СПОСОБ (СО)ПОЛИМЕРИЗАЦИИ ФТОРИРОВАННЫХ ОЛЕФИНОВЫХ МОНОМЕРОВ

10-04-1999 дата публикации
Номер:
RU2128667C1
Принадлежит: Аусимонт С.п.А. (IT)
Контакты: 103735, Moskva, ul.Il'inka, 5/2, Sojuzpatent
Номер заявки: 83-92-9403/04
Дата заявки: 28-10-1994

[1]

Настоящее изобретение относится к способу (со)полимеризации фторированных олефиновых мономеров в водной эмульсии, который позволяет получить полимеры, имеющие высокую структурную однородность (упорядоченность), отличающиеся высокой максимальной рабочей температурой, улучшенными механическими свойствами и лучшей перерабатываемостью.

[2]

Среди известных способов сополимеризации фторированных олефиновых мономеров необязательно в сочетании с нефторированными олефинами, наиболее широко используемыми на промышленном уровне, являются способы сополимеризации в водной эмульсии (водно-эмульсионный) и водной суспензии (водно-суспензионный) в присутствии радикальных инициаторов.

[3]

В случае эмульсионной сополимеризации полимер получается в виде частиц, диспергированных в водной среде с помощью соответствующего поверхностно-активного вещества. Это позволяет очень эффективно распределить реакционное тепло, обеспечивая хорошее регулирование температуры реакции, а следовательно, высокую продуктивность. Кроме того, отсутствие органических растворителей обуславливает более низкую себестоимость способа и незначительный вред для окружающей среды.

[4]

Однако водно-эмульсионный способ имеет некоторые недостатки, обусловленные требуемыми условиями реакции. Действительно, применение радикальных инициаторов, которые разлагаются термически, делает необходимым применение высоких температур реакции, изменяющихся в пределах от не менее 50oC и даже до 150oC. Температуры полимеризации этого вида отрицательно влияют на характеристики конечного продукта, в частности они вызывают снижение второй температуры плавления и поэтому ограничивают максимальную рабочую температуру полимера (так называемая рейтинг-температура).

[5]

Такой недостаток особенно заметен в случае частично гидрированных полимеров. Например, известно, что гомополимер винилиденфторида имеет намного больше дефектов мономерной инверсии, поскольку температура полимеризации является более высокой. Увеличение таких дефектов приводит к снижению степени кристалличности, а следовательно, второй температуры плавления, которая, как известно, определяет максимальную рабочую температуру полимера. Аналогично для сополимеров терефторэтилена с этиленом и особенно для сополимеров хлортрифторэтилена с этиленом увеличение температуры полимеризации означает резкое уменьшение перестройки сомономеров с образованием блоков, которые ухудшают как механические характеристики, так и термическую стабильность продукта. Это факт объясняет, почему эмульсионный способ сополимеризации не используется для синтеза сополимеров хлортрифторэтилена с этиленом, для которых вместо этого используется суспензионный способ при температуре ниже 25oC.

[6]

До настоящего времени единственным доступным средством для снижения температуры полимеризации с использованием эмульсионной реакции являются основные радикалы редокс (восстановительно-окислительных) систем. В случае фторированных полимеров, однако, такой способ приводит к неудовлетворительным результатам, так как вызывает образование значительных фракций с низкой молекулярной массой, так и молекул, имеющих полярные концевые группы, которые вызывают изменение окраски полимера и/или преимущественное дегидрогалоидирование с гибельными последствиями для качества продукта.

[7]

Дополнительным недостатком водно-эмульсионного способа полимеризации является необходимость работы при высоких давлениях, обычно примерно 25 бар, с явными трудностями в конструкции установки. Такие высокие давления необходимы для увеличения концентрации в реакционной среде фторированных мономеров, плохо растворимых в водной фазе. Таким способом пытаются избежать, насколько возможно, образования фракций, имеющих низкую молекулярную массу, которые отрицательно влияют на механические свойства конечного продукта. Действительно, известно, что для получения хорошего регулирования молекулярно-массового распределения необходимо добиться оптимального баланса между концентрацией радикалов, генерируемых инициатором, и концентрацией мономеров на участке реакции. Из-за плохой растворимости мономеров в реакционной среде необходимо увеличить реакционное давление и одновременно точно дозировать инициатор, однако, не подвергая ненужному риску продуктивность способа.

[8]

Что касается суспензионной полимеризации фторированных олефиновых мономеров, она позволяет использовать более низкие реакционные давления, чем давления, необходимые для эмульсионного способа, поскольку растворимость мономеров в реакционной среде, обычно образованной органическими растворителями такими, как хлорфторуглероды, является достаточно высокой. Использование органических растворителей составляет, однако, значительный недостаток с точки зрения завода и означает экологические проблемы особенно при использовании хлорфторуглеродов.

[9]

В отношении эмульсионной полимеризации, с помощью суспензионного способа можно также снизить температуру реакции при условии, что активность катализатора при низких температурах является достаточной.

[10]

Кроме трудности нахождения для каждого типа фторированного полимера такого инициатора, в любом случае необходимо принимать особые меры безопасности как для синтеза, так и для перевозки и хранения, так как они являются чрезвычайно опасными продуктами, будучи взрывоопасными даже при низких температурах. Кроме того, такие инициаторы должны часто разбавляться в растворителях, во избежании ускоренного взрывоопасного разложения.

[11]

Заявителем теперь было неожиданно установлено, что можно получить фторированные сополимеры, имеющие высокую структурную однородность, отличающиеся высокой максимальной рабочей температурой (рейтинг-температура), улучшенными механическими свойствами и лучшей перерабатываемостью, с помощью способа сополимеризации фторированных олефиновых мономеров, необязательно, в сочетании с нефторированными олефинами в водной эмульсии в присутствии радикальных фотоинициаторов при наличии видимой области ультрафиолетового излучения. Этим способом поэтому можно в сравнении с известным эмульсионным способом работать при низких давлениях и низких температурах, без использования органических растворителей и взрывоопасных инициаторов.

[12]

Поэтому объектом настоящего изобретения является способ (со)полимеризации одного или более фторированных олефиновых мономеров, в сочетании с одним или более нефторированных олефинов, в котором указанные мономеры (со)полимеризуются в водной эмульсии в присутствии радикального фотоинициатора при наличии видимой области ультрафиолетового излучения.

[13]

Под "радикальными фотоинициторами" понимают все химические соединения, либо растворимые, либо нерастворимые в воде, которые под воздействием видимой области УФ-излучения генерируют радикалы, способные инициировать (со)полимеризацию фторированных олефиновых мономеров. К ним относятся: неорганические перекиси, например, персульфат щелочного металла (предпочтительно, калия или натрия) или персульфат аммония; органические перекиси; кетоны, например, ацетон; ди- или поликетоны, например, биацетил; диалкилсульфиды; например, диметилсульфид; комплексы переходных металлов, например, пентамино-хлоро-кобальт (III) [Co(NH3 )5Cl2]2+, галогенированные или полигалогенированные органические соединения, например, алкилагалоиды R - X, где R - C1-10-алкил, а X - предпочтительно, бром или иод.

[14]

Среди органических перекисей особенно предпочтительными являются диалкилперекиси, такие как дитретбутилперекись; ацилперекиси, такие как диацетилперекись; пероксикарбонаты, такие как бис (4-третбутилциклогексил)пероксидикарбонат; пероксиэфиры, например третбутилпероксиизобутират.

[15]

С точки зрения работы предпочтительными являются фотоинициаторы, термостойкие при температуре полимеризации и при комнатной температуре, и среди них органические или неорганические перекиси, такие как персульфат калия, персульфат аммония и дитретбутилперекись, являются особенно предпочтительными.

[16]

По сравнению с известными способами, способ-предмет настоящего изобретения позволяет выбрать инициатор в очень широком ряду. Это является значительным преимуществом, особенно в случае частично гидрированных (со)полимеров, таких как поливинилиденфторид или сополимеры этилена с тетрафторэтиленом или хлортрифторэтиленом, термохимическая стабильность которых сильно зависит от природы концевых групп цепи производной инициатора. Поэтому можно использовать инициаторы, обычно неприменимые в известных до настоящего времени способах, которые дают особенно стабильные концевые группы. Например, это в случае дитретбутилперекиси и ацетона, которые дают концевые метил-группы.

[17]

С точки зрения видимой области УФ-излучения последнее подается к реакционной системе с помощью соответствующего источника излучения, в соответствии с традиционными способами, обычно используемыми для фотохимических реакций, например, с помощью ртутной лампы высокого давления. Длина волны видимой области УФ-излучения, пригодная для способа-предмета настоящего изобретения, обычно составляет 220-600 нм. Необходимо отметить, что использование излучения для генерирования радикала обычно позволяет лучше контролировать кинетику реакции и, в частности, в случае неуправляемого хода полимеризации можно немедленно деактивировать источник излучения и поэтому остановить реакцию; это несомненно невозможно, когда применяются термоинициаторы.

[18]

Как описано выше, в сравнении с известным эмульсионным способом одно из наиболее очевидных преимуществ способа-предмета настоящего изобретения является возможность работы в широком температурном интервале, обычно от -20oC до +100oC, предпочтительно от -10oC до +40oC. Необходимо подчеркнуть, что можно работать при температурах ниже 0oC при изменении соответствующим образом характеристик водной фазы, например, при увеличении ионной силы и/или при добавлении сорастворителя.

[19]

Дополнительным преимуществом по сравнению с традиционным эмульсионным способом является возможность работы при низких давлениях. Действительно, реакционное давление может обычно изменяться в пределах от 3 до 50 бар, предпочтительно от 10 до 20 бар.

[20]

Как известно, эмульсионный способ требует также присутствия поверхностно-активных веществ. Среди различных видов поверхностно-активных веществ, используемых в способе настоящего изобретения, мы можем сослаться, в частности, на продукты общей формулы
Rf X-M+,
где Rf - перфторалкильная C5-C16-цепь или перфторполиоксиалкиленовая цепь;
X- - -COO- или -SO-3;
M+ выбирается из: H+NH+4, ион щелочного металла.

[21]

Среди наиболее широко используемых находятся: аммонийперфтороктаноат, перфторполиоксиалкилены с концевыми блокирующими группами с одной или более карбоксильных групп и т.д.

[22]

К реакционной смеси также могут быть добавлены переносчики цепи, такие как водород, углеводороды или фторуглероды (например, метан или этан); этилацетат, диэтилмалонат. Также в качестве переносчиков цепи могут быть использованы водород или алифатический углеводород, или фторуглеводород в сочетании с алифатическим спиртом с разветвленной цепью, как указано в описании Итальянского Патента N M1 93A/000551 на имя Заявителя.

[23]

Способ в соответствии с настоящим изобретением можно успешно осуществлять в присутствии эмульсий или микроэмульсий перфторполиоксиалкиленов, как описано в патенте США NN 4789717 и 4864006, или также в присутствии микроэмульсий фторполиоксиалкиленов, имеющих концевые группы, содержащие водород и/или повторяющиеся звенья, содержащие водород, в соответствии с описанием итальянской патентной заявки N M1 93A/001007 на имя заявителя.

[24]

Способ-предмет изобретения может быть использован со всеми типами фторированных олефиновых мономеров, необязательно содержащих водород и/или хлор, и/или бром, и/или кислород, при условии, что они способы образовать (со)полимеры реакцией с радикальными инициаторами в водной эмульсии. Среди них можно назвать: C2-8 - перфторолефины, такие как тетрафтоэтилен (TFE= ТФЭ), гексафторпропен (HFP=ГФП), гексафторизобутен; водородосодержащие C2-8 - фторолефины, такие как винилфторид (VF=ВФ), винилиденфторид (VDF=ВДФ), трифторэтилен, перфторалкилэтилен CH2=CH-Rf, где Rf - C1-6 - перфторалкил, C2-8-хлор - и/или бромфторолефины, такие как хлортрифторэтилен (CTFE=ХТФЭ) и бромтрифторэтилен; перфторвинилэфиры CF2=CFOX, где X - C1-6-перфторалкил, например, трифторметил или пентафторпропил, или C1-9 -перфтороксиалкил, имеющий одну или более эфирных групп, например перфтор-2-пропоксипропил, перфтордиоксолы.

[25]

Фторолефины могут также быть сополимеризованы с нефторированными C2-8, такими как этилен, пропилен, изобутилен.

[26]

Среди полимеров, к которым применим способ-предмет изобретения, в частности, находятся:
(a) политетрафторэтилен или модифицированный политетрафторэтилен, содержащий небольшие количества, обычно от 0,1 до 3 мол. %, предпочтительно, менее 0,5 мол.%, одного или более сомономеров, таких как например, перфторпропен, перфторалкилвинилэфиры, винилиденфторид, гексафторизобутен, хлортрифторэтилен, перфторалкилэтилен,
(b) термопластичные полимеры ТФЭ, содержащие от 0,5 до 8 мол.%, по крайней мере, одного перфторалкилвинилэфира, где алкил имеет от 1 до 6 углеродных атомов, такие как, например, сополимеры ТФЭ с перфторпропилвинилэфиром, сополимеры ТФЭ с перфторметилвинилэфиром, сополимеры ТФЭ с перфторалкилэтиленом, полимеры ТФЭ с перфторметилвинилэфиром, модифицированные другим перфторированным сомономером (как описано в заявке на Европейский патент N 94109780.0);
(c) термопластичные полимеры ТФЭ, содержащие от 2 до 20 мол.% C3-8-перфторолефина, такого как, например, ФЭП (FEP), (ТФЭ/ГФП-сополимер), к которому могут быть добавлены в небольших количествах (менее 5 мол.%) другие сомономеры, имеющие винилэфирную структуру (смотри, например, патент США N 4675380),
(d) сополимеры ТФЭ и ХТФЭ с этиленом, пропиленом или изобутиленом, необязательно содержащие третий фторированный сомономер, например, перфторалкилвинилэфиром, в количествах от 0,1 до 10 мол.% (смотри, например, патент США N 3624250 и N 4513129),
(e) эластомерные сополимеры ТФЭ с перфторалкилвинилэфиром или перфтороксиалкилвинилэфиром, необязательно содержащие пропилен или этилен, кроме малых количеств "узлового" ("место сшивки") мономера (смотри, например, патенты США N 3467635 и N 4694045),
(f) полимеры с диэлектрическими свойствами, содержащие 60 - 79 мол.% ВЛФ, 18 - 22 мол.% трифторэтилена и 3 - 22 мол.% ХТФЭ (смотри патент США N 5086679),
(g) эластомерные полимеры ВЛФ, такие как ВДФ/ГФП-сополимеры и ВЛФ/ГФП/ТФЭ-терполимеры (смотри, например, заявку Великобритании N 888765 и Кирк-Отмер, "Энциклопедия химической технологии", т. 8, страницы 500 - 515, 1979), такие полимеры могут содержать также гидрированные олефины, такие как этилен или пропилен (как описано, например, в EP 518073), перфторалкилвинилэфиры, "узловые" бромированные сомономеры и/или концевые J-атомы, как описано, например, в US 4243770, US 4973633 и EP 407937,
(h) поливинилиденфторид или модифицированный поливинилиденфторид, содержащий небольшие количества, обычно от 0,1 до 10 мол.%, одного или более фторированных сомономеров, таких как гексафторпропен, тетрафторэтилен, трифторэтилен.

[27]

Полимеры указанных выше классов, и в частности, полимеры на основе ТФЭ, могут быть модифицированы перфторированными диоксолами, как описано, например, в патентах US 3865845, US 3978030, EP 73087, EP 76581, EP 80187 и в заявке на Европейский патент N 94109782.6.

[28]

Способ-предмет настоящего изобретения предпочтительно используется для сополимеризации водородсодержащих фторированных мономеров, таких, как например, ВДФ (смотри классы (g) и (h), описанные выше), или для сополимеризации перфторированных олефиновых мономеров с нефторированными олефинами (смотри, например, класс (d)).

[29]

Ниже приводятся некоторые рабочие примеры, которые имеют только иллюстративную цель, но не ограничивают объем изобретения.

[30]

Пример 1
В боковой стенке 0,6 л автоклава из нержавеющей стали AISI 316, оборудованного мешалкой, работающей при 600 об/мин, предусматривается кварцевые окно, в соответствии с которым устанавливается УФ-лампа типа Напаи TQ-150. Она является ртутной лампой высокого давления с лучеиспусканием в интервале от 240 до 600 нм, с мощностью 13,2 Вт для излучения в интервале 240 - 330 нм.

[31]

Автоклав откачивается, а затем в него загружается в следующей последовательности:
- 350 г деминерализованной воды, свободной от O2,
- 4,2 г микроэмульсии, состоящей из 12% по массе Galden(R) D02 общей формулы: CF3O-(CF2-CF(CF3)O)m(CF2O)n -CF3 с m/n = 20 и средней молекулярной массой 450, 36% по массе поверхностно-активного вещества общей формулы: CF3O-(CF2 -CF(CF3)O)m(CF2O)n-CF2COO-K+ с m/n = 26,2 и средней молекулярной массой 580, остальное H2O,
- 1 г персульфата калия (KPS = ПСК).

[32]

Затем в автоклаве создается температура 15oC и давление 25 бар с помощью винилиденфторида (ВДФ). Затем включается УФ-лампа. Через 5 мин после того, как отмечается начало реакций, отмечается падение давления внутри автоклава. Начальное давление восстанавливается и поддерживается постоянным в процессе всей реакции непрерывной подачей ВДФ. Через 28 мин после начала реакции лампа отключается, а автоклав вентилируется и разгружается при комнатной температуре. Полученный таким образом латекс коагулируется и сушится с выходом 20,94 г полимера, характеристики которого определяются следующими методами:
- вторая точка плавления (T2m): в соответствии со стандартом 3222-88 ASTM,
- превращения "хвост-к-хвосту" и "голова-к-голове" (мол.%) в соответствии с известным методом F19-ЯМР.

[33]

Результаты представлены в таблице, где также указывается продуктивность Rp (производительность), выраженная в граммах полимера в минуту на литр воды.

[34]

Пример 2
Выдерживаются условия и методика примера 1, за исключением типа микроэмульсии и инициатора.

[35]

Используется 4,2 г микроэмульсии, состоящей из: 24% по массе перфторполиоксиалкилена, имеющего водородсодержащие концевые группы общей формулы CF2H-O(CF2CF2O)m-(CF2O)n-CF2H с m/n = 0,95 и средней молекулярной массой 365; 33% по массе поверхностно-активного вещества общей формулы: CF3O-(CF2CF(CF3)O)m(CF2O)n -CF2COO-K+ с m/n = 26,2 и средней молекулярной массой 580; остальное - H2O. В качестве инициатора используется дитретбутилперекись (ЛТБП), подающаяся 0,5 мл порциями каждый 5 мин общим количеством 6 мл. Полимеризация проводится в течение 60 мин. После этого лампа выключается, а автоклав вентилируется и разгружается при комнатной температуре. Полученный латекс коагулируется и сушится. Полученный полимер (25,0 г) имеет характеристики, представленные в таблице.

[36]

Пример 3 (сравнительный)
5-литровый автоклав из нержавеющей стали AISI 316, оборудованный мешалкой, работающей при 570 об/мин, вентилируется, а затем загружается в указанной последовательности: 15 г парафинового воска (точка плавления около 66oC), 3,5 л деминерализованной воды и 7 г Surflon(R) S-III-S в качестве поверхностно-активного вещества. В автоклаве затем создается температура реакции 122,5oC и давление 44 абс.бар мономера ВДФ; с поддержанием такого давления постоянным в процессе полимеризации. После достижения реакционных условий добавляется 17 мл дитретбутилперекиси (ДТБП).

[37]

Реакция начинается через 8 мин и прерывается через 224,5 мин охлаждением автоклава до комнатной температуры. Полученный таким образом латекс коагулируется и сушится. Полученный полимер (1230 г) имеет характеристики, представленные в таблице.

[38]

Пример 4
Такой же автоклав, как в примере 1, оборудованный мешалкой, работающей при 1000 об/мин, кварцевым окном и УФ-лампой, вентилируется и затем загружается в следующей последовательности:
- 310 г деминерализованной воды, свободной от O2,
- 2 г поверхностно-активного вещества общей формулы CF3O-(CF2-CF(CF3 )O)m-(CF2O)n -CF2COO-K+ с m/n = 26,2 средней молекулярной массой 595.

[39]

Автоклав доводится до 5oC, а затем в него подается 6,8 бар тетрафторэтилена (ТФЭ) и 3,2 бар загрузочной смеси, состоящей из 49 мол.% этилена (ET= ЭТ) и 51 мол.% ТФЭ. Затем включается УФ-лампа, и непрерывно подается водный раствор ПСК со скоростью 0,0246 г ПСК в час до получения общего поданного количества ПСК 0,039 г. Реакция начинается через 21 мин. Давление поддерживается постоянным подачей указанной выше смеси ЭТ/ТФЭ. Через 263 минуты общего времени реакции лампа выключается, и автоклав вентилируется и разгружается при комнатной температуре. Полученный латекс коагулируется и сушится. Полученный полимер (50,0 г) имеет характеристики, представленные в таблице. Индекс расплава определяется в соответствии со стандартом D3159-83 ASTM.

[40]

Пример 5
Автоклав, аналогичный автоклаву из примера 4, вентилируется и загружается в следующей последовательности:
- 240 г деминерализованной воды, свободной от O2,
- 6,1 г микроэмульсии, использованной в примере 2.

[41]

В автоклав, в котором создается температура 10oC, подается 7 бар ТФЭ и 8 бар загрузочной смеси, состоящей из 49 мол.% ЭТ и 51 мол.% ТФЭ. Затем включается УФ-лампа и одновременно подается раствор дитретбутилперекиси (ДТБП) в третбутаноле со скоростью 0,0042 г ДТБП в час в течение 60 мин. Реакция начинается через 15 мин. Давление поддерживается постоянным подачей указанной выше смеси ЭТ/ТФЭ. Через 493 мин общего времени реакции лампа выключается, и автоклав вентилируется и разгружается при комнатной температуре. Полученный латекс коагулируется и сушится. Полученный полимер (40,0 г) имеет характеристики, представленные в таблице.

[42]

Пример 6
Выдерживаются условия и методики примера 5, за исключением типа инициатора. Используется ацетон с подачей 0,5 мл порциями каждые 5 минут общим количеством 6 мл. Полимеризация проводится в течение 60 минут. Лампа затем выключается, и автоклав затем вентилируется и разгружается при комнатной температуре. Полученный латекс коагулируется и сушится. Полученный полимер (2,0 г) имеет характеристики, представленные в таблице.

[43]

Пример 7 (сравнительный)
5-литровый автоклав из нержавеющей стали AISI 316, оборудованный мешалкой, работающей при 570 об/мин, вентилируется и загружается в следующей последовательности: 225 мл CFC-113, 37,5 г поверхностно-активного вещества Galden(R) общей формулы CF3O-(CF2CF(CF3)O)m-(CF2O)n -CF2COO-NH+ с m/n = 10 и средней молекулярной массой примерно 600, растворенного в 575 деминерализованной воды. Автоклав доводится до температуры реакции 75oC, и в него водится ЭТ и ТФЭ в таких количествах, чтобы получить при рабочем давлении 22 абс. бар мольное отношение ЭТ:ТФЭ в газовой фазе, равное 18:82. После достижения рабочего давления непрерывно в течение 6 ч подается раствор персульфата аммония (APS=ПСА) (5 г ПСА/л) со скоростью 25 мл/ч. Рабочее давление поддерживается постоянным подачей в процессе реакции смеси ЭТ:ТФЭ с мольным отношением 45:55. Через 6 ч выгружается 3,848 кг латекса, имеющего концентрацию, равную 119 г полимера на 1 кг латекса. Латекс коагулируется и сушится, а полученный полимер имеет характеристики, представленные в таблице.

[44]

Пример 8
Автоклав такой же, как в примере 4 вентилируется и загружается в следующей последовательности:
- 275 г деминерализованной воды, свободной от O2,
- 2,3 г микроэмульсии, состоящей из: 18,4% по массе Galden(R)D02 общей формулы CF3O-(CF2CF(CF3)O)m(CF2O)n -CF3 с m/n = 20 и средней молекулярной массой 450; 30,6% по массе поверхностно-активного вещества общей формулы: CF3O-(CF2CF(CF3)O)m(CF2O)n- CF2 COO-NH4+ с m/n = 10 и средней молекулярной массой 684, остальное H2O, - 0,0035 г персульфата калия (ПСК).

[45]

В автоклаве затем создается температура 15oC и давление 10 бар смесью, состоящей из 98,2 мол.% ТФЭ и 1,8 мол.% перфторпропилвинилэфира (ФПВЭ). Затем включается УФ-лампа и одновременно в течение 1 ч непрерывно подается водный раствор ПСК со скоростью 0,007 г ПСК в час. Через 1 мин наблюдается начало реакции. Рабочее давление поддерживается постоянным в процессе всей реакции непрерывной подачей указанной выше смеси ТФЭ/ФПВЭ. Через 146 мин от начало реакции лампа выключается, и автоклав вентилируется и разгружается при комнатной температуре. Полученный латекс коагулируется и сушится. Характеристики полученного полимера (76,0 г) приводятся в таблице. Индекс расплава определяется в соответствии стандартом D3 30786 ASTM.

[46]

Пример 9
Автоклав, такой же, как в примере 4 вентилируется и загружается 310 г деминерализованной воды, свободной от O2. Автоклав доводится до температуры 15oC, и в него подается 2,7 бар гексафторпропена (ГФП) и затем 7,3 бар загрузочной смеси, состоящей из 78,5 мол.% ВДФ и 21,5 мол.% ГФП. Затем включается УФ-лампа, и одновременно подается непрерывно в течение 1 ч водный раствор ПСА со скоростью 0,7 г ПСА в час. Реакция начинается через 42 мин. Давление поддерживается постоянным непрерывной подачей указанной выше смеси ВДФ/ГФП. Через III мин общего времени реакции лампа выключается, и автоклав вентилируется и разгружается при комнатной температуре. Полученный таким образом латекс коагулируется и сушится. Характеристики полученного полимера (45,0 г) приводятся в таблице. Температура стеклования (Tg = Tc) определяется ДСК, среднемассовая (числовая) молекулярная масса (Mw) гельпроникающей хроматографией (ГПХ).

[47]

Пример 10 (сравнительный)
5-литровый автоклав из нержавеющей стали AISI316, оборудованный мешалкой, работающей при 630 об/мин, вентилируется, и в него вводится 3,4 л деминерализованной воды. Автоклав затем доводится до температуры 85o C и в него загружается ВДФ и гексафторпропен (ГФП) в таких количествах, чтобы при рабочем давлении II абс.бар, мольное соотношение ВДФ:ГФП в газовой фазе составляло 53: 47. После достижения рабочего давления вводится 26,25 ПСА, растворенного в 100 мл деминерализованной воды. Рабочее давление поддерживается постоянным в процессе реакции подачей газовой смеси ВДФ:ГФП в мольном соотношении 78,5:21, 5. Через 61 мин реакция прерывается, и латекс выгружается, коагулируется и сушится с выходом 1454 г полимера. Характеристики последнего приводятся в таблице.



[48]

Фторированные полимеры, имеющие высокую структурную однородность (упорядочность), отличающиеся высокой максимальной рабочей температурой, улучшенными механическими свойствами и лучшей перерабатываемостью, получают способом (со) полимеризации фторированных олефиновых мономеров, необязательно в сочетании с нефторированными олефинами в водной эмульсии в присутствии радикальных фотоинициаторов и при наличии видимой области ультрафиолетового излучения. 13 з.п.ф-лы, 1 табл.



Способ (СО)полимеризации одного или более фторированных олефиновых мономеров, возможно, в сочетании с одним или более нефторированных олефинов (со)полимеризацией мономеров в водной эмульсии в присутствии радикального инициатора, отличающийся тем, что в качестве радикального инициатора используют радикальный фотоинициатор, а мономер (со)полимеризуют при наличии видимой области ультрафиолетового излучения.

2. Способ по п.1, отличающийся тем, что в качестве радикального фотоинициатора используют неорганические или органические перекиси, кетоны, ди- или поликетоны, диалкилсульфиды, комплексы переходных металлов, галогенированные или полигалогенированные органические соединения.

3. Способ по п.2, отличающийся тем, что в качестве радикального фотоинициатора используют неорганическую перекись, выбираемую из персульфата щелочного металла и персульфата аммония.

4. Способ по п.2, отличающийся тем, что в качестве радикального фотоинициатора используют органическую перекись, выбираемую из диалкилперекисей, ацилперекисей, пероксикарбонатов, пероксиэфиров.

5. Способ по п.4, отличающийся тем, что в качестве радикального фотоинициатора используют дитрет-бутилперекись.

6. Способ по пп.1 - 5, отличающийся тем, что видимая область ультрафиолетового излучения имеет длину волны 220 - 600 нм.

7. Способ по пп.1 - 6, отличающийся тем, что (со)полимеризацию проводят при температуре (-20) -(+100)oC.

8. Способ по п.7, отличающийся тем, что (со)полимеризацию проводят при температуре (-10) - (+40)oC.

9. Способ по пп.1 - 8, отличающийся тем, что (со)полимеризацию проводят при давлении 3 - 50 бар.

10. Способ по п.9, отличающийся тем, что (со)полимеризацию проводят при давлении 10 - 20 бар.

11. Способ по пп.1 - 10, отличающийся тем, что в качестве фторированного олефинового мономера используют С28-перфторолефины, водородсодержащие С28 -фторолефины, С28-хлор и/или бромфторолефины, перфторвинилэфиры СF2= CFOX, где Х - С26-перфторалкил или С19 -перфтороксиалкил, имеющий одну или более эфирных групп, или перфтордиоксолы.

12. Способ по пп. 1 - 11, отличающийся тем, что в качестве нефторированных олефинов используют олефины с 2 - 8 углеродными атомами.

13. Способ по пп.1 - 12, отличающийся тем, что водородсодержащие фторированные олефиновые мономеры или перфторированные олефиновые мономеры сополимеризуют с нефторированными олефинами.

14. Способ по пп.1 - 13, отличающийся тем, что (со)полимеризацию проводят в присутствии эмульсии или микроэмульсии перфторполиоксиалкиленов или фторполиоксиалкиленов, имеющих водородсодержащие концевые группы и/или водородсодержащие звенья.