargeable battery is characterized in that the positive electrode unit comprises a positive electrode active material layer provided on both sides of a positive electrode current collector layer, the negative electrode unit comprises a negative electrode active material layer provided on both sides of a negative electrode current collector layer, and (a) at least one of the positive electrode current collector layer and the negative electrode current collector layer is formed of any of Ag, Pd, Au and Pt metals, or an alloy containing ...

Подробнее
13-08-2021 дата публикации

METHOD FOR MANUFACTURING ALL-SOLID-STATE BATTERY

Номер: CN113261143A
Принадлежит:

The invention is to prevent coagulation of an electrode active material or an electrolyte in forming an electrode of an all-solid-state battery, to form a layer such that a desired proportion of the active material amount and the electrolyte amount is achieved, and to produce a mixture which is uniform at the micro level. Similarly, the invention aims to make thinner film in forming a layer to obtain a uniform thin-film electrolyte layer, to reduce electrical resistance by eliminating or minimizing gaps between particles and increasing adherence of each interface, to avoid non-uniform coagulation or film forming caused by a conductive additive. Furthermore, to improve battery performance by eliminating or greatly reducing carbon residue arising from a binder. [Solution] A high-density layer can be formed and adherence increased by causing a slurry formed primarily from an electrode active material and a solvent and a slurry formed primarily from electrolyte particles and the solvent to ...

Подробнее
13-08-2021 дата публикации

Negative electrode material, negative electrode slurry, battery cell, low-temperature-resistant battery and preparation method thereof

Номер: CN113258032A
Принадлежит:

The invention discloses a negative electrode material, negative electrode slurry, a battery cell, a low-temperature-resistant battery and a preparation method thereof. The negative electrode material comprises a negative electrode active material and an inorganic solid electrolyte, the negative electrode active material comprises artificial graphite doped with hard carbon, the weight ratio of the hard carbon in the negative electrode active material is 5-30%, and the content of the inorganic solid electrolyte is 5-20% of the weight of the hard carbon. By adding the solid electrolyte, the solid electrolyte and hard carbon are mixed in the artificial graphite and materials are mixed with different particle sizes, the porous negative electrode dressing area is prepared, and the problems that the porosity of a pole piece is low after a traditional artificial graphite negative electrode is rolled, the migration impedance of a battery cell at low temperature is large, and the ionic conductivity ...

Подробнее
26-05-2023 дата публикации

Method for preparing solid sulfide electrolyte through high-pressure heat treatment and application

Номер: CN116169367A
Автор: CHAI ZHONGHUA
Принадлежит:

The invention discloses a preparation method of sulfide solid electrolyte, and belongs to the field of solid-state batteries. The research shows that the interface condition has great influence on the ion transmission rate, the interface condition of the Li2S-P2S5 glass ceramic electrolyte is improved by adopting a high-pressure heat treatment method, and the grain boundary resistance of ion migration is effectively eliminated, so that the sulfide electrolyte with high ionic conductivity is prepared.

Подробнее
11-08-2023 дата публикации

Battery composite pole piece and preparation method thereof

Номер: CN116581235A
Принадлежит:

The invention relates to the technical field of secondary battery pole piece preparation, and discloses a battery composite pole piece preparation method, which comprises: S10, selecting a porous copper foil for a battery, and coating a solid electrolyte on one side surface of the porous copper foil to form a solid electrolyte layer; s20, coating or plating a porous aluminum foil on the surface of the solid electrolyte layer; s30, coating the surface of the porous aluminum foil with a positive electrode material to form a positive electrode coating; coating the surface of the other side of the porous copper foil with a negative electrode material to form a negative electrode coating; and finally obtaining the battery composite pole piece. The through type integrated battery composite pole piece is formed by sequentially overlapping the negative electrode coating, the porous copper foil, the solid electrolyte layer, the porous aluminum foil and the positive electrode coating, and the positive ...

Подробнее
22-08-2008 дата публикации

JUST MICROCOMPONENT ASSOCIATING THE FUNCTIONS OF RECOVERY AND STORAGE OF ENERGY

Номер: FR0002901639B1
Принадлежит: COMMISSARIAT A L'ENERGIE ATOMIQUE

Подробнее
17-07-2020 дата публикации

BATTERY SOLID ELECTROLYTE

Номер: FR0003080490B1
Принадлежит:

Подробнее
28-11-2008 дата публикации

ELECTROLYTIC ORGANIC GLASS, ITS MANUFACTORING PROCESS AND DEVICE INCLUDING/UNDERSTANDING IT.

Номер: FR0002916577A1
Принадлежит:

L'invention concerne un électrolyte solide, un procédé pour sa fabrication ainsi que des dispositifs le comprenant. L'électrolyte de l'invention est un solide amorphe de formule SivOwCxHyLiz dans laquelle v, w, x,y et z sont des pourcentages atomiques avec 0≤v≤40, 5≤w≤50, x>12, 10≤y≤40, 1≤z≤70, et 95%≤ v+w+x+y+z≤100%. L'électrolyte de l'invention trouve application dans le domaine de l'électronique et des microbatteries, en particulier.

Подробнее
30-06-2006 дата публикации

Device for the storage of energy using a nanostructured electrode, for the fabrication of micro- batteries with improved life and stability

Номер: FR0002880198A1
Принадлежит:

Une nouvelle configuration d'anode (20) est proposée pour une micro-batterie au lithium (10). L'anode (20) est composée de préférence de nanotubes ou de nanofils (24) tels que le vide (26) laissé entre les différents éléments (24) permet de compenser le gonflement inhérent à la décharge de la micro-batterie (10). L'absence de contraintes sur l'électrolyte (18) permet d'augmenter la durée de vie de la batterie (10).

Подробнее
18-04-2019 дата публикации

Номер: KR0101970397B1
Автор:
Принадлежит:

Подробнее
15-12-2015 дата публикации

BIPOLAR ALL-SOLID-STATE BATTERY

Номер: KR0101577881B1
Автор: 다나카 다쿠미
Принадлежит: 도요타 지도샤(주)

... 본 발명은, 바이폴라 전극의 집전체의 깨짐을 방지하고, 단락의 발생을 바람직하게 방지할 수 있는 바이폴라 전고체 전지, 및 상기 바이폴라 전고체 전지의 제조 방법을 제공하는 것을 과제로 한다. 본 발명은, 집전체, 그리고 상기 집전체의 일방의 표면에 형성되고 정극 활물질을 함유하는 정극 활물질층, 및 상기 집전체의 타방의 표면에 형성되고 부극 활물질을 함유하는 부극 활물질층으로 이루어지는 전극 활물질층을 갖는 바이폴라 전극과, 고체 전해질을 함유하는 고체 전해질층을 갖고, 상기 고체 전해질층을 개재하여 복수의 상기 바이폴라 전극이 적층되어 있는 바이폴라 전고체 전지로서, 상기 전극 활물질층은 상기 집전체의 단부의 내측에 형성되고, 상기 전극 활물질층의 단부와 상기 집전체 표면 사이에는 상기 집전체 표면 상에 형성된 보강층이 배치되어 있는 것을 특징으로 하는 바이폴라 전고체 전지를 제공함으로써 상기 과제를 해결한다.

Подробнее
01-12-2020 дата публикации

PROCESS FOR MANUFACTURING A MONOLITHIC ALL-SOLID-STATE BATTERY

Номер: KR0102185038B1
Автор:
Принадлежит:

Подробнее
27-06-2016 дата публикации

SOLID ELECTROLYTE AND ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY

Номер: KR0101633718B1

... 본 발명은 전(全)고체 리튬 이온 전지의 고체 전해질에 사용되는 리튬-란탄-지르코늄-산화물계 고체 전해질에 있어서, 이온 전도성을 높여, 전지의 내부 저항을 저감하고, 고(高)출력화, 고레이트 특성의 전지를 부여하는 것을 과제로 한다. 이러한 과제를 해결하기 위해, 리튬, 란탄, 지르코늄을 함유하거나 리튬 이온 전도성 산화물 고체 전해질에 있어서, 산소의 일부가, 산소보다도 전기 음성도가 낮은 원소 M(M=N, Cl, S ,Se, Te)에 의해 치환되어 있는 것을 특징으로 하는 고체 전해질을 적용한다.

Подробнее
08-02-2013 дата публикации

A manufacturing method for plastic secondary battery using optical energy and plastic battery device manufactured by the same

Номер: KR0101232018B1
Автор:
Принадлежит:

Подробнее
07-08-2018 дата публикации

대기 안정성이 우수한 황화물계 고체전해질의 제조방법

Номер: KR0101886036B1
Принадлежит: 한국과학기술연구원

... 본 발명은 대기 노출에 안정한 황화물계 고체전해질을 제조하는 방법에 관한 것이다. 구체적으로는 반응 가능한 가스 처리를 통해 황화물계 고체전해질 입자의 표면으로 안정층을 형성하는 것을 일 기술적 특징으로 한다.이에 따라 상기 안정층이 황화물계 고체전해질 입자 대신에 대기 중의 수분 등과 산화 반응 또는 환원 반응을 일으키므로 대기 안정성이 우수한 황화물계 고체전해질을 수득할 수 있다.

Подробнее
10-04-2015 дата публикации

LITHIUM SULFUR BATTERIES

Номер: KR0101511206B1
Автор:
Принадлежит:

Подробнее
12-03-2020 дата публикации

ALL SOLID STATE BATTERY AND ANODE

Номер: KR0102088396B1
Автор:
Принадлежит:

Подробнее
11-01-2019 дата публикации

전고체 전지용 양극-전해질 층 복합체의 제조방법

Номер: KR0101936827B1
Принадлежит: 한국과학기술연구원

... 본 발명은 전고체 전지용 양극-전해질 층 복합체의 제조방법에 관한 것으로, 보다 상세하게는 히팅 자켓(Heating jacket)을 사용한 핫프레스 공정을 도입하여 기공 발생을 최소화함으로써 양극-전해질 계면이 치밀화(densifiction)된 양극-전해질 층 복합체를 제조하고, 이를 포함함으로써 고용량 및 고안정성을 갖는 전고체 전지로 응용할 수 있다.

Подробнее
24-07-2019 дата публикации

Номер: KR0102003296B1
Автор:
Принадлежит:

Подробнее
08-03-2018 дата публикации

고체 전해질 기반 리튬 황 전지

Номер: KR0101835302B1
Принадлежит: 로베르트 보쉬 게엠베하

... 본 발명은 실온 또는 더 높은 온도에서 작동 가능한 리튬 황 전지에 관한 것이며, 상기 전지의 애노드(1) 및 캐소드(2)는 리튬 이온 전도성 및 전자 비전도성 고체 전해질(3)에 의해 분리된다. 또한, 본 발명은 이러한 리튬 황 전지의 작동 방법 및 이러한 리튬 황 전지의 용도에 관한 것이다.

Подробнее
22-07-2019 дата публикации

Номер: KR0102002597B1
Автор:
Принадлежит:

Подробнее
08-06-2016 дата публикации

SOLID ELECTROLYTE FOR ALL SOLID STATE RECHARGEABLE LITHIUM BATTERY, METHOD FOR PREPARING THE SAME, AND ALL SOLID STATE RECHARGEABLE LITHIUM BATTERY INCLUDING THE SAME

Номер: KR0101627848B1

... 하기 화학식 1로 표시되는 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지가 제공된다. [화학식 1] Li5+x(M1)3(M2)2O12-yNy 상기 화학식 1에서, M1, M2, x 및 y의 정의는 명세서에 기재된 바와 같다.

Подробнее
07-01-2019 дата публикации

황화물계 고체전해질 재료 및 그 제조방법

Номер: KR1020190001798A
Принадлежит:

... 본 발명은, 황화물계 고체전해질 재료 및 그 제조방법에 있어서, LPSX계 고체전해질의 원료인 황화리튬(lithium sulfide, Li2S), 황화합물(sulfur compound), 리튬화합물(lithium compound)을 5 내지 40시간 동안 습식 기계적 밀링을 통해 혼합하여 비정질 고체전해질을 제조하는 단계와; 상기 비정질 고체전해질을 140 내지 200℃에서 열처리하여 리튬이온전도도가 높은 유리결정질의 고체전해질 재료를 제조하는 단계를 포함하는 것을 기술적 요지로 한다. 이러한 기술을 통하여 원료의 조성, 기계적 혼합, 열처리 온도 등 제조 조건을 조절하여 결정질과 유리결정질이 적절하게 혼재하게 함으로써 비정질 상태 또는 결정성이 높은 상태보다 이온전도도가 높은 유리결정질의 고체전해질 재료를 얻을 수 있다.

Подробнее
02-09-2020 дата публикации

All-solid-state battery Method and apparatus for manufacturing the same

Номер: KR1020200103778A
Автор:
Принадлежит:

Подробнее
15-12-2014 дата публикации

Номер: KR1020140143097A
Автор:
Принадлежит:

Подробнее
05-07-2018 дата публикации

METHOD FOR PRODUCING SULFIDE SOLID ELECTROLYTE MATERIAL

Номер: KR1020180076334A
Автор: YANAGI TAKUO
Принадлежит:

The present disclosure provides a method for producing a sulfide solid electrolyte material, which comprises: a preparation step for preparing composite particles having a Li_2S component and a solid solution containing a LiBr component; an input step for injecting the composite particles and phosphorus into a reaction chamber; and a milling step for subjecting the composite particles and the phosphorus in the reaction chamber to a mechanical milling treatment while applying heat energy thereto. The present disclosure provides the method for producing the sulfide solid electrolyte material, which can shorten a milling time. COPYRIGHT KIPO 2018 (A1,A2,A3) Material remaining amount (B1,B2,B3) Comparative example 3 (C1,C2,C3) Example 1 (D1,D2,D3) Milling time (hr) ...

Подробнее
23-07-2018 дата публикации

고체 전해질 조성물, 바인더 입자, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 이들의 제조 방법

Номер: KR1020180083946A
Принадлежит:

... 평균 입경이 10~50,000nm이며, 이온 전도성 물질을 내포하는 바인더 입자, 이 바인더 입자와, 주기율표 제1족 또는 제2족에 속하는 금속 원소의 이온의 전도성을 갖는 무기 고체 전해질과, 분산 매체를 포함하는 고체 전해질 조성물, 이것을 이용한, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 이들의 제조 방법이다.

Подробнее
07-12-2016 дата публикации

고상 배터리들을 위한 상호 접속의 형성

Номер: KR1020160140863A
Принадлежит:

... 개선된 에너지 밀도들을 갖는 배터리들 및 배터리들을 제조하는 방법들이 개시된다. 일부 실시예들에서, 기판의 제1 측면 상에 제1 음극 전류 콜렉터 및 제1 양극 전류 콜렉터가 제공된다. 기판의 제2 측면 상에 제2 음극 전류 콜렉터 및 제2 양극 전류 콜렉터가 제공된다. 레이저를 사용하여, 제1 음극 전류 콜렉터와 제2 음극 전류 콜렉터 사이에 기판을 통하는 제1 채널 및 제1 양극 전류 콜렉터와 제2 양극 전류 콜렉터 사이에 기판을 통하는 제2 채널을 형성한다. 제1 음극 전류 콜렉터와 제2 음극 전류 콜렉터 사이에, 제1 채널을 통하는, 음극 상호 접속이 형성된다. 제1 양극 전류 콜렉터와 제2 양극 전류 콜렉터 사이에, 제2 채널을 통하는, 양극 상호 접속이 형성된다.

Подробнее
11-02-2014 дата публикации

Solid electrolyte based Nonwoven separator for lithium Secondary Battery and its making method

Номер: KR1020140017105A
Автор:
Принадлежит:

Подробнее
12-12-2012 дата публикации

THIN FILM BATTERY WITH EXCELLENT LIFE TIME BY HAVING A STRUCTURE WHERE A NEGATIVE ELECTRODE CURRENT COLLECTOR AND ELECTROLYTE ARE NOT OVERLAPPED BY EACH OTHER, AND A MANUFACTURING METHOD THEREOF

Номер: KR1020120134234A
Принадлежит:

PURPOSE: A thin film battery is provided to prevent capturing lithium ions between a negative electrode current collector layer and an electrolyte layer, thereby being capable of improving battery lifetime. CONSTITUTION: A thin film battery comprises: a positive electrode current collector layer(110) formed on one side of a substrate(100), a positive electrode active material layer(120) formed on the positive electrode current collector layer; a negative electrode current collector layer(130) formed on the other side of the substrate to be electrically separated from the positive electrode current collector layer; an electrolyte layer(140) formed to cover an exposed part of the positive electrode active material layer and an exposed part between the positive electrode current collector layer and the negative current collector layer; and a negative electrode active material layer(150) formed on the negative electrode current collector layer and the electrolyte layer. COPYRIGHT KIPO 2013 ...

Подробнее
28-01-2019 дата публикации

전고체형 리튬 이차전지용 양극 활물질

Номер: KR1020190009323A
Принадлежит:

Li, Mn 및 O와, 이들 이외의 2종 이상의 원소를 포함하는 스피넬형 복합 산화물로 이루어지는 입자의 표면이, LiNbO3 등의 리튬이온전도성 산화물로 피복되어 이루어지는 양극 활물질에 관한 것이며, 리튬이온전도성을 향상하면서 저항을 억제해서 레이트 특성, 사이클 특성을 개선할 수 있는, 새로운 양극 활물질을 제공한다. Li, Mn 및 O와, 이들 이외의 2종 이상의 원소를 포함하는 스피넬형 복합 산화물로 이루어지는 본 코어 입자의 표면이, Li, A(A는 Ti, Zr, Ta, Nb 및 Al로 이루어지는 군에서 선택된 1종 이상의 원소) 및 O를 포함하는 비정질(非晶質) 화합물로 피복되어 있으며, 또한, XPS에 의해서 얻어지는, 표면에 있어서의 A 원소에 대한 Li의 mol 비율(Li/A)이 1.0∼3.5인 것을 특징으로 하는 전고체형 리튬 이차전지용 양극 활물질을 제안한다.

Подробнее
02-12-2019 дата публикации

Литиевая батарея

Номер: RU0000194176U1

Полезная модель относится к области электротехники, в частности электрическому оборудованию, а именно к литиевой батарее для непосредственного преобразования химической энергии в электрическую, и может быть использована при производстве батарей из химических источников тока (ИТ), предназначенных для основного или резервного обеспечения электроэнергией систем телемеханики и аварийной сигнализации, автономной аппаратуры, приборов и устройств нефтепроводов и газопроводов, а также для применения в качестве автономных или резервных источников питания других различных электронных устройств и приборов.Литиевая батарея содержит цепь последовательно соединенных ИТ, положительный и отрицательный выводы которой подключены, соответственно, к положительному и отрицательному токовыводам батареи.Батарея содержит полевой транзистор, проводящий канал которого включен между одним из выводов цепи ИТ и токовыводом батареи, а затвор полевого транзистора подключен к выводу цепи ИТ противоположной полярности, и источник опорного напряжения, содержащий резистор и стабилитрон. Батарея дополнительно снабжена полевым транзистором и резистором, при этом проводящий канал дополнительного полевого транзистора подключен между затвором основного полевого транзистора и его проводящим каналом со стороны его подключения к цепи ИТ, а затвор дополнительного полевого транзистора подключен к проводящему каналу основного полевого транзистора со стороны его подключения к токовыводу батареи. Резистор источника опорного напряжения подключен между затвором основного полевого транзистора и выводом цепи ИТ противоположной полярности. Стабилитрон источника опорного напряжения выбран с напряжением стабилизации, превышающим напряжение открытия проводящего канала основного полевого транзистора, и подключен между затвором и проводящим каналом основного полевого транзистора параллельно проводящему каналу дополнительного полевого транзистора. Дополнительный резистор включен между проводящим каналом основного полевого ...

Подробнее
25-10-2021 дата публикации

Установка для механического прокола литиевых аккумуляторов

Номер: RU0000207346U1

Полезная модель относится к области взрывопожарной безопасности, предназначена для оценки пожаровзрывоопасности литиевых аккумуляторов методом механического прокола. Техническим результатом является оценка пожаровзрывоопасности литиевых аккумуляторов методом механического прокола с последующим наблюдением возгорания или взрыва аккумулятора. Сущность полезной модели заключается в том, что установка состоит из стойки, являющейся ее основой, на которой расположены тиски для зажима литиевого аккумулятора. На стойке закреплен рычаг для опускания стального гвоздя, закрепленного в патрон. К поверхности литиевого аккумулятора прикреплена термопара цифрового термометра. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 207 346 U1 (51) МПК H01M 50/572 (2021.01) H01M 10/052 (2010.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК H01M 50/572 (2021.05); H01M 10/052 (2021.05) (21)(22) Заявка: 2021118032, 22.06.2021 (24) Дата начала отсчета срока действия патента: Дата регистрации: 25.10.2021 (45) Опубликовано: 25.10.2021 Бюл. № 30 (54) УСТАНОВКА ДЛЯ МЕХАНИЧЕСКОГО ПРОКОЛА ЛИТИЕВЫХ АККУМУЛЯТОРОВ (57) Реферат: Полезная модель относится к области заключается в том, что установка состоит из взрывопожарной безопасности, предназначена стойки, являющейся ее основой, на которой для оценки пожаровзрывоопасности литиевых расположены тиски для зажима литиевого аккумуляторов методом механического прокола. аккумулятора. На стойке закреплен рычаг для Техническим результатом является оценка опускания стального гвоздя, закрепленного в пожаровзрывоопасности литиевых патрон. К поверхности литиевого аккумулятора аккумуляторов методом механического прокола прикреплена термопара цифрового термометра. с последующим наблюдением возгорания или 1 ил. взрыва аккумулятора. Сущность полезной модели R U 2 0 7 3 4 6 (56) Список документов, цитированных в отчете о поиске: JP 5766117 B2, 19.08.2015. CN 108987794 A, 11.12.2018. RU 2340983 C1, 10.12.2008. RU ...

Подробнее
19-01-2012 дата публикации

Battery and battery system

Номер: US20120015220A1
Принадлежит: Toyota Motor Corp

The present invention is a battery comprising: a power section containing a sulfur-based material; a distinguishing section which discolors by chemical reaction with hydrogen sulfide; and an exterior body incorporating the power section and the distinguishing section, the distinguishing section being observable from outside the exterior body. By checking discoloration of the distinguishing section or the distinguishing means, it is possible to easily detect the presence or absence of hydrogen sulfide in the battery and then judge deterioration of the battery with non-destructive inspection.

Подробнее
02-02-2012 дата публикации

Secondary battery pack

Номер: US20120025770A1
Автор: Hiroaki Ueno, Shin Suzuki
Принадлежит: NEC Energy Devices Ltd

A secondary battery pack of the present invention includes a secondary battery block 3 in which a plurality of unit blocks 2 are connected in series; battery adjustment sections 5 that are each provided for each of the unit blocks 2 and have a function of monitoring the voltage of secondary batteries and a function of adjusting the balance; a charge switch 8; and a discharge switch 9. The secondary battery pack includes transmission sections 17 that receive information from the corresponding battery adjustment sections 5. The transmission sections are connected to the preceding or subsequent transmission sections and are so set that at least either information input from the preceding transmission sections or information input from the battery adjustment sections 5 is output to the subsequent transmission sections. The transmission sections are equipped with a constant current transmission section that transmits with a constant value of current; and a current detection section that can detect the value of the constant current.

Подробнее
23-02-2012 дата публикации

Computer aided solid state battery design method and manufacture of same using selected combinations of characteristics

Номер: US20120046776A1
Принадлежит: Sakti3 Inc

A method of designing and manufacturing a solid-state electrochemical battery cell for a battery device. The method includes building a database of a plurality of first characteristics of a solid-state cells for a battery device and determining at least a third characteristic of the solid-state cell for a given application. The method also includes selecting at least one material of the solid-state electrochemical battery cell, the selected material being from the plurality of first characteristics and forming a plurality of factorial combinations of each component using the selected plurality of first characteristics to derive a respective plurality of solid-state electrochemical battery cells. The method performs a design optimization process for the third characteristic. A step of identifying an optimal design of the second characteristics with the selected first characteristics for each solid-state electrochemical battery cell from the plurality of solid-state cells is included.

Подробнее
01-03-2012 дата публикации

Facility for forming lithium ion cells

Номер: US20120047725A1
Принадлежит: AVL List GmbH

A facility for forming lithium ion cells 1 preferably comprises an object support for the lithium ion cells 1 to be formed, and a forming system which contains an electrical circuit having an AD/DC converter unit 3, with multiple DC outputs 4, as needed, to which the lithium ion cells may be connected in an electrically conductive manner. To allow energy-optimized forming in this manner, a battery management system 6 is connected to each of the DC outputs 5, and is connectable to at least one lithium ion cell 1.

Подробнее
07-06-2012 дата публикации

Method of forming a solid state cathode for high energy density secondary batteries

Номер: US20120137508A1
Автор: Isaiah O. Oladeji
Принадлежит: Individual

A method for making a solid state cathode comprises the following steps: forming an alkali free first solution comprising at least one transition metal and at least two ligands; spraying this solution onto a substrate that is heated to about 100 to 400° C. to form a first solid film containing the transition metal(s) on the substrate; forming a second solution comprising at least one alkali metal, at least one transition metal, and at least two ligands; spraying the second solution onto the first solid film on the substrate that is heated to about 100 to 400° C. to form a second solid film containing the alkali metal and at least one transition metal; and, heating to about 300 to 1000° C. in a selected atmosphere to react the first and second films to form a homogeneous cathode film. The cathode may be incorporated into a lithium or sodium ion battery.

Подробнее
07-06-2012 дата публикации

Current collector for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Номер: US20120141882A1
Принадлежит: Sumitomo Electric Industries Ltd

A current collector for a nonaqueous electrolyte battery, in which oxygen content in the surface of an aluminum porous body is low. The current collector is made of an aluminum porous body. The content of oxygen in an aluminum porous body surface is 3.1% by mass or less. The aluminum porous body includes an aluminum alloy containing at least one Cr, Mn and transition metal elements. The aluminum porous body can be prepared by a method in which, after an aluminum alloy layer is formed on the surface of a resin of a resin body having continuous pores, the resin body is heated to a temperature of the melting point of the aluminum alloy or less to thermally decompose the resin body while applying a potential lower than the standard electrode potential of aluminum to the aluminum alloy layer with the resin body dipped in a molten salt.

Подробнее
14-06-2012 дата публикации

Method for operating a battery

Номер: US20120148880A1
Принадлежит: Li Tec Battery GmbH

The task at hand is achieved by a method for operating a battery having at least one galvanic cell. The at least one galvanic cell is subjected at least temporally to an examination, particularly at a predetermined operating state of the battery or the galvanic cell.

Подробнее
28-06-2012 дата публикации

Thin film buried anode devices

Номер: US20120164517A1
Принадлежит: Alliance for Sustainable Energy LLC

A reverse configuration, lithium thin film battery ( 300 ) having a buried lithium anode layer ( 305 ) and process for making the same. The present invention is formed from a precursor composite structure ( 200 ) made by depositing electrolyte layer ( 204 ) onto substrate ( 201 ), followed by sequential depositions of cathode layer ( 203 ) and current collector ( 202 ) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer ( 305 ) is formed via electroplating a lithium anode layer at the interface of substrate ( 201 ) and electrolyte film ( 204 ). The electroplating is accomplished by applying a current between anode current collector ( 201 ) and cathode current collector ( 202 ).

Подробнее
05-07-2012 дата публикации

Single Wire Battery Pack Temperature and Identification Method

Номер: US20120169271A1
Принадлежит: Gillette Co LLC

Disclosed are techniques for identifying battery pack types and by inference battery chemistries by measuring a transient response of the battery pack to signal applied to the battery pack.

Подробнее
12-07-2012 дата публикации

Solar chargeable battery for portable devices

Номер: US20120176078A1
Принадлежит: Suncore Corp

A solar chargeable battery comprises a built-in photovoltaic array and a programmable battery charging circuit. The photovoltaic array provides a variable power source in response to light. The battery charging circuit receives the variable power source and operates in different modes to charge the battery over a range of lighting conditions. For example, the battery charging circuit charges the battery to a substantially fixed regulated voltage level in a first mode when a voltage level of the variable power source is above a predefined threshold. The battery charging circuit charges the battery to an adjustable regulated voltage level in a second mode when the voltage level of the variable power source is below the predefined threshold.

Подробнее
23-08-2012 дата публикации

Solid-state electrolyte battery and cathode activating substance

Номер: US20120214064A1
Автор: Yuichi Sabi
Принадлежит: Sony Corp

The present invention provides a solid-state electrolyte battery using a cathode activating substance which functions as such in an amorphous state and has a high ionic conductivity and provides a cathode activating substance used for the same. This solid-state electrolyte battery includes a laminated body. In the laminated body, a cathode-side current collector film, cathode activating substance film, solid-state electrolyte film, anode potential formation layer and anode-side current collector film are stacked above a substrate in this order. The cathode activating substance film is made of Li x M y PO 4−z N z , i.e., a lithium complex oxide in an amorphous state.

Подробнее
25-10-2012 дата публикации

Lithium ion battery and method for manufacturing of such battery

Номер: US20120270114A1
Принадлежит: Oerlikon Balzers AG

The present invention provides an electrochemical cell comprising an anodic current collector in contact with an anode. A cathodic current collector is in contact with a cathode. A solid electrolyte thin-film separates the anode and the cathode.

Подробнее
22-11-2012 дата публикации

Phase-pure lithium aluminium titanium phosphate and method for its production and use

Номер: US20120295168A1
Принадлежит: Sued Chemie AG

The present invention relates to a method for producing lithium aluminium titanium phosphates of the general formula Li 1+x Ti 2−x Al x (PO 4 ) 3 , wherein x is ≦0.4, as well as their use as solid electrolytes in secondary lithium ion batteries.

Подробнее
29-11-2012 дата публикации

Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery

Номер: US20120301796A1
Принадлежит: Toyota Motor Corp

A method of producing a sulfide solid electrolyte material includes: forming an intermediate having crosslinking sulfur but no Li 2 S, by vitrifying, in a first vitrification process, a starting material composition obtained by mixing Li 2 S and a sulfide of a group 14 or group 15 element such that a proportion of Li 2 S with respect to the sum total of the Li 2 S and the sulfide of a group 14 or group 15 element is smaller than a proportion of Li 2 S required for the sulfide solid electrolyte material to obtain an ortho composition; and eliminating the crosslinking sulfur by vitrifying, in a second vitrification process, an intermediate-containing composition resulting from mixing a bond cleaving compound, which cleaves a bond of the crosslinking sulfur, with the intermediate.

Подробнее
06-12-2012 дата публикации

Three-dimensional network aluminum porous body for current collector and method for producing the same

Номер: US20120308886A1
Принадлежит: Sumitomo Electric Industries Ltd

The present invention provides an electrode current collector for a secondary battery or the like, wherein a compressed part for attaching a tab lead to an end part of the three-dimensional network aluminum porous body to be used as an electrode current collector of a secondary battery, a capacitor using a nonaqueous electrolytic solution or the like is formed, and a method for producing the same. That is, the present invention provides a three-dimensional network aluminum porous body for a current collector having a compressed part compressed in a thickness direction for connecting a tab lead to its end part, wherein the compressed part is formed at a central part in the thickness direction of the aluminum porous body.

Подробнее
06-12-2012 дата публикации

Lithium ion conductive inorganic substance

Номер: US20120308900A1
Автор: Kazuhito OGASA
Принадлежит: Ohara Inc

To provide a lithium ion conductive inorganic substance that makes it possible to further enhance the charge-discharge voltage of batteries and to further improve the charge-discharge properties of batteries. The lithium ion conductive inorganic substance includes a ZrO 2 component from 2.6% to 52.0% by mass on an oxide basis. The lithium ion conductive inorganic substance is preferably used for lithium ion secondary batteries that have a positive electrode layer, a negative electrode layer, and a solid electrolyte layer intervening between the positive electrode layer and the negative electrode layer.

Подробнее
03-01-2013 дата публикации

Protected lithium electrodes having a polymer electrolyte interlayer and battery cells thereof

Номер: US20130004852A1
Принадлежит: Polyplus Battery Co Inc

Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.

Подробнее
10-01-2013 дата публикации

Solid electrolyte material and all solid-state lithium secondary battery

Номер: US20130011746A1
Принадлежит: Toyota Motor Corp

A solid electrolyte material for an all solid-state lithium secondary battery represented by Li 2 S-M I a S b -M II x O y , wherein M I is selected from P, Si, Ge, B and Al; “a” and “b” respectively represent numbers that give a stoichiometric ratio in accordance with the kind of M I ; M II is selected from Fe, Zn and Bi; and “x” and “y” respectively represent numbers that give a stoichiometric ratio in accordance with the kind of M II .

Подробнее
24-01-2013 дата публикации

Electrochemical actuator

Номер: US20130020906A1
Принадлежит: Massachusetts Institute of Technology

The present invention provides systems, devices, and related methods, involving electrochemical actuation. In some cases, application of a voltage or current to a system or device of the invention may generate a volumetric or dimensional change, which may produce mechanical work. For example, at least a portion of the system may be constructed and arranged to be displaced from a first orientation to a second orientation. Systems such as these may be useful in various applications, including pumps (e.g., infusion pumps) and drug delivery devices, for example

Подробнее
31-01-2013 дата публикации

Rechargeable battery

Номер: US20130029191A1
Принадлежит: ROBERT BOSCH GMBH, Samsung SDI Co Ltd

A rechargeable battery including an electrode assembly; a case housing the electrode assembly; a cap assembly including a cap plate having a short-circuit hole and sealing an opening of the case; and a short-circuiting member including a short-circuiting plate arranged at the short-circuit hole and a connection plate covering at least a portion of the short-circuit hole at an exterior side, the connection plate being spaced apart from the cap plate and electrically connected to the electrode assembly, and the case and the cap assembly are electrically insulated from the electrode assembly.

Подробнее
31-01-2013 дата публикации

Battery with auxiliary electrode

Номер: US20130029207A1
Автор: Gaurav Jain
Принадлежит: MEDTRONIC INC

A lithium-ion battery includes a case, an electrolyte, a positive electrode, a negative electrode, and an auxiliary electrode. The positive electrode includes a current collector and an active material. The negative electrode includes a current collector and an active material. The auxiliary electrode includes an active material. The electrolyte, positive electrode, and negative electrode are disposed within the case. The auxiliary electrode is configured to selectively couple to the negative electrode to irreversibly absorb lithium from the negative electrode.

Подробнее
21-02-2013 дата публикации

Protection circuit, battery control device, and battery pack

Номер: US20130044402A1

A protective circuit capable of coping with broad voltage variations of a battery unit to interrupt its charging/discharging current path as damages to the heating unit are prevented from occurrence is disclosed. The protective circuit includes fuses, connected to a charging/discharging current path in series between a battery unit and a charging/discharging control circuit, and a heating unit composed by a series connection of resistors. One of two ends of the resistor which is not connected to the peer resistor is connected to a current path of the fuses. The ends of the resistors not connected to the fuses, are provided with a plurality of terminals selected for connection to a current control element that controls the current flowing through the heating unit, as a range of voltage variations of the battery unit is taken into account.

Подробнее
07-03-2013 дата публикации

Polymer-coated active material and lithium secondary battery using the same

Номер: US20130059202A1
Принадлежит: HITACHI LTD

Provided is a lithium ion secondary battery including a cathode that is capable of occluding and emitting lithium ions, and an anode that is capable of occluding and emitting the lithium ions. A polymer compound containing a polyether portion and a carboxylic acid bonding portion is bonded to an active material as shown with a structure I, a structure II, a structure III, and a structure IV.

Подробнее
14-03-2013 дата публикации

Assembled battery

Номер: US20130066572A1
Принадлежит: Pues Corp

The present invention relates to a battery pack constituted by connecting a plurality of unit batteries, in which the route of the signal line is simplified and the manufacturing cost is reduced. The battery pack of the present invention includes means for measuring voltage or the like of a unit battery equipped for every unit battery board and for saving aforesaid measured value, means for transmitting aforesaid saved measured-value to aforesaid battery management unit as a digital signal, and the like, wherein the plurality of unit battery boards and aforesaid battery management unit are connected by a single loop-shaped or double loop-shaped communication channel, and it is constituted so as to carry out transmission and reception of aforesaid measured-value or the like between aforesaid respective unit battery boards and aforesaid battery management unit through aforesaid loop-shaped communication channel.

Подробнее
21-03-2013 дата публикации

SOLID ELECTROLYTE MATERIAL, LITHIUM BATTERY, AND METHOD OF PRODUCING SOLID ELECTROLYTE MATERIAL

Номер: US20130071756A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A main object of the present invention is to provide a solid electrolyte material having excellent Li ion conductivity. To attain the object, the present invention provides a solid electrolyte material represented by a general formula: Li(LaM1)(TiM2)O, characterized in that “x” is 0 Подробнее

21-03-2013 дата публикации

SOLID ELECTROLYTE MATERIAL, LITHIUM BATTERY, AND METHOD OF PRODUCING SOLID ELECTROLYTE MATERIAL

Номер: US20130071757A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A main object of the present invention is to provide a solid electrolyte material having excellent Li ion conductivity. To attain the object, the present invention provides a solid electrolyte material represented by a general formula: Li(LaM1)(TiM2)O, characterized in that “x”, “y”, and “z” satisfy relations of x+y+z=1, 0.652≦x/(x+y+z)≦0.753, and 0.167≦y/(y+z)≦0.232; “a” is 0≦a≦1; “b” is 0≦b≦1; “δ” is 0.8≦δ≦1.2; “M1” is at least one selected from the group consisting of Sr, Na, Nd, Pr, Sm, Gd, Dy, Y, Eu, Tb, and Ba; and “M2” is at least one selected from the group consisting of Mg, W, Mn, Al, Ge, Ru, Nb, Ta, Co, Zr, Hf, Fe, Cr, and Ga. 111-. (canceled)12. A solid electrolyte material represented by a general formula: Lix(La1−aM1a)y(Ti1−bM2b)zOδ ,wherein “x”, “y”, and “z” satisfy relations of x+y+z=1, 0.652≦x/(x+y+z)≦0.753, and 0.167≦y/(y+z)≦0.232; “a” is 0≦a≦1; “b” is 0≦b≦1; “δ” is 0.8≦δ≦1.2; “M1” is at least one selected from the group consisting of Sr, Na, Nd, Pr, Sm, Gd, Dy, Y, Eu, Tb, and Ba; and “M2” is at least one selected from the group consisting of Mg, W, Mn, Al, Ge, Ru, Nb, Ta, Co, Zr, Hf, Fe, Cr, and Ga.13. The solid electrolyte material according to claim 12 , wherein the solid electrolyte material is amorphous.14. The solid electrolyte material according to claim 12 , wherein the solid electrolyte material is in thin film form.15. The solid electrolyte material according to claim 12 , wherein the solid electrolyte material has a thickness of 200 nm to 5 μm.16. The solid electrolyte material according to claim 12 , wherein the “a” and the “b” are 0.17. A lithium battery comprising:a cathode active material layer containing a cathode active material,an anode active material layer containing an anode active material, anda solid electrolyte layer formed between the cathode active material layer and the anode active material layer,{'claim-ref': {'@idref': 'CLM-00012', 'claim 12'}, 'wherein the solid electrolyte layer contains the solid electrolyte material ...

Подробнее
04-04-2013 дата публикации

Fuse for three dimensional solid-state battery

Номер: US20130084476A1
Принадлежит: International Business Machines Corp

A solid-state battery structure having a plurality of battery cells formed in a substrate, method of manufacturing the same and design structure thereof are provided. The battery structure includes a patterned cathode electrode layer formed upon the substrate and structured to form a plurality of sub-arrays of the battery cells. The battery structure further includes a plurality of fuse wires structured to interconnect at least two adjacent sub-arrays. At least one of the plurality of fuse wires is structured to be blown to disconnect an interconnection having a defective sub-array. Advantageously, the plurality of fuse wires is an integral part of the battery structure.

Подробнее
04-04-2013 дата публикации

Micromachined electrolyte sheet

Номер: US20130084504A1
Принадлежит: Corning Inc

The disclosure relates to ceramic lithium ion electrolyte membranes and processes for forming them. The ceramic lithium electrolyte membrane may comprise at least one ablative edge. Exemplary processes for forming the ceramic lithium ion electrolyte membranes comprise fabricating a lithium ion electrolyte sheet and cutting at least one edge of the fabricated electrolyte sheet with an ablative laser.

Подробнее
04-04-2013 дата публикации

Solid electrolyte material and lithium battery

Номер: US20130084505A1
Принадлежит: Toyota Motor Corp

A main object of the present invention is to provide a Li—La—Zr—O-based solid electrolyte material having favorable denseness. The present invention solves the problem by providing a solid electrolyte material including Li, La, Zr, Al, Si and O, having a garnet structure, and being a sintered body.

Подробнее
25-04-2013 дата публикации

METHOD FOR PRODUCING SULFIDE SOLID ELECTROLYTE MATERIAL AND METHOD FOR PRODUCING LITHIUM SOLID STATE BATTERY

Номер: US20130097854A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A method for producing a sulfide solid electrolyte material having a small amount of hydrogen sulfide generation and a high Li ion conductivity. To achieve the above, a method for producing a sulfide solid electrolyte material is provided, including steps of: a providing step for providing a crystallized sulfide solid electrolyte material prepared by using a raw material composition containing LiS and PS; and an amorphizing step for applying amorphization treatment to the crystallized sulfide solid electrolyte material. 18-. (canceled)9. A method for producing a sulfide solid electrolyte material comprising steps of:{'sub': 2', '2', '5, 'a providing step of providing a crystallized sulfide solid electrolyte material prepared by using a raw material composition containing LiS and PS; and'}an amorphization step of applying amorphization treatment to the crystallized sulfide solid electrolyte material.10. The method for producing a sulfide solid electrolyte material according to claim 9 , wherein the providing step has:an amorphization treatment step of applying the amorphization treatment to the raw material composition and obtaining an amorphized sulfide solid electrolyte material, anda crystallization treatment step of applying crystallization treatment by heat treatment to the amorphized sulfide solid electrolyte material and obtaining the crystallized sulfide solid electrolyte material.11. The method for producing a sulfide solid electrolyte material according to claim 10 , wherein a temperature of the heat treatment in the crystallization treatment step is not less than 300° C.12. The method for producing a sulfide solid electrolyte material according to claim 9 , wherein the providing step is a solid-phase reaction step of producing a solid phase reaction by heat treatment in the raw material composition and obtaining the crystallized sulfide solid electrolyte material.13. The method for producing a sulfide solid electrolyte material according to claim 9 , ...

Подробнее
25-04-2013 дата публикации

Protective circuit module and battery pack having the same

Номер: US20130101871A1
Автор: Bohyun Byun
Принадлежит: Samsung SDI Co Ltd

A protective circuit module includes a printed circuit board; and an electronic device on the printed circuit board, the electronic device including: an integrated circuit chip; at least one electrical component electrically coupled to the integrated circuit chip; and an encapsulating portion, the encapsulating portion encapsulating the integrated circuit chip and a portion of the at least one electrical component, wherein another portion of the at least one electrical component is outside the encapsulating portion.

Подробнее
02-05-2013 дата публикации

TUBULAR PORE MATERIAL

Номер: US20130105386A1
Принадлежит:

Product formed from a ceramic material, at least part of the said product not being formed from amorphous silica and including pores and satisfying the following criteria (a), (b) and (c): (a) at least 70% by number of the said pores are frustoconical tubular pores extending substantially parallel to each other in a longitudinal direction; (b) in at least one cross-section plane, the mean size of the cross sections of the said pores is greater than 0.15 μm and less than 300 μm; (c) in at least one cross-section plane, at least 50% by number of the pores have a convexity index Ic of greater than 87%, the convexity index of a pore being equal to the ratio Sp/Sc of the surfaces Sp and Sc delimited by the perimeter and by the convex envelope of the said pore, respectively. 1. Product formed from a ceramic material , at least part of the said product not being formed from amorphous silica and comprising pores and satisfying the following criteria (a) , (b) and (c):(a) at least 70% by number of the said pores are frustoconical tubular pores extending substantially parallel to each other in a longitudinal direction;(b) in at least one cross-section plane, the mean size of the cross sections of the said pores is greater than 0.15 μm and less than 300 μm;(c) in at least one cross-section plane, at least 50% by number of the pores have a convexity index Ic of greater than 87%, the convexity index of a pore being equal to the ratio of Sp/Sc of the surface areas Sp and Sc delimited by the perimeter and by the convex envelope of the said pore, respectively.2. Product according to claim 1 , the ceramic material being chosen from the group formed by zirconium oxide claim 1 , partially stabilized zirconium oxide claim 1 , stabilized zirconium oxide claim 1 , yttrium oxide claim 1 , doped yttrium oxide claim 1 , titanium oxide claim 1 , aluminosilicates claim 1 , cordierite claim 1 , aluminium oxide claim 1 , hydrated aluminas claim 1 , magnesium oxide claim 1 , talc claim 1 , ...

Подробнее
09-05-2013 дата публикации

Starter system for an engine

Номер: US20130111864A1
Принадлежит: Briggs and Stratton Corp

A lawn mower includes an internal combustion engine, an electric motor configured to start the internal combustion engine, and a blade driven by the internal combustion engine. The lawn mower further includes an assembly for stopping at least one of the blade and the internal combustion engine. The assembly includes a brake mechanism, a release mechanism, a linkage between the brake mechanism and the release mechanism. The assembly further includes an interlock configured to prevent the release mechanism from releasing the brake mechanism, and an interface allowing an operator to release the interlock. The electric motor is coupled to the assembly such that release of the brake mechanism automatically engages the electric motor to start the internal combustion engine.

Подробнее
16-05-2013 дата публикации

COMPOSITION FOR FORMING SOLID ELECTROLYTE LAYER, METHOD FOR FORMING SOLID ELECTROLYTE LAYER, SOLID ELECTROLYTE LAYER, AND LITHIUM ION SECONDARY BATTERY

Номер: US20130122376A1
Принадлежит: SEIKO EPSON CORPORATION

A composition for forming a solid electrolyte layer for use in the formation of a solid electrolyte layer of a lithium ion secondary battery contains first particles made of a lanthanum titanate and second particles made of a lithium titanate. It is preferable that the first particles have an average particle size of 50 nm or more and 300 nm or less. It is preferable that the second particles have an average particle size of 10 nm or more and 50 nm or less. 1. A composition for forming a solid electrolyte layer comprising:first particles containing oxide of titanium and oxide of a lanthanoid; andsecond particles being made of lithium titanate.2. The composition for forming a solid electrolyte layer according to claim 1 , the first particles being made of lanthanum titanate.3. The composition for forming a solid electrolyte layer according to claim 1 , an average particle size of the first particles being 10 nm or more and 300 nm or less.4. The composition for forming a solid electrolyte layer according to claim 1 , an average particle size of the second particles being 10 nm or more and 50 nm or less.5. The composition for forming a solid electrolyte layer according to claim 2 , crystal structure of the lanthanum titanate being perovskite.6. The composition for forming a solid electrolyte layer according to claim 1 , crystal structure of the lithium titanate being a spinel.7. The composition for forming a solid electrolyte layer according to claim 2 , the lanthanum titanate being expressed by general formula LaTiO claim 2 , and{'sub': 4', '5', '12, 'the lithium titanate being expressed by general formula LiTiO.'}8. The composition for forming a solid electrolyte layer according to claim 7 , when defining content of the first particles of the composition as X[% by mass] and content of the second particles of the composition as X[% by mass] claim 7 , the relation 2.46≦X/X≦4.92 being satisfied.9. The composition for forming a solid electrolyte layer according to claim ...

Подробнее
16-05-2013 дата публикации

ELECTROCHEMICAL OR ELECTRIC LAYER SYSTEM, METHOD FOR THE PRODUCTION AND USE THEREOF

Номер: US20130122398A1
Принадлежит: Continental Automotive GmbH

An electrochemical or electric layer system, having at least two electrode layers and at least one ion-conducting layer disposed between two electrode layers. The ion-conducting layer has at least one ion-conducting solid electrolyte and at least one binder at grain boundaries of the at least one ion-conducting solid electrolyte for improving the ion conductivity over the grain boundaries and the adhesion of the layers. 125-. (canceled)26. An electrochemical system , comprising:at least two electrode layers;at least one ion-conducting layer arranged between two electrode layers of said at least two electrode layers;said at least one ion-conducting layer containing at least one ion-conducting solid electrolyte and at least one binder at grain boundaries of said at least one ion-conducting solid electrolyte for improving ion conductivity through the grain boundaries and adhesion of the layers.27. The electrochemical according to claim 26 , having at least two power outlet electrode layers.28. The electrochemical according to claim 26 , wherein said at least one ion-conducting solid electrolyte is an electrical functional ceramic of at least one of Li phosphate claim 26 , aluminate or silicate claim 26 , or an electrically conductive polymer which contains lithium tetrafluoroborate claim 26 , lithium imide or a sulfur-containing Li salt.29. The electrochemical system according to wherein at least part of said layers include particles dispersed in a dispersion medium.30. The electrochemical system according to claim 29 , wherein at least part of said layers is configured as one of paint layers claim 29 , varnish layers claim 29 , or thick layers.31. The electrochemical according to claim 29 , wherein at least part of said layers is configured as one of scumble claim 29 , glaze claim 29 , enamel claim 29 , render claim 29 , mortar claim 29 , or concrete.32. The electrochemical system according to claim 26 , wherein at least one binder is an alkali metal silicate or a ...

Подробнее
30-05-2013 дата публикации

COMPONENTS FOR BATTERY CELLS WITH INORGANIC CONSTITUENTS OF LOW THERMAL CONDUCTIVITY

Номер: US20130136981A1
Принадлежит: SCHOTT AG

A lithium-ion battery cell is provided that includes at least one inorganic, multi-functional constituent that has a low thermal conductivity and is suitable for reducing or restricting thermal anomalies at least locally. 133-. (canceled)34. A lithium-ion battery cell , comprising:at least one glass-based component comprising a substantially oxidic, temperature-stable, poorly thermally conductive particle,said particle being selected from the group consisting of a glass material, a glass-based material, and a glass-ceramic material,wherein said glass-based component is in a position within the battery cell selected from the group consisting of in a separator, at the separator, in an anode, at the anode, in a cathode, at a cathode, and in a liquid or polymer electrolyte,wherein said glass-based component has a thermal conductivity of less than 2.5 W/K·m and is suitable to separate and/or locally restrict thermal anomalies.36. The lithium-ion cell as claimed in claim 34 , wherein the thermal conductivity is less than 2.5 W·K·m.37. The lithium-ion cell as claimed in claim 34 , wherein said glass-based component is an inorganic claim 34 , multi-functional constituent selected from the group consisting of glass claim 34 , glass-ceramic claim 34 , phase-demixed glass claim 34 , and multi-phase glass.38. The lithium-ion cell as claimed in claim 37 , wherein said component is chemically stable in an electrolyte solution comprising LiPFso that during a one-week storage of the powder in the electrolyte solution at 60° C. claim 37 , not more than 1 mass % of the glass-based material is dissolved.39. The lithium-ion cell as claimed in claim 34 , wherein said glass-based component is a predominantly oxidic glass and has a fraction of non-oxidic elements that does not exceed 35 mass %.40. The lithium-ion cell as claimed in claim 34 , wherein said glass-based component comprises at least 80% of oxygen as an anion and is free of chalcogenide anions except oxygen.41. The lithium-ion ...

Подробнее
06-06-2013 дата публикации

NONAQUEOUS-ELECTROLYTE BATTERY AND METHOD FOR PRODUCING THE SAME

Номер: US20130143128A1
Принадлежит: Sumitomo Electric Industries, Ltd.

Provided are a nonaqueous-electrolyte battery in which short circuits between the positive- and negative-electrode layers can be suppressed with certainty and a method for producing the battery. A nonaqueous-electrolyte battery includes a positive-electrode active-material layer containing a Li-containing oxide; a negative-electrode active-material layer on which deposition of Li metal can occur; and a sulfide-solid-electrolyte layer (SE layer) disposed between these active-material layers and The SE layer of the nonaqueous-electrolyte battery includes a powder-formed layer and a dense-film layer formed on a surface of the powder-formed layer by a vapor-phase process. In the nonaqueous-electrolyte battery the powder-formed layer is formed by a compression-molding process on a positive-electrode body including the positive-electrode active-material layer and the dense-film layer is then formed by a vapor-phase process on the positive-electrode body that is provided with the powder-formed layer and serves as a substrate. 1. A nonaqueous-electrolyte battery comprising a positive-electrode active-material layer containing a Li-containing oxide; a negative-electrode active-material layer on which deposition of Li metal can occur; and a sulfide-solid-electrolyte layer disposed between these active-material layers ,wherein the sulfide-solid-electrolyte layer includesa powder-formed layer formed on a positive-electrode-active-material-layer side of the sulfide-solid-electrolyte layer, anda dense-film layer formed on a surface of the powder-formed layer by a vapor-phase process.2. The nonaqueous-electrolyte battery according to claim 1 , wherein the sulfide-solid-electrolyte layer has a thickness of 1 mm or less.3. The nonaqueous-electrolyte battery according to claim 1 , wherein the powder-formed layer has a thickness of 900 μm or less.4. The nonaqueous-electrolyte battery according to claim 1 , wherein the dense-film layer has a thickness of 100 μm or less.5. The ...

Подробнее
27-06-2013 дата публикации

SULFIDE SOLID ELECTROLYTE MATERIAL AND LITHIUM SOLID STATE BATTERY

Номер: US20130164631A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

The main object of the present invention is to provide a sulfide solid electrolyte material with high Li ion conductivity. The present invention solves the problem by providing a sulfide solid electrolyte material comprising an ion conductor with an ortho-composition, and LiI, characterized in that the sulfide solid electrolyte material is glass with a glass transition point. 1. A sulfide solid electrolyte material comprising an ion conductor an ion conductor having an anion structure of an ortho-composition as a main component to all anion structures , and LiI ,wherein the sulfide solid electrolyte material is glass with a glass transition point, andthe ion conductor contains Li, X (X is P, Si, Al or B), and S.2. The sulfide solid electrolyte material according to claim 1 , wherein a content of the LiI is within a range of 10 mol % to 30 mol %.3. (canceled)4. The sulfide solid electrolyte material according to claim 1 , wherein the ion conductor contains Li claim 1 , P claim 1 , and S.5. A sulfide solid electrolyte material comprising an ion conductor having an anion structure of an ortho-composition as a main component to all anion structures claim 1 , and LiI claim 1 , wherein the ion conductor contains oxygen.6. The sulfide solid electrolyte material according to claim 5 , wherein the oxygen of the ion conductor is derived from LiO.7. The sulfide solid electrolyte material according to claim 5 , wherein the ion conductor contains Li claim 5 , X (X is P claim 5 , Si claim 5 , Ge claim 5 , Al or B) claim 5 , S claim 5 , and O.8. The sulfide solid electrolyte material according to claim 5 , wherein the ion conductor contains Li claim 5 , P claim 5 , S claim 5 , and O.9. A lithium solid state battery comprising a cathode active material layer containing a cathode active material claim 5 , an anode active material layer containing an anode active material claim 5 , and a solid electrolyte layer formed between the cathode active material layer and the anode active ...

Подробнее
27-06-2013 дата публикации

SULFIDE SOLID ELECTROLYTE GLASS, METHOD FOR PRODUCING SULFIDE SOLID ELECTROLYTE GLASS, AND LITHIUM SOLID STATE BATTERY

Номер: US20130164632A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

An object of the present invention is to provide a sulfide solid electrolyte glass producing a tiny amount of hydrogen sulfide. The present invention attains the above-mentioned object by providing a sulfide solid electrolyte glass including LiPS, characterized in that LiPSis not detected by P NMR measurement and the content of LiS as determined by XPS measurement is 3% by mol or less. 1. A sulfide solid electrolyte glass comprising LiPS , wherein LiPSis not detected by P NMR measurement and a content of LiS as determined by XPS measurement is 3% by mol or less.2. The sulfide solid electrolyte glass according to claim 1 , wherein the content of LiS as determined by XPS measurement is 1% by mol or less.3. A method for producing a sulfide solid electrolyte glass comprising LiPS claim 1 , comprising steps of:{'sub': 2', '2', '5, 'a preparation step of preparing a raw material composition containing LiS and PS; and'}an amorphizing step of amorphizing the raw material composition by amorphization treatment,{'sub': 2', '2', '5', '4', '2', '7', '2, 'sup': '31', 'wherein the raw material composition contains LiS and PSat a ratio so as to allow the sulfide solid electrolyte glass such that LiPSis not detected by P NMR measurement and a content of LiS as determined by XPS measurement is 3% by mol or less.'}4. The method for producing a sulfide solid electrolyte glass according to claim 3 , wherein the content of LiS as determined by XPS measurement is 1% by mol or less.5. A method for producing a sulfide solid electrolyte glass comprising LiPS claim 3 , comprising steps of:{'sub': 2', '2', '5', '2', '2', '5, 'a preparation step of preparing a raw material composition containing LiS and PSat a molar ratio of xLiS.(100−x) PS(x satisfies 73 Подробнее

04-07-2013 дата публикации

Electric facility operating according to galvanic principles, such as a lithium-ion cell, comprising a control for the operating conditions

Номер: US20130169236A1
Принадлежит: Individual

A facility which operates according to galvanic principles, such as in particular a lithium-ion accumulator, and a method for monitoring and controlling an electric operating condition of the facility. The facility comprises at least one galvanic cell and an operating management system for monitoring and controlling the electric operating condition of the facility and for monitoring a representative temperature of the facility. The operating management system is designed to control the electric operating condition of the facility as a function of the temperature. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.

Подробнее
11-07-2013 дата публикации

SULFIDE SOLID ELECTROLYTE MATERIAL, CATHODE BODY AND LITHIUM SOLID STATE BATTERY

Номер: US20130177821A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

The main object of the present invention is to provide a sulfide solid electrolyte material which copes with both the restraint of the increase in interface resistance and the restraint of the increase in bulk resistance. The present invention solves the above-mentioned problems by providing a sulfide solid electrolyte material characterized by containing at least one of Cl and Br. 120-. (canceled)21. A sulfide solid electrolyte material for a lithium solid state battery , comprising at least one of Cl and Br ,{'sub': 2', '2', '2', '5, 'wherein the sulfide solid electrolyte material does not substantially contain LiS and cross-linking sulfur, and is obtained by using a raw material composition containing LiS, PSand at least one of a Cl-containing compound and a Br-containing compound,'}{'sub': 2', '2', '2', '5, 'wherein the ratio of LiS to the total of LiS and PSis within a range of 72 mol % to 78 mol%, and'}{'sub': '4', 'sup': '3−', 'wherein at least one of the Cl and the Br is dispersed around a PSstructure.'}22. A sulfide solid electrolyte material for a lithium solid state battery , comprising at least one of Cl and Br ,{'sub': 2', '2', '2, 'wherein the sulfide solid electrolyte material does not substantially contain LiS and cross-linking sulfur, and is obtained by using a raw material composition containing LiS, GeSand at least one of a Cl-containing compound and a Br-containing compound,'}{'sub': 2', '2', '2, 'wherein the ratio of LiS to the total of LiS and GeSis within a range of 62.5 mol % to 70.9 mol %, and'}{'sub': '4', 'sup': '4−', 'wherein at least one of the Cl and the Br is dispersed around a GeSstructure.'}23. A sulfide solid electrolyte material for a lithium solid state battery , comprising at least one of Cl and Br ,{'sub': 2', '2', '2', '3, 'wherein the sulfide solid electrolyte material does not substantially contain LiS and cross-linking sulfur, and is obtained by using a raw material composition containing LiS, XS, wherein X is either Al or B ...

Подробнее
18-07-2013 дата публикации

COMPOSITE ALKALI ION CONDUCTIVE SOLID ELECTROLYTE

Номер: US20130183546A1
Принадлежит: Ceramatec, Inc.

An electrochemical cell having a composite alkali ion-conductive electrolyte membrane. Generally, the cell includes a catholyte compartment and an anolyte compartment that are separated by the composite alkali ion-conductive electrolyte membrane. The composite electrolyte membrane includes a layer of alkali ion-conductive material and one or more layers of alkali intercalation compound which is chemically stable upon exposure to a chemically reactive anolyte solution or catholyte solution thereby protecting the layer of alkali ion-conductive material from unwanted chemical reaction. The layer of alkali intercalation compound conducts alkali ions. The cell may operate and protect the alkali ion-conductive material under conditions that would be adverse to the material if the intercalation compound were not present. The composite membrane may include a cation conductor layer having additional capability to protect the composite electrolyte membrane from adverse conditions. 1. An electrochemical cell , comprising:an anolyte compartment for holding an anolyte solution, the anolyte compartment comprising an anode positioned to contact the anolyte solution;a catholyte compartment for holding a catholyte solution, the catholyte compartment comprising a cathode positioned to contact the catholyte solution; and a layer of alkali ion-conductive material; and', 'a layer of alkali compound which is electrically or ionically conductive and which is chemically stable upon exposure to the anolyte solution or catholyte solution thereby protecting the layer of alkali ion-conductive material from unwanted chemical reaction, and wherein the layer of alkali compound conducts alkali ions., 'a composite alkali ion-conductive electrolyte membrane positioned between the anolyte compartment and the catholyte compartment, wherein the composite electrolyte membrane comprises2. The electrochemical cell of claim 1 , wherein the alkali compound is a carbon-based alkali intercalation compound.3. ...

Подробнее
18-07-2013 дата публикации

BATTERY SINTERED BODY, PRODUCING METHOD OF BATTERY SINTERED BODY AND ALL SOLID LITHIUM BATTERY

Номер: US20130183589A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A battery sintered body, in which charge-discharge properties are restrained from deteriorating in accordance with sintering, and a producing method thereof. A battery sintered body includes: a phosphate compound of a nasicon type as a solid electrolyte material; and any one of an oxide of a spinel type containing at least one of Ni and Mn, LiCoOand a transition metal oxide as an active material, wherein a component except a component of the above-mentioned solid electrolyte material and a component of the above-mentioned active material is not detected on an interface between the above-mentioned solid electrolyte material and the above-mentioned active material in analyzing by an X-ray diffraction method. 121-. (canceled)22. A battery sintered body , comprising:{'sub': 1+x', 'x', '2-x', '4', '3, 'a compound represented by a general formula of LiAlGe(PO)(0≦x≦2) as a solid electrolyte material; and'}an oxide of a spinel type containing Ni and Mn as an active material,wherein a component except a component of the solid electrolyte material and a component of the active material is not detected on an interface between the solid electrolyte material and the active material in analyzing by an X-ray diffraction method.23. The battery sintered body according to claim 22 , wherein the active material is represented by the following general formula (1):{'br': None, 'sub': x', '2-x', '4, 'LiNiMnO\u2003\u2003(1)'}(in the general formula (1), x is 0 Подробнее

25-07-2013 дата публикации

Method for producing solid electrolyte membrane

Номер: US20130189588A1
Принадлежит: Toyota Motor Corp

An object of the present invention is to provide a solid electrolyte membrane which comprises Li 3x La 2/3-x TiO 3 (0.05≦x≦0.17) and has excellent ion conductivity. Disclosed is a method for producing a solid electrolyte membrane which comprises a solid electrolyte described by the composition formula Li 3x La 2/3-x TiO 3 (0.05≦x≦0.17), the method comprising the steps of: producing a gas phase material comprising lithium, lanthanum and titanium by converting into a gas phase at least one selected from the group consisting of a lithium metal, a lanthanum metal, a titanium metal, a lithium-lanthanum alloy, a lithium-titanium alloy, a lanthanum-titanium alloy and a lithium-lanthanum-titanium alloy, and depositing an Li 3x La 2/3-x TiO 3 (0.05≦x≦0.17) thin film on a substrate by a gas phase method for reacting the gas phase material with oxygen in a single element state.

Подробнее
01-08-2013 дата публикации

Battery with at least two electrochemical energy converters and method of operating said battery

Номер: US20130193929A1
Автор: Tim Schaefer
Принадлежит: Li Tec Battery GmbH

A battery with a converter including at least two electrochemical energy converters provided to convert chemical energy into electrical energy and to supply electrical energy particularly to a consumer has the energy converters electrically connected to one another. The converter arrangement includes two configuration connectors of different polarity at which a configuration voltage is present, and the configuration voltage corresponds to the electrical voltage of the converter. Two battery connectors of different polarity are also included and make the electrical connection to the consumer. The battery connectors are electrically connected to the configuration connectors The battery also includes a device connected at least indirectly to the configuration connectors which can be converted from a first state into a second state. In the first state, the configuration connectors are electrically insulated from one another and in the second state they are electrically connected to one another.

Подробнее
08-08-2013 дата публикации

Anti-Perovskite Solid Electrolyte Compositions

Номер: US20130202971A1
Принадлежит:

Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula LiOA, LiMOA, LiNOA, or LiCOXY, wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides. 1. A solid electrolyte composition , comprising:{'sub': '3', '(a) the formula LiOCl,'}{'sub': (3-x)', 'x/2, '(b) the formula LiMOA,'}wherein 0 Подробнее

29-08-2013 дата публикации

High Energy Density Li-Ion Battery Electrode Materials and Cells

Номер: US20130220817A1
Принадлежит: JOHNS HOPKINS UNIVERSITY

A method of preparing a high capacity nanocomposite cathode of FeF 3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF 3 in carbon, and milling to achieve a desired particle size.

Подробнее
29-08-2013 дата публикации

LITHIUM ION SECONDARY BATTERY AND METHOD FOR MANUFACTURING THE SAME

Номер: US20130224571A1
Принадлежит: NEC Corporation

A lithium ion secondary battery including: a positive electrode including a positive electrode active material represented by the general formula: Li(MMnA)Owherein 0.4 Подробнее

19-09-2013 дата публикации

Solid lithium ion conducting electrolytes and methods of preparation

Номер: US20130244099A1
Принадлежит: UT Battelle LLC

A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

Подробнее
19-09-2013 дата публикации

Solid electrolyte cell and positive electrode active material

Номер: US20130244109A1
Принадлежит: Sony Corp

The present technology is able to provide a solid electrolyte cell that uses a positive electrode active material which has a high ionic conductivity in an amorphous state, and a positive electrode active material which has a high ionic conductivity in an amorphous state. The solid electrolyte cell has a stacked body, in which, a positive electrode side current collector film, a positive electrode active material film, a solid electrolyte film, a negative electrode potential formation layer and a negative electrode side current collector film are stacked, in this order, on a substrate. The positive electrode active material film is made up with an amorphous-state lithium phosphate compound that contains Li; P; an element M 1 selected from Ni, Co, Mn, Au, Ag, and Pd; and O, for example.

Подробнее
26-09-2013 дата публикации

POWER STORAGE ELEMENT, MANUFACTURING METHOD THEREOF, AND POWER STORAGE DEVICE

Номер: US20130249054A1

Disclosed is a power storage element including a positive electrode current collector layer and a negative electrode current collector layer which are arranged on the same plane. The power storage element further includes a positive electrode active material layer over the positive electrode current collector layer and a negative electrode active material layer over the negative electrode current collector layer. An electrolyte layer in contact with at least the positive electrode active material layer and the negative electrode active material layer is provided. The electrolyte layer may be a solid electrolyte layer. 1. A power storage element comprising:a substrate;a positive electrode and a negative electrode over the substrate, the positive electrode and the negative electrode being arranged in the same plane;an electrolyte layer over the positive electrode and the negative electrode, the electrolyte layer being in contact with the positive electrode and the negative electrode; anda first layer over the electrolyte layer, the first layer comprising an insulating material and sealing the electrolyte layer, the positive electrode, and the negative electrode with the substrate.2. The power storage element according to claim 1 ,wherein the electrolyte layer is a solid electrolyte layer comprising a solid electrolyte.3. The power storage element according to claim 1 ,wherein the positive electrode comprises a positive electrode current collector layer and a positive electrode active material layer over the positive electrode current collector layer,wherein the negative electrode comprises a negative electrode current collector layer and a negative electrode active material layer over the negative electrode current collector layer, andwherein the positive electrode current collector layer and the negative electrode current collector layer comprise the same material.4. The power storage element according to claim 1 ,wherein the electrolyte layer covers part of the ...

Подробнее
26-09-2013 дата публикации

Non-aqueous secondary battery and secondary battery system

Номер: US20130249498A1
Принадлежит: HITACHI LTD

A non-aqueous secondary battery, such as a lithium ion secondary battery, eliminates local potential distribution in a cell due to the side reaction during charge/discharge, and does not undergo deterioration of capacitance, deterioration of a positive electrode material, and deposition of metallic lithium. The non-aqueous secondary battery has an electrode group and an electrolyte disposed in one container. The electrode group includes a positive electrode, a negative electrode, and a separator, and is divided into a plurality of electrode groups separated electrically. The electrode groups are in contact with an identical electrolyte, and terminals are led out from the positive electrode and the negative electrode to the outside of the container on every electrode group. Terminals are connected on every positive electrode and negative electrode at the outside of the container, and the terminals at the outside of the container are connectable and disconnectable easily.

Подробнее
03-10-2013 дата публикации

ELECTRODE BODY AND ALL SOLID STATE BATTERY

Номер: US20130260258A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

The problem of the present invention is to provide an electrode body excellent in cycling characteristics, which restrains interface resistance from increasing with time. The present invention solves the above-mentioned problem by providing an electrode body comprising: an electrode active material comprising an oxide, a first solid electrolyte material comprising a sulfide, and a second solid electrolyte material disposed at an interface between the electrode active material and the first solid electrolyte material, wherein a difference between electronegativity of a skeleton element in the second solid electrolyte material and electronegativity of an oxygen element is smaller than a difference between electronegativity of a skeleton element bonded to a sulfur element in the first solid electrolyte material and electronegativity of an oxygen element. 111-. (canceled)12. An electrode body comprising: an electrode active material comprising an oxide , a first solid electrolyte material comprising a sulfide , and a second solid electrolyte material disposed at an interface between the electrode active material and the first solid electrolyte material ,wherein a difference between electronegativity of a skeleton element in the second solid electrolyte material and electronegativity of an oxygen element is smaller than a difference between electronegativity of a skeleton element bonded to a sulfur element in the first solid electrolyte material and electronegativity of the oxygen element.13. The electrode body according to claim 12 , wherein the skeleton element bonded to the sulfur element in the first solid electrolyte material is at least one kind selected from the group consisting of P claim 12 , Si claim 12 , B and Ge.14. The electrode body according to claim 12 , wherein the skeleton element in the second solid electrolyte material is at least one kind selected from the group consisting of W claim 12 , Au claim 12 , Pt claim 12 , Ru and Os.15. The electrode body ...

Подробнее
17-10-2013 дата публикации

Heat resistance layer for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery

Номер: US20130273407A1
Принадлежит: ENMAT GLOBAL LLC

A non-aqueous electrochemical cell is disclosed having a heat-resistant coating on at least one of a negative electrode, a positive electrode, and a separator, if provided. The heat-resistant coating may consume heat in the cell to stabilize the cell, act as an electrical insulator to prevent the cell from short circuiting, and increase the mechanical strength and compression resistance of the coated component. In certain embodiments, the heat-resistant coating serves as a solid state electrolyte to produce a solid state electrochemical cell.

Подробнее
17-10-2013 дата публикации

ALL SOLID STATE BATTERY

Номер: US20130273437A1
Принадлежит: MURATA MANUFACTURING CO., LTD.

Provided is an all solid state battery which has the same level of discharge capacity as in the case of using an electrolyte solution, and is able to improve the cycle stability. An all solid state battery includes a solid electrolyte layer, as well as a positive electrode layer and a negative electrode layer provided in positions opposed to each other with the solid electrolyte layer interposed therebetween. At least one of the positive electrode layer and the negative electrode layer is bonded to the solid electrolyte layer by firing. The negative electrode layer contains an electrode active material composed of a metal oxide containing no lithium, and a solid electrolyte containing no titanium. 1. An all solid state battery comprising:a positive electrode layer;a negative electrode layer; anda solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer,wherein at least one of the positive electrode layer and the negative electrode layer is a firing-bonded layer which was bonded to the solid electrolyte layer by firing, andwherein the negative electrode layer contains an electrode active material comprising a metal oxide containing no lithium, and a solid electrolyte containing no titanium.2. The all solid state battery according to claim 1 , wherein the metal oxide comprises at least one element selected from the group consisting of titanium claim 1 , silicon claim 1 , tin claim 1 , chromium claim 1 , iron claim 1 , molybdenum claim 1 , niobium claim 1 , nickel claim 1 , manganese claim 1 , cobalt claim 1 , copper claim 1 , tungsten claim 1 , vanadium claim 1 , and ruthenium.3. The all solid state battery according to claim 1 , wherein the metal oxide is a compound represented by MO claim 1 , wherein M is at least one element selected from the group consisting of Ti claim 1 , Si claim 1 , Sn claim 1 , Cr claim 1 , Fe claim 1 , Mo claim 1 , Nb claim 1 , Ni claim 1 , Mn claim 1 , Co claim 1 , Cu claim 1 , W claim 1 , V ...

Подробнее
17-10-2013 дата публикации

METHOD FOR PRODUCING NONAQUEOUS-ELECTROLYTE BATTERY AND NONAQUEOUS-ELECTROLYTE BATTERY

Номер: US20130273438A1
Принадлежит: Sumitomo Electric Industries, Ltd.

A positive-electrode body is prepared that includes a positive-electrode active-material layer including a powder-molded body, and a positive-electrode-side solid-electrolyte layer (PSE layer) that is amorphous and formed on the positive-electrode active-material layer by a vapor-phase process. A negative-electrode body is prepared that includes a negative-electrode active-material layer including a powder-molded body, and a negative-electrode-side solid-electrolyte layer (NSE layer) that is amorphous and formed on the negative-electrode active-material layer by a vapor-phase process. The positive-electrode body and the negative-electrode body are bonded together by subjecting the electrode bodies and being arranged such that the solid-electrolyte layers and of the electrode bodies and are in contact with each other, to a heat treatment under application of a pressure to crystallize the PSE layer and the NSE layer 1. A method for producing a nonaqueous-electrolyte battery including a positive-electrode active-material layer , a negative-electrode active-material layer , and a sulfide-solid-electrolyte layer disposed between these active-material layers , the method comprising:a step of preparing a positive-electrode body including a positive-electrode active-material layer including a powder-molded body, and a positive-electrode-side solid-electrolyte layer that is amorphous and formed on the positive-electrode active-material layer by a vapor-phase process;a step of preparing a negative-electrode body including a negative-electrode active-material layer including a powder-molded body, and a negative-electrode-side solid-electrolyte layer that is amorphous and formed on the negative-electrode active-material layer by a vapor-phase process; anda step of bonding together the positive-electrode body and the negative-electrode body by subjecting the electrode bodies being arranged such that the solid-electrolyte layers of the electrode bodies are in contact with each ...

Подробнее
24-10-2013 дата публикации

PINHOLE-FREE SOLID STATE ELECTROLYTES WITH HIGH IONIC CONDUCTIVITY

Номер: US20130280581A1
Принадлежит:

The present invention relates to vacuum-deposited solid state electrolyte layers with high ionic conductivity in electrochemical devices, and methods and tools for fabricating said electrolyte layers. An electrochemical device may comprise solid state electrolytes with incorporated thin layers and/or particles of transition metal oxides, silicon, silicon oxide, or other suitable materials that will induce an increase in ionic conductivity of the electrolyte stack (for example, materials with which lithium is able to intercalate), or mixtures thereof. An improvement in ionic conductivity of the solid state electrolyte is expected which is proportional to the number of incorporated layers or a function of the distribution uniformity and density of the particles within the electrolyte. Embodiments of the present invention are applicable to solid state electrolytes in a broad range of electrochemical devices including thin film batteries, electrochromic devices and ultracapacitors. The solid state electrolyte layers may be nominally 1. An electrochemical device comprising:a first electrode;a second electrode;a high ionic conductivity solid state electrolyte between said first and second electrodes, said high ionic conductivity solid state electrolyte comprising a solid state electrolyte material and an enhancing material incorporated in said solid state electrolyte material for increasing the ionic conductivity for lithium ion movement through said solid state electrolyte.2. The electrochemical device as in claim 1 , wherein said solid state electrolyte is LiPON.3. The electrochemical device as in claim 1 , wherein said enhancing material comprises at least one material selected from the group consisting of transition metal oxides claim 1 , silicon and silicon oxide.4. The electrochemical device as in claim 1 , wherein said high ionic conductivity solid state electrolyte comprises a continuous layer of said enhancing material incorporated within said solid state ...

Подробнее
31-10-2013 дата публикации

ELECTRIC VEHICLE PROPULSION SYSTEM AND METHOD UTILIZING SOLID-STATE RECHARGEABLE ELECTROCHEMICAL CELLS

Номер: US20130288084A1
Принадлежит:

A vehicle propulsion system comprising a plurality of solid state rechargeable battery cells configured to power a drivetrain. In accordance with once aspect of the invention, a transportation system that is powered at least in part by electricity stored in the form of rechargeable electrochemical cells. According to an embodiment of the present invention, these cells are combined in series and in parallel to form a pack that is regulated by charge and discharge control circuits that are programmed with algorithms to monitor state of charge, battery lifetime, and battery health. 120-. (canceled)21. A method of using an appliance comprising a system comprising a plurality of solid state rechargeable battery cells configured to power the appliance , the system comprising: a substrate less than 10 microns in thickness along a shortest axis, the substrate comprising a surface region;', 'a positive electrode material comprised of a transition metal oxide or a transition metal phosphate, the positive electrode material characterized by a thickness between 0.5 micron and 50 microns;', 'a solid state layer of a ceramic, polymer, or glassy material configured for conducting lithium or magnesium ions during a charge and discharge process, the solid state layer characterized by a thickness between 0.1 micron and 5 microns; and', 'a negative electrode material configured for electrochemical insertion or plating of ions during the charge and discharge process, the negative electrode material characterized by a thickness between 0.5 micron and 50 microns; and', 'an electrically conductive material coupled with the positive electrode material and free from contact with the negative electrode material;', 'wherein said layers of positive and negative electrode materials each have a total surface area greater than 0.5 meters; wherein the substrate is made of at least a polymer, a metal, a semiconductor, or an insulator;', 'whereupon the positive electrode material comprises a ...

Подробнее
31-10-2013 дата публикации

NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME

Номер: US20130288085A1
Принадлежит: Panasonic Corporation

Disclosed is a non-aqueous electrolyte secondary battery including a positive electrode including a lithium-containing transition metal composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The positive electrode contains lithium carbonate and lithium hydrogencarbonate in a total amount of 500 ppm or more and 3000 ppm or less, and exhibits a weight loss by temperature increase from 25° C. to 300° C. at 5° C./min of 70% or less of the total amount and of 1500 ppm or less. The non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt. The non-aqueous solvent may contain a cyclic carbonate and a chain carbonate. 1. A non-aqueous electrolyte secondary battery comprising: a positive electrode including a lithium-containing transition metal composite oxide as a positive electrode active material , a negative electrode including a negative electrode active material , a separator interposed between the positive electrode and the negative electrode , and a non-aqueous electrolyte , whereinthe positive electrode contains lithium carbonate and lithium hydrogencarbonate in a total amount of 500 ppm or more and 3000 ppm or less, and exhibits a weight loss by temperature increase from 25° C. to 300° C. at 5° C./min of 70% or less of the total amount and of 1500 ppm or less.2. The non-aqueous electrolyte secondary battery according to claim 1 , wherein the total amount of lithium carbonate and lithium hydrogencarbonate in the positive electrode is 1000 ppm or more and 2600 ppm or less claim 1 , and the weight loss is 300 ppm or more and 1500 ppm or less.3. The non-aqueous electrolyte secondary battery according to claim 1 , wherein the lithium-containing transition metal composite oxide is represented by the formula (1):{'br': None, 'sub': x', 'y', '1-y', '2, 'LiNiMO\u2003\u2003(1)'} ...

Подробнее
31-10-2013 дата публикации

SULFIDE SOLID ELECTROLYTE GLASS, LITHIUM SOLID STATE BATTERY AND PRODUCING METHOD OF SULFIDE SOLID ELECTROLYTE GLASS

Номер: US20130288134A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

An object of the present invention is to provide a sulfide solid electrolyte glass with high Li ion conductivity. The present invention achieves the above-mentioned object by providing a sulfide solid electrolyte glass comprising LiPS, characterized by having a glass transition point. 1. A sulfide solid electrolyte glass comprising LiPS , wherein the sulfide solid electrolyte glass has a glass transition point.2. The sulfide solid electrolyte glass according to claim 1 , wherein the sulfide solid electrolyte glass does not have a peak with a half-value width of 0.64° or less in a range of 32°≦2θ≦33° in measurement by an X-ray diffraction method using a CuKα ray.3. A sulfide solid electrolyte glass comprising LiPS claim 1 , wherein the sulfide solid electrolyte glass does not have a peak with a half-value width of 0.64° or less in a range of 32°≦2θ≦33° in measurement by an X-ray diffraction method using a CuKα ray.4. A lithium solid state battery comprising a cathode active material layer containing a cathode active material claim 1 , an anode active material layer containing an anode active material claim 1 , and a solid electrolyte layer formed between the cathode active material layer and the anode active material layer;{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'wherein at least one of the cathode active material layer, the anode active material layer and the solid electrolyte layer contains the sulfide solid electrolyte glass according to .'}5. A producing method of a sulfide solid electrolyte glass comprising LiPS claim 1 , comprising:{'sub': '2', 'a synthesis step of synthesizing the sulfide solid electrolyte glass by performing vitrification treatment for a raw material composition containing LiS, a material having a P—P bond and a material having S.'}6. The producing method of a sulfide solid electrolyte glass according to claim 5 , wherein the material having a P—P bond is elemental phosphorus.7. The producing method of a sulfide solid electrolyte ...

Подробнее
21-11-2013 дата публикации

THIN FILM ENCAPSULATION FOR THIN FILM BATTERIES AND OTHER DEVICES

Номер: US20130309556A1
Принадлежит: Infinite Power Solutions, Inc.

An electrochemical device is claimed and disclosed, including a method of manufacturing the same, comprising an environmentally sensitive material, such as, for example, a lithium anode; and a plurality of alternating thin metallic and ceramic, blocking sub-layers. The multiple metallic and ceramic, blocking sub-layers encapsulate the environmentally sensitive material. The device may include a stress modulating layer, such as for example, a Lipon layer between the environmentally sensitive material and the encapsulation layer. 1. An electrochemical device comprising:{'sub': '2', 'a LiCoOlayer;'}{'sub': '2', 'a first Lipon layer deposited on said LiCoOlayer;'}a lithium layer deposited on said first Lipon layer;a second Lipon layer deposited on said lithium layer; andan encapsulation layer, comprising a plurality of alternating metallic and ceramic sub-layers, deposited on said second Lipon layer.2. The electrochemical device of claim 1 , wherein said metallic sub-layers comprise at least one element selected from the group comprising: scandium claim 1 , yttrium claim 1 , lanthanum claim 1 , titanium claim 1 , zirconium claim 1 , hafnium claim 1 , vanadium claim 1 , niobium claim 1 , tantalum claim 1 , chromium claim 1 , molybdenum claim 1 , tungsten claim 1 , manganese claim 1 , iron claim 1 , cobalt claim 1 , nickel claim 1 , copper claim 1 , zinc claim 1 , boron claim 1 , aluminum claim 1 , carbon claim 1 , silicon claim 1 , germanium claim 1 , beryllium claim 1 , magnesium claim 1 , calcium claim 1 , strontium claim 1 , barium claim 1 , lithium claim 1 , sodium claim 1 , potassium claim 1 , rubidium claim 1 , and caesium.3. The electrochemical device of claim 1 , wherein said ceramic sub-layers comprise nitrides of at least one element selected from the group comprising: scandium claim 1 , yttrium claim 1 , lanthanum claim 1 , titanium claim 1 , zirconium claim 1 , hafnium claim 1 , vanadium claim 1 , niobium claim 1 , tantalum claim 1 , chromium claim 1 , ...

Подробнее
21-11-2013 дата публикации

Solid electrolyte battery

Номер: US20130309568A1
Принадлежит: Sony Corp

Provided is a solid electrolyte battery that has favorable charge-discharge characteristics with impedance reduced. This solid electrolyte battery has, on a substrate 10 , a stacked body of a positive electrode side current collector film 30 , a positive electrode protective film 31 , a positive electrode active material film 40 , a solid electrolyte film 50 , a negative electrode potential formation layer 64 , and a negative electrode side current collector film 70 stacked in this order. The positive electrode active material film 40 is composed of an amorphous positive electrode active material. The positive electrode protective film 31 is composed of LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , or the like.

Подробнее
28-11-2013 дата публикации

SODIUM ION CONDUCTOR BASED ON SODIUM TITANATE

Номер: US20130316228A1
Принадлежит:

A sodium ion conductor is described which includes a sodium titanate. Moreover, a also described are a galvanic cell, a sensor having this type of sodium ion conductor (), and a production method for this type of sodium ion conductor. 115.-. (canceled)16. A sodium ion conductor which contains a sodium titanate.17. The sodium ion conductor as recited in claim 16 , wherein the sodium titanate includes at least one of tetravalent and trivalent titanium.18. The sodium ion conductor as recited in claim 16 , wherein the sodium ion conductor includes a sodium titanate of general formula (1):{'br': None, 'sub': 2', 'n−x', 'x', '2n+1−x/2, 'sup': IV', 'III, 'NaTiTiO:MO,'}{'sub': 2', '2', '2', '3', '2', '3', '2', '3', '2', '3', '2', '3', '2', '3', '2', '2', '2', '2', '5', '2', '5', '2', '5, 'where 2≦n≦10 and 0≦x≦n, and MO stands for one or multiple foreign atom oxides selected from the group composed of NaO, LiO, MgO, CaO, BaO, MnO, ZnO, FeO, TiO, AlO, GaO, NbO, MnO, FeO, ZrO, MnO, SiO, NbO, TaO, and BiO, or for no foreign atom oxide.'}19. The sodium ion conductor as recited in claim 16 , wherein the sodium ion conductor includes a sodium titanate of general formula (2):{'br': None, 'sub': 2', 'n', '2n+1, 'sup': 'IV', 'NaTiO:MO,'}{'sub': 2', '2', '2', '3', '2', '3', '2', '3', '2', '3', '2', '3', '2', '3', '2', '2', '2', '2', '5', '2', '5', '2', '5, 'where 2≦n≦10 and MO stands for one or multiple foreign atom oxides selected from the group composed of NaO, LiO, MgO, CaO, BaO, MnO, ZnO, FeO, TiO, AlO, GaO, NbO, MnO, FeO, ZrO, MnO, SiO, NbO, TaO, and BiO, or for no foreign atom oxide.'}20. The sodium ion conductor as recited in claim 16 , wherein the sodium ion conductor also includes β-aluminum oxide.21. The sodium ion conductor as recited in claim 20 , wherein the β-aluminum oxide includes a textured β-aluminum oxide.22. The sodium ion conductor as recited in claim 16 , wherein the sodium ion conductor is a composite which includes sodium titanate and β-aluminum oxide.23. A ...

Подробнее
28-11-2013 дата публикации

INORGANIC MAGNESIUM SOLID ELECTROLYTE, MAGNESIUM BATTERY, AND METHOD FOR PRODUCING INORGANIC MAGNESIUM SOLID ELECTROLYTE

Номер: US20130316249A1
Принадлежит:

A magnesium battery according to the present invention includes a positive electrode a negative electrode having a magnesium-containing negative electrode active material, and an inorganic magnesium solid electrolyte that is interposed between the positive electrode and the negative electrode has a complex ion structure that contains magnesium and hydrogen, and conducts magnesium ions. The inorganic magnesium solid electrolyte may contain a compound having at least one selected from boron and nitrogen. The inorganic magnesium solid electrolyte may be produced by a production method that includes a heat-treatment step of mixing and heating Mg(BH)and Mg(NH)to form a compound having a complex ion structure that contains magnesium and hydrogen. 1. An inorganic magnesium solid electrolyte that conducts magnesium ions and contains a compound having a complex ion structure that contains magnesium and hydrogen.2. The inorganic magnesium solid electrolyte according to claim 1 , wherein the compound contains at least one selected from boron and nitrogen.3. The inorganic magnesium solid electrolyte according to claim 1 , wherein the compound contains at least one selected from boron hydride and nitrogen hydride.4. The inorganic magnesium solid electrolyte according to claim 1 , wherein the compound contains at least one structure selected from Mg(BH)and Mg(NH).5. The inorganic magnesium solid electrolyte according to claim 1 , wherein the compound contains a structure Mg(BH) (NH).6. The inorganic magnesium solid electrolyte according to claim 1 , wherein the compound is prepared through a heat-treatment step of mixing and heating Mg(BH)and Mg(NH).7. A magnesium battery comprising:a positive electrode;a negative electrode that contains a magnesium-containing negative electrode active material; and{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the inorganic magnesium solid electrolyte according to that is interposed between the positive electrode and the negative electrode ...

Подробнее
28-11-2013 дата публикации

Information processing apparatus, power supply control method, program and power supply control system

Номер: US20130318369A1
Автор: Ryoichi Nakashima
Принадлежит: Sony Corp

There is provided an information processing apparatus including a first connection unit with power supply type information, a second connection unit with power supply type information, a connection state determination unit for determining whether the connection states of the first and second connection units have changed, a power supply identification information acquisition unit for selectively acquiring the power supply type information from the first power supply apparatus and from the second power supply apparatus if the connection state determination unit determines that the connection states have changed, a power supply identification information management unit for managing connected-power-supply identification information, and a power supply control unit for controlling a feed from the power supply apparatuses connected to the first and second connection units and a charge on the first power supply apparatus connected to the first connection unit.

Подробнее
05-12-2013 дата публикации

BINDER FOR ELECTRODE OF LITHIUM BATTERY, AND ELECTRODE AND LITHIUM BATTERY CONTAINING THE BINDER

Номер: US20130323592A1
Принадлежит:

A binder for an electrode of a lithium battery, an electrode including the binder, and a lithium battery including the binder. The binder includes an epoxy-phenolic resin and a rubber-based resin, and prevents deformation of an electrode even when expansion and contraction of an active material occur from charging and discharging operations of a lithium battery, and thus improves lifetime of the lithium battery. 1. A binder for an electrode of a lithium battery , the binder comprising an epoxy-phenolic resin and a rubber-based resin.2. The binder for an electrode of a lithium battery of claim 1 , wherein an amount of the rubber-based resin is from about 1 part by weight to about 300 parts by weight based on 100 parts by weight of the epoxy-phenolic resin.3. The binder for an electrode of a lithium battery of claim 1 , wherein the epoxy-phenolic resin comprises an epoxy-based resin claim 1 , a multi-functional phenolic resin claim 1 , and a curing agent.4. The binder for an electrode of a lithium battery of claim 3 , wherein the epoxy-based resin comprises at least one selected from the group consisting of bisphenol-A epoxy resin claim 3 , bisphenol F epoxy resin claim 3 , bisphenol S epoxy resin claim 3 , bisphenol P epoxy resin claim 3 , phenolic novolac epoxy resin claim 3 , cresol novolac epoxy resin claim 3 , bisphenol-A novolac epoxy resin claim 3 , bisphenol F novolac epoxy resin claim 3 , phenolic salicylaldehyde novolac epoxy resin claim 3 , alicyclic epoxy resin claim 3 , aliphatic chain epoxy resin claim 3 , glycidyl ester epoxy resin claim 3 , a glycidyl-etherification product of bifunctional phenol claim 3 , a glycidyl-etherification product of bifunctional alcohol claim 3 , a glycidyl-etherification product of polyphenol claim 3 , and a modified resin thereof.5. The binder for an electrode of a lithium battery of claim 3 , wherein the multi-functional phenolic resin comprises at least one selected from the group consisting of bisphenol F claim 3 , ...

Подробнее
05-12-2013 дата публикации

CATHODE ACTIVE MATERIAL AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME

Номер: US20130323599A1
Принадлежит:

Disclosed is a cathode active material (and a secondary battery having the same) comprising a combination of lithium manganese composite oxide with a spinel structure of Formula 1 and an oxide of Formula 2, the material having a broad potential region at 3.0 to 4.8V upon initial charge: 1. A cathode active material comprising a combination of lithium manganese composite oxide with a spinel structure represented by the following Formula 1 and a specific oxide represented by the following Formula 2 , the cathode active material having a broad potential region (potential plateau) at 3.0 to 4.8V upon initial charge:{'br': None, 'sub': x', 'y', '2-y', '4-z', 'z, 'LiMMnOA\u2003\u2003(1)'}wherein 0.9≦x≦1.2, 0 Подробнее

05-12-2013 дата публикации

GARNET-TYPE SOLID ELECTROLYTE, SECONDARY BATTERY CONTAINING GARNET-TYPE SOLID ELECTROLYTE, AND METHOD OF PRODUCING GARNET-TYPE SOLID ELECTROLYTE

Номер: US20130323604A1
Принадлежит:

A garnet-type solid electrolyte contains a crystal having (110) face, (1-10) face, (112) face, (1-12) face, and (11-2) face, the garnet-type solid electrolyte being LiLaZrO. A battery includes a solid electrolyte interposed between a positive and a negative electrode, the solid electrolyte being the garnet-type solid electrolyte. A method of producing a garnet-type solid electrolyte represented by a composition formula LiLaZrOand has (110) face, (1-10) face, (112) face, (1-12) face, and (11-2) face as a crystal face, including a step of preparing a lithium-containing compound, a lanthanum-containing compound, and a zirconium-containing compound; a step of mixing these compounds such that a molar ratio among the elements satisfies Li:La:Zr=a:b:c (where a is from 120 to 160, b is from 1 to 5, and c is from 1 to 5); and a step of heating the mixture between 400 and 1,200° C. 1. A garnet-type solid electrolyte suitable for use in a lithium battery and comprising a crystal that has (110) face , (1 10) face , (112) face , (1 12) face , and (11 2) face , the garnet-type solid electrolyte being Li7La3Zr2O12.2. (canceled)3. The garnet-type solid electrolyte according to claim 1 , wherein a sum of areas of the (110) face claim 1 , (1-10) face claim 1 , (112) face claim 1 , (1-12) face claim 1 , and (11-2) face is equal to or larger than 30% with reference to a total surface area of the garnet-type solid electrolyte.45-. (canceled)6. A battery comprising:a positive electrode;a negative electrode; anda solid electrolyte interposed between the positive electrode and the negative electrode, wherein{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the solid electrolyte is the garnet-type solid electrolyte according to .'}7. A method of producing a garnet-type solid electrolyte suitable for use in a lithium battery wherein the electrolyte is represented by a composition formula LiLaZrOand has (110) face claim 1 , (1-10) face claim 1 , (112) face claim 1 , (1-12) face claim 1 , and ...

Подробнее
19-12-2013 дата публикации

BATTERY SYSTEM FOR SECONDARY BATTERY COMPRISING BLENDED CATHODE MATERIAL, AND APPARATUS AND METHOD FOR MANAGING THE SAME

Номер: US20130335030A1
Принадлежит: LG CHEM, LTD.

Disclosed is a battery system for a secondary battery including a blended cathode material, and an apparatus and method for managing a secondary battery having a blended cathode material. The blended cathode material includes at least a first cathode material and a second cathode material. The first and second cathode materials have different operating voltage ranges. When the secondary battery comes to an idle state or a no-load state, the battery system detects a voltage relaxation occurring by the transfer of operating ions between the first and second cathode materials. 1. A secondary battery managing apparatus , comprising:a battery management system (BMS) configured to electrically connect to a secondary battery comprising: (a) a cathode comprising a first cathode material and a second cathode material, wherein the first and second cathode materials have different operating voltage ranges; (b) an anode; and (c) a separator,said BMS comprising:a sensor configured to measure a current and a voltage of the secondary battery during operation of the secondary battery; anda control unit configured to prepare a voltage profile and optionally a current profile from the measured current and voltage of the secondary battery, and detect a voltage relaxation during operation of the secondary battery, said voltage relaxation including the transfer of operating ions between the first and second cathode materials when the secondary battery comes to an idle state or a no-load state.2. The secondary battery managing apparatus according to claim 1 , wherein a constant current or substantially constant current is drawn from the secondary battery when the secondary battery comes to an idle state or a no-load state.3. The secondary battery managing apparatus according to claim 1 , wherein a current less than 1 c-rate is drawn from the secondary battery when the secondary battery comes to an idle state or a no-load state.4. The secondary battery managing apparatus according to ...

Подробнее
19-12-2013 дата публикации

LITHIUM-SULFUR CELL BASED ON A SOLID ELECTROLYTE

Номер: US20130337293A1
Принадлежит:

A lithium-sulfur cell which may be operated at room temperature or at a higher temperature, the anode and the cathode of the lithium-sulfur cell being separated by a lithium ion-conducting and electron-nonconducting solid electrolyte. Also described is an operating method for such a lithium sulfur cell and to the use of such a lithium-sulfur cell. 115-. (canceled)16. A lithium-sulfur cell , comprising:an anode; the anode includes lithium, and', 'the cathode includes sulfur; and, 'a cathode, whereinat least one lithium ion-conducting and electron-nonconducting solid electrolyte separating the anode and the cathode.17. The lithium-sulfur cell as recited in claim 16 , wherein the lithium ion-conducting and electron-nonconducting solid electrolyte has a garnet structure.19. The lithium-sulfur cell as recited in claim 16 , wherein the anode is formed from one of a metallic lithium and a lithium alloy.20. The lithium-sulfur cell as recited in claim 16 , further comprising:at least one lithium ion-conducting and electron-conducting solid electrolyte.21. The lithium-sulfur cell as recited in claim 20 , wherein the lithium ion-conducting and electron-conducting solid electrolyte is provided on a cathode side.22. The lithium-sulfur cell as recited in claim 20 , wherein the side of the lithium ion-conducting and electron-nonconducting solid electrolyte facing the cathode is covered with a layer of the lithium ion-conducting and electron-conducting solid electrolyte.23. The lithium-sulfur cell as recited in claim 20 , wherein the cathode includes at least one conductive element of the lithium ion-conducting and electron-conducting solid electrolyte.24. The lithium-sulfur cell as recited in claim 23 , wherein structures of the lithium ion-conducting and electron-conducting solid electrolyte are formed on the conductive element.25. The lithium-sulfur cell as recited in claim 24 , wherein the structures include needle-shaped lithium ion-conducting and electron-conducting solid ...

Подробнее
26-12-2013 дата публикации

METHODS OF MAKING AND USING OXIDE CERAMIC SOLIDS AND PRODUCTS AND DEVICES RELATED THERETO

Номер: US20130344416A1
Принадлежит:

Various embodiments relate to a method comprising combining a chelating agent, one or more non-aqueous organic solvents and one or more metallic compounds to produce an oxide ceramic solid in a non-aqueous solution based reaction, wherein the oxide ceramic solid contains metal-oxygen-metal bonds. The oxide ceramic solid can comprise, for example, a gel or a powder. Various devices, including electrolyte interfaces and energy storage devices are also provided. In one embodiment, the oxide ceramic solid is a cubic garnet having a nominal formula of LiLaZrO(LLZO). 1. A method comprising combining a chelating agent , one or more non-aqueous organic solvents and one or more metallic compounds to produce an oxide ceramic solid in a non-aqueous solution-based reaction , wherein the oxide ceramic solid contains metal-oxygen-metal bonds.2. The method of wherein the non-aqueous solution-based reaction comprises a gelation portion and a condensation portion and the method further comprises adding a supervalent cation during the gelation portion of the non-aqueous solution-based reaction.3. The method of wherein the oxide ceramic solid is a cubic garnet having an atomic formula comprising: ARCSO claim 2 ,wherein A is a first cationic species selected from H, Li, Na, Mg, Al, Sc and/or Ga and residing in an 8a, 16f, 32g, 24d, 48g or 96h site;R is a second cationic species selected from La, Ba and/or Ce and residing in a 24c site; andC is a third cationic species selected from Zr, Ta, Nb, Y or Hf and residing in the 16a site.4. The method of wherein the cubic garnet has a nominal formula of LiLaZrO.5. The method of wherein the chelating agent claim 1 , a first non-aqueous organic solvent and a first metallic compound are combined to form a first metal cation solution claim 1 , wherein second and third metallic compounds and a second non-aqueous organic solvent are combined to form a second metal cation solution claim 1 , further wherein the first and second metal cation solutions ...

Подробнее
09-01-2014 дата публикации

SOLID ION CONDUCTOR, SOLID ELECTROLYTE INCLUDING THE SAME, LITHIUM BATTERY INCLUDING SOLID ELECTROLYTE, AND METHOD OF MANUFACTURING LITHIUM BATTERY

Номер: US20140011100A1
Принадлежит:

A solid ion conductor including a garnet oxide represented by Formula 1: 1. A solid ion conductor comprising: {'br': None, 'sub': 5+x', '3', 'z', '2-z', 'd, 'LE(Me,M)O\u2003\u2003Formula 1'}, 'a garnet oxide represented by Formula 1wherein L is at least one of a monovalent cation and a divalent cation, and provided at least a part of or all of L is Li;E is a trivalent cation;Me and M are each independently one of a trivalent, tetravalent, pentavalent, and a hexavalent cation;0 Подробнее

16-01-2014 дата публикации

Conductor Foil for a Lithium-Ion Cell, Lithium-Ion Accumulator and Motor Vehicle Comprising a Lithium-Ion Accumulator

Номер: US20140015453A1
Принадлежит: Samsung SDI Co Ltd

A conductor foil for a negative electrode of a lithium-ion accumulator comprises at least one lithium-ion cell. The conductor foil comprises an aluminum foil both sides of which are covered by a metal layer consisting of copper or nickel. The disclosure further relates to a lithium-ion accumulator and to a motor vehicle comprising a lithium-ion accumulator.

Подробнее
16-01-2014 дата публикации

Thin film lithium ion battery

Номер: US20140017552A1
Принадлежит: Individual

A thin film lithium ion battery includes a cathode electrode, an anode electrode, and a solid electrolyte layer. The solid electrolyte layer is sandwiched between the cathode electrode and the anode electrode. At least one of the cathode electrode and the anode electrode includes a current collector. The current collector is a carbon nanotube layer consisting of a plurality of carbon nanotubes.

Подробнее
23-01-2014 дата публикации

Nonaqueous secondary battery and filling method for same

Номер: US20140023912A1
Принадлежит: Sharp Corp

At least one of holes is formed at a position that is at a higher level than a surface of an electrolyte in use of a nonaqueous secondary battery, and that is not overlapped with an electrode laminate.

Подробнее
23-01-2014 дата публикации

NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, AND PROCESS FOR PRODUCING SAME

Номер: US20140023933A1
Принадлежит:

Provided are a non-aqueous electrolyte secondary battery having excellent high-temperature durability and capable of reducing the initial percent defective and a process for producing the same. The non-aqueous electrolyte secondary battery includes: a positive electrode containing a positive-electrode active material; negative electrode containing a negative-electrode active material; a non-aqueous electrolyte; and a porous layer provided on a surface of the positive electrode, wherein the porous layer contains inorganic solid electrolyte particles having a crystalline structure of rhombohedral crystal (R3c) with lithium ion conductivity represented by LiAlTiSiPO(where 0≦x≦1 and 0≦y≦1) and an aqueous binder. 1. A non-aqueous electrolyte secondary battery comprising: a positive electrode containing a positive-electrode active material; a negative electrode containing a negative-electrode active material; a non-aqueous electrolyte; and a porous layer provided on a surface of the positive electrode ,{'sub': 1+x+y', 'x', '2-x', 'y', '3-y', '12, 'wherein the porous layer contains inorganic solid electrolyte particles having a crystal structure of rhombohedral crystal (R3c) represented by LiAlTiSiPO(where 0≦x≦1 and 0≦y≦1) and an aqueous binder.'}2. The non-aqueous electrolyte secondary battery according to claim 1 , wherein the inorganic solid electrolyte particles have an average particle size of up to 1 μm.3. The non-aqueous electrolyte secondary battery according to claim 1 , wherein the inorganic solid electrolyte particles have lithium-ion conductivity.4. (canceled)5. (canceled)6. The non-aqueous electrolyte secondary battery according to claim 2 , wherein the inorganic solid electrolyte particles have lithium-ion conductivity. This invention relates to non-aqueous electrolyte secondary batteries with a porous layer formed on a surface of a positive electrode and processes for producing the same.In recent years, mobile information terminals, such as cellular phones, ...

Подробнее
06-02-2014 дата публикации

Method for Producing Lithium Sulfide for Lithium Ion Cell Solid Electrolyte Material

Номер: US20140037535A1
Автор: Miyashita Norihiko
Принадлежит: Mitsui Mining & Smelting Co., Ltd.

Provided is a method for producing lithium sulfide based on a new dry method, by which lithium sulfide can be produced more easily at lower cost, and fine pulverization of lithium sulfide can be attempted. Suggested is a method for producing lithium sulfide (LiS) for a solid electrolyte material for lithium ion batteries that is used as a solid electrolyte material for lithium ion batteries, the method including bringing lithium carbonate powder into contact with a gas containing sulfur (S) in a dry state, simultaneously heating the lithium carbonate, and thereby obtaining lithium sulfide powder. 1. A method for producing lithium sulfide (LiS) for a solid electrolyte material for lithium ion batteries that is used as a solid electrolyte material for lithium ion batteries , comprising bringing lithium carbonate powder into contact with a gas containing sulfur (S) in a dry state , simultaneously heating the lithium carbonate , and thereby obtaining lithium sulfide powder.2. The method for producing lithium sulfide (LiS) according to claim 1 , wherein the lithium carbonate powder is heated to a temperature equal to or higher than the temperature at which lithium carbonate is decomposed claim 1 , and to a temperature range at which lithium carbonate does not melt.3. A method for producing fine particulate lithium sulfide (LiS) claim 1 , comprising reducing the particle size of the lithium carbonate powder in the method for producing lithium sulfide (LiS) according to claim 1 , and thereby reducing the particle size of the lithium sulfide powder thus obtainable.4. A lithium sulfide for a solid electrolyte material for lithium ion batteries claim 1 , wherein the lithium sulfide is produced by the method for producing lithium sulfide (LiS) according to .5. A solid electrolyte for lithium ion batteries claim 4 , wherein the solid electrolyte is formed by using the lithium sulfide according to .6. A lithium ion battery comprising the solid electrolyte according to .7. A ...

Подробнее
06-02-2014 дата публикации

LITHIUM TITANIUM MIXED OXIDE

Номер: US20140038058A1
Принадлежит: Clariant Produkte (Deutschland) GmbH

A method is indicated for producing a lithium titanium mixed oxide, comprising the provision of a mixture of titanium dioxide and a lithium compound, calcining of the mixture, and grinding of the mixture in an atmosphere with a dew point <−50° C. A lithium titanium mixed oxide and a use of same are also indicated. In addition, an anode and a solid electrolyte for a secondary lithium-ion battery, as well as a corresponding secondary lithium-ion battery are provided. 1. A method for producing a lithium titanium mixed oxide , comprising the steps of:providing of a mixture of titanium dioxide and a lithium compound or a lithium titanium composite oxide;calcining the mixture or of the lithium titanium composite oxide; andgrinding the mixture or the lithium titanium composite oxide in an atmosphere with a dew point <−50° C. after the calcining.2. The method according to claim 1 , wherein an atmosphere comprising at least one gas selected from protective gas claim 1 , inert gas claim 1 , nitrogen and air claim 1 , and/or an atmosphere with a dew point <−70° C. is used as the atmosphere.3. The method according to claim 1 , wherein providing of the mixture comprises adding an oxygen-containing phosphorus compound and an oxygen-containing aluminium compound.4. The method according to claim 1 ,wherein providing the mixture comprises adding carbon, a carbon compound or a precursor compound of pyrocarbon, grinding and/or compaction of the mixture; and/orwherein the calcining takes place under protective gas.5. The method according to claim 1 , wherein lithium carbonate and/or a lithium oxide is used as lithium compound; and/or wherein the lithium titanium composite oxide comprises LiTiOand TiOor comprises LiTiOand TiOin which the molar ratio of TiOto LiTiOlies in a range of from 1.3 to 1.85; and/or wherein the calcining takes place at a temperature of from 700° C. to 950° C.6. The method according to claim 1 , wherein the grinding is carried out with a jet mill.7. The method ...

Подробнее
20-02-2014 дата публикации

SEPARATOR, METHOD FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME

Номер: US20140050965A1
Принадлежит: LG CHEM, LTD.

A separator includes a porous substrate, a porous organic-inorganic coating layer formed on at least one surface of the porous substrate, and an organic coating layer formed on the surface of the organic-inorganic coating layer. The porous organic-inorganic coating layer includes a mixture of inorganic particles and a first binder polymer. The first binder polymer contains a copolymer including (a) a first monomer unit including either at least one amine group or at least one amide group or both in the side chain thereof and (b) a (meth)acrylate having a C-Calkyl group as a second monomer unit. The organic coating layer is formed by dispersing a second binder polymer on the surface of the organic-inorganic coating layer, leaving scattered uncoated areas. 1. A separator comprising:a porous substrate;{'sub': 1', '14, 'a porous organic-inorganic coating layer formed on at least one surface of the porous substrate and comprising a mixture of inorganic particles and a first binder polymer, the first binder polymer containing a copolymer comprising (a) a first monomer unit comprising either at least one amine group or at least one amide group or both in the side chain thereof and (b) a (meth)acrylate having a C-Calkyl group as a second monomer unit; and'}an organic coating layer formed by dispersing a second binder polymer on the surface of the organic-inorganic coating layer, leaving scattered uncoated areas.2. The separator according to claim 1 , wherein the first monomer unit and the second monomer unit are present in amounts of 10 to 80% and 20 to 90% by mole claim 1 , respectively claim 1 , based on the total moles of all constituent monomer units of the copolymer.3. The separator according to claim 1 , wherein the first monomer unit is selected from the group consisting of 2-(((butoxyamino)carbonyl)oxy)ethyl (meth)acrylate claim 1 , 2-(diethylamino)ethyl (meth)acrylate claim 1 , 2-(dimethylamino)ethyl (meth)acrylate claim 1 , 3-(diethylamino)propyl (meth)acrylate ...

Подробнее
27-02-2014 дата публикации

Electrode body, all solid state battery, and method for producing coated active material

Номер: US20140057180A1
Автор: Masahiro Iwasaki
Принадлежит: Toyota Motor Corp

The problem of the present invention is to provide an electrode body in which electron conductivity of a coated active material improves and reaction resistance decreases. The present invention solves the above-mentioned problem by providing an electrode body comprising a coated active material having an oxide active material and a coat layer for coating the surface of the above-mentioned oxide active material, containing an oxide solid electrolyte material, and a sulfide solid electrolyte material contacting with the above-mentioned coated active material, characterized in that the above-mentioned coat layer contains a conductive assistant.

Подробнее
06-03-2014 дата публикации

Ion-conducting composite electrolyte comprising path-engineered particles

Номер: US20140065513A1
Принадлежит: Corning Inc

An ion-conducting composite electrolyte is provided comprising path-engineered ion-conducting ceramic electrolyte particles and a solid polymeric matrix. The path-engineered particles are characterized by an anisotropic crystalline structure and the ionic conductivity of the crystalline structure in a preferred conductivity direction H associated with one of the crystal planes of the path-engineered particle is larger than the ionic conductivity of the crystalline structure in a reduced conductivity direction L associated with another of the crystal planes of the path-engineered particle. The path-engineered particles are sized and positioned in the polymeric matrix such that a majority of the path-engineered particles breach both of the opposite major faces of the matrix body and are oriented in the polymeric matrix such that the preferred conductivity direction H is more closely aligned with a minimum path length spanning a thickness of the matrix body than is the reduced conductivity direction L.

Подробнее
13-03-2014 дата публикации

Thin-film battery methods for complexity reduction

Номер: US20140072699A1
Принадлежит: Individual

Thin-film battery methods for complexity reduction are described. Processing equipment arrangements suitable to support thin-film battery methods for complexity reduction are also described. Cluster tools to support thin-film battery methods for complexity reduction are also described.

Подробнее
13-03-2014 дата публикации

ELECTRIC VEHICLE PROPULSION SYSTEM AND METHOD UTILIZING SOLID-STATE RECHARGEABLE ELECTROCHEMICAL CELLS

Номер: US20140072837A1
Принадлежит: Sakti3, Inc.

A vehicle propulsion system comprising a plurality of solid state rechargeable battery cells configured to power a drivetrain. In accordance with once aspect of the invention, a transportation system that is powered at least in part by electricity stored in the form of rechargeable electrochemical cells. According to an embodiment of the present invention, these cells are combined in series and in parallel to form a pack that is regulated by charge and discharge control circuits that are programmed with algorithms to monitor state of charge, battery lifetime, and battery health. 1. A vehicle propulsion system comprising a plurality of solid state rechargeable battery cells configured to power a drivetrain , the system comprising:a rolled substrate less than 10 microns in thickness along a shortest axis, the rolled substrate comprising a surface region;at least one electrochemical cell formed overlying the surface of the rolled substrate, said electrochemical cell comprisinga positive electrode material comprised of a transition metal oxide or a transition metal phosphate, the positive electrode material characterized by a thickness between 0.5 micron and 50 microns;a solid state layer of a ceramic, polymer, or glassy material configured for conducting lithium or magnesium ions during a charge and discharge process, the solid state layer characterized by a thickness between 0.1 micron and 5 microns; anda negative electrode material configured for electrochemical insertion or plating of ions during the charge and discharge process, the negative electrode material characterized by a thickness between 0.5 micron and 50 microns; andan electrically conductive material coupled with the positive electrode material and free from contact with the negative electrode material.2. The system of wherein said layer of positive and negative electrode materials each have a total surface area greater than 0.5 meters; wherein the rolled substrate is made of at least a polymer claim 1 , ...

Подробнее
13-03-2014 дата публикации

Electrochemical energy store

Номер: US20140072843A1
Принадлежит: ROBERT BOSCH GMBH

An electrochemical energy store, e.g., a lithium-ion battery, includes a cell chamber, in which at least one anode, at least one cathode, and an electrolyte, which is situated between the anode and the cathode, are situated, the cell chamber being separated from the external surroundings by a housing, and at least one detection substance for the detection of a leak of the housing being situated in the cell chamber. The energy store configuration allows a leak of the energy store to be detected in a simple way.

Подробнее
13-03-2014 дата публикации

All-solid-state cell

Номер: US20140072870A1
Принадлежит: NGK Insulators Ltd

An all-solid-state cell has a positive electrode layer containing a positive electrode active material, a solid electrolyte layer containing a lithium ion conducting material, and a negative electrode layer containing a negative electrode active material. The negative electrode active material in the negative electrode layer contains a plurality of cylindrical carbon nanotube molecules, and the axes of the carbon nanotube molecules are oriented in a predetermined direction.

Подробнее
20-03-2014 дата публикации

Method for manufacturing lithium ion secondary battery

Номер: US20140079872A1
Принадлежит: Toyota Motor Corp, Zeon Corp

A method for manufacturing a lithium ion secondary battery having electrodes in which a mix layer including a first binder and one of a positive electrode active material and a negative electrode active material is formed via a second binder on a collector. The method includes: performing pattern coating of the second binder on the surface of the collector and regularly forming binder-coated sections and uncoated sections; and feeding a powder of mix particles on the binder-coated sections and the uncoated sections so as to form the mix layer on the collector.

Подробнее
20-03-2014 дата публикации

ALL-SOLID LITHIUM ION SECONDARY BATTERY

Номер: US20140080006A1
Автор: Ogasa Kazuhito
Принадлежит: OHARA INC.

To provide an all-solid lithium ion secondary battery having a high voltage, a small internal resistance, and a discharge capacity close to a theoretical capacity and being able to be produced at low cost, and therefore, even in the case of collective sintering, generation of an inactive material due to interface reaction at the interface between an electrode active material and a solid electrolyte is reduced. An all-solid lithium ion secondary battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, wherein an electrode active material included in the positive electrode layer is a phosphate having an olivine structure; and a solid electrolyte crystal included in the solid electrolyte layer includes polyphosphoric acid and the content of LiO is 16 mol % to 25 mol % in terms of mol % on an oxide basis. 1. An all-solid lithium ion secondary battery comprising a positive electrode layer , a negative electrode layer , and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer , whereinan electrode active material included in the positive electrode layer is a phosphate having an olivine structure; and{'sub': '2', 'a solid electrolyte crystal included in the solid electrolyte layer includes polyphosphoric acid and a content of LiO is 16 mol % to 25 mol % in terms of mol % on an oxide basis.'}2. The all-solid lithium ion secondary battery according to claim 1 , wherein the solid electrolyte crystal is NASICON-type LiMRSiPO claim 1 ,where M is at least one selected from Al, La, Sr, Mg, Y, Ba, Zn, Sc, and Ca, R is at least one selected from Ge, Ti, and Zr, x is 0.1 to 1.2, y is 0.1 to 1.1, z is 0.1 to 1.0, and a is −1.0 to 1.0.3. The all-solid lithium ion secondary battery according to claim 1 , wherein the solid electrolyte crystal is NASICON-type LiMZrSiPO claim 1 ,where M is at least one selected ...

Подробнее
27-03-2014 дата публикации

SEMI-AUTOMATIC METHOD FOR MANUFACTURING AN ELECTROCHEMICAL LI-ION BATTERY

Номер: US20140082930A1
Автор: Bouvier Michael

A semi-automatic method for making a Li-ion electrochemical accumulator according to which a continuous electrolytic separator strip is automatically wound on two-sided electrodes manually and alternately stacked according to their polarity. By the method, it is not necessary to assemble or manually cut out each electrolytic separator inserted between two adjacent electrodes in the stack and of opposite polarity. 110-. (canceled)11. A method for making a lithium-ion electrochemical accumulator , comprising:a) making a plurality of two-sided electrodes, each comprising an electrically conducting substrate forming a current collector supporting on its two opposite faces an electrode material of same given polarity; the polarity of electrodes being divided into two groups, one of the groups comprising electrodes with polarity opposite to those of the other group;b) making two one-sided electrodes, each comprising an electrically conducting substrate forming a current collector supporting on a single one of its faces an electrode material of given polarity, both one-sided electrodes supporting a single electrode material of the same polarity;c) unwinding an electrolytic separator in a form of a continuous strip from a winder to position the electrolytic separator on one edge of a mandrel with two parallel edges;d) manually positioning a first two-sided electrode of one of the groups on the edge of the mandrel parallel to the one on which the continuous separator strip is already positioned;e) rotating the mandrel to wrap the first two-sided electrode of the group and the mandrel with the continuous separator strip;f) manually positioning a first two-sided electrode of the other group on the edge of the mandrel on which the continuous separator strip is positioned;g) rotating the mandrel in the same direction as the one of d) to also wrap the first two-sided electrode of the other group with the continuous separator strip;h) repeating d) to g) with all the other ...

Подробнее
03-04-2014 дата публикации

LITHIUM SECONDARY BATTERY

Номер: US20140093786A1
Принадлежит: SAMSUNG ELECTRONICS CO., LTD.

A lithium secondary battery including: a positive electrode, a negative electrode, and a sulfide solid electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material particle and a coating film including an oxide including lithium (Li) and zirconium (Zr) on a surface of the positive active material particle. 1. A lithium secondary battery comprising:a positive electrode; a negative electrode; and a sulfide solid electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode comprises a positive active material particle and a coating film including an oxide comprising lithium (Li) and zirconium (Zr) on a surface of the positive active material particle.2. The lithium secondary battery of claim 1 , whereinan average secondary particle diameter D50 of the positive active material particle and the coating film is 5 micrometers or less.3. The lithium secondary battery of claim 1 , wherein {'br': None, 'i': 'a', 'sub': 2', '2, 'LiO—ZrO\u2003\u2003Formula 1'}, 'the oxide containing lithium (Li) and zirconium (Zr) is a compound of Formula 1wherein 0.1≦a≦2.0.4. The lithium secondary battery of claim 3 , wherein in Formula 1 claim 3 , a is 1.5. The lithium secondary battery of claim 3 , wherein an amount of LiO—ZrOis in a range of about 0.01 to about 2 mole percent claim 3 , based on a total weight of the positive active material particle and the compound of Formula 1.6. The lithium secondary battery of claim 5 , wherein the amount of LiO—ZrOis in a range of about 0.01 to about 0.95 mole percent claim 5 , based on the total weight of the positive active material particle and the compound of Formula 1.7. The lithium secondary battery of claim 1 , wherein the positive active material particle is LiNiCoAlOwherein 0 Подробнее

10-04-2014 дата публикации

Low-Temperature Liquid Metal Batteries for Grid-Scaled Storage

Номер: US20140099522A1
Принадлежит: Massachusetts Institute of Technology

An electrochemical cell and its method of operation includes an electrolyte having a binary salt system of an alkali hydroxide and a second alkali salt. The anode, cathode, and electrolyte may be in the molten phase. The cell is operational for both storing electrical energy and as a source of electrical energy as part of an uninterruptible power system. The cell is particularly suited to store electrical energy produced by a renewable energy source. 1. An electrochemical storage device comprising:a first phase defining a positive electrode comprising a metal selected from the group consisting of cadmium, tin, mercury, lead, antimony, bismuth and any combination thereof;a second phase defining an electrolyte comprising a binary salt system of an alkali metal, the binary salt system comprising an hydroxide salt, the second phase defining first and second interfaces, the first phase being in contact with the second phase at the first interface; anda third phase separated from the first phase and defining a negative electrode comprising the alkali metal, the third phase being in contact with the second phase at the second interface.2. The device according to claim 1 , wherein the first phase comprises an alloy of lead with antimony.3. The device according to claim 1 , wherein the first phase comprises an alloy of lead with bismuth.4. The device according to claim 1 , wherein the binary salt system comprises a second salt of the alkali metal selected from the group consisting of a halide claim 1 , a sulfate claim 1 , a carbonate claim 1 , and any combination thereof.5. The device according to claim 1 , wherein the binary salt system is a hydroxide-iodide eutectic salt of the alkali metal.6. The device according to claim 1 , wherein the alkali metal is sodium.7. The device according to claim 1 , wherein the device is a Na/NaOH—NaI/Hg electrochemical cell.8. The device according to claim 1 , wherein the first phase further comprises the alkali metal.9. The device ...

Подробнее
10-04-2014 дата публикации

Solid-State Battery Electrodes

Номер: US20140099538A1
Принадлежит: MICROSOFT CORPORATION

Embodiments of solid-state batteries, battery components, and related construction methods are described. The components include one or more embodiments of a low melt temperature electrolyte bonded solid-state rechargeable battery electrode and one or more embodiments of a composite separator having a low melt temperature electrolyte component. Embodiments of methods for fabrication of solid-state batteries and battery components are described. These methods include co-extrusion, hot pressing and roll casting. 1. An electrode of a rechargeable solid-state battery , the electrode comprising:electrochemically active powder material; andmeltable inorganic solid electrolyte configured to bond the electrochemically active powder material together.2. The electrode of claim 1 , further comprising:electrolyte powder material having high ion conductivity;electrically conductive material; andthe meltable inorganic solid electrolyte configured to further bond the electrochemically active powder material, the electrolyte powder and the electrically conductive material together.3. The electrode of claim 2 , wherein the electrolyte powder material having a high ion conductivity is a lithium ion conductive electrolyte powder.4. The electrode of claim 1 , wherein the electrochemically active powder material is lithium-based.5. The electrode of claim 1 , wherein the inorganic solid electrolyte is meltable at a maximum reaction temperature of 500° C.6. The electrode of claim 1 , wherein the electrode is formed by roll casting a slurry containing the electrochemically active powder material and the meltable inorganic solid electrolyte.7. The electrode of claim 1 , wherein the electrode is formed by hot pressing the electrochemically active powder material and the meltable inorganic solid electrolyte.8. A solid-state battery comprising:a metal foil anode substrate; andan anode-separator casting that includes a separator that is roll cast on the metal foil anode substrate.9. The solid- ...

Подробнее
01-01-2015 дата публикации

Oxide, electrolyte including oxide, and electrochemical device including oxide

Номер: US20150001436A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

An oxide represented by Formula 1: (Sr 2-x A x )(M 1-y Q y )D 2 O 7+d ,   Formula 1 wherein A is barium (Ba), M is at least one selected from magnesium (Mg) and calcium (Ca), Q is a Group 13 element, D is at least one selected from silicon (Si) and germanium (Ge), 0≦x≦2.0, 0<0≦1.0, and d is a value which makes the oxide electrically neutral.

Подробнее
06-01-2022 дата публикации

CARBONACEOUS MATERIAL DISPERSION AND METHOD FOR PRODUCING THEROF

Номер: US20220006093A1
Принадлежит: REFINE HOLDINGS CO., LTD.

The disclosed is a method for producing a dispersion of carbonaceous material in a nonaqueous solvent comprising a nitrogen-containing heterocyclic amide compound with a solvent purity of 99.9% or higher, which comprises: 1. A method for producing a dispersion of carbonaceous material in a nonaqueous solvent comprising a nitrogen-containing heterocyclic amide compound with a solvent purity of 99.9% or higher , which comprises:{'sup': '−6', 'confirming an amine-controlled concentration, in which the concentration of amine components in the nonaqueous solvent is confirmed to be less than 3×10in mass fraction;'}{'sup': '−4', 'confirming a moisture-controlled concentration, in which the concentration of the moisture concentration in the nonaqueous solvent is confirmed to be less than 5×10in mass fraction; and'}dispersing a carbonaceous material to the nonaqueous solvent that satisfies the conditions in the amine-controlled concentration confirmation and the moisture-controlled concentration confirmation so that the carbonaceous material concentration is in a range of 15 to 30% by mass based on the total mass of the dispersion, by adding the carbonaceous material to the nonaqueous solvent, and stirring and mixing them.2. The method for producing a carbonaceous material dispersion according to claim 1 , wherein the nitrogen-containing heterocyclic amide compound is one of 2-pyrrolidones.3. The method for producing a carbonaceous material dispersion according to claim 1 , wherein the nitrogen-containing heterocyclic amide compound is N-methyl-2-pyrrolidone.4. The method for producing a carbonaceous material dispersion according to claim 1 , wherein a resin-based dispersant is added as a dispersant.5. The method for producing a carbonaceous material dispersion according to claim 1 , wherein a predetermined amine compound is added as a dispersant.6. The method for producing a carbonaceous material dispersion according to claim 4 , wherein a predetermined amine compound is ...

Подробнее
06-01-2022 дата публикации

SOLID ION CONDUCTOR COMPOUND, SOLID ELECTROLYTE INCLUDING THE SAME, ELECTROCHEMICAL CELL INCLUDING THE SAME, AND PREPARATION METHOD THEREOF

Номер: US20220006116A1
Принадлежит:

A solid ion conductor compound including Li, Ho, and a halogen element, wherein the compound has diffraction peaks at 30°2θ to 33°2θ, 33°2θ to 36°2θ, 40°2θ to 44°2θ, and 48°2θ to 52°28θ, when analyzed using CuKα radiation, and wherein a full width at half maximum of at least one peak at 40°2θ to 44°2θ is 0.3°2θ or greater. 1. A solid ion conductor compound , comprising:Li, Ho, and a halogen,wherein the compound has X-ray diffraction peaks at 30°2θ to 33°2θ, 33°2θ to 36°2θ, 40°2θ to 44°2θ, and 48°2θ to 52°2θ, when analyzed using CuKα radiation, andwherein a full width at half maximum of at least one peak at of 40°2θ to 44°2θ is about 0.3°2θ or greater.2. The solid ion conductor compound of claim 1 , wherein the solid ion conductor compound has an X-ray diffraction spectrum comprising diffraction peaks at 30°2θ±0.5°2θ claim 1 , 31.5°2θ±0.5°2θ claim 1 , 35°2θ±0.5°2θ claim 1 , 41°2θ±0.5°2θ claim 1 , 48.7°2θ±0.5°2θ claim 1 , and 60°2θ±0.5°2θ claim 1 , when analyzed using CuKα radiation.3. The solid ion conductor compound of claim 1 , wherein the solid ion conductor compound has an X-ray diffraction spectrum comprising diffraction peaks at 30°2θ±0.5°2θ claim 1 , 31.5°2θ±0.5°2θ claim 1 , 35°2θ±0.5°2θ claim 1 , 42°2θ±0.5°2θ claim 1 , 48.7°2θ±0.5°2θ claim 1 , and 60°2θ±0.5°2θ claim 1 , when analyzed using CuKα radiation.4. The solid ion conductor compound of claim 1 , wherein the halogen is Cl.5. The solid ion conductor compound of claim 1 , wherein the halogen element is Cl and Br.6. The solid ion conductor compound of claim 1 , whereinthe solid ion conductor compound comprises a first crystalline phase, a second crystalline phase, and an amorphous phase, andthe first crystalline phase and the second crystalline phase are the same or are different from each other, andthe amorphous phase is between the first crystalline phase and the second crystalline phase.7. The solid ion conductor compound of claim 6 , wherein the first crystalline phase claim 6 , the second crystalline ...

Подробнее
01-01-2015 дата публикации

Apparatus and method for depositing alkali metals

Номер: US20150004326A1
Автор: Isaiah O. Oladeji
Принадлежит: Individual

A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400° C. using a spray deposition system. In the case of lithium, the deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500° C., to obtain a high lithium ion conducting inorganic solid state electrolyte. The method may be used for other ionic conductors to make electrolytes for various applications. The electrolyte may be incorporated into a lithium ion battery.

Подробнее
01-01-2015 дата публикации

SEPARATOR, NONAQUEOUS ELECTROLYTE BATTERY, BATTERY PACK, ELECTRONIC DEVICE, ELECTRIC VEHICLE, POWER STORAGE DEVICE, AND POWER SYSTEM

Номер: US20150004464A1
Принадлежит:

A separator includes a substrate layer that is porous, and a surface layer that is provided on at least one main face of the substrate layer and that has an uneven shape. The surface layer includes first particles that are for forming convexities of the uneven shape and that are a main component of the convexities, second particles that have a smaller average particle size than the first particles, cover at least a part of a surface of the first particles, and cover at least a part of a surface of the substrate layer that is exposed between the first particles, and a resin material. 120-. (canceled)21. A separator comprising:a substrate layer that is porous; anda surface layer that is provided on at least one main face of the substrate layer and that has an uneven shape, first particles that are for forming convexities of the uneven shape and that are a main component of the convexities,', 'second particles that have a smaller average particle size than the first particles, cover at least a part of a surface of the first particles, and cover at least a part of a surface of the substrate layer that is exposed between the first particles, and', 'a resin material including a fluororesin., 'wherein the surface layer includes'}22. The separator according to claim 21 , wherein the first particles function as a spacer and have a height that is substantially same as a thickness of the surface layer.23. The separator according to claim 22 , wherein a height difference of the uneven shape is 2 μm or more.24. The separator according to claim 23 , wherein the first particles have an average particle size of 3.5 μm or more.25. The separator according to claim 24 , wherein a convexity density is 300 per mm2 or more to 2 claim 24 ,800 per mm2 or less.26. The separator according to claim 23 , wherein a thickness of a layer covered by a surface of the substrate layer formed by the second particles is 1.5 μm or more to 3.0 μm or less.27. The separator according to claim 23 , wherein ...

Подробнее
01-01-2015 дата публикации

Substrate for Solid-State Battery

Номер: US20150004470A1
Принадлежит:

Disclosed are solid-state batteries having improved energy density and methods of manufacturing the solid-state batteries having improved energy density. In some embodiments, the solid-state battery may include a substrate of yttria-stabilized zirconia, a cathode current collector formed on the substrate, an anode current collector formed on the substrate, a cathode of lithium cobalt oxide in electrical contact with the cathode current collector, an anode of lithium in electrical contact with the anode current collector, and a solid-state electrolyte of lithium phosphorous oxynitride formed between the cathode and the anode. 1. A solid-state battery comprising:a substrate comprising yttria-stabilized zirconia (YSZ);a cathode current collector formed on the substrate;an anode current collector formed on the substrate;a cathode comprising lithium cobalt oxide in electrical contact with the cathode current collector;an anode comprising lithium in electrical contact with the anode current collector; anda solid-state electrolyte comprising lithium phosphorous oxynitride formed between the cathode and the anode.2. The solid-state battery of claim 1 , wherein the substrate has a thickness between about 25 μm and about 40 μm.3. The solid-state battery of claim 1 , wherein the cathode has a thickness between about 10 μm and about 15 μm.4. The solid-state battery of claim 1 , further comprising a protective coating substantially covering the anode.5. The solid-state battery of claim 4 , wherein the protective coating comprises at least one of silicon dioxide claim 4 , alumina claim 4 , and a ceramic.6. The solid-state battery of claim 1 , wherein at least one of the anode current collector and the cathode current collector comprises stainless steel or nickel.7. The solid-state battery of claim 1 , wherein:the substrate further comprises a layer comprising a metal or a ceramic; andthe YSZ is attached to the layer, wherein the cathode current collector and the anode current ...

Подробнее
02-01-2020 дата публикации

Battery communication system

Номер: US20200003172A1
Принадлежит: FNA Group Inc

According to an implementation, a pressure washer system may include a pump and an engine drivingly coupled with the pump. A pressure washer controller may be associated with one or more of the pump and the engine. A battery may be communicatively coupleable with the pressure washer controller for one or more of receiving data from the pressure washer controller and transmitting data to the pressure washer controller. The battery may include a memory module for storing one or more of data received from the pressure washer controller and data to be transmitted to the pressure washer controller.

Подробнее