СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИХ АЛМАЗНЫХ ЧАСТИЦ

27-02-2016 дата публикации
Номер:
RU2576055C2
Контакты: Russian Federation, 194021, Sankt-Peterburg, Politekhnicheskaya ul., d.26, FTI im. A.F.Ioffe RAN, patentno-litsenzionnaya sluzhba, Belov V.I.,
Номер заявки: 18-14-201359/05
Дата заявки: 12-09-2013

[1]

Изобретение относится к нанотехнологии материалов, конкретно к процессам получения кристаллических алмазных частиц с размерами в диапазоне 50-500 нм, и может быть использовано в промышленности для синтеза алмазов, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок.

[2]

С начала 60-х годов прошлого века известен способ синтеза алмазов из графита при высоких давлениях и температурах, так называемый high-pressure-high temperature synthesis (HPHT), в присутствии металла катализатора (например, патент US 2947609, МПК B01J 3/06, опубликован 02.08.1960) Типичные значения давлений и температур составляют P=5-8 ГПа, T=1300-1500°C, исходным материалом является смесь графита и металла катализатора в соотношении, как правило, 50/50 или 70/30, а время синтеза варьируется от десятков секунд до десятков минут.

[3]

Известен способ получения микрокристаллических алмазов (см. патент RU 2131763, МПК B01J 3/06, C30B 29/04, опубликован 20.06.1999), включающий воздействие на графит с фуллереном и катализатор из сплава никеля с марганцем давлением и нагревом в области стабильности алмаза с последующей выдержкой при давлении и температуре синтеза. Фуллерен вводят в количестве 10-2-6·10-1 мас.% от массы графита, при этом фуллерен распределяют в массе графита.

[4]

Известный способ обеспечивает высокий выход алмаза при пониженных давлениях, не превышающих 5,5 ГПа, однако ему присущи и серьезные недостатки. Размер получаемых известным способом частиц алмаза доходит до нескольких сотен мкм, поэтому необходимо проводить их очистку от катализатора и остатков графита и затем осуществлять дробление до необходимого размера 50-500 нм, что значительно усложняет технологический процесс.

[5]

Известен способ получения кристаллических алмазных частиц (см. заявка RU 94040324, МПК C01B 31/06, опубликована 20.09.1996) путем ударного сжатия углеродсодержащего материала посредством передающего импульс давления элемента, разгоняемого продуктами взрыва расчетной порции взрывчатого вещества. В качестве элемента, передающего импульс давления, используют металлический ударник, выполненный в виде цилиндра, которому сообщают скорости в диапазоне от скорости, соответствующей амплитуде давления, создаваемого в массе формуемого алмазного порошка на нижней границе области стабильности алмаза на фазовой диаграмме углерода, до скорости, соответствующей амплитуде давления на нижней границе жидкой фазы углерода. В качестве углеродсодержащего материала используют ультрадисперсную фракцию алмазного порошка, а выбор скоростей ударника и расчет массы взрывчатого вещества в источнике импульса производят с учетом показаний фотоприемника, регистрирующего момент появления интенсивного неравновесного излучения на спектральной линии люминесценции алмаза.

[6]

Известный способ позволяет получать частицы алмаза размерами от 1 до 600 мкм, поэтому их необходимо дополнительно дробить до размера 50-500 нм, который требуется для финишной полировки, а также использования в качестве биометок.

[7]

Наиболее близким по совокупности существенных признаков к настоящему изобретению является способ получения кристаллических алмазных частиц, принятый за прототип (см. патент RU 2223220, МПК C01B 31/06, B01J 3/06, C30B 28/00, C30B 29/04, C30B 29/60, B24D 3/10, опубликован 10.02.2004). В способе-прототипе смешивают частицы очищенных нанодисперсных алмазов с частицами графита нанометричных размеров, перемешивают в течение 2-3 часов, а обработку полученной шихты осуществляют при давлении от 0,133·10-10 до 2,0 ГПа и температуре от 20 до 1200°C с выдержкой от 10 секунд до 6 часов при следующем соотношении составных частей, мас.%:

[8]

порошок нанодисперсных алмазов с размерами кристаллитов 2-10 нм - 10-50,

[9]

порошок нанодисперсных алмазов, на поверхность которых нанесен графит или углерод - остальное.

[10]

Частицы графита можно наносить на поверхность частиц алмаза путем термической обработки очищенного порошка нанодисперсных алмазов с графитизацией их поверхностного слоя, нагревая их в вакууме при температуре от 1000 до 1500°C. Возможен вариант, когда поверхность исходных частиц алмаза смачивают углеродсодержащей жидкостью или осаждают на поверхность этих частиц углеродсодержащие группы из углеродсодержащего газа, нагревая газ до температуры от 300°C и поддерживая температуру частиц алмаза не более 300°C.

