Power prediction method and device, equipment and storage medium
附图说明 为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 图1为本申请实施例提供的功率预测方法流程示意图; 图2为本申请实施例提供的联合预测流程图; 图3为本申请实施例提供的功率预测装置结构示意图; 图4是本发明提供的电子设备的结构示意图。 技术领域 本发明涉及能源功率预测技术领域,尤其涉及一种功率预测方法、装置、设备及存储介质。 具体实施方式 为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 图1为本申请实施例提供的功率预测方法流程示意图,如图1所示,包括: 步骤110,将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 本申请实施例中的目标电站具体可以是同时包括至少一个水电电站、至少一个风电电站和至少一个光电电站的电站集群。 本申请实施例中所描述的第一时间可以是希望进行预测功率的时间,其具体可以是一个未来的时间点,或者是一个时间段。例如,12月11日,或者12月10日晚上8点。 本申请实施例中的第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,该气象预测模型具体可以是气象研究与预报模式(WeatherResearch and Forecasting,WRF)模型。 本申请实施例中所描述的第一气象预测模型能够有效的对目标电站所在区域的气象情况进行预测,其具体的,可以预测目标电站所在区域在第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息。 在将第一时间输入第一气象预测模型之后,可以输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息。 步骤120,基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 在本申请实施例中,可以将降水量预测信息输入所述目标电站所在区域的水文模型,输出所述目标电站在所述第一时间的入库流量信息。 本申请实施例中,水文模型是根据所述目标电站所在区域的降雨历史样本数据和所述降雨历史样本数据对应的入库流量标签训练得到的。该水文模型具体可以是新安江模型等,该新安江模型是最早应用于新安江流域的通用水文模型,但是其并不局限于新安江流域使用,也可以在其它流域使用。 该降雨历史样本数据可以是从目标电站所在区域的历史气象数据中获取的,该入库流量标签是指降雨历史样本数据所对应的入库流量数据。 本申请实施例中,可以通过降水量预测信息输入水文模型后,输出目标电站在第一时间的入库流量信息。 在本申请实施例中,不同地域的水文特点不同,因此,可以根据不同地域的水文历史数据,训练不同的水文模型,例如,可以针对于新安江进行水文模型训练,也可以针对于雅鲁藏布江进行水文模型训练。 步骤130,基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 在一个可选地实施例中,在确定水电、风电和光电各自对应的联合预报因子之后,将联合预报因子分别输入功率联合预测模型,输出目标电站在第一时间的水电预测功率、风电预测功率和光电预测功率。 在本申请实施例中,在得到风速预报信息、所述太阳辐射预报信息和所述入库流量信息之后,可以使用相关系数作为相关性指标评估系统功率和预报气象、水文要素的相关性,该相关系数具体可以包括皮尔逊相关系数和最大互信息系数中的至少一项,根据该相关系数从风速预报信息、所述太阳辐射预报信息和所述入库流量信息之中,确定水电、风电和光电各自对应的联合预报因子。 在一个可选地实施例中,在确定水电、风电和光电各自对应的联合预报因子之后,将联合预报因子分别输入功率联合预测模型,输出目标电站在第一时间的水电预测功率、风电预测功率和光电预测功率。 在一个可选地实施例中,第一时间的水电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与水电功率的第一相关系数;该第一相关系数具体可以包括第一皮尔逊相关系数和第一最大互信息系数。 将第一目标相关系数对应的预报信息写入水电功率联合预报因子;所述第一目标相关系数是第一皮尔逊相关系数或第一最大互信息系数大于第一阈值的所述第一相关系数; 将所述水电功率联合预报因子输入功率联合预测模型,确定所述第一时间的水电预测功率。 也可以将与水电功率的最大互信息系数大于第一相关性阈值的预报信息写入水电功率联合预报因子。 在另一个可选地实施例中,第一时间的风电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与风电功率的第二相关系数和最大互信息系数;该第二相关系数具体可以包括第二皮尔逊相关系数和第二最大互信息系数。 将第二目标相关系数对应的预报信息写入风电功率联合预报因子;所述第二目标相关系数是第二皮尔逊相关系数或第二最大互信息系数大于第二阈值的所述第二相关系数; 将所述风电功率联合预报因子输入功率联合预测模型,确定所述第一时间的风电预测功率。 也可以将与风电功率的最大互信息系数大于第一相关性阈值的预报信息写入风电功率联合预报因子。 在另一个可选地实施例中,第一时间的光电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与光电功率的第三相关系数;该第三相关系数具体可以包括第三皮尔逊相关系数和第三最大互信息系数。 将第三目标相关系数对应的预报信息写入光电功率联合预报因子;所述第三目标相关系数是第三皮尔逊相关系数或第三最大互信息系数大于第三阈值的所述第三相关系数; 将所述光电功率联合预报因子输入功率联合预测模型,确定所述第一时间的光电预测功率。 也可以将与光电功率的最大互信息系数大于第一相关性阈值的预报信息写入光电功率联合预报因子。 在本申请实施例中,功率联合预测模型具体可以是长短期记忆网络模型,其建立系统功率和联合预报因子间映射关系: ; 其中,、、和分别为系统总功率、风电功率、光电功率和水电功率;
在一个可选地实施例中,为验证所提方法的有效性,构建预报误差互补率指标表征不同电站预报正、负误差的抵消程度: ; 其中:
在一个可选地实施例中,为了验证预测的精度,还可以使用WRF模型和新安江模型联合预报风速、太阳辐射、降水和水库入库流量,构建综合评价指标评估预报精度:;; 式中:为水风光电站数量;为预报的气象和水文要素数量;
由于风速、太阳辐射、降水和入库流量等气象和水文要素存在量级上的差异,分别对各个要素进行归一化处理后进行评估。 在一个可选地实施例中,以雅砻江流域官地水风光互补系统为例,使用2015年9月~2017年8月历史数据构建考虑时空相关性特征的水风光系统功率联合预报模型,并通过预报误差指标和预报误差互补率指标验证模型的有效性。设置独立预报方案为对比方案,不同预报方法功率预报误差如表1所示,由表可知,本发明所提模型可以有效提高水风光系统各电站功率预报精度和总功率预报精度。 表1 不同预报方法功率预报平均绝对误差(单位:MW)
不同预报方法功率预报误差互补率如表2所示,由表可知,本发明所提模型可以有效提高预报误差互补率,从而提高水风光系统总功率预报精度。水风光三种电站联合预报时预报误差互补率最大,水风、风光和水光两种电站联合预报时预报误差互补率依次减小。 表2 不同预报方法功率预报误差互补率
本发明提供的功率预测方法、装置、设备及存储介质,通过第一气象预测模型,有效预测目标电站在第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息等气象信息,然后通过降水量预测信息,来进一步分析了目标电站在所述第一时间的入库流量信息等水文信息;然后通过风速预报信息、所述太阳辐射预报信息和所述入库流量信息确定的联合预报因子,有效实现对于所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率的准确预测,为水风光系统各电站功率预报提供了一种新的可行方案。 图2为本申请实施例提供的联合预测流程图,如图2所示,在气象-水文联合预报阶段,可以将气象数据集输入WRF模型,然后可以完成WRF模型的训练,进而实现对于风速、太阳辐射、降水的预测,以新安江模型为例,可以进一步根据降水进行入库流量的预测,从而得到综合评价。 在功率联合预报阶段,可以进一步在风速、太阳辐射、降水的预测信息中确定各自功率的预报因子选择,然后将预报因子输入联合预报模型,得到预报功率。 该联合预报模型,可以是根据携带有实际功率标签的预报因子样本训练得到的。 本发明充分考虑了水风光互补系统中各要素时空相关性,适用于包含多种能源电站的复合系统功率预报,通过预报误差指标和预报误差互补率指标验证了模型的有效性。 下面对本发明提供的功率预测装置进行描述,下文描述的功率预测装置与上文描述的功率预测方法可相互对应参照。 图3为本申请实施例提供的功率预测装置结构示意图,如图3所示,包括: 输出模块310用于将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 第一确定模块320用于基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 第二确定模块330用于基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 可选地,所述第一确定模块,具体用于: 将所述降水量预测信息输入所述目标电站所在区域的水文模型,输出所述目标电站在所述第一时间的入库流量信息; 其中,所述水文模型是根据所述目标电站所在区域的降雨历史样本数据和所述降雨历史样本数据对应的入库流量标签训练得到的。 在本申请实施例中,通过第一气象预测模型,有效预测目标电站在第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息等气象信息,然后通过降水量预测信息,来进一步分析了目标电站在所述第一时间的入库流量信息等水文信息;然后通过风速预报信息、所述太阳辐射预报信息和所述入库流量信息确定的联合预报因子,有效实现对于所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率的准确预测,为水风光系统各电站功率预报提供了一种新的可行方案。 图4是本发明提供的电子设备的结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行功率预测方法,该方法包括:将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。 另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的功率预测方法,该方法包括:将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的功率预测方法,该方法包括:将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。 最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。 背景技术 可再生能源的开发与利用是应对全球气候变化和能源危机的重要途径,但是风电和光电等可再生能源易受环境因素影响,具有波动性、随机性和间歇性的特征,大规模的风电和光电直接并网对电力系统稳定运行带来了新挑战,导致弃风、弃光现象十分突出。水风光互补系统利用水电机组的快速调节能力和不同能源间的互补特性,通过水电调节风光出力波动,使系统总功率变幅维持在可接受范围内,是促进可再生能源消纳的重要措施。在此背景下,精确地功率预报可以使电站调度人员及时调整发电功率,保障水风光系统和电网安全稳定运行。 但是,目前功率预报方法多针对于单一能源电站或其集群,不能考虑区域内多种能源的时空相关性特征和互补特征,因此,如何准确的进行水风光功率的预测,已经成为亟待解决的问题。 发明内容 本发明提供一种功率预测方法、装置、设备及存储介质,用以解决现有技术中目前功率预报方法多针对于单一能源电站或其集群,不能考虑区域内多种能源的时空相关性特征和互补特征的缺陷。 本发明提供一种功率预测方法,包括: 将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 根据本发明提供的一种功率预测方法,所述基于所述降水量预测信息确定所述目标电站在所述第一时间的入库流量信息,包括: 将所述降水量预测信息输入所述目标电站所在区域的水文模型,输出所述目标电站在所述第一时间的入库流量信息; 其中,所述水文模型是根据所述目标电站所在区域的降雨历史样本数据和所述降雨历史样本数据对应的入库流量标签训练得到的。 根据本发明提供的一种功率预测方法,所述第一时间的水电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与水电功率的第一相关系数; 将第一目标相关系数对应的预报信息写入水电功率联合预报因子;所述第一目标相关系数是大于第一阈值的所述第一相关系数; 将所述水电功率联合预报因子输入功率联合预测模型,确定所述第一时间的水电预测功率。 根据本发明提供的一种功率预测方法,所述第一时间的风电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与风电功率的第二相关系数; 将第二目标相关系数对应的预报信息写入风电功率联合预报因子;所述第二目标相关系数是大于第二阈值的所述第二相关系数; 将所述风电功率联合预报因子输入功率联合预测模型,确定所述第一时间的风电预测功率。 根据本发明提供的一种功率预测方法,所述第一时间的光电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与光电功率的第三相关系数; 将第三目标相关系数对应的预报信息写入光电功率联合预报因子;所述第三目标相关系数是大于第三阈值的所述第三相关系数; 将所述光电功率联合预报因子输入功率联合预测模型,确定所述第一时间的光电预测功率。 根据本发明提供的一种功率预测方法,在确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率之后,还包括: 将所述水电预测功率、风电预测功率和光电预测功率求和,得到所述目标电站在所述第一时间的预测总功率。 本发明还提供一种功率预测装置,包括:输出模块,用于将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 第一确定模块,用于基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 第二确定模块,用于基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 根据本发明提供的一种功率预测装置,所述第一确定模块,具体用于: 将所述降水量预测信息输入所述目标电站所在区域的水文模型,输出所述目标电站在所述第一时间的入库流量信息; 其中,所述水文模型是根据所述目标电站所在区域的降雨历史样本数据和所述降雨历史样本数据对应的入库流量标签训练得到的。 根据本发明提供的一种功率预测装置,所述第二确定模块,具体用于: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与水电功率的第一相关系数; 将第一目标相关系数对应的预报信息写入水电功率联合预报因子;所述第一目标相关系数是大于第一阈值的所述第一相关系数; 将所述水电功率联合预报因子输入功率联合预测模型,确定所述第一时间的水电预测功率。 根据本发明提供的一种功率预测装置,所述第二确定模块,具体用于: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与风电功率的第二相关系数; 将第二目标相关系数对应的预报信息写入风电功率联合预报因子;所述第二目标相关系数是大于第二阈值的所述第二相关系数; 将所述风电功率联合预报因子输入功率联合预测模型,确定所述第一时间的风电预测功率。 根据本发明提供的一种功率预测装置,所述第二确定模块,具体用于: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与光电功率的第三相关系数; 将第三目标相关系数对应的预报信息写入光电功率联合预报因子;所述第三目标相关系数是大于第三阈值的所述第三相关系数; 将所述光电功率联合预报因子输入功率联合预测模型,确定所述第一时间的光电预测功率。 根据本发明提供的一种功率预测装置,所述装置还用于: 将所述水电预测功率、风电预测功率和光电预测功率求和,得到所述目标电站在所述第一时间的预测总功率。 本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述功率预测方法。 本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述功率预测方法。 本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述功率预测方法。 本发明提供的功率预测方法、装置、设备及存储介质,通过第一气象预测模型,有效预测目标电站在第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息等气象信息,然后通过降水量预测信息,来进一步分析了目标电站在所述第一时间的入库流量信息等水文信息;然后通过风速预报信息、所述太阳辐射预报信息和所述入库流量信息确定的联合预报因子,有效实现对于所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率的准确预测,为水风光系统各电站功率预报提供了一种新的可行方案。 The invention provides a power prediction method, device and equipment and a storage medium, and relates to the technical field of energy power prediction, and the method comprises the steps: inputting first time into a first weather prediction model, and outputting wind speed prediction information, solar radiation prediction information and precipitation prediction information of an area where a target power station is located at the first time; wherein the first meteorological prediction model is obtained through training according to historical meteorological data samples of an area where the target power stations are located, and the target power stations comprise a hydroelectric power station, a wind power station and a photoelectric power station; based on the precipitation prediction information, determining storage flow information of the target power station at the first time; and based on the wind speed forecast information, the solar radiation forecast information and the storage flow information, performing prediction analysis on the power of the target power station at the first time, and determining the hydropower prediction power, the wind power prediction power and the photoelectric prediction power of the target power station at the first time. 1.一种功率预测方法,其特征在于,包括: 将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 2.根据权利要求1所述的功率预测方法,其特征在于,所述基于所述降水量预测信息确定所述目标电站在所述第一时间的入库流量信息,包括: 将所述降水量预测信息输入所述目标电站所在区域的水文模型,输出所述目标电站在所述第一时间的入库流量信息; 其中,所述水文模型是根据所述目标电站所在区域的降雨历史样本数据和所述降雨历史样本数据对应的入库流量标签训练得到的。 3.根据权利要求1所述的功率预测方法,其特征在于,所述第一时间的水电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与水电功率的第一相关系数; 将第一目标相关系数对应的预报信息写入水电功率联合预报因子;所述第一目标相关系数是大于第一阈值的所述第一相关系数; 将所述水电功率联合预报因子输入功率联合预测模型,确定所述第一时间的水电预测功率。 4.根据权利要求1所述的功率预测方法,其特征在于,所述第一时间的风电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与风电功率的第二相关系数; 将第二目标相关系数对应的预报信息写入风电功率联合预报因子;所述第二目标相关系数是大于第二阈值的所述第二相关系数; 将所述风电功率联合预报因子输入功率联合预测模型,确定所述第一时间的风电预测功率。 5.根据权利要求1所述的功率预测方法,其特征在于,所述第一时间的光电预测功率的确定方法,具体包括: 分别计算所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息与光电功率的第三相关系数; 将第三目标相关系数对应的预报信息写入光电功率联合预报因子;所述第三目标相关系数是大于第三阈值的所述第三相关系数; 将所述光电功率联合预报因子输入功率联合预测模型,确定所述第一时间的光电预测功率。 6.根据权利要求1所述的功率预测方法,其特征在于,在确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率之后,还包括: 将所述水电预测功率、风电预测功率和光电预测功率求和,得到所述目标电站在所述第一时间的预测总功率。 7.一种功率预测装置,其特征在于,包括: 输出模块,用于将第一时间输入第一气象预测模型,输出目标电站所在区域在所述第一时间的风速预报信息、太阳辐射预报信息和降水量预测信息;其中,所述第一气象预测模型是根据所述目标电站所在区域的历史气象数据样本训练得到的,所述目标电站包括:水电电站、风电电站和光电电站; 第一确定模块,用于基于所述降水量预测信息,确定所述目标电站在所述第一时间的入库流量信息; 第二确定模块,用于基于所述风速预报信息、所述太阳辐射预报信息和所述入库流量信息,对所述目标电站在所述第一时间的功率进行预测分析,确定所述目标电站在所述第一时间的水电预测功率、风电预测功率和光电预测功率。 8.根据权利要求7所述的功率预测装置,其特征在于,所述第一确定模块,具体用于: 将所述降水量预测信息输入所述目标电站所在区域的水文模型,输出所述目标电站在所述第一时间的入库流量信息; 其中,所述水文模型是根据所述目标电站所在区域的降雨历史样本数据和所述降雨历史样本数据对应的入库流量标签训练得到的。 9.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6任一项所述功率预测方法。 10.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述功率预测方法。联合预报 独立预报 风电功率 206.03 228.76 光电功率 31.64 38.61 水电功率 204.06 226.24 系统总功率 277.18 286.59 联合预报 独立预报 水风光 0.38 0.34 水风 0.33 0.30 风光 0.15 0.12 水光 0.13 0.12