Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 5413. Отображено 200.
27-03-2002 дата публикации

ЭНЕРГЕТИЧЕСКАЯ СИСТЕМА С ЭЛЕКТРОХИМИЧЕСКИМ КОНВЕРТЕРОМ, СИСТЕМА С ЭЛЕКТРОХИМИЧЕСКИМ КОНВЕРТЕРОМ И УСТРОЙСТВО ВВОДА-ВЫВОДА ДЛЯ ИСПОЛЬЗОВАНИЯ С РЕЗЕРВУАРОМ ВЫСОКОГО ДАВЛЕНИЯ

Номер: RU2180978C2
Принадлежит: ЗТЕК КОПЭРЕЙШН (US)

Изобретение относится к высокотемпературным электрохимическим конвертерам, таким, как топливные элементы, а более конкретно к высокоэффективным энергетическим или силовым системам, в которых используются электрохимические конвертеры. Электрохимический конвертер размещен внутри резервуара высокого давления, в котором скапливаются горячие выхлопные газы, вырабатываемые конвертером, подаваемые в установки для использования энергии конвертера, такие, как газовая турбина, для комбинированного производства тепловой и электрической энергии. В состав для использования энергии конвертера могут входить, например, газовая турбина или система обогрева, вентиляции или кондиционирования воздуха (ОВКВ). Резервуар высокого давления может содержать теплообменник, например рубашку охлаждения, для охлаждения резервуара высокого давления и/или подогрева реагента электрохимического конвертера перед подачей его в конвертер. В одном из вариантов осуществления изобретения компрессор, входящий в узел газовой турбины ...

Подробнее
31-10-2017 дата публикации

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Номер: RU2634475C1

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве алюминийсодержащего прекурсора используется водно-спиртовой раствор Al(NO)⋅9HO. Порошок пропитывается прекурсором, сушится при температуре 30–70°С и затем прокаливается при температуре 250–280°С. Изобретение позволяет упростить технологию изготовления и повысить функциональные характеристики пористого газодиффузионного анода. 3 ил.

Подробнее
15-09-2023 дата публикации

Энергетическая установка

Номер: RU2803548C1

Изобретение относится к энергомашиностроению, а именно к установкам выработки тепловой и электрической энергий. Энергетическая установка состоит из двигателя внутреннего сгорания (ДВС) (8), соединенного с электрогенератором (9), контроллера (6), по меньшей мере одной аккумуляторной батареи (7). Система выпуска отработанных газов ДВС (8) включает теплообменник (11), соединенный через насос (13) с баком (14) аммиака и выполненный с возможностью испарения аммиака. Теплообменник (11) включает секцию (12) каталитического разложения аммиака на водород и азот, дополнительно включающую электроподогреватель. Теплообменник (11) соединен с мембранным фильтром (10) отделения азота и водорода, включающим клапан отвода азота в атмосферу. Мембранный фильтр (10) линией подачи водорода соединен с ДВС (8) и анодом (1) топливного элемента на основе расплавов карбонатов. Катод (3) топливного элемента соединен с источниками (4, 5) диоксида углерода и кислорода. Топливный элемент соединен через контроллер (6 ...

Подробнее
02-04-1992 дата публикации

Molten carbonate fuel cell - has sintered porous nickel-nickel oxide anode with lithium titanate on inside and outside to stabilise inside dia.

Номер: DE0004030943A1
Принадлежит:

Molten carbonate fuel cell (MCFC) has a metallic current transfer plate (6), a cathode (2), a matrix (5) impregnated with Li2CO3 and K2CO3 melt (4), an anode (3) and another metallic current transfer plate (7), laminated in the given sequence. The anode (3) is sintered and is based on porous Ni and NiO2, with Li2TiO3 on the outside and inside surfaces. Pref. the anode contains Cr2O3, Al2O3, LiAlO2 and/or Li2TiO3 as component(s) acting as hardener and wetted by the melt. The amt. of Li2TiO3 on the inside and outside surfaces is 5-50, pref. 15-30 (wt.)%. The anode has a laminated structure a from the transfer plate side to the matrix side and the Li2TiO3 fraction on the side towards the transfer plates (6, 7) pref. is lower than that on the opposite side or is zero, whilst the Ni fraction is 95-50, pref. 85-70%. The transfer plates consist of Ni-plated stainless steel and pref. are bipolar, with ducts (8, 9) for the fuel on one side and the O2 carrier on the other. ADVANTAGE - The inside ...

Подробнее
21-05-1992 дата публикации

Electrical power generating device for gas-fired water heater - uses electrolytic fuel element associated with each burner flame

Номер: DE0004036823A1
Принадлежит:

The electrical generation device for a gas-fired water heater uses an electrolytic fuel element (1) in the working range of each gas burner flame (32) associated with a converter allowing the carbon monoxide to be converted into carbon dioxide and hydrogen and a DC/AC converter allowing the generated DC voltage to be converted into an AC voltage. - Pref., the converter has a fan allowing combustion air to be fed to the converter, controlled by a flame monitor together with the water circulation pump and the gas supply valve.

Подробнее
04-08-2016 дата публикации

Flüssigbatteriefähiges Untertagestromversorgungssystem

Номер: DE112013007623T5

Ein Batteriezellengehäuse und Steuerungssystem ermöglicht die Verwendung von Flüssigbatteriestromversorgungssystemen in verschiedenen Anwendungen einschließlich Untertageumgebungen. Das Zellgehäuse beinhaltet eine Vielzahl von leitfähigen Anschlüssen, die dortherum beabstandet sind, um Leitfähigkeit zwischen der elektrochemischen Lösung und der Last bereitzustellen. Sensoren stellen Ausrichtungsdaten an das Steuerungssystem bereit, um dadurch zu bestimmen, welche Anschlüsse aktiviert werden sollten, um eine Last mit Strom zu versorgen.

Подробнее
03-09-1959 дата публикации

Elektrochemische Brennstoffzelle

Номер: DE0001064576B

Подробнее
09-03-1972 дата публикации

Elektrochemisches Hydrierungssystem

Номер: DE0001596204A1
Принадлежит:

Подробнее
08-02-2001 дата публикации

Matrix, for a molten carbonate fuel cell, comprises a slip cast composition containing iron-chromium-aluminum particles with an aluminum oxide surface layer

Номер: DE0019936087A1
Принадлежит:

A molten carbonate fuel cell (MCFC) matrix, comprises a slip cast composition containing iron chromium aluminum (FeCrAl) particles with a surface layer of alumina (Al2O3). An MCFC matrix comprises a slip cast composition which contains lithium aluminum oxide (LiAlO2), a crack stopping component and a metallic component of FeCrAl particles having a surface layer of alumina (Al2O3). An Independent claim is also included for production of the above MCFC matrix from an aqueous slip casting composition containing pre-oxidized FeCrAl particles.

Подробнее
05-04-1984 дата публикации

BRENNSTOFFZELLENSYSTEM UND VERFAHREN ZUM BETREIBEN DESSELBEN

Номер: DE0003333378A1
Принадлежит:

Подробнее
08-01-2009 дата публикации

BRENNSTOFFZELLEN-STRUKTUR

Номер: DE602004018010D1
Автор: CLAUDE ERIC, CLAUDE, ERIC

Подробнее
22-04-1971 дата публикации

Номер: DE0002047848A1
Автор:
Принадлежит:

Подробнее
02-08-2017 дата публикации

Fuel cell, electrolyser or battery

Номер: GB0002546770A
Принадлежит:

A fuel cell, electrolyser or battery comprises a liquid electrolyte 202, a cathode and an anode. The cathode comprises a plurality of pipes 206a arranged, in use, to extend at least partially into the electrolyte, each pipe being arranged to allow oxygen to flow therethrough and having a permeable section, the permeable section being arranged, in use, to allow the oxygen to come into contact with the liquid electrolyte. The anode 204 comprises a plurality of elongate projections arranged, in use, also to extend at least partially into the electrolyte. These elongate projections may also comprise pipes, possibly with permeable sections in contact with the liquid electrolyte if desired. The fuel cell, electrolyser or battery may comprise a plurality of anodes 204 and cathodes 206a, arranged in the form of interleaving rows. The electrolyte 202 may be a molten carbonate or other molten salt, an ionic liquid and/or a salt solution.

Подробнее
04-12-1996 дата публикации

An electric power generation system

Номер: GB0009621540D0
Автор:
Принадлежит:

Подробнее
04-04-1973 дата публикации

ELECTROCHEMICAL ELECTRIC ENERGY SOURCE ELECTRODE

Номер: GB0001312659A
Автор:
Принадлежит:

... 1312659 Electrodes; fuel cells BRUNSWICK CORP 23 July 1970 [24 July 1969] 18024/71 Divided out of 1312658 Heading H1B The description is the same as that of Specification 1,312,658, but the claims are directed to the electrodes.

Подробнее
04-01-1995 дата публикации

Molten carbonate fuel cells

Номер: GB0002279494A
Принадлежит:

A method of manufacturing a matrix for a molten carbonate fuel cell, comprising the steps of saturating gamma-lithium aluminate with ammonia gas and adding sodium metal, can manufacture large-diameter gamma-lithium aluminate particles at a low temperature. The matrix, has gamma-lithium aluminate particles with diameters of 4 - 10 mu m as the main component.

Подробнее
22-12-2004 дата публикации

Electrochemical sensor with ionic liquids as electrolyte

Номер: GB0002395564B
Принадлежит: BOSCH GMBH ROBERT, * ROBERT BOSCH GMBH

Подробнее
02-06-1927 дата публикации

An improved electric generator or gas battery

Номер: GB0000271581A
Автор:
Принадлежит:

... 271,581. Kendall, J. A., and Gore, R. E. March 4, 1926. Gas batteries. - A gas battery comprises a number of gas cells arranged in a chamber, the cells being supplied with hydrogen or water gas in sufficient quantity to enable the chamber to be kept at a red heat by the combustion of the gas. Fig. 4 shows a single gas cell consisting of two concentric tubes a, c made of porous metal such as porous silver, copper, nickel, cobalt or iron, to which conducting leads f, g are secured. The space between the tubes is filled with a refractory substance b such as magnesia, oxide of cerium or a mixture, of magnesia and oxide of iron, nickel or cerium; barium carbonate may also be added.. This filling is saturated with a fused saline material such as the carbonate or borate of an alkali metal. The lower portions d, e of the tubes a, c may be made of non-porous metal. A nickel rod or tube i may be placed within the tube a to cause the gas passing through the tube to come into close contact with its ...

Подробнее
22-05-1968 дата публикации

Method of in situ preparation of hydrogen and simultaneous hydrogen control in electrol in electrochemical cells

Номер: GB0001114851A
Автор: JUDA WALTER
Принадлежит:

... 1,114,851. Fuel cells. PROTOTECH Inc. 25 Jan., 1965, No. 2181/65. Heading H1B. A fuel cell utilizing a hydrogen-permeable palladium-containing layer as an anode is supplied with gaseous mixture containing hydrogen and generated in a chamber adjacent the layer and the invention resides in controlling the partial pressure of the hydrogen to prevent it exceeding the electrolyte pressure on the other side of the layer.

Подробнее
21-08-1963 дата публикации

Improvements in or relating to apparatus for effecting a gas/liquid reaction

Номер: GB0000934416A
Автор:
Принадлежит:

... Apparatus in which reaction takes place between a gas and a liquid within a porous substance contains means for effecting oscillatory motion of the gas/liquid interface within the pores of the substance. The porous substance may be a catalyst and/or an electrode. The motion may be obtained by (1) applying a pulsating pressure to the gas; as shown in Fig. 4, a fuel cell comprises container 20 with porous electrodes 21 separating liquid electrolyte 22 from gas spaces 23, the pressure in one of which is varied by applying a pulsating pressure by piston 25 via pipe 24; (2) applying an alternating electric field across the gas/liquid interface; as shown in Fig. 5, an alternating potential is applied from source 35 through leads 34 to electrodes 31; (3) applying sonic or supersonic vibrations to the liquid; as shown in Fig. 6, sonic or ultrasonic signals are applied to transducer 44 in liquid electrolyte 41. Fuel gases referred to ...

Подробнее
04-04-2001 дата публикации

Fuel cells

Номер: GB0000103779D0
Автор:
Принадлежит:

Подробнее
06-11-1985 дата публикации

Direct use of methanol fuel in a molten carbonate fuel cell

Номер: GB0002158287A
Принадлежит:

A method of powering a high temperature molten carbonate fuel cell using direct internal reformation of methanol. The methanol is reformed spontaneously using the anode catalyst and cell waste heat creating hydrogen which is consumed as fuel at the anode and carbon dioxide which is used to enrich the cathode oxidant. In addition, the reformation reaction is endothermic and therefore will aid in managing excess heat at the anode.

Подробнее
23-11-1966 дата публикации

A method for manufacturing a fuel cell electrode

Номер: GB0001048894A
Автор:
Принадлежит:

A fuel cell electrode is formed by spraying molten particles of e.g. nickel or silver on to a ceramic support of e.g. magnesia oxide, spraying a suspension of the metal in a solution of polystyrene in trichlorethylene on to the first layer, and then sintering. The periphery of the support may be of lower porosity then the central area. Further layers may be applied by electrode position.

Подробнее
05-10-1983 дата публикации

LEAKING MANIFOLD SEAL

Номер: GB0008323548D0
Автор:
Принадлежит:

Подробнее
22-11-1967 дата публикации

Fuel cell batteries

Номер: GB0001092212A
Автор:
Принадлежит:

... 1,092,212. Fuel cell batteries having fuel supply and exhaust plena serving as terminals. TEXAS INSTRUMENTS Inc. Jan. 8, 1965 [Jan. 8, 1964], No. 26327/67. Divided out of 1,092,211. Heading H1B. A fuel cell battery comprises two spaced sequences of fuel cells, each fuel cell comprising spaced porous first and second electrodes and an electrolyte between them, the two sequences of cells defining a fuel passage (109) between them and being connected in parallel between an electrically conductive fuel supply plenum (13) and an electrically conductive spent fuel exhaust plenum (15), the first electrode of one fuel cell in each sequence being electrically connected to one of the plenums and the second electrode of another fuel cell in each sequence being electrically connected to the other plenum, the second electrode of the said one cell being insulated from the said one plenum and connected to the first electrode of an adjacent cell, and the first electrode of the said other fuel cell being ...

Подробнее
22-09-1982 дата публикации

MOLTEN CARBONATE FUEL CELLS

Номер: GB0002016797B
Автор:

Подробнее
31-12-1958 дата публикации

Improvements in or relating to fuel cells

Номер: GB0000806591A
Принадлежит:

A porous electrode for a fuel cell is formed of a sintered body of zinc oxide and silver. Copper may also be included in the body. In one example an electrode was produced by mixing the 36-50 mesh BS fraction of a dried powder paste of zinc oxide and silver nitrate with 20 per cent by weight of silver, pressing the mixture at 0.3-0.5 p.s.i., heating slowly to 900 DEG C. to decompose the nitrate and sintering at 900 DEG C. for 1 hour. In another example, zinc oxide powder was presintered at 1000 DEG C. for 2 hours and the mass then broken down and graded. The fraction -150 mesh BS was mixed with 30 per cent silver-copper alloy powder (containing 10 per cent copper) and pressed at 2-3 t.s.i. The fraction -36 + 52 mesh BS was then mixed with same proportion of silver-copper alloy and the coarse grained mixture pressed on top of the fine grained layer and the whole sintered at 1000 DEG C. for 1 hour. In a further example, -150 mesh BS zinc oxide powder was mixed with 25 per cent by weight of ...

Подробнее
19-11-1980 дата публикации

METHOD OF PREPARING ELECTROLYTE FOR USE IN FUEL CELLS

Номер: GB0001579313A
Автор:
Принадлежит:

Подробнее
30-01-1963 дата публикации

An electrolyte body

Номер: GB0000916910A
Автор:
Принадлежит:

... 916,910. Fuel cells. NEDERLANDSE ORGANISATE VOOR TOEGEPASTNATUURWETENSCHAPPELIJK ONDERZOEK TEN BEHOEVE VAN NIJVERHEID, HANDEL EN VERKEER. April 5, 1961 [April 9, 1960], No. 12262/61. Class 53. A self-supporting electrolyte body for a fuel cell comprises 40 to 60% by weight of magnesium oxide powder of a particle size less than 3Á in a salt or salt mixture that is molten at the operation temperature of the cell. The body 1 may have bores lined with metal powder 3 forming the electrodes and electrically connected to metal helices 11, the reactant gases being passed in through the pipes 13, 14. The body may stand on a tray in an oven and as some of the body may tend to flow into the tray it may be replenished with molten salt at the top. Specification 850,706 is referred to.

Подробнее
09-03-1983 дата публикации

ELECTROCHEMICAL CELL OPERATION AND SYSTEMS

Номер: GB0002025119B
Автор:
Принадлежит: ENERGY RES CORP, ENERGY RESEARCH CORPORATION

Подробнее
15-12-2019 дата публикации

Fuel cell system with at least one high temperature fuel cell

Номер: AT0000520263B1
Автор: MARTIN HAUTH, Martin Hauth
Принадлежит:

Die Erfindung betrifft ein Brennstoffzellensystem (10) mit zumindest einer Hochtemperatur-Brennstoffzelle (11), beispielsweise einer Festoxidbrennstoffzelle oder einer Schmelzkarbonat-Brennstoffzelle, die einen Anodenbereich (A) mit einem Anodeneingang (12) und einem Anodenausgang (13) aufweist, sowie mit einer in den Anodeneingang (12) mündenden Anodengaszufuhrleitung (14), in welcher ein Reformer (15) für die Reformierung eines kohlenwasserstoffhaltigen Brennstoffs angeordnet ist, sowie mit einer vom Anodenausgang (13) ausgehenden, stromaufwärts des Reformers (15) in die Anodengaszufuhrleitung (14) mündenden Anodenrezirkulationsleitung (16). Zur Erzeugung von Wasserdampf für die nachfolgende Reformierung während der Startphase des Systems ist in der Anodenrezirkulationsleitung (16) stromaufwärts deren Einmündung (17) in die Anodengaszufuhrleitung (14) zumindest ein Oxidationskatalysator (18, 19, 20) samt vorgeschaltetem Injektor (21, 22) für ein Oxidationsmittel angeordnet.

Подробнее
15-06-2018 дата публикации

Fuel cell system

Номер: AT0000519416A1
Принадлежит:

Die Erfindung betrifft ein Brennstoffzellensystem (100) mit Brennstoffversorgungseinheit (8) und Brennstoffzelle (1, 2) mit Kathode (4, 4‘) und Anode (3, 3‘), wobei die Kathode (4, 4‘) eine Kathodenzuleitung (40) und die Anode (3, 3‘) eine Anodenzuleitung (30) aufweist, die Anode (3, 3‘) über die Anodenzuleitung (30), in der eine Reformierungsvorrichtung (13) angeordnet ist, mit der Brennstoffversorgungseinheit (8) strömungsverbunden ist und eine Anodenabgasleitung (6) mit zumindest einer Brennvorrichtung (22, 23) vorgesehen ist. Erfindungsgemäß sind in der Kathodenzuleitung (40) ein erster Wärmeübertrager (16) und in der Anodenzuleitung (30) eine stromaufwärts der Reformierungsvorrichtung (13) angeordnete Verdampfungseinrichtung (12) und ein zweiter Wärmeübertrager (29) vorgesehen, wobei sich die Anodenabgasleitung (6) stromabwärts der Brennvorrichtung (22, 23) in jeweils mit einer Abgasauslassöffnung (21) verbundene erste (6a) und zweite Anodenabgasteilleitungen (6b) teilt, und wobei ...

Подробнее
15-09-2008 дата публикации

FUSION CARBONATE GAS CELL AND PROCEDURE FOR THE PRODUCTION OF SUCH

Номер: AT0000408247T
Принадлежит:

Подробнее
15-12-1999 дата публикации

HIGH TEMPERATURE GAS CELL PLANT AND PROCEDURE FOR YOUR ENTERPRISE

Номер: AT0000187580T
Принадлежит:

Подробнее
15-02-1994 дата публикации

DECREASE OF THE DISSOLUTION OF ELECTRODE IN ELECTRO-CHEMICAL GENERATORS.

Номер: AT0000100970T
Принадлежит:

Подробнее
15-09-2002 дата публикации

ELECTRICAL GENERATION OF CURRENT SYSTEM USING GAS CELLS

Номер: AT0000223619T
Принадлежит:

Подробнее
15-08-2003 дата публикации

GAS CELL PILE FOR ULTRAHIGH-EFFICIENT CURRENT SUPPLY SYSTEMS

Номер: AT0000246407T
Принадлежит:

Подробнее
15-09-2003 дата публикации

GAS CELL SYSTEM FOR THE GENERATION OF CURRENT, HEATING AND COOLING AND VENTILATION

Номер: AT0000249686T
Принадлежит:

Подробнее
15-01-1999 дата публикации

THERMAL STEUERAPPARAT

Номер: AT0000175055T
Принадлежит:

Подробнее
08-11-1990 дата публикации

FULLY INTERNAL MANIFOLDED FUEL CELL STACK

Номер: AU0005463890A
Автор: NAME NOT GIVEN
Принадлежит:

Подробнее
11-04-2005 дата публикации

Electrolyte migration control for large area mcfc stacks

Номер: AU2003270249A1
Принадлежит:

Подробнее
15-10-2015 дата публикации

Integrated power generation and carbon capture using fuel cells

Номер: AU2014235193A1
Принадлежит:

Systems and methods are provided for capturing CO ...

Подробнее
03-08-2017 дата публикации

Integrated power generation and carbon capture using fuel cells

Номер: AU2014235193B2
Принадлежит: Watermark Intellectual Property Pty Ltd

Systems and methods are provided for capturing CO ...

Подробнее
31-01-1980 дата публикации

CARBONATE POWER PLANT

Номер: AU0000507098B2
Принадлежит:

Подробнее
25-02-1998 дата публикации

Fuel cell and a process of using a fuel cell

Номер: AU0003614297A
Принадлежит:

Подробнее
07-10-1980 дата публикации

MOLTEN CARBONATE FUEL CELL ELECTROLYTE

Номер: CA0001087243A1
Принадлежит:

Подробнее
24-02-1981 дата публикации

PRESSURIZED HIGH TEMPERATURE FUEL CELL POWER PLANT WITH BOTTOMING CYCLE

Номер: CA1096445A

A power plant for the generation of electricity utilizes high temperature fuel cells, such as molten carbonate fuel cells, as its main power supply. Part of the oxidant exhaust stream from the fuel cell is recycled through the fuel cell. Waste energy from the fuel cell in the form of exhaust gases, such as part of the oxidant exhaust, drives a turbocharger for compressing the oxidant used in the fuel cell. In a preferred embodiment the oxidant exhaust also is the source of energy for powering a bottoming cycle, such as a steam driven turbogenerator. Power plant efficiency is improved by making maximum use of the energy and heat generated within the system.

Подробнее
11-09-1984 дата публикации

FUEL CELL PROVIDED WITH ELECTROLYTE PLATE MADE OF ELECTRICAL INSULATING LONG FIBERS

Номер: CA1174271A
Принадлежит: HITACHI LTD, HITACHI LTD.

A fuel cell provided with an electrolyte retaining plate made of electrical insulating long fibers such as lithium aluminate long fibers which have preferably a length of 100 to 400 .mu.m and a diameter of 1 to 4 .mu.m, are interlocked each other and have vacant spaces for filling an electrolyte can be constructed and operated safely without damaging the electrolyte retaining plate for a long period of time.

Подробнее
24-10-1972 дата публикации

FUEL CELLS

Номер: CA0000913175A
Принадлежит: BRUNSWICK CORP, BRUNSWICK CORPORATION

Подробнее
17-07-1990 дата публикации

NICKEL ANODE ELECTRODE

Номер: CA0001271648A1
Принадлежит:

Подробнее
26-10-2017 дата публикации

FLUIDIZED CATALYTIC CRACKING UNIT SYSTEM WITH INTEGRATED REFORMER-ELECTROLYZER-PURIFIER

Номер: CA0003021733A1
Принадлежит:

A fluidized catalytic cracking unit system includes a fluidized catalytic cracking unit assembly comprising a cracking unit; a reformer-electrolyzer-purifier assembly comprising a reformer-electrolyzer-purifier cell, the reformer-electrolyzer-purifier cell comprising an anode section and a cathode section; and a carbon capture assembly. The anode section of the reformer-electrolyzer-purifier assembly is configured to receive an input stream comprising hydrocarbon gases and water. The cathode section of the reformer-electrolyzer-purifier assembly is configured to produce a cathode exhaust stream comprising oxygen and carbon dioxide. The fluidized catalytic cracking unit assembly is configured to receive the cathode exhaust stream and to produce a flue gas comprising carbon dioxide, water, and less than 5 mole% oxygen. The carbon capture assembly is configured to receive the flue gas from the fluidized catalytic cracking unit assembly, to separate the carbon dioxide contained in the flue ...

Подробнее
06-07-2021 дата публикации

INTEGRATED POWER GENERATION AND CARBON CAPTURE USING FUEL CELLS

Номер: CA2902967C

Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). At least a portion of the anode exhaust can be recycled for use as part of anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells can be operated.

Подробнее
27-02-2018 дата публикации

ELECTROCHEMICAL CELL OF THE FLOW TYPE

Номер: CA0002883457C

Provided herein is for an electrochemical cell of the flow type, comprising (a) an anode half-cell and a cathode half-cell, which are bounded by side elements, and which the respective porous electrodes are comprised in the half-cells, and also (b) a permeable separating layer which is disposed between the anode half-cell and the cathode half-cell, wherein (i) an electrolyte inflow region connected to an electrolyte feed, and an electrolyte outflow region connected to an electrolyte drain, are provided, where (ii) electrolyte inflow region and electrolyte outflow region are disposed on opposite sides of the porous electrode, and so (iii) inflowing electrolyte flows through the porous electrode perpendicularly to the permeable separating layer.

Подробнее
20-01-1993 дата публикации

POWER GENERATION METHOD USING MOLTEN CARBONATE FUEL CELLS

Номер: CA0002047457A1
Принадлежит:

Подробнее
07-06-1994 дата публикации

OPERATION METHOD FOR POWER GENERATION SYSTEM USING FUEL CELL

Номер: CA0002036291C

OPERATION METHOD FOR POWER GENERATION SYSTEM USING FUEL CELL Anode gas is fed to an anode chamber of a molten carbonate fuel cell and cathode gas is fed to a cathode chamber of the fuel cell. CO2 is separated from gases discharged from the cathode chamber of the fuel cell by a CO2 separator or by another fuel cell which serves as the CO2 separator. The separated CO2 is entirely or partially is introducted to the cathode chamber with gases discharged from the anode chamber such that a CO2 concentration in the cathode chamber is raised and the power generation is performed at a low CO2 utilization factor mode.

Подробнее
07-04-1996 дата публикации

CARBONATE FUEL CELL MATRIX

Номер: CA0002157638A1
Принадлежит:

A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

Подробнее
27-10-1994 дата публикации

THERMAL CONTROL APPARATUS

Номер: CA0002160358A1
Принадлежит:

A heat exchanging apparatus (20, 25, 27, 29) including a working fluid (26) and a structure for exchanging heat between the working fluid and an external environment. The structure includes at least one wall element (28) having an external surface (28B) exposed to the external environment and an internal surface (28A) exposed to the working fluid such that heat can be exchanged between the environment and the working fluid by conductive heat transfer through the wall element. The apparatus can further include a reservoir element (34) for providing a reservoir for the working fluid and a distribution element for distributing the working fluid along the wall element to provide isothermal heat exchange between the working fluid and the external environment. In one embodiment, the structure can be a double lumen tubular structure having an inner lumen which provides a reservoir for the working fluid, and an lumen where heat is exchanged between the working fluid and an external environment.

Подробнее
07-08-1997 дата публикации

PROCESS FOR THE PRODUCTION OF AN ELECTRODE FOR A FUSED CARBONATE FUEL CELL, ELECTRODE PRODUCED ACCORDING TO THIS PROCESS AND FUSED CARBONATE FUEL CELL PROVIDED WITH AN ELECTRODE PRODUCED ACCORDING TO THIS PROCESS

Номер: CA0002244969A1
Принадлежит:

The invention concerns a process for the production of a porous lithium cobaltite electrode plate with a large inner surface and low polarization resistance. Lithium carbonate powder and cobalt metal powder are uniformly mixed together and then films are produced from the mixture and plates from the films, which plates are sintered and then placed in an air stream for several hours at a temperature between 400 ~C and 488~C until the conversion of said plates to lithium cobaltite electrode plates with an extremely large inner surface has taken place.

Подробнее
06-12-2005 дата публикации

PROCESS FOR THE PRODUCTION OF AN ELECTRODE FOR A FUSED CARBONATE FUEL CELL, ELECTRODE PRODUCED ACCORDING TO THIS PROCESS AND FUSED CARBONATE FUEL CELL PROVIDED WITH AN ELECTRODE PRODUCED ACCORDING TO THIS PROCESS

Номер: CA0002244969C

The invention concerns a process for the production of a porous lithium cobaltite electrode plate with a large inner surface and low polarization resistance. Lithium carbonate powder and cobalt metal powder are uniformly mixed together and then films are produced from the mixture and plates from the films, which plates are sintered and then placed in an air stream for several hours at a temperature between 400 .degree. C and 488 .degree. C until the conversion of said plates to lithium cobaltite electrode plates with an extremely large inner surface has taken place.

Подробнее
09-04-2002 дата публикации

FUEL CELL SYSTEM FOR ELECTRIC GENERATION, HEATING, COOLING AND VENTILATION

Номер: CA0002260827C
Принадлежит: ZTEK CORPORATION, ZTEK CORP

An energy system that couples or integrates an electrochemical converter, su ch as a fuel cell for the production of electricity, with a Heating, Ventilatio n and Cooling (HVAC) system, is disclosed. Waste heat (16) generated by the fu el cell is radiatively, convectively, or conductively directed to a thermal component, such as a heat-actuated chiller (30) or a boiler, of an HVAC system. The HVAC system receives the waste heat to produce a conditioned fluid, e.g. heated or cooled air or water, or steam, for heating, cooling, o r industrial uses. The invention provides an improved efficiency energy system capable of providing electricity, heating and cooling, such as for a commercial facility or for residences. Also disclosed is an interface exchan ge element for convectively coupling an electrochemical converter to the HVAC system. The interface exchange element receives heated exhaust gases generat ed by the fuel cell and extracts heat therefrom for transfer to a thermal component, such ...

Подробнее
09-07-1998 дата публикации

PRESSURIZED, INTEGRATED ELECTROCHEMICAL CONVERTER ENERGY SYSTEM

Номер: CA0002276205A1
Принадлежит:

An electrochemical converter is disposed within a pressure vessel that collects hot exhaust gases generated by the converter for delivery to a cogeneration bottoming device, such as a gas turbine. The bottoming device extracts energy from the waste heat generated by the converter, such as a fuel cell for the generation of electricity, yielding an improved efficiency energy system. Bottoming devices can include, for example, a gas turbine system or a heating, ventilation or cooling (HVAC) system. The pressure vessel can include a heat exchanger, such as a cooling jacket, for cooling the pressure vessel and/or preheating an input reactant to the electrochemical converter prior to introduction of the reactant to the converter. In one embodiment, a compressor of a gas turbine system assembly draws an input reactant through the pressure vessel heat exchanger and delivers the reactant under pressure to a fuel cell enclosed therein. Pressurized and heated fuel cell exhaust gases are collected ...

Подробнее
15-09-1961 дата публикации

Brennstoffzelle

Номер: CH0000356807A

Подробнее
30-11-1969 дата публикации

Brennstoffzelle

Номер: CH0000482310A

Подробнее
30-01-1976 дата публикации

Номер: CH0000572282A5
Автор:
Принадлежит: UNITED AIRCRAFT CORP, UNITED AIRCRAFT CORP.

Подробнее
15-09-1980 дата публикации

GAS CELL WITH AN ELECTROLYTE MEMORY STENCIL.

Номер: CH0000619322A5
Автор: GREVSTAD PAUL ERLING

Подробнее
30-11-1981 дата публикации

GAS CELL FORCE PLANT.

Номер: CH0000626751A5

Подробнее
29-12-2017 дата публикации

POWER SYSTEM CIHT

Номер: EA0201700330A2
Автор:
Принадлежит:

Подробнее
02-10-2002 дата публикации

Hot controlling device

Номер: CN0001091955C
Принадлежит:

Подробнее
02-08-2012 дата публикации

Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method for supplying lithium source

Номер: US20120196204A1

Disclosed is a molten carbonate fuel cell comprising a reinforced lithium aluminate matrix, a cathode, an anode, a cathode frame channel and an anode frame channel, wherein at least one of the cathode frame channel and the anode frame channel is filled with a lithium source. Disclosed also are a method for producing the same, and a method for supplying a lithium source. The molten carbonate fuel cell in which a lithium source is supplied to an electrode has high mechanical strength and maintains stability of electrolyte to allow long-term operation.

Подробнее
02-01-2020 дата публикации

Gas diffusion layer

Номер: US20200006782A1
Принадлежит: Bekaert NV SA

A gas diffusion layer for an electrolyser or for a fuel cell comprises a first nonwoven layer of metal fibers provided for contacting a proton exchange membrane, a second nonwoven layer of metal fibers, and a third porous metal layer. The first nonwoven layer of metal fibers comprises metal fibers of a first equivalent diameter. The second nonwoven layer of metal fibers comprises metal fibers of a second equivalent diameter. The second equivalent diameter is larger than the first equivalent diameter. The third porous metal layer comprises open pores. The open pores of the third porous metal layer are larger than the open pores of the second nonwoven layer of metal fibers. The second nonwoven layer is provided in between and contacting the first nonwoven layer and the third porous metal layer. The second nonwoven layer is metallurgically bonded to the first nonwoven layer and to the third porous metal layer. The thickness of the third porous metal layer is at least two times—and preferably at least three times—the thickness of the first nonwoven layer.

Подробнее
28-01-2016 дата публикации

METHOD FOR MANUFACTURING SOLID OXIDE FUEL CELL ANODE WITH HIGH STABILITY AND HIGH EFFICIENCY

Номер: US20160028091A1
Принадлежит:

A nanostructured anode of solid oxide fuel cell with high stability and high efficiency and a method for manufacturing the same are revealed. This anode comprising a porous permeable metal substrate, a diffusion barrier layer and a nano-composite film is formed by atmospheric plasma spray. The nano-composite film includes a plurality of metal nanoparticles, a plurality of metal oxide nanoparticles, and a plurality of gas pores that are connected to form nano gas channels. The metal nanoparticles are connected to form a 3-dimensional network that conducts electrons, while the metal oxide nanoparticles are connected to form a 3-dimensional network that conducts oxygen ions. The network formed by metal oxide nanoparticles has certain strength to separate metal nanoparticles and prevent aggregation or agglomeration of the metal nanoparticles. Thus this anode can be applied to a solid oxide fuel cell operating in the intermediate temperatures (600˜800° C.) with high stability and high efficiency. 1. A method for manufacturing a solid oxide fuel cell anode with high stability and high efficiency comprising the steps of:preheating a porous permeable metal substrate;forming a diffusion barrier layer by atmospheric plasma spraying a plurality of first powder clusters over the porous permeable metal substrate;forming a nano-composite film by atmospheric plasma spraying a plurality of second powder clusters over the diffusion barrier layer, the second powder clusters consisted of two kinds of anode materials and an organic adhesive binder; andreducing the nano-composite film by hydrogen reduction to reduce one of the two kinds of anode materials into a plurality of metal nanoparticles and form a plurality of nano gas pores and a plurality of nano gas channels in the nano-composite film, the remnants of the two kinds of anode materials are a plurality of metal oxide nanoparticles;wherein the size of the metal nanoparticle is smaller than 100 nm, the size of the metal oxide ...

Подробнее
04-03-2021 дата публикации

TITANIUM-BASED POROUS BODY AND METHOD OF PRODUCING THE SAME

Номер: US20210066723A1
Принадлежит: TOHO TITANIUM CO., LTD.

To provide a titanium-based porous body that has high void fraction to ensure gas permeability and water permeability for practical use as an electrode and a filter, has a large specific surface area to ensure conductivity and sufficient reaction sites with a reaction solution or a reaction gas, thus showing excellent reaction efficiency, and contains less contaminants because of no organic substance used. A titanium-based porous body having a specific void fraction and a high specific surface area is obtained by filling an irregular-shaped titanium powder having an average particle size of 10 to 50 μm in a dry system without using any binder or the like into a thickness of 4.0×10to 1.6 mm, and sintering the irregular-shaped titanium powder at 800 to 1100° C. 1. A sheet-like titanium-based porous body having a specific surface area of 4.5×10to 1.5×10m/g , a void fraction of 50 to 70% , a thickness of 4.0×10to 1.6 mm , and a surface roughness of at least one surface of 8.0 μm or less ,wherein the specific surface area is measured by a BET method according to JIS Z 8831:2013,wherein the surface roughness is the arithmetic mean roughness Ra determined according to JIS B 0601-2001, and{'sup': 3', '3, 'claim-text': {'br': None, 'i': M/V', 'D, 'Void fraction (%)=(1−()/)×100\u2003\u2003(A).'}, 'wherein the void fraction is a pore ratio per unit volume of the sheet-like titanium-based porous body in percentage and calculated according to a following formula (A) based on a volume V (cm) of the sheet-like titanium-based porous body, a mass M (g) of the sheet-like titanium-based porous body, and a true density D (g/cm) of the sheet-like titanium-based material2. A method of producing a sheet-like titanium-based porous body , the method comprising:placing an irregular-shaped titanium-based powder having an average particle size of 10 to 50 μm, a D90 less than 75 μm, and an average circularity of 0.50 to 0.90 on a setter in a dry system without pressurization, andsintering the ...

Подробнее
04-03-2021 дата публикации

SOLID OXIDE FUEL CELL AND MANUFACTURING METHOD OF THE SAME

Номер: US20210066725A1
Автор: KAWAMURA Chie, Li Xinyu
Принадлежит: TAIYO YUDEN CO., LTD.

A solid oxide fuel cell includes: a support layer mainly composed of a metal; an anode supported by the support; and a mixed layer interposed between the support and the anode, wherein the anode includes an electrode bone structure composed of a ceramic material containing a first oxide having electron conductivity and a second oxide having oxygen ion conductivity, and the mixed layer has a structure in which a metallic material and a ceramic material are mixed. 1. A solid oxide fuel cell comprising:a support layer mainly composed of a metal;an anode supported by the support; anda mixed layer interposed between the support and the anode, whereinthe anode includes an electrode bone structure composed of a ceramic material containing a first oxide having electron conductivity and a second oxide having oxygen ion conductivity, andthe mixed layer has a structure in which a metallic material and a ceramic material are mixed.2. The solid oxide fuel cell according to claim 1 , whereinthe ceramic material of the mixed layer has electron conductivity.3. The solid oxide fuel cell according to claim 1 , whereina porosity is 10% or greater in the mixed layer.4. The solid oxide fuel cell according to claim 1 , whereinin the mixed layer, a ratio of an area of the metallic material to an area of the ceramic material is 1:9 to 9:1.5. The solid oxide fuel cell according to claim 1 , whereinthe mixed layer has a thickness of 1 μm or greater.6. The solid oxide fuel cell according to claim 1 , whereina porosity in the support, a porosity in the mixed layer, and a porosity in the anode have a relationship of the porosity in the support>the porosity in the mixed layer>the porosity in the anode.7. The solid oxide fuel cell according to claim 1 , whereinthe anode includes a catalyst carried on the electrode bone structure.8. The solid oxide fuel cell according to claim 7 , whereinthe catalyst includes a catalyst metal and a third oxide having oxygen ion conductivity.9. The solid oxide fuel ...

Подробнее
04-04-2019 дата публикации

Method for measuring amount of residual resin material in porous metal body

Номер: US20190101498A1
Автор: Yu Wakakuwa
Принадлежит: Honda Motor Co Ltd

A differential thermal analysis of a plurality of metal-resin-containing layers, the resin material amounts of which are known and different from each other, is carried out. Heights of sample peaks observed at one temperature in the differential thermal analysis are measured, and a correlation between the resin material amounts and the sample peak heights is obtained. Then, a differential thermal analysis of a porous metal body is carried out, and a height of a peak observed at the same temperature is measured. An amount of a residual resin material in the porous metal body is obtained based on the measured height and the correlation.

Подробнее
05-05-2016 дата публикации

HIGH PERMEABLE POROUS SUBSTRATE FOR A SOLID OXIDE FUEL CELL AND THE PRODUCTION METHOD THEREOF

Номер: US20160126559A1
Принадлежит:

The disclosure provides a high permeable porous substrate for a solid oxide fuel cell. The high permeable porous substrate for a solid oxide fuel cell includes a porous substrate body and a plurality of channels. The plurality of channels penetrate the first surface of the porous substrate body and does not penetrate the second surface of the porous substrate body. In addition, a production method for the high permeable porous substrate of a solid oxide fuel cell is also provided. 1. A production method of high permeable porous substrates for solid oxide fuel cells , comprising the steps of:providing a mold, which has a base formed with a plurality of protrusions on a surface of the base;injecting a slurry containing a first powder into the mold;performing a molding/demolding process for producing a green part; andsintering the green part in reducing atmosphere at a high temperature to form a porous substrate body that has a plurality of channels, a first surface and a second surface in a manner that the first surface is disposed opposite to the second surface; the plural channels are arranged penetrating the first surface but not penetrating the second surface while allowing the plural channels to be formed in shapes corresponding to the shapes of the plural protrusions.2. The production method of claim 1 , wherein in the step of providing the mold claim 1 , the mold is formed with a peripheral part at the periphery of the base while allowing the peripheral part to be formed with a height higher than the heights of the plural protrusions.3. The production method of claim 1 , wherein in the step of providing the mold claim 1 , the base is made of a material selected from the group consisting of: a metal or a plastic.4. The production method of claim 3 , wherein in a condition when the base is made of a plastic claim 3 , the plastic is Teflon.5. The production method of claim 3 , wherein in a condition when the base is made of a metal claim 3 , the metal is a ...

Подробнее
27-05-2021 дата публикации

Operation of molten carbonate fuel cells with high electrolyte fill level

Номер: US20210159531A1

An elevated target amount of electrolyte is used to initially fill a molten carbonate fuel cell that is operated under carbon capture conditions. The increased target electrolyte fill level can be achieved in part by adding additional electrolyte to the cathode collector prior to start of operation. The increased target electrolyte fill level can provide improved fuel cell performance and lifetime when operating a molten carbonate fuel cell at high current density with a low-CO2 content cathode input stream and/or when operating a molten carbonate fuel cell at high CO2 utilization.

Подробнее
10-05-2018 дата публикации

STABLE ELECTROLYTE MATRIX FOR MOLTEN CARBONATE FUEL CELLS

Номер: US20180131017A1
Принадлежит:

An electrolyte matrix for use with molten carbonate fuel cells having an enhanced stability and lifetime is provided. The electrolyte matrix includes lithium aluminate as a support material and a coarsening inhibitor. The coarsening inhibitor may be in the form of discrete particles or a dopant present in the support material. The coarsening inhibitor may include MnO, MnO, TiO, ZrO, FeO, LiFeO, or mixtures thereof. The coarsening inhibitor prevents the formation of large pores in the electrolyte matrix during operation of the fuel cell, increasing the performance and the service lifetime of the electrolyte matrix. 1. An electrolyte matrix , comprising:a support material comprising lithium aluminate;an electrolyte material comprising lithium carbonate; anda coarsening inhibitor;{'sub': 2', '2', '3', '2', '2', '2', '3', '2', '3, 'wherein the coarsening inhibitor comprises at least one material selected from the group consisting of MnO, MnO, TiO, ZrO, FeO, LiFeO, and mixtures thereof, and the coarsening inhibitor has a particle size of about 0.005 μm to about 0.5 μm.'}2. The electrolyte matrix of claim 1 , wherein the coarsening inhibitor has a BET surface area of about 10 m/g to about 50 m/g.3. The electrolyte matrix of claim 1 , wherein the coarsening inhibitor has a BET surface area of about 20 m/g to about 40 m/g.4. The electrolyte matrix of claim 1 , wherein the coarsening inhibitor has a BET surface area greater than or equal to the BET surface area of the support material.5. The electrolyte matrix of claim 1 , wherein the support material has a surface area of about 10 m/g to about 24 m/g.6. The electrolyte matrix of claim 1 , wherein the coarsening inhibitor is present in an amount of about 0.1 vol. % to about 40 vol. % of the electrolyte matrix.7. The electrolyte matrix of claim 1 , further comprising a binder.8. The electrolyte matrix of claim 1 , further comprising a reinforcing material.9. The electrolyte matrix of claim 1 , wherein the coarsening inhibitor ...

Подробнее
21-05-2015 дата публикации

COMPARTMENTLESS ABIOTIC SUCROSE-AIR FUEL CELL

Номер: US20150140469A1
Принадлежит:

The present invention provides a fuel electrode including a substrate and a nanoporous metallic catalyst layer, characterized in that the metallic catalyst layer includes open interconnected 3D nanopores, and the pore and the pore connections have a size suitable for allowing hydrocarbons having alcohol groups to pass through the interconnected pores so that they react in contact with the surface of the catalyst by confined molecular dynamics. Further, the present invention provides a compartmentless fuel cell electrode pair including the fuel electrode of the present invention; and a polymer membrane-coated oxygen electrode into which a catalyst layer is introduced onto the substrate and which blocks the hydrocarbons having alcohol groups as a fuel molecule and allows the diffusion of oxygen molecules. Furthermore, the present invention provides an abiotic saccharide-air fuel cell including the fuel electrode of the present invention, the oxygen electrode to which a nonconducting polymer membrane is applied, and a container capable of containing hydrocarbons having alcohol groups, in which the fuel cell utilizes the hydrocarbons having alcohol groups as a fuel. 1. A fuel electrode comprising a substrate and a nanoporous metallic catalyst layer thereon , wherein the metallic catalyst layer includes open interconnected 3D nanopores , and the pores and the pore connections therebetween have a size suitable for allowing hydrocarbons having alcohol groups to pass through the interconnected pores so that they react in contact with the surface of the catalyst by confined molecular dynamics.2. The fuel electrode according to claim 1 , wherein the pores and the pore connections of the nanoporous metallic catalyst have a cross-sectional diameter of 1 to 3 nm.3. The fuel electrode according to claim 1 , wherein the substrate is selected from the group consisting of a gold or platinum-plated silicon wafer claim 1 , a gold or platinum-plated glass slide claim 1 , a gold or ...

Подробнее
30-04-2020 дата публикации

METHOD OF MAKING A LAYERED ELECTROLYTE

Номер: US20200136150A1
Автор: LIU Mingfei, Liu Ying
Принадлежит: Phillips 66 Company

A method of forming a solid oxide fuel cell. The method begins by tape casting an anode support. Next an anode functional layer slurry comprising of NiO and ScCeSZ ceramic powder is coated onto the anode support. The anode functional layer slurry is then dried to form an NiO—ScCeSZ anode functional layer on the anode support. A first electrolyte layer comprising of a ScCeSZ slurry is then coated onto the NiO—ScCeSZ functional layer. The first electrolyte layer is then dried to form a ScCeSZ electrolyte layer on the NiO—ScCeSZ functional layer. A second electrolyte layer comprising of a samarium doped CeO(SDC) slurry is then coated onto the ScCeSZ electrolyte layer. The second electrolyte layer is then dried to form a SDC electrolyte layer on the ScCeSZ electrolyte layer. The combined anode support, the NiO—ScCeSZ anode functional layer, the ScCeSZ electrolyte layer, and the SDC electrolyte layer is then sintered together. A cathode slurry is then coated onto the SDC electrolyte layer to form a cathode layer. A solid oxide fuel cell is then formed when the combined anode support, the NiO—ScCeSZ anode functional layer, the ScCeSZ electrolyte layer, the SDC electrolyte layer, and the cathode layer is then sintered together. 1. A method comprising:tape casting an anode support;coating an anode functional layer slurry comprising of NiO and ScCeSZ ceramic powder onto the anode support;drying the anode functional layer slurry to form an NiO—ScCeSZ anode functional layer on the anode support;coating a first electrolyte layer comprising of a ScCeSZ slurry onto the NiO—ScCeSZ functional layer;drying the first electrolyte layer to form a ScCeSZ electrolyte layer on the NiO—ScCeSZ functional layer;{'sub': '2', 'coating a second electrolyte layer comprising of a samarium doped CeO(SDC) slurry onto the ScCeSZ electrolyte layer;'}drying the second electrolyte layer to form a SDC electrolyte layer on the ScCeSZ electrolyte layer;sintering the combined anode support, the NiO—ScCeSZ ...

Подробнее
24-05-2018 дата публикации

REINFORCED MATRIX FOR MOLTEN CARBONATE FUEL CELL AND METHOD FOR MANUFACTURING THE SAME

Номер: US20180145363A1
Принадлежит:

A reinforced electrolyte matrix for a molten carbonate fuel cell includes a porous ceramic matrix, a molten carbonate salt provided in the porous ceramic matrix, and at least one reinforcing structure comprised of at least one of yttrium, zirconium, cerium or oxides thereof. The reinforcing structure does not react with the molten carbonate salt. The reinforced electrolyte matrix separates a porous anode and a porous cathode in the molten carbonate fuel cell. 1. A reinforced electrolyte matrix for a molten carbonate fuel cell comprising:a porous ceramic matrix;a molten carbonate salt provided in the porous ceramic matrix; andat least one reinforcing structure comprising at least one of yttrium, zirconium, cerium or oxides thereof;wherein the reinforcing structure does not react with the molten carbonate salt.2. The reinforced electrolyte matrix of claim 1 , wherein the reinforcing structure comprises yttria-stabilized zirconia.3. The reinforced electrolyte matrix of claim 1 , wherein the reinforcing structure comprises an alumina substrate coated with yttria.4. The reinforced electrolyte matrix of claim 1 , wherein the reinforcing structure comprises an alumina-zirconia boulder.5. The reinforced electrolyte matrix of claim 4 , wherein the alumina-zirconia boulder comprises alumina in an amount of 60 wt % and zirconia in an amount of 40 wt %.6. The reinforced electrolyte matrix of claim 4 , wherein an average particle size of the alumina-zirconia boulder is from 10 μm to 120 μm.7. The reinforced electrolyte matrix of claim 1 , wherein the reinforcing structure is a rod or a fiber having an average diameter of 1 μm to 50 μm claim 1 , and an average length of 10 μm to 100 μm.8. The reinforced electrolyte matrix of claim 1 , wherein the reinforcing structure is a yttria-stabilized zirconia rod claim 1 , a yttria-coated alumina fiber claim 1 , an alumina-zirconia boulder claim 1 , or a combination thereof.9. The reinforced electrolyte matrix of claim 1 , wherein the ...

Подробнее
02-06-2016 дата публикации

DIRECT CARBON FUEL CELL AND STACK DESIGNS

Номер: US20160156056A1
Принадлежит:

Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements. 1. A direct carbon fuel cell , comprising: (i) a first columnar structure oriented along a first substantially vertical axis;', '(ii) a second columnar structure comprising a wall, at least a portion of which comprises a solid non-porous oxide electrolyte capable of selectively transporting oxide ions through said wall, said second columnar structure oriented along a second substantially vertical axis;, '(a) a chamber comprising(b) a vessel positioned above and in direct fluid communication with the first columnar structure, said vessel capable of containing a carbonaceous fuel; and(c) a cathode adjacent to at least a portion of the solid non-porous oxide electrolyte of the second columnar structure,said chamber configured as a container such that the first and second columnar structures are in fluid communication with one another so as to allow fluid circulation therebetween.2. The fuel cell of claim 1 , further comprising an anode comprising a metal or metalloid which is molten and electrically conductive during the operation of the fuel cell.3. The fuel cell of claim 2 , wherein the metal or metalloid forms a thermodynamically stable oxide which is molten and less dense than the molten anode metal at a temperature in a range of from about 500 k to about 1200 k.4. The fuel cell of claim 2 , wherein the anode comprises metallic antimony or lead.5. The fuel cell of claim 1 , wherein the vessel contains a carbonaceous fuel and is configured to place the carbonaceous fuel into contact with the anode during operation of the fuel cell.6. The ...

Подробнее
07-05-2020 дата публикации

Dual Porosity Electrodes and Method of Making

Номер: US20200144628A1
Принадлежит: Utility Global, Inc.

The invention is an electrode for use in an electrochemical reactor and a method of making it. The electrode has an electrode porosity and includes an electrode material with channels formed therein. The porosity of the electrode material is less than the porosity of the electrode. In the method, an electrode is made by depositing a first composition including a first electrode material and a first pore former, wherein the first pore former is a first volume fraction VFp1 of the first composition. A second composition is deposited with includes a second electrode material and a second pore former. In this aspect, the second pore former is a second volume fraction VFp2. The first composition and second composition form a first layer of the electrode. This first layer is heated such that at least a portion of the first pore former and at least a portion of the second pore former become empty spaces in the electrode. 1. An electrode for an electrochemical reactor having an electrode porosity and comprising an electrode material having a material porosity , wherein the electrode comprises channels formed therein , wherein the porosity of the electrode material is less than the porosity of the electrode.2. The electrode of claim 1 , wherein the electrode porosity is at least 5% greater than the material porosity.3. The electrode of claim 1 , wherein the electrode porosity is at least 20% greater than the material porosity.4. The electrode of claim 1 , wherein the electrode has a total volume and the channels have a channel volume claim 1 , and wherein the ratio as a percentage of the channel volume to the total volume is from 1 to 90% claim 1 , or from 5 to 50% claim 1 , or from 10 to 30%.5. The electrode of claim 1 , wherein the electrode has a total volume and the channels have a channel volume claim 1 , wherein the ratio as a percentage of the channel volume to the total volume is at least 5% or at least 10% or at least 20% or at least 30% or at least 40% or at least ...

Подробнее
23-06-2016 дата публикации

NON-PGM CATHODE CATALYSTS FOR FUEL CELL APPLICATION DERIVED FROM HEAT TREATED HETEROATOMIC AMINES PRECURSORS

Номер: US20160181621A1
Принадлежит: STC.UNM

A method of preparing M-N—C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like. 1. A method for producing a Metal-Nitrogen-Carbon catalyst suitable for use in a fuel cell comprising:providing sacrificial template particles;precipitating one or more transition metal precursors and a non-porphyrin precursor with no initial catalytic activity onto the sacrificial template particles to produce dispersed precursors;pyrolyzing the dispersed precursors; andremoving the sacrificial template particles to produce a highly dispersed, self-supported, high surface area electrocatalytic material.2. The method of wherein the non-porphyrin precursor forms a complex with iron.3. The method of wherein the non-porphyrin precursor is 4-aminoantipirine.4. The method of wherein the transition metal precursor is an iron precursor.5. The method of wherein the one or more transitional metal precursors is selected from the group consisting of precusors of Ce claim 1 , Cr claim 1 , Cu claim 1 , Mo claim 1 , Ni claim 1 , Ru claim 1 , Ta claim 1 , Ti claim 1 , V claim 1 , W claim 1 , and Zr.6. The method of wherein at least two different metal precursors are used resulting in a multi-metallic catalyst.7. The method of wherein the wherein the sacrificial template particles and non-porphyrin precursors are selected for use so as to shift the reaction mechanism of the electrocatalytic material towards the 4 e-pathway.8. The method of wherein the sacrificial template particles comprise at least two populations of particles wherein each ...

Подробнее
02-10-2014 дата публикации

SELF-ASSEMBLY PLATINUM NANOSTRUCTURE WITH THREE DIMENSIONAL NETWORK STRUCTURE AND METHOD OF PREPARING THE SAME

Номер: US20140295325A1
Принадлежит: Intellectual Discovery Co., Ltd.

A self-assembly platinum nanostructure with a three dimensional network structure contains a plurality of platinum nanoparticles having a cubic shape, wherein the plurality of platinum nanoparticles gather to form a cubic shape and are disposed in a {111} direction. 1. A self-assembly platinum nanostructure with a three dimensional network structure comprising a plurality of platinum nanoparticles having a cubic shape , wherein the plurality of platinum nanoparticles gather to form a cubic shape and are disposed in a {111} direction.2. The self-assembly platinum nanostructure with a three dimensional network structure of claim 1 , wherein:an arrangement interval of the plurality of platinum nanoparticles disposed in the {111} direction is narrower than an arrangement interval of the plurality of platinum nanoparticles disposed in a horizontal or vertical direction.3. The self-assembly platinum nanostructure with a three dimensional network structure of claim 2 , wherein:the plurality of platinum nanoparticles configuring the self-assembly platinum nanostructure are connected to each other by a surfactant.4. A method of preparing a self-assembly platinum nanostructure with a three dimensional network structure claim 2 , the method comprising:pyrolyzing a platinum precursor, alkylamine, and alkylcarboxylic acid in a solvent to form a solution;cooling the solution to room temperature and separating the solution to prepare a self-assembly platinum nanostructure; andputting the self-assembly platinum nanostructure in acetic acid and ethanol.5. The method of claim 4 , wherein:a content ratio of the platinum precursor, the alkylamine, and the alkylcarboxylic acid is x:4:1, x being 0.001 or less.6. The method of claim 4 , wherein:a content ratio of the acetic acid and the ethanol is 200 μL to 800 μL:10 mL.7. The method of claim 4 , wherein:the pyrolysis is performed at 150 to 200 degrees Celsius.8. The method of claim 4 , wherein:the pyrolysis is performed under reducing ...

Подробнее
27-06-2019 дата публикации

METHOD FOR PRODUCING POROUS METAL BODY AND METHOD FOR PRODUCING ELECTRODE CATALYST

Номер: US20190198884A1
Принадлежит: HONDA MOTOR CO., LTD.

The present invention is a method for producing a porous metal body or a method for producing an electrode catalyst, which is capable of simplifying the production process and improving the production efficiency by not requiring a step of immersion in an acid treatment solution. A method for producing a porous metal body according to the present invention comprises: a step for forming a metal resin-containing layer, which contains a metal and a resin that has a lower melting point than the metal, on a base; and a step for obtaining a porous metal body by subjecting the metal resin-containing layer to a heat treatment, thereby sintering the metal and removing the resin from the metal resin-containing layer. 1. A method for producing a porous metal body , comprising the steps of:forming a metal-resin-containing layer containing a metal and a resin on a base, a melting point of the resin being lower than that of the metal; andheat-treating the metal-resin-containing layer, thereby sintering the metal and removing the resin from the metal-resin-containing layer, to obtain the porous metal body.2. The method according to claim 1 , wherein in the step of forming the metal-resin-containing layer claim 1 , a metal layer containing the metal and a resin layer containing the resin are stacked to form the metal-resin-containing layer.3. The method according to claim 1 , wherein in the step of forming the metal-resin-containing layer claim 1 , the metal-resin-containing layer is formed by at least one of sputtering and vapor deposition.4. A method for producing an electrode catalyst claim 1 , comprising the steps of:forming a metal-resin-containing layer containing a metal catalyst and a resin on a base, a melting point of the resin being lower than that of the metal catalyst; andheat-treating the metal-resin-containing layer, thereby sintering the metal catalyst and removing the resin from the metal-resin-containing layer, to obtain a porous electrode catalyst.5. The method ...

Подробнее
23-10-2014 дата публикации

Cathode for Lithium-Air Battery, Method Of Manufacturing The Same, And Lithium-Air Battery Comprising The Same

Номер: US20140315105A1
Принадлежит: KOREA INSTITUTE OF ENERGY RESEARCH

This invention relates to a cathode for a lithium-air battery, a method of manufacturing the same and a lithium-air battery including the same. The method of manufacturing the cathode for a lithium-air battery includes 1) stirring a cobalt salt, triethanolamine and distilled water, thus preparing a cobalt solution, 2) electroplating the cobalt solution on a porous support, thus preparing a cobalt plated porous support, 3) reacting the cobalt plated porous support with a mixture solution including oxalic acid, water and ethanol, thus forming cobalt oxalate on the porous support, and 4) thermally treating the cobalt oxalate. 1. A method of manufacturing a cathode for a lithium-air battery , comprising:1) stirring a cobalt salt, triethanolamine and distilled water, thus preparing a cobalt solution;2) electroplating the cobalt solution on a porous support, thus preparing a cobalt plated porous support;3) reacting the cobalt plated porous support with a mixture solution comprising oxalic acid, water and ethanol, thus forming cobalt oxalate on the porous support; and4) thermally treating the cobalt oxalate.2. The method of claim 1 , further comprising cooling a product obtained in 4).3. The method of claim 1 , wherein a concentration of the cobalt salt is 0.05˜0.5 M based on the distilled water.4. The method of claim 1 , wherein a concentration of the triethanolamine is 0.1˜1 M based on the distilled water.5. The method of claim 1 , wherein the porous support is provided in a form of foam claim 1 , mesh or foil having holes.6. The method of claim 1 , wherein the electroplating is performed at a current of 1˜100 mA cm.7. The method of claim 1 , wherein a volume ratio of the water relative to the ethanol in the mixture solution is 0.01˜0.5.8. The method of claim 1 , wherein a volume ratio of the water relative to the ethanol in the mixture solution is 0.03˜0.3.9. A cathode for a lithium-air battery claim 1 , comprising cobalt oxide having a spinel structure.10. The cathode ...

Подробнее
20-11-2014 дата публикации

NOVEL CU-BASED CERMET MATERIALS FOR SOLID OXIDE FUEL CELLS

Номер: US20140342270A1
Принадлежит: UNIVERSITI BRUNEI DARUSSALAM

The present invention relates to a cermet body composition for the preparation of novel cermet materials to be used in solid oxide fuel cells. The cermet body composition comprises a ceramic component and a metallic component, wherein the ceramic component is in the range of 5% to 95% by wt of the cermet body. 1. A cermet body composition comprising:a. a ceramic component comprising a mixture of at least four oxides selected from the group consisting of Barium oxide, Cerium oxide, Yttrium oxide, Zirconium oxide and Ytterbium oxide; andb. a metallic component comprising at least one metal selected from the group consisting of Iron, Copper, Nickel, alloys of the aforementioned metals and mixtures thereof;wherein the ceramic component is in the range of 5% by weight to 95% by weight of the cermet body.2. The cermet body composition according to claim 1 , wherein the Barium oxide is in the range of 20% by weight to 50% by weight of the ceramic component.3. The cermet body composition according to claim 1 , wherein the Cerium oxide is in the range of 35% by weight to 50% by weight of the ceramic component.4. The cermet body composition according to claim 1 , wherein the Yttrium oxide is in the range of 10% by weight to 20% by weight of the ceramic component.5. The cermet body composition according to claim 1 , wherein the Zirconium oxide is in the range of 5% by weight to 10% by weight of the ceramic component.6. The cermet body composition according to claim 1 , wherein the Ytterbium oxide is in the range of 10% by weight to 20% by weight of the ceramic component.7. The cermet body composition according to claim 1 , wherein the porosity of the cermet body is in the range of 35% to 48%.8. The cermet body composition according to claim 1 , wherein the metallic component is in the range of 5% by weight to 50% by weight of the cermet body.9. (canceled)10. The cermet body composition according to claim 1 , wherein the composition further comprises a porogen selected from ...

Подробнее
20-09-2018 дата публикации

POROUS SOLID OXIDE FUEL CELL ANODE WITH NANOPOROUS SURFACE AND PROCESS FOR FABRICATION

Номер: US20180269509A1
Принадлежит: THE UNIVERSITY OF HOUSTON SYSTEM

Electrochemical devices including solid oxide fuel cells (SOFCs) or thin film solid oxide fuel cells (TFSOFCs) having a porous metallic anode with nanoporous surface structure enabling the deposition of a dense, impermeable thin film electrolyte layer on the porous anode. Fabricating methods include forming a mixture of nanopowder metallic agents and nanopowder proppant that are sintered, smoothed and etched to form the nanoporous surface structure. 1. A solid oxide fuel cell (SOFC) porous metal anode comprising:a porous interior, anda porous surface.2. The anode of claim 1 , wherein:the surface pores have pore sizes between about 10 nm and about 1000 nm,the interior pores have pore sizes between about 10 nm and about 10 microns,the surface has a roughness of less than or equal to about 50 nm, andthe metal comprises nickel, gold, platinum, or mixtures and combinations thereof or the anode comprises a metallic component and a ceramic or nonmetallic component.3. The anode of claim 2 , wherein the metal comprises nickel claim 2 , gold or platinum claim 2 , the metallic component comprises nickel claim 2 , gold claim 2 , platinum claim 2 , or mixtures and combinations thereof and the ceramic or nonmetallic component comprise cermets claim 2 , ceramic mixtures claim 2 , or mixtures and combinations thereof.4. The composition of claim 3 , wherein the cermets and ceramics comprise metal oxides claim 3 , metal borides claim 3 , metal carbides claim 3 , or mixtures and combinations thereof.5. The composition of claim 4 , wherein the cermet or ceramic is yttria stabilized zirconia (YSZ).6. A solid oxide fuel cell (SOFC) porous anode construct comprising:a metal anode layer including a porous interior and a porous surface, andan electrolytic layer formed on the porous surface,where the electrolytic layer is a continuous, dense, and electrically insulating thin film.7. The construct of claim 6 , wherein:the surface pores have pore sizes between about 10 nm and about 1000 nm,the ...

Подробнее
08-10-2015 дата публикации

Porous Electrolessly Deposited Coatings

Номер: US20150288000A1
Принадлежит:

A new electroless plating approach to generate a porous metallic coating is described in which a metal is electrolessly deposited on a surface. Microparticles in the metal are removed to leave pores in the metal coating. Another method of forming electroless coatings is described in which a blocking ligand is attached to the surface, followed by a second coating step. The invention includes coatings and coated apparatus formed by methods of the invention. The invention also includes catalyst structures comprising a dense substrate and a porous metal adhered to the dense substrate, which is further characterized by one or more of the specified features. 116-. (canceled)17. A catalyst structure , comprising:a dense substrate, anda porous metal adhered to the dense substrate,particles of metal oxides disposed in the porous metal; and an average pore size of at least 1 micron in the porous metal; or', 'a bi-modal distribution of pore sizes in the porous metal., 'one or more of the following features18. The structure of wherein the dense substrate comprises a wall of the microchannel apparatus.19. An electrode claim 17 , comprising:a dense substrate, and 'a second material (in addition to the porous metal) filling the pores in the porous metal, wherein the second material comprises an ionic conductor.', 'a porous metal adhered to the dense substrate, and'}20. A fuel cell comprising the structure of .21. (canceled)22. The electrode of comprises oxides of zirconia.23. The electrode of wherein the oxides are stabilized in the cubic form with Mg claim 22 , Ca claim 22 , Y or other rare earth metal claim 22 , ceria claim 22 , optionally stabilized by Gd claim 22 , Eu or other rare earth metal claim 22 , perovskites of formulation M1M2Ox wherein M1 is chosen from among Fe claim 22 , Co claim 22 , Cr claim 22 , or some combination claim 22 , M2 is chosen from among Ba claim 22 , Sr claim 22 , La claim 22 , rare earths claim 22 , or some combination thereof claim 22 , BiVMOx ...

Подробнее
29-09-2016 дата публикации

FUEL CELL MATRIX COMPOSITION AND METHOD OF MANUFACTURING SAME

Номер: US20160285114A1
Принадлежит:

A fuel cell matrix for use in a molten carbonate fuel cell comprising a support material and an additive material formed into a porous body, and an electrolyte material disposed in pores of the porous body, wherein the additive material is in a shape of a flake and has an average thickness of less than μm. 123.-. (canceled)24. A method of making a fuel cell matrix for use in a molten carbonate fuel cell , comprising:providing a first predetermined amount of a support material, a second predetermined amount of an electrolyte material and a third predetermined amount of an additive material, wherein the additive material is in a shape of a flake and has an average thickness of less than 1 μm; a porous body formed from the support material and the additive material, and', 'the electrolyte material disposed in pores of the porous body., 'processing said support material, electrolyte material and additive material to form the fuel cell matrix, such that the fuel cell matrix includes25. The method of making a fuel cell matrix in accordance with claim 24 , wherein the additive material has an average length in a range of 5 μm to 40 μm.26. The method of making a fuel cell matrix in accordance with claim 24 , wherein the additive material has at least one of:{'sup': 2', '2, 'an average Brunauer-Emmett-Teller (BET) surface area in a range of 1 m/g to 6 m/g; and'}a leafing value in a range of 70 to 100%.27. The method of making a fuel cell matrix in accordance with claim 24 , wherein the additive material comprises aluminum.28. The method of making a fuel cell matrix in accordance with claim 24 , wherein:the support material comprises lithium aluminum oxide;the additive material comprises aluminum; andthe electrolyte material comprises one or more of a carbonate electrolyte and a carbonate electrolyte precursor.29. The method of making a fuel cell matrix in accordance with claim 24 , wherein said processing step comprises:mixing the first predetermined amount of support ...

Подробнее
05-10-2017 дата публикации

HIGH PERMEABLE POROUS SUBSTRATE FOR A SOLID OXIDE FUEL CELL AND THE PRODUCTION METHOD THEREOF

Номер: US20170288235A1
Принадлежит:

The disclosure provides a high permeable porous substrate. The high permeable porous substrate includes a porous substrate body and a plurality of channels. The plurality of channels penetrate the first surface of the porous substrate body and do not penetrate the second surface of the porous substrate body. In addition, a solid oxide fuel cell supported by the high permeable porous substrate is also provided. 1. A high permeable porous substrate for a SOFC , comprising:a porous substrate body, being made of a slurry containing a first powder, and having a first surface and a second surface that are disposed opposite to each other; anda plurality of channels, arranged penetrating the first surface but not penetrating the second surface.2. The high permeable porous substrate of claim 1 , wherein the first powder does not exist inside each of the plural channels.3. The high permeable porous substrate of claim 1 , further comprising:a powder layer, formed on the second surface of the porous substrate body.4. The high permeable porous substrate of claim 3 , wherein the powder layer is formed by the slurry containing a second powder that has a particle size smaller than that of the first powder.5. The high permeable porous substrate of claim 4 , wherein the second powder is made of a material selected from the group consisting of: a nickel claim 4 , a nickel-molybdenum alloy claim 4 , a nickel-iron alloy claim 4 , a nickel-cobalt alloy claim 4 , and a nickel-molybdenum-iron-cobalt alloy.6. The high permeable porous substrate of claim 4 , wherein the second powder has a particle size ranging from 5 μm to 40 μm.7. The high permeable porous substrate of claim 1 , wherein the first powder includes nickel particles that have particle sizes ranging from 60 μm to 220 μm.8. The high permeable porous substrate of claim 1 , wherein the first powder is made of a material selected from the group consisting of: a nickel claim 1 , a nickel-molybdenum alloy claim 1 , a nickel-iron ...

Подробнее
05-10-2017 дата публикации

FUEL CELL MATRIX COMPOSITION AND METHOD OF MANUFACTURING SAME

Номер: US20170288238A1
Принадлежит:

A composition for use in forming a fuel cell matrix includes a support material, an electrolyte material, and an additive material that includes a plurality of flakes having an average length in a range of 5 to 40 micrometers and an average thickness of less than 1 micrometer. 1. A composition for use in forming a fuel cell matrix , the composition comprising:a support material,an electrolyte material, andan additive material comprising a plurality of flakes having an average length in a range of 5 μm to 40 μm and an average thickness of less than 1 μm.2. The composition in accordance with claim 1 , wherein the flakes of the additive material have an average Brunauer-Emmett-Teller (BET) surface area from 1 m/g to 6 m/g.3. The composition in accordance with claim 1 , wherein the flakes of the additive material are made of a metal.4. The composition in accordance with claim 3 , wherein the flakes of the additive material are made of aluminum.5. The composition in accordance with claim 4 , wherein an amount of the additive material in the composition is between 3 volume percent and 35 volume percent.6. The composition in accordance with claim 1 , wherein:the support material comprises lithium aluminum oxide;the flakes of the additive material are made of aluminum; andthe electrolyte material comprises one or more of carbonate electrolyte and carbonate electrolyte precursor.7. The composition in accordance with claim 1 , wherein the flakes of the additive material have a leafing value of 70 to 100%.8. The composition in accordance with claim 1 , wherein the plurality of flakes have an average length in a range of 12 μm to 20 μm.9. The composition in accordance with claim 1 , wherein the plurality of flakes have an average length in a range of 15 μm to 18 μm.10. The composition in accordance with claim 1 , wherein the plurality of flakes have an average thickness of less than 0.5 μm.11. The composition in accordance with claim 1 , wherein the plurality of flakes have an ...

Подробнее
22-10-2015 дата публикации

CATHODE FOR MOLTEN CARBONATE FUEL CELLS HAVING STRUCTURE PROVIDING NEW ELECTROCHEMICAL REACTION SITES, METHOD FOR PREPARING THE SAME, AND METHOD FOR IMPROVING CATHODE PERFORMANCE BY WETTABILITY CONTROL ON MOLTEN CARBONATE ELECTROLYTE FOR MOLTEN CARBONATE FUEL CELLS

Номер: US20150303507A1

By forming a structure wherein an oxygen ionic conductor or a mixed ionic-electronic conductor (MIEC) on a cathode surface is not covered by a molten carbonate electrolyte using an oxygen ionic conductor or a mixed ionic-electronic conductor having poor wettability on the molten carbonate electrolyte, a new electrochemical reaction site may be provided in addition to that provided by the molten carbonate electrolyte. As a result, cell performance, particularly cathode performance, can be improved even at low operation temperatures (e.g., 500-600° C.). 1. A cathode for a molten carbonate fuel cell ,whereina first structure and a second structure are formed on the cathode,a surface of the second structure is exposed at least partly without being covered by a material of the first structure,the first structure comprises a molten carbonate electrolyte,the second structure comprises an oxygen ionic conductor, a mixed oxygen ionic-electronic conductor or a combination thereof,the first structure provides a first electrochemical reaction site, andthe second structure whose surface is exposed at least partly without being covered by the first structure provides a second electrochemical reaction site which is different from the first electrochemical reaction site provided by the first structure.2. The cathode for a molten carbonate fuel cell according to claim 1 , wherein the first structure is in contact with the second structure.3. The cathode for a molten carbonate fuel cell according to claim 2 , wherein a reaction according to [Reaction Formula 1] occurs in a portion where the first structure is in contact with the second structure and a reaction according to [Reaction Formula 2] occurs in a portion of the second structure exposed without being in contact with the first structure:{'br': None, 'sub': 2', '3, 'sup': 2−', '2−, 'CO+O→CO\u2003\u2003[Reaction Formula 1]'}{'br': None, 'sub': '2', 'i': 'e', 'sup': −', '2−, '½O+2→O\u2003\u2003[Reaction Formula 2]'}4. The cathode ...

Подробнее
18-10-2018 дата публикации

BINDER FOR ELECTROLYTE MATRIX FOR MOLTEN CARBONATE FUEL CELLS

Номер: US20180301728A1
Принадлежит:

A binder solution for an electrolyte matrix for use with molten carbonate fuel cells is provided. The binder solution includes a first polymer with a molecular weight of less than about 150,000 and a second binder with a molecular weight of greater than about 200,000. The binder solution produces an electrolyte matrix with improved flexibility, matrix particle packing density, strength, and pore structure. 1. A green electrolyte matrix , comprising:a support material;an electrolyte material; anda binder,wherein the binder comprises a first polymer with a molecular weight of less than about 150,000 and a second polymer with a molecular weight of greater than about 200,000.2. The green electrolyte matrix of claim 1 , wherein the first polymer is present in the electrolyte matrix in an amount of about 4 wt. % to about 12 wt. %.3. The green electrolyte matrix of claim 1 , wherein the first polymer comprises an ethyl methacrylate copolymer.4. The green electrolyte matrix of claim 1 , wherein the second polymer is present in the electrolyte matrix in an amount of about 0.1 wt. % to about 3 wt. %.5. The green electrolyte matrix of claim 1 , wherein the second polymer comprises a methyl methacrylate-butyl acrylate copolymer.6. The green electrolyte matrix of claim 1 , wherein the molecular weight of the second polymer is at least twice the molecular weight of the first polymer.7. The green electrolyte matrix of claim 1 , wherein the binder further comprises a plasticizer.8. The green electrolyte matrix of claim 1 , wherein the support material comprises lithium aluminate.9. The green electrolyte matrix of claim 1 , wherein the electrolyte material comprises lithium carbonate.10. The green electrolyte matrix of claim 1 , further comprising a reinforcing material.11. An electrolyte matrix claim 1 , comprising:a support material; andan electrolyte material,wherein the electrolyte matrix is substantially free of pores with a size of 0.2 μm or greater, wherein the electrolyte ...

Подробнее
08-11-2018 дата публикации

FABRICATION PROCESSES FOR SOLID STATE ELECTROCHEMICAL DEVICES

Номер: US20180323443A1

This disclosure provides systems, methods, and apparatus related to electrode structures. In one aspect, a method includes: providing an electrode layer comprising a ceramic, the ceramic being porous; providing a catalyst precursor, the catalyst precursor being a cathode catalyst precursor or an anode catalyst precursor; infiltrating the catalyst precursor in a first side of the electrode layer; after the infiltrating operation, heating the electrode layer to about 750° C. to 950° C., the catalyst precursor forming a catalyst, the catalyst being a cathode catalyst or an anode catalyst; infiltrating the catalyst precursor in the first side of the electrode layer; after the infiltrating operation, heating the electrode layer to about 300° C. to 700° C., the catalyst precursor forming the catalyst, the catalyst being the cathode catalyst or the anode catalyst. 1. A method of fabricating an electrode structure comprising:(a) providing an electrode layer comprising a ceramic, the ceramic being porous;(b) providing a catalyst precursor, the catalyst precursor being a cathode catalyst precursor or an anode catalyst precursor;(c) infiltrating the catalyst precursor in a first side of the electrode layer;(d) after operation (c), heating the electrode layer to about 750° C. to 950° C., the catalyst precursor forming a catalyst, the catalyst being a cathode catalyst or an anode catalyst;(e) infiltrating the catalyst precursor in the first side of the electrode layer;(f) after operation (e), heating the electrode layer to about 300° C. to 700° C., the catalyst precursor forming the catalyst, the catalyst being the cathode catalyst or the anode catalyst.2. The method of claim 1 , wherein when the catalyst precursor is infiltrated in the first side of the electrode layer the catalyst precursor is heated to about 90° C. to 95° C.3. The method of claim 1 , wherein operations of infiltrating the catalyst precursor in the first side of the electrode layer are performed in a vacuum of ...

Подробнее
01-12-2016 дата публикации

METHOD FOR PRODUCING alpha-LITHIUM ALUMINATE

Номер: US20160347623A1
Автор: Junya Fukazawa
Принадлежит: Nippon Chemical Industrial Co Ltd

The purpose of the present invention is to provide an industrially advantageous method for producing α-lithium aluminate which has physical properties that are suitable for use as an electrolyte holding plate of a MCFC having excellent thermal stability, even if the α-lithium aluminate is a fine material having a BET specific surface area of 10 m 2 /g or higher in particular. Provided is a method for producing α-lithium aluminate characterized by subjecting a mixture (a), which is obtained by mixing transitional alumina and lithium carbonate at an Al/Li molar ratio of 0.95-1.01, to a first firing reaction so as to obtain a fired product, and subjecting a mixture (b), which is obtained by adding an aluminum compound to the obtained fired product at quantities whereby the molar ratio of aluminum atoms in the aluminum compound relative to lithium atoms in the fired product (Al/Li) is 0.001-0.05, to a second firing reaction.

Подробнее
12-11-2020 дата публикации

STABLE ELECTROLYTE MATRIX FOR MOLTEN CARBONATE FUEL CELLS

Номер: US20200358111A1
Принадлежит:

A method of making an electrolyte matrix includes: preparing a slurry comprising a support material, a coarsening inhibitor, an electrolyte material, and a solvent; and drying the slurry to form an electrolyte matrix. The support material comprises lithium aluminate, the coarsening inhibitor comprises a material selected from the group consisting of MnO, MnO, TiO, ZrO, FeO, LiFeO, and mixtures thereof, and the coarsening inhibitor has a particle size of about 0.005 μm to about 0.5 μm. 1. A method of making an electrolyte matrix comprising:preparing a slurry comprising a support material, a coarsening inhibitor, an electrolyte material, and a solvent; anddrying the slurry to form an electrolyte matrix,{'sub': 2', '2', '3', '2', '2', '2', '3', '2', '3, 'wherein the support material comprises lithium aluminate, the coarsening inhibitor comprises a material selected from the group consisting of MnO, MnO, TiO, ZrO, FeO, LiFeO, and mixtures thereof, and the coarsening inhibitor has a particle size of about 0.005 μm to about 0.5 μm.'}2. The method of claim 1 , wherein preparing the slurry comprises an attrition milling process that reduces the size of the materials in the slurry.3. The method of claim 1 , further comprising tape casting the slurry before drying the slurry.4. The method of claim 1 , further comprising adding a binder claim 1 , a plasticizer claim 1 , a reinforcing material claim 1 , or a combination thereof to the slurry.5. The method of claim 1 , wherein the coarsening inhibitor is present in an amount of about 0.1 vol. % to about 40 vol. % of dry components of the slurry.6. A method of making an electrolyte matrix comprising:forming a mixture of an aluminum containing precursor, a lithium containing precursor, and a dopant precursor;drying the mixture to form a powder;heat treating the powder at a temperature of about 550° C. to about 800° C. for a period of about 6 hours to about 30 hours to form a lithium aluminate including a dopant;preparing a slurry ...

Подробнее
05-10-2006 дата публикации

Reduction of SOFC anodes to extend stack lifetime

Номер: US20060222929A1
Принадлежит: Bloom Energy Corp

One embodiment of the invention provides a method of operating a solid oxide fuel cell, including providing a solid oxide fuel cell comprising an anode electrode containing nickel, and electrochemically reducing an anode side of the fuel cell. Another embodiment of the invention provides a method of operating a solid oxide fuel cell, including providing a solid oxide fuel cell comprising an anode electrode containing nickel, periodically operating the fuel cell to generate electricity, and reducing an anode side of the fuel cell between electricity generation operation periods of the fuel cell.

Подробнее
06-06-1984 дата публикации

溶融塩燃料電池

Номер: JPS5998472A
Принадлежит: Matsushita Electric Industrial Co Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
30-11-2001 дата публикации

An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof

Номер: KR100314513B1
Принадлежит: 박호군, 한국과학기술연구원

본 발명에 따라, 부분산화-환원 공정 또는 부분산화 공정을 통하여 소성시켜 Ni-Al 합금 연료극을 제조함으로써, 용융탄산염 연료전지를 운전할 때 생기는 소결 및 크립 현상이 억제되면서 전극내의 기공 분포가 변하지 않는 안정한 연료극 및 그의 제조 방법이 개시된다. According to the present invention, by producing a Ni-Al alloy anode by firing through a partial oxidation-reduction process or a partial oxidation process, a stable pore distribution in the electrode is not changed while sintering and creep phenomenon occurring when operating a molten carbonate fuel cell are suppressed. A fuel electrode and a manufacturing method thereof are disclosed.

Подробнее
26-05-1984 дата публикации

ガス拡散電極

Номер: JPS5991672A
Принадлежит: Matsushita Electric Industrial Co Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
07-01-1985 дата публикации

燃料電池及びその製造方法

Номер: JPS601761A

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
01-02-1986 дата публикации

Electrolyte matrix body for fuel cell

Номер: JPS6124163A
Принадлежит: Mitsubishi Electric Corp

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
01-08-1987 дата публикации

Manufacture of electrolyte tile of molten carbonate fuel cell

Номер: JPS62176063A
Принадлежит: Toppan Printing Co Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
17-10-1987 дата публикации

Molten carbonate fuel cell and its manufacture

Номер: JPS62237672A
Принадлежит: HITACHI LTD

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
11-03-1983 дата публикации

Electrolyte-holding member

Номер: JPS5842178A

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
01-02-1986 дата публикации

Electrolyte tile structure of fused carbonate type fuel cell

Номер: JPS6124160A

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
18-09-2004 дата публикации

Nickel-aluminum alloy fuel electrode and simplified production method thereof to improve creepage and sintering resistance, activate electrochemical reaction and porosity of the electrode

Номер: KR100441939B1
Автор: 윤영기, 최영태
Принадлежит: 한국전력공사

PURPOSE: A nickel-aluminum alloy fuel electrode and simplified production method thereof are provided to: reduce the fraction rate of micropores which are not participated in the electrochemical reaction; improve the electrochemical reaction by filling lithium/sodium electrolytes into the electrode with a sufficient amount; reduce the thickness of the electrolytes, thereby helping to reduce the size of an initial fuel cell stack; and improve creepage and sintering resistance. CONSTITUTION: The nickel-aluminum alloy fuel electrode is produced by: mixing a nickel-aluminum alloy powder with a solvent; mixing the mixture with electrolytes and then ball milling them; defoaming the resulted nickel-aluminum slurry; carrying out tape casting of the defoamed slurry to obtain a green sheet; and carrying out continuous sintering of the green sheet.

Подробнее
05-11-1998 дата публикации

Matrix plate for molten carbonate fuel cell and method for producing the same

Номер: JP2820886B2
Автор: 權鎬眞
Принадлежит: SAMSUNG ELECTRONICS CO LTD

Подробнее
03-03-2017 дата публикации

A method for evaluating performance of cathode in fuel cell and a fuel cell

Номер: KR101711924B1
Принадлежит: 주식회사 엘지화학

The present invention relates to a method for evaluating the performance of a positive electrode in a fuel cell, and a fuel cell. According to the present invention, the performance of a positive electrode material can be quantitatively predicted/evaluated by using only a first principle calculation result based on a crystal structure of the positive electrode material without material synthesis/cell manufacture/evaluation steps. So, a fuel cell having high performance can be provided. To this end, the method comprises the following steps: calculating a positive electrode performance index (CPI) of two or more fuel cells with different positive electrode materials; and evaluating that the higher calculated CPI means better performance of a positive electrode of a fuel cell.

Подробнее
15-10-1999 дата публикации

Cathode for molten carbonate fuel cell to which alkali earth metal oxide is added and a process for preparing thereof

Номер: KR100224546B1
Принадлежит: 박호군, 한국과학기술연구원

본 발명은 용융 탄산염 연료 전지 (molten carbonate fuel cell, 이하, 『MCFC』로 칭함)에 사용되는 환원전극 (cathode) 및 그의 제조 방법에 관한 것이다. 이러한 환원전극에서는 가격이 저렴하고 전기화학적 성능도 비교적 우수한 NiO가 주로 사용되지만, 이러한 NiO는 용융 탄산염 연료 전지의 전해질에 대한 비교적 큰 용해로 인하여 전지의 전기적 단락을 일으켜서 전지의 수명을 단축시키는 문제점을 안고 있었다. 따라서, 본 발명에서는 환원전극의 주재료인 NiO를 그대로 사용하면서 여기에 염기성 물질인 알칼리 토금속 산화물을 첨가하거나 함침시켜 NiO의 용해를 감소시킴으로써 통상의 MCFC용 환원전극보다 수명이 더 긴 환원전극을 제조할 수 있게 되었다. The present invention relates to a reducing electrode used in a molten carbonate fuel cell (hereinafter referred to as " MCFC ") and a production method thereof. NiO, which is inexpensive in price and comparatively excellent in electrochemical performance, is mainly used for such a reduction electrode. However, such NiO has a problem of shortening the lifetime of the battery by causing electric short of the battery due to relatively large dissolution of the molten carbonate fuel cell in the electrolyte there was. Therefore, in the present invention, a reducing electrode having a life longer than that of a conventional MCFC reducing electrode is manufactured by using NiO, which is a main material of the reducing electrode, as it is and adding alkaline earth metal oxide, which is a basic substance thereto, It was possible.

Подробнее
28-02-2020 дата публикации

Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same

Номер: KR102082691B1
Принадлежит: 한국과학기술연구원

융융탄산염 연료전지용 예비 매트릭스를 제조하는 단계; 예비 매트릭스를 소결하여 소결된 매트릭스를 형성하는 단계; 소결된 매트릭스에 전해질을 함침하여 전해질 함침형 매트릭스를 제조하는 단계; 및 전해질 함침형 매트릭스로 이루어진 융융탄산염 연료전지용 매트릭스를 포함하는 융융탄산염 연료전지의 셀(cell)을 제조하는 단계; 를 포함하는 융융탄산염 연료전지의 제조방법이 제공된다. Preparing a preliminary matrix for the molten carbonate fuel cell; Sintering the preliminary matrix to form a sintered matrix; Impregnating the electrolyte into the sintered matrix to produce an electrolyte impregnated matrix; And manufacturing a cell of the molten carbonate fuel cell comprising a matrix for the molten carbonate fuel cell formed of an electrolyte impregnated matrix. Provided is a method for manufacturing a molten carbonate fuel cell comprising a.

Подробнее
22-04-1988 дата публикации

Production of electrolyte holding agent for molten carbonate type fuel cell

Номер: JPS6391964A
Принадлежит: Sanyo Electric Co Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
10-04-2013 дата публикации

All ceramic solid oxide element

Номер: RU2479075C2

FIELD: electricity. SUBSTANCE: all ceramic solid oxide element comprises an anode layer, a cathode layer and an electrolyte layer, enclosed between the anode layer and the cathode layer. An electrolyte layer contains alloyed zirconium dioxide and has thickness from 40 to 300 mcm. Both anode and cathode layers contain alloyed cerium oxide or both contain alloyed zirconium dioxide. A multi-layer structure formed by the anode layer, the electrolyte layer and the cathode layer is a symmetrical structure. According to this invention, also the method is proposed for production of the specified solid-oxide element. EFFECT: invention makes it possible to produce a SOE having higher electrode efficiency and long-term service life. 2 cl, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 479 075 (13) C2 (51) МПК H01M 4/88 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2010137964/07, 18.03.2009 (24) Дата начала отсчета срока действия патента: 18.03.2009 (73) Патентообладатель(и): ТЕКНИКАЛ ЮНИВЕРСИТИ ОФ ДЕНМАРК (DK) R U Приоритет(ы): (30) Конвенционный приоритет: 18.03.2008 EP 08005045.3 (72) Автор(ы): ЛАРСЕН Петер Халвор (DK) (43) Дата публикации заявки: 27.04.2012 Бюл. № 12 2 4 7 9 0 7 5 (45) Опубликовано: 10.04.2013 Бюл. № 10 (56) Список документов, цитированных в отчете о поиске: US 2006269813 A1, 30.11.2006. WO 2006082057 A, 10.08.2006. RU 2295177 C2, 10.03.2007. WO 9849738 A, 05.11.1998. 2 4 7 9 0 7 5 R U (86) Заявка PCT: EP 2009/002010 (18.03.2009) C 2 C 2 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 18.10.2010 (87) Публикация заявки РСТ: WO 2009/115319 (24.09.2009) Адрес для переписки: 190000, Санкт-Петербург, ул. Малая Морская, 15, офис 5, ВОХ 1125, ООО "ПАТЕНТИКА", пат.пов. М.И.Ниловой, рег.№ 378 (54) ЦЕЛЬНОКЕРАМИЧЕСКИЙ ТВЕРДООКСИДНЫЙ ЭЛЕМЕНТ (57) Реферат: Изобретение относится к цельнокерамическому твердооксидному элементу и способу его получения. Цельнокерамический твердооксидный элемент ...

Подробнее
07-05-1985 дата публикации

Manufacture of electrolyte tile for fuel cell

Номер: JPS6079674A
Принадлежит: Toppan Printing Co Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
28-11-2007 дата публикации

Electrolyte matrix for fuel cell using inorganic compound as electrolyte and fuel cell using the same

Номер: KR100778478B1
Автор: 박명석, 하삼철, 황용준
Принадлежит: 엘지전자 주식회사

본 발명은 무기 화합물을 전해질로 사용하는 연료 전지용 전해질 매트릭스 및 이를 포함하는 연료 전지에 관한 것이다. 구체적으로는, 180℃ 이상의 고온에서 안정한 다공성 매트릭스와 상기 다공성 매트릭스의 기공 내에 함침되어 있는 용융점이 170℃ 이상인 무기 화합물을 전해질로 사용하는 연료 전지용 전해질 매트릭스 및 이를 포함하여 구성되는 연료 전지에 관한 것이다. 본 발명에 따른 연료 전지는 고온에서 작동 가능하므로, 일산화탄소에 의한 피독이 방지되며, 용융 상태에서 이온화되는 무기 화합물을 전해질로 사용하므로 전해질의 이온 전도성을 유지하기 위한 가습 장치가 필요하지 않고, 발수성 매트릭스를 전해질 지지를 위한 매트릭스로 사용하므로 전극 반응에서 생성되는 물에 의한 전해질의 용해 또는 배출이 방지된다. The present invention relates to an electrolyte matrix for a fuel cell using an inorganic compound as an electrolyte and a fuel cell including the same. Specifically, the present invention relates to a fuel cell electrolyte matrix comprising a porous matrix stable at a high temperature of 180 ° C. or higher and an inorganic compound having a melting point of 170 ° C. or higher impregnated in the pores of the porous matrix as an electrolyte, and a fuel cell including the same. Since the fuel cell according to the present invention can be operated at a high temperature, poisoning by carbon monoxide is prevented, and since an inorganic compound ionized in the molten state is used as an electrolyte, a humidification device for maintaining the ion conductivity of the electrolyte is not required, and a water repellent matrix Is used as a matrix for supporting the electrolyte, thereby preventing the electrolyte from being dissolved or discharged by the water generated in the electrode reaction. 다공성 매트릭스, 무기 화합물, 전해질 매트릭스, 연료 전지 Porous matrix, inorganic compound, electrolyte matrix, fuel cell

Подробнее
02-02-1994 дата публикации

Method for producing lithium aluminum powder

Номер: JPH068173B2
Принадлежит: Sumitomo Chemical Co Ltd

Подробнее
05-04-2013 дата публикации

Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method of supplying lithium source

Номер: KR101251374B1
Принадлежит: 한국과학기술연구원

본 발명은 강화 리튬알루미네이트 매트릭스를 포함하는 용융탄산염 연료전지에 있어서, 공기극 및 연료극 중 하나 이상의 프레임 채널(frame channel)에 리튬 소스가 채워져 있는 것인 용융탄산염 연료전지, 그 제조방법, 및 리튬 소스 공급방법을 제공한다. 리튬 소스를 전극에 공급함으로써 기계적 강도가 강한 동시에 전해질의 안정성이 유지되어 용융탄산염 연료전지의 장기 운전이 가능해진다. The present invention relates to a molten carbonate fuel cell comprising a reinforced lithium aluminate matrix, wherein a lithium source is filled in at least one frame channel of an air electrode and a fuel electrode, a method of manufacturing the same, and a lithium source. Provide a supply method. By supplying a lithium source to the electrode, the mechanical strength is strong and the stability of the electrolyte is maintained, thereby enabling long-term operation of the molten carbonate fuel cell.

Подробнее
12-12-2022 дата публикации

Method for manufacturing dense electrode for solid oxide electrochemical cell and solid oxide fuel cell comprising the same

Номер: KR20220163714A
Автор: 김민석, 이진실, 주종훈
Принадлежит: 충북대학교 산학협력단

본 발명은 고체산화물 연료전지용 치밀 전극의 제조방법 및 상기 방법으로 제조된 치밀 전극을 포함하는 고체산화물 연료전지에 관한 것으로, 구체적으로 본 발명은 (1) 전극 분말; 및 상기 전극과 동일소재 또는 상기 전극과 일부 동일한 원소가 첨가된 전해질 분말;을 준비하는 단계; (2) 상기 전해질 분말 또는 전극 분말에 용매를 각각 첨가하고 결합제, 분산제 및 가소제를 첨가하여 슬러리를 각각 제조하는 단계; (3) 상기 슬러리를 볼-밀링하여 균일하게 혼합하는 단계; (4) 혼합한 슬러리를 테이프캐스팅하여 그린시트(green sheet)를 제조하는 단계; (5) 제조된 그린시트를 레이저 절단 및 라미네이팅하는 단계; 및 (6) 상기 라미네이팅이 완료된 그린시트를 전해질에 적층한 후, 소결하는 단계를 포함하는 고체 산화물 연료전지용 치밀 전극의 제조방법, 상기 방법으로 제조된 고체 산화물 연료전지용 치밀 전극 및 상기 치밀 전극을 포함하는 고체 산화물 연료전지에 관한 것이다.

Подробнее
12-11-1974 дата публикации

Fuel cell with gas separator

Номер: US3847672A
Автор: J Trocciola, M Walsh
Принадлежит: United Aircraft Corp

A fuel cell system comprising an anode, a cathode, and an electrolyte in combination with a gas separator is described. The gas separator comprises a tile or block of salt in molten or solid state having opposed reactive surfaces. The salt is a mixture of MxO+MxCO3 where M is an element such as an alkali or alkaline earth metal. A gas stream containing a fuel gas (hydrogen) and CO2 is fed to one surface of the salt tile or block at which surface the carbon dioxide is chemically taken up by the salt. A sweep or stripping gas is maintained at the downstream surface of the salt tile or block at which surface carbon dioxide is released, and carried away by the sweep gas, for subsequent cycling to the cathode of the cell if desired to reduce concentration polarization of the cell.

Подробнее
16-04-1987 дата публикации

Manufacture of electrolyte plate for molten carbonate fuel cell

Номер: JPS6282655A
Принадлежит: Toshiba Corp

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
18-11-1986 дата публикации

Composite constituent element for fuel cell

Номер: JPS61260550A
Принадлежит: Kobe Steel Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
01-11-1988 дата публикации

Molten carbonate fuel cell

Номер: JPS63264872A
Принадлежит: HITACHI LTD

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
08-08-1985 дата публикации

Production method of fuel electrode for melted carbonate type fuel cell

Номер: JPS60150558A

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
18-09-2004 дата публикации

Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost

Номер: KR100441940B1
Автор: 윤영기, 최영태
Принадлежит: 한국전력공사

PURPOSE: A preparation method of a nickel-aluminum-titanium fuel electrode for a melt carbonate type fuel cell is provided to improve the performance of the resulted fuel cell electrode, including creepage and sintering resistance while reducing the production cost and the number of steps, thereby being suitably applied to a mass production. CONSTITUTION: The preparation method of a nickel-aluminum-titanium fuel electrode for a melt carbonate type fuel cell is produced by mixing powder of nickel, aluminum and titanium; adding a solvent to the resulted mixture; ball milling the mixture to obtain a nickel-aluminum-titanium slurry; defoaming the slurry; carrying out tape casting of the resulted slurry and drying it to provide a green sheet; carrying out continuous sintering of the green sheet; and depositing intermetallic compounds for preventing creepage and post-sintering.

Подробнее
18-01-1988 дата публикации

Manufacture of electrolyte plate for molten carbonate fuel cell

Номер: JPS6310470A
Принадлежит: Toshiba Corp

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
17-09-1981 дата публикации

Manufacture of electrolyte plate for fuel cell

Номер: JPS56118276A
Принадлежит: HITACHI LTD

Подробнее
20-04-2011 дата публикации

Parent material infiltration and coating process

Номер: RU2403655C9

FIELD: electricity. SUBSTANCE: composite formation process provides preparation of a solution containing at least one metal salt and a surface-active substance; heating of the solution to considerable evaporation of a solvent and preparation of a concentrated solution of said salt and surface-active substance; infiltration of the concentrated solution in a porous structure for composite preparation; and heating of the composite for considerable decomposition of said salt and surface-active substance to oxide and/or metal particles. It results in macroparticle layering on the pore walls of the porous structure. In specific cases, the macroparticle layer represents an uninterrupted grid. Coupled devices have improved properties and performance data. EFFECT: enhancement of the composite formation technology. 31 cl, 10 dwg, 16 ex 2403655 С9 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ х х ` < 13) са Хх СЭ (19) 0 м а КО © © (51) МПК НОМ 4/86 (2006.01) НОМ 5/12 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) СКОРРЕКТИРОВАННОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Примечание: библиография отражает состояние при переиздании (21)(22) Заявка: 2007142380/09, 21.04.2006 (24) Дата начала отсчета срока действия патента: 21.04.2006 Приоритет(ы): (30) Конвенционный приоритет: 21.04.2005 05 60/674,130 (43) Дата публикации заявки: 27.05.2009 Бюл. № 15 (45) Опубликовано: 10.11.2010 (15) Информация о коррекции: Версия коррекции №1 ( С2) (48) Коррекция опубликована: 20.04.2011 Бюл. № 11 (56) Список документов, цитированных в отчете о поиске: 0$ 2002/081762 АТ, 27.06.2002. \УО 2004/038844 АТ, 06.05.2004. 0$ 5543239 А, 06.08.1996. КИ 2197039 С2, 20.01.2003. (85) Дата начала рассмотрения заявки РСТ на национальной фазе: 21.11.2007 (86) Заявка РСТ: 0$ 2006/015196 (21.04.2006) (87) Публикация заявки РСТ: УГО 2006/116153 (02.11.2006) Адрес для переписки: 125040, Москва, пр-кт Ленинградский, 23, Патентно-лицензионная фирма "Транстехнология", пат.пов. Н.И.Золотых, рег.№ ...

Подробнее
09-08-1963 дата публикации

Electrochemical cell

Номер: FR1334706A
Автор:
Принадлежит: Prototech Inc

Подробнее
06-04-1962 дата публикации

Gas cell improvements

Номер: FR1290072A
Автор:
Принадлежит: National Research Development Corp UK

Подробнее
27-03-1970 дата публикации

Patent FR2012819A1

Номер: FR2012819A1
Автор: [UNK]
Принадлежит: United Aircraft Corp

Подробнее
13-05-2005 дата публикации

SOLID OXIDE CELL ANODE BASED ON A PARTICULAR CERMET AND SOLID OXIDE CELL COMPRISING SAME

Номер: FR2862163A1

La présente invention a trait à une anode de pile à oxyde solide à base d'un matériau composite comprenant une matrice en céramique oxyde comprenant du baryum et du titane et éventuellement de l'indium dans laquelle est dispersé un élément métallique conducteur électronique et à une pile à oxyde solide la comprenant. The present invention relates to a solid oxide battery anode based on a composite material comprising an oxide ceramic matrix comprising barium and titanium and optionally indium in which is dispersed an electronically conductive metallic element and a solid oxide battery comprising it.

Подробнее
15-11-1963 дата публикации

Electrochemical devices

Номер: FR1342879A
Автор:
Принадлежит: Westinghouse Electric Corp

Подробнее
13-08-1985 дата публикации

Fused carbonate fuel cell

Номер: CA1191888A
Принадлежит: HITACHI LTD

Abstract: The invention relates to a fused carbonate type of fuel cell comprising an electrolytic body retaining an electrolyte therein which is arranged between an anode and a cathode. Electricity is electrochemically gener-ated by feeding fuel gas and an oxidant to a fuel chamber arranged on the anode side and an oxidant chamber arranged on the cathode side, respectively. The fuel cell is characterized in that the electrolytic body comprises an electrolyte, an electrolyte-holding member for holding the electrolyte and an inorganic binder. The electrolytic body has the advantage that it can be prepared and used in the cell without warping and cracking. Preferably, the binder is an inorganic polymer.

Подробнее
18-03-1977 дата публикации

PROCESS FOR PREPARING LITHIUM BETA ALUMINATE

Номер: FR2321453A1
Принадлежит: Institute of Gas Technology

Подробнее
03-12-1985 дата публикации

Fuel cell anode based on a disordered catalytic material

Номер: CA1197554A
Принадлежит: Energy Conversion Devices Inc

ABSTRACT An anode for hydrogen oxidation in a fuel cell is formed from a host matrix including at least one transition element which is structurally modified by the incorporation of at least one modifier element to improve its catalytic prop-erties. The catalytic body is based on a dis-ordered non-equilibrium material designed to have a high density of catalytically active sites, resistance to poisioning, and long operating life. Modifier elements, including Ti, Mo, Zr, Mg, V, Si or Al, structurally modify tile local chemical environment of a nickel or other transition ele-ment host matrix to form the catalytic materials of the anode. The improved low overvoltage cata-lytic materials of the anode of the present inven-tion increase the operating efficiencies of fuel cells employing such anodes. The catalytic mate-rials can be deposited as a layer on the surface of porous electrode substrates to form a gas dif-fusion anode or can be formed as a gas diffusion electrode.

Подробнее
19-08-1960 дата публикации

Fuel cells and their electrodes

Номер: FR1239105A
Автор:
Принадлежит: Electric Storage Battery Co

Подробнее
22-07-1966 дата публикации

Fuel cell

Номер: FR1446715A
Автор:
Принадлежит: Leesona Corp

Подробнее
15-05-1984 дата публикации

Cathode composite for molten carbonate fuel cell

Номер: US4448857A
Принадлежит: General Electric Co

A cathode composite useful for a molten carbonate fuel cell comprised of a porous sintered cathode having a porous sintered bubble pressure barrier integrally sintered to one face thereof, said cathode composite having a porosity ranging from about 25% by volume to about 75% by volume of the total volume of said composite, said cathode having a porosity ranging from about 25% by volume to about 75% by volume of the total volume of said cathode, said pressure barrier having a porosity ranging from about 25% by volume to about 75% by volume of the total volume of said barrier, said cathode having a median pore size ranging from in excess of one micron to about 10 microns, said barrier having a median pore size significantly smaller than that of said cathode, said cathode and said pressure barrier being comprised of from about 10 weight % to about 90 weight % Li x Ni.sub.(1-x) O/balance Li y Cu.sub.(1-y) O, where x and y each ranges from about 0.005 to about 0.25.

Подробнее
01-12-1978 дата публикации

Patent FR2390022A1

Номер: FR2390022A1
Автор: [UNK]
Принадлежит: US Department of Energy

Le procédé selon l'invention consiste à préparer une solution d'hydroxyde de lithium et l'hydroxyde d'un second métal alcalin avec des particules d'alumine, l'évaporation du solvant pour obtenir des particules d'alumine imprégnées et revêtues d'hydroxydes des métaux alcalins, le maintien des particules à une température de 100 degrés C à 400 degrés C pour la reaction de l'hydroxyde de lithium avec l'alumine pour la formation des particules d'aluminate de lithium en bâtonnets dans un mélange d'aluminate de lithium et de composés des métaux alcalins, et la conversion des hydroxydes des métaux alcalins en carbonates pendant ou après la formation de l'aluminate de lithium. The process according to the invention consists in preparing a solution of lithium hydroxide and the hydroxide of a second alkali metal with particles of alumina, evaporating the solvent to obtain particles of alumina impregnated and coated with hydroxides of alkali metals, maintaining the particles at a temperature of 100 degrees C to 400 degrees C for the reaction of lithium hydroxide with alumina for the formation of the lithium aluminate particles into sticks in a mixture of lithium aluminate and alkali metal compounds, and the conversion of alkali metal hydroxides to carbonates during or after the formation of lithium aluminate.

Подробнее
06-08-1965 дата публикации

fuel cell electrode

Номер: FR1407807A
Автор: Georges Danner
Принадлежит: Compagnie Generale dElectricite SA

Подробнее
19-11-1982 дата публикации

Current collecting electrode support for electrochemical generators - esp. fuel cells, where metal foam is electrically and mechanically bonded to porous sintered metal layer

Номер: FR2506080A1
Принадлежит: IFP Energies Nouvelles IFPEN

The support consists of a layer(a) of metal wires of threads spaced apart from each other, and bonded electrically and mechanically to a layer of sintered metal(b). Layer(a) is pref. a metal foam; and layers(a,b) are pref. made of the same metal, esp. nickel. Alternatively, layer(a) is made of a metal coated with Ni, and layer(b) is made of Ni. Layer(a) is pref. impregnated with a catalyst promoting electrochemical reactions. The support is pref. made by spraying layer(a) on one surface with a soln. of metal powder(b) and then sintering the latter. Alternatively, layer(a) may be placed on a metal powder(b) in a die, followed by sintering layer(b). As compared with similar conventional electrodes, the invention provides improved rigidity, and better transverse conductivity.

Подробнее
12-04-1968 дата публикации

Electrode for fuel cell

Номер: FR1520791A
Автор: Bernard Goue
Принадлежит: Compagnie Generale dElectricite SA

Подробнее
18-09-1964 дата публикации

electrode and its manufacturing process

Номер: FR1372922A
Автор:
Принадлежит: Yardney International Corp

Подробнее
22-05-1981 дата публикации

Patent FR2321453B1

Номер: FR2321453B1
Автор: [UNK]
Принадлежит: Institute of Gas Technology

Подробнее
11-03-1966 дата публикации

electrodes for fuel cells and electrochemical measuring cells

Номер: FR1431416A
Принадлежит: Badische Anilin and Sodafabrik AG, BASF SE

Подробнее
15-07-1966 дата публикации

Fuel cell improvements

Номер: FR1446284A
Автор:
Принадлежит: General Electric Co

Подробнее
09-03-2007 дата публикации

Fabrication method of solid oxide fuel cell

Номер: KR100691558B1
Принадлежит: 한국과학기술연구원

본 발명은 전해질층을 포함하는 지지체 상면에 형성된 마이크로미터 수준의 다수의 제1전극 패턴과, 상기 제1전극 패턴 사이에 형성된 마이크로미터 수준의 다수의 제2전극 패턴을 포함하는 고체 산화물 연료전지용 전극 패턴을 제공한다. 상기 전극 패턴은 포토리지스트 공정에 의하여 형성된 몰드를 이용하여 형성된다. 포토리지스트 몰드를 이용하여 전극 패턴을 형성하기 위해 열경화성 수지와 전극 분말을 포함하는 전극용 페이스트가 준비된다. 본 발명에 따르면, 높은 정밀도로 마이크로 혹은 서브-마이크로미터 폭을 가지는 전극을 간단하게 제작할 수 있고, 고성능의 소형 고체산화물 연료전지를 제작할 수 있다. The present invention provides a solid oxide fuel cell electrode including a plurality of micrometer-level first electrode patterns formed on an upper surface of a support including an electrolyte layer, and a plurality of micrometer-level second electrode patterns formed between the first electrode patterns. Provide a pattern. The electrode pattern is formed using a mold formed by a photoresist process. In order to form an electrode pattern using a photoresist mold, an electrode paste containing a thermosetting resin and an electrode powder is prepared. According to the present invention, it is possible to easily manufacture an electrode having a micro or sub-micrometer width with high precision, and to manufacture a high performance small solid oxide fuel cell. 단실형 고체 산화물 연료전지, 마이크로 전극, 포토리지스트 몰드 Single solid oxide fuel cell, micro electrode, photoresist mold

Подробнее
09-12-2011 дата публикации

Anode for solid oxide fuel cell and manufacturing method of the same

Номер: KR101092754B1
Принадлежит: 한국생산기술연구원

방전플라즈 소결 장치로 펄스 전류 활성법을 이용한 고체산화물 연료전지의 연료극 및 그 제조방법이 개시된다. 방전플라즈 소결 장치로 펄스 전류 활성법을 이용한 고체산화물 연료전지의 Ni-YSZ 연료극 제조방법은, 니켈 옥사이드(NiO) 분말과 이트리아 안정화된 지르코니아(YSZ) 분말을 일정 비율로 혼합하는 단계, 상기 혼합 분말을 몰드에 충진하는 단계, 상기 혼합 분말이 충진된 몰드를 방전플라즈마 소결 장치에 장착하는 단계, 상기 장착된 몰드를 펄스 전류 활성법을 이용하여 소결하는 단계, 상기 소결된 소결체의 압력을 유지하며 일정 온도까지 냉각시키는 단계 및 상기 냉각된 소결체를 환원처리하여 Ni-YSZ의 연료극을 형성하는 단계를 포함하여 구성된다. Disclosed are a fuel electrode of a solid oxide fuel cell using a pulse current activation method and a method of manufacturing the same as a discharge plasma sintering apparatus. In the method of manufacturing a Ni-YSZ anode of a solid oxide fuel cell using a pulse current activation method using a discharge plasma sintering apparatus, the method comprises mixing nickel oxide (NiO) powder and yttria stabilized zirconia (YSZ) powder at a predetermined ratio. Filling powder into a mold, mounting the mixed powder filled mold into a discharge plasma sintering apparatus, sintering the mounted mold using a pulse current activation method, and maintaining a pressure of the sintered sintered body. Cooling to a predetermined temperature and reducing the cooled sintered body to form a fuel electrode of Ni-YSZ. 고체산화물 연료전지(solid oxide fuel cell, SOFC), Ni-YSZ 연료극(anode), 방전플라즈마 소결(spark plasma sintering) Solid oxide fuel cell (SOFC), Ni-YSZ anode, spark plasma sintering

Подробнее
09-10-1996 дата публикации

Molten carbonate fuel cells

Номер: GB2279494B
Автор: Ho-jin Kweon
Принадлежит: SAMSUNG ELECTRONICS CO LTD

Подробнее
30-07-1993 дата публикации

Patent JPH0551148B2

Номер: JPH0551148B2

Подробнее
19-08-1986 дата публикации

FUEL CELL

Номер: BR8506032A
Принадлежит: United Technologies Corp

Подробнее
25-03-1988 дата публикации

Electrode for molten salt fuel cell

Номер: JPS6366855A
Принадлежит: Kawasaki Heavy Industries Ltd

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
30-03-1973 дата публикации

Patent FR2149411A1

Номер: FR2149411A1
Автор: [UNK]
Принадлежит: United Aircraft Corp

Подробнее
13-09-1985 дата публикации

Molten carbonate type fuel cell and its manufacturing method

Номер: JPS60180067A
Принадлежит: Toshiba Corp

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
15-12-2004 дата публикации

Method for producing γ-lithium aluminate powder

Номер: JP3601188B2
Автор: 勝美 鈴木, 正 佐々
Принадлежит: 石川島播磨重工業株式会社

Подробнее
10-11-2010 дата публикации

Parent material infiltration and coating process

Номер: RU2403655C2

FIELD: electricity. SUBSTANCE: composite formation process provides preparation of a solution containing at least one metal salt and a surface-active substance; heating of the solution to considerable evaporation of a solvent and preparation of a concentrated solution of said salt and surface-active substance; infiltration of the concentrated solution in a porous structure for composite preparation; and heating of the composite for considerable decomposition of said salt and surface-active substance to oxide and/or metal particles. It results in macroparticle layering on the pore walls of the porous structure. In specific cases, the macroparticle layer represents an uninterrupted grid. Coupled devices have improved properties and performance data. EFFECT: enhancement of the composite formation technology. 31 cl, 10 dwg, 16 ex РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 403 655 (13) C2 (51) МПК H01M H01M 4/86 8/12 (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21), (22) Заявка: 2007142380/09, 21.04.2006 (24) Дата начала отсчета срока действия патента: 21.04.2006 (73) Патентообладатель(и): ЧЛЕНЫ ПРАВЛЕНИЯ УНИВЕРСИТЕТА КАЛИФОРНИИ (US) (43) Дата публикации заявки: 27.05.2009 2 4 0 3 6 5 5 (45) Опубликовано: 10.11.2010 Бюл. № 31 (56) Список документов, цитированных в отчете о поиске: US 2002/081762 A1, 27.06.2002. WO 2004/038844 A1, 06.05.2004. US 5543239 A, 06.08.1996. RU 2197039 C2, 20.01.2003. 2 4 0 3 6 5 5 R U (86) Заявка PCT: US 2006/015196 (21.04.2006) C 2 C 2 (85) Дата перевода заявки PCT на национальную фазу: 21.11.2007 (87) Публикация PCT: WO 2006/116153 (02.11.2006) Адрес для переписки: 125040, Москва, пр-кт Ленинградский, 23, Патентно-лицензионная фирма "Транстехнология", пат.пов. Н.И.Золотых, рег.№ 484 (54) ИНФИЛЬТРАЦИЯ ИСХОДНОГО МАТЕРИАЛА И СПОСОБ ПОКРЫТИЯ (57) Реферат: Изобретение относится к области твердотельных электрохимических устройств. Техническим результатом ...

Подробнее
30-07-2015 дата публикации

Fuel cell matrix composition and method of manufacturing same

Номер: CA2937994A1
Принадлежит: Fuelcell Energy Inc

A fuel cell matrix for use in a molten carbonate fuel cell comprising a support material and an additive material formed into a porous body, and an electrolyte material disposed in pores of the porous body, wherein the additive material is in a shape of a flake and has an average thickness of less than 1 µ?t?.

Подробнее
20-09-1991 дата публикации

Patent JPH0361606B2

Номер: JPH0361606B2
Принадлежит: Sumitomo Chemical Co Ltd

Подробнее
26-02-1997 дата публикации

Electrolyte matrix for molten carbonate fuel cells

Номер: JP2585226B2
Принадлежит: Tokyo Shibaura Electric Co Ltd

Подробнее
21-12-2009 дата публикации

Manufacturing Method of Molten Carbonate Fuel Cell Matrix Using Nano Size Powder

Номер: KR100933078B1

본 발명은 용융탄산염 연료전지용 매트릭스를 초음파 분무 연소법을 이용하여 준비된 나노 크기 LiAlO 2 분말을 이용하여 제조하는 방법에 관한 것이다. 나노 분말로 제조된 매트릭스는 그 평균 기공 크기가 기존 매트릭스에 비해 작지만 기공도는 비슷하고 기공 분포는 더욱 균일하여 전지의 수명 향상에 유리할 것으로 기대된다. The present invention relates to a method for producing a matrix for molten carbonate fuel cells using nano-sized LiAlO 2 powder prepared by the ultrasonic spray combustion method. Matrices made of nanopowders have smaller average pore sizes than conventional matrices, but have similar porosity and more uniform pore distribution, which is expected to be useful for improving battery life. 용융탄산염 연료전지, 매트릭스, 나노 크기 LiAlO2 분말 Molten Carbonate Fuel Cell, Matrix, Nano Size LiAlO2 Powder

Подробнее
15-09-2000 дата публикации

Manufacturing method of anode for melt carbonate type and anode

Номер: KR100265715B1
Автор: 안기평
Принадлежит: 윤영석, 한국중공업주식회사

PURPOSE: An anode for a molten carbonate fuel cell is provided to attain a cell with a high porosity and high capacity chrome anode, thereby improving the capacities and a life span of a cell. CONSTITUTION: The method for manufacturing a molten carbonate fuel cell anode comprises the first step for mixing and crushing chrome powder in a solvent using a crusher that rotates faster than 80RPM, adding a binder, an antifoaming agent and nickel to the mixture for the second crushing, and adding chrome powder for the third crushing, in order to prepare slurry; the second step for preparing green sheet by defoaming the slurry and tape casting; and the third step for sintering the green sheet at 900-1000 deg.C.

Подробнее
28-11-2007 дата публикации

The reinforced matrix containing sintering aids for molten carbonate fuel cell

Номер: KR100779741B1
Принадлежит: 한국과학기술연구원

A reinforced matrix for a molten carbonate fuel cell and a method for preparing the reinforced matrix are provided to improve mechanical strength by increasing sintering velocity. A reinforced matrix for a molten carbonate fuel cell is prepared by mixing a LiAlO2 powder as a matrix and 0.5-10 wt% of a gamma-Al2O3 powder as a sintering aid based on the weight of the LiAlO2 powder; and sintering the mixture. Preferably the gamma-Al2O3 powder has a particle size of 10-90 nm; and the LiAlO2 powder comprises a powder having a particle size of 1 micrometer or less, or a mixture comprising a powder having a particle size of 1 micrometer or less and a powder having a particle size of 10 micrometers or more.

Подробнее
13-03-1968 дата публикации

Improvements in or relating to method of manufacturing electrodes for fuel cells, and electrodes thus obtained

Номер: GB1106228A
Автор:
Принадлежит: Gaz de France SA

At least one electrode of a fuel cell having a liquid electrolyte comprises on the electrolyte side a porous layer wholly consisting of a refractory metal oxide e.g. magnesia alumina, or zirconia and on the gas side a metal or alloy layer e.g. nickel, silver, gold, palladium or a silver alloy, the layers being separated by intermediate layers comprising a mixture of the refractory material and the metal or alloy, the proportion of metal or metal alloy in said intermediate layers increasing as the intermediate layers approach the metal layer. The electrode may be formed by simultaneously spraying the refractory oxide and metal on to a mandrel using either two blowpipes or a single blowpipe. Initially only one of the constituents is sprayed on to the mandrel, thereafter the ratios of the constituents is progressively varied until at the end of the process only the other constituent is sprayed. Alternatively the electrode may be formed by spraying a mandrel with a layer of one constituent followed by spraying with a sublayer e.g. one pass of blowpipe of the other constituent. A further layer of the first constituent is then applied followed by a slightly thicker sublayer of the second. The resulting electrode comprises alternate strata of metal and refractory oxide, the thickness of the metal strata increasing from the refractory layer to the metal layer and the thickness of the strata of refractory oxide increasing from the metal to the refractory layer.

Подробнее
22-10-1985 дата публикации

Electrolyte reservoir for carbonate fuel cells

Номер: US4548877A
Принадлежит: US Department of Energy

An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Подробнее