[11]

Нанесение на поверхность частиц алмаза нанометриных частиц графита или углерода позволяет, во-первых, производить перекристаллизацию нанесенного графита или углерода в плотные углеродные модификации в области давлений и температур, которая традиционно считается областью термодинамической стабильности "рыхлых" углеродных модификаций (графит, сажа). Во-вторых, способствует росту размеров частиц нанодисперсного алмаза.

[12]

Известным способом получают алмазные частицы в диапазоне от 1 до 500 мкм с содержанием несгораемых примесей не более 2 мас.%, в то время как для финишной полировки, а также использования в качестве биометок требуются микрокристаллические алмазные частицы размером 50-500 нм. Поэтому полученные известным способом-прототипом алмазные частицы необходимо подвергать дополнительному измельчению до требуемого размера, что ведет к усложнению технологии и применяемого оборудования, а также увеличивает продолжительность технологического процесса получения микрокристаллических алмазных частиц требуемого размера.

[13]

Задачей настоящего изобретения являлась разработка такого способа получения кристаллических алмазных частиц, который бы позволял получать непосредственно алмазные частицы размером 50-500 нм и тем самым исключить необходимость дополнительного их измельчения.

[14]

Поставленная задача решается тем, что способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом, выдержку полученного состава при статическом давлении 5-8 ГПа и температуре 1300-1800°C в течение 10-60 секунд и отделение полученных кристаллических алмазных частиц от графита седиментацией в жидкости.

[15]

В качестве предельного ациклического углеводорода может быть использован гексан.

[16]

В качестве одноосновного спирта может быть использован этиловый спирт или изопропиловый спирт.

[17]

Настоящий способ получения кристаллических алмазных частиц поясняется чертежом, где приведено распределение по размерам кристаллических алмазных частиц, полученных настоящим способом.

[18]

Настоящий способ осуществляют следующим образом. Подготавливают порцию наноалмазов, полученных детонационным синтезом (так называемые детонационные наноалмазы), размер которых обычно лежит в интервале 2-40 нм. Пропитывают порошок детонационных наноалмазов ациклическим углеводородом или одноосновным спиртом в количестве 30-50 мас.% от веса детонационных наноалмазов. Помещают полученный состав в графитовую втулку контейнера высокого давления на основе литографского камня и выдерживают его при статическом давлении 5-8 ГПа и температуре 1300-18000C в течение 10-60 секунд. Полученный порошок обрабатывает соляной кислотой для удаления попавших в него частиц литографского камня контейнера и затем промывают его в деионизованной воде. После чего порошок помещают в жидкость бромоформ (CHBr3), имеющую плотность 2,89 г/см3, для разделения графита и кристаллических алмазных частиц. Кристаллические алмазные частицы отфильтровывают и промывают в деионизованной воде. Размер кристаллических алмазных частиц, полученных настоящим способом (см. график на чертеже), лежит в интервале 30-250 нм с максимумом в области 60-80 нм.

[19]

Выбор интервалов давления, температуры и времени выдержки определяется следующими обстоятельствами. При давлении менее 5 ГПа создаются условия термодинамической стабильности графита, и алмазные частицы превращаются в графит, так как условия синтеза не стабильны, а при давлении более 8 ГПа происходит интенсивное разрушение стандартной технологической оснастки для создания высокого давления. При температуре выдержки менее 13000C не происходит реакции между углеводородом и наноалмазами и не происходит укрупнения детонационных наноалмазов, их размер не превышает 12 нм. При выдержке при температуре более 18000C создаются условия термодинамической стабильности графита, и алмазные частицы переходят в графит. При длительности выдержки менее 10 секунд не достигается равномерного распределения температуры в камере высокого давления и возможен лишь частичный переход детонационного наноалмаза в кристаллические алмазные частицы, а при длительности выдержки более 60 секунд происходит интенсивное разрушение твердого сплава камеры высокого давления.

[20]

Пример 1. Подготавливали порцию детонационных наноалмазов, пропитанных гексаном, взятом в количестве 30 мас.% от веса детонационных наноалмазов. В пресс-форме изготавливали контейнер высокого давления высотой 9 мм и его торцовые шайбы прессованием при 700 ГПа из смеси порошков графита и литографского камня с добавлением водного раствора поливинилового спирта. Из графитового стержня диаметром 6 мм изготавливали цилиндрическую втулку с внешним диаметром 6 мм, внутренним диаметром 4 мм и высотой 6 мм. Устанавливали в контейнер высокого давления нижнюю торцовую шайбу и графитовую втулку. В графитовую втулку помещали пропитанный гексаном порошок детонационных наноалмазов, который затем придавливали пуансоном с диаметром 4 мм до плотности 0,87 г/см3. Затем контейнер высокого давления закрывали верхней торцовой шайбой и помещали между двух матриц высокого давления, центр которых был выполнен из твердого сплава. Матрицы высокого давления с контейнером высокого давления устанавливали в гидравлический пресс с усилием 1000 т.е. Состав в графитовой втулке контейнера высокого давления выдерживали при статическом давлении 7 ГПа и температуре 15100C в течение 15 секунд. Полученный порошок обрабатывали соляной кислотой для удаления попавших в него частиц литографского камня контейнера высокого давления и затем промывали его в деионизованной воде. После чего порошок помещали в жидкость бромоформ, имеющую плотность 2,89 г/см3, для разделения графита и кристаллических алмазных частиц. Кристаллические алмазные частицы отфильтровывали и промывали в деионизованной воде. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм (см. график на чертеже).

[21]

Пример 2. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что порошок детонационных наноалмазов пропитывали этиловым спиртом, взятым в количестве 37 мас.% от веса детонационных наноалмазов, пропитанный этиловым спиртом порошок детонационных наноалмазов придавливали пуансоном с диаметром 4 мм до плотности 0,93 г/см3, выдержку состава проводили при температуре 1500°C в течение 15 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм.

[22]

Пример 3. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что порошок детонационных наноалмазов пропитывали изопропиловым спиртом, взятым в количестве 32 мас.% от веса детонационных наноалмазов, пропитанный изопропиловым спиртом порошок детонационных наноалмазов придавливали пуансоном до плотности 0,90 г/см3. Выдержку состава проводили при температуре 1640°C в течение 15 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм.

[23]

Пример 4. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что к порошку детонационных наноалмазов добавили этиловый спирт, взятый в количестве 20 мас.% от веса детонационных наноалмазов, которое не обеспечило однородную пропитку наноалмазов. После синтеза образец содержал две части: одна часть - прореагировавшая, представляла собой белые кристаллические алмазные частицы, а вторая часть состояла из черных частиц детонационного наноалмаза, который не был полностью смочен этиловым спиртом.

[24]

Пример 5. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что к порошку детонационных наноалмазов добавили этиловый спирт, взятый в количестве 60 мас.% от веса детонационных наноалмазов, которое было избыточным для пропитки наноалмазов. В процессе синтеза происходил разрыв контейнера высокого давления, что свидетельствует об избыточной концентрации водорода.

[25]

Пример 6. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали при статическом давлении 4,8 ГПа. После синтеза образец содержал две части: одна часть - прореагировавшая, состояла из белых алмазных кристаллических частиц, а вторая часть образца состояла из черных частиц графитоподобного углерода, который образовался в области термодинамической стабильности графита. Имел место неустойчивый процесс, происходящий с частичной или полной графитизацией алмазов.

[26]

Пример 7. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали в течение 9 секунд. После синтеза наблюдалась цветовая неоднородность образца, что свидетельствует о неоднородности нагрева образца. Можно заключить, что процесс такой длительности является неустойчивым с точки зрения однородности получаемого образца.

[27]

Пример 8. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали в течение 62 секунд. В результате синтеза получены кристаллические алмазные частицы, однако процесс синтеза такой длительности приводит к интенсивному разогреву камеры высокого давления, что ведет к уменьшению возможного количества циклов синтеза до ее разрушения.

[28]

Пример 9. Подготавливали порцию детонационных наноалмазов, пропитанных изопропиловым спиртом, взятым в количестве 22 мас. % от веса детонационных наноалмазов. В пресс-форме изготавливали контейнер высокого давления высотой 9 мм и его торцовые шайбы прессованием при 700 МПа из смеси порошков графита и литографского камня с добавлением водного раствора поливинилового спирта. Из графитового стержня диаметром 6 мм изготавливали цилиндрическую втулку с внешним диаметром 6 мм, внутренним диаметром 4 мм и высотой 6 мм. Устанавливали в контейнер высокого давления нижнюю торцовую шайбу и графитовую втулку. В графитовую втулку помещали пропитанный изопропиловым спиртом порошок детонационных наноалмазов, который затем придавливали пуансоном с диаметром 4 мм до плотности 0,87 г/см3. Затем контейнер высокого давления закрывали верхней торцовой шайбой и помещали между двумя матрицами высокого давления, центр которых был выполнен из твердого сплава. Матрицы высокого давления с контейнером высокого давления устанавливали в гидравлический пресс с усилием 1000 т.е. Состав в графитовой втулке контейнера высокого давления выдерживали при статическом давлении 7 ГПа и температуре 1400°C в течение 30 секунд. Полученный порошок обрабатывали соляной кислотой для удаления попавших в него частиц литографского камня контейнера высокого давления и затем промывали его в деионизованной воде. После чего порошок помещали в жидкость бромоформ, имеющую плотность 2,89 г/см3, для разделения графита и кристаллических алмазных частиц. Кристаллические алмазные частицы отфильтровывали и промывали в деионизованной воде. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм

[29]

Пример 10. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали этиловым спиртом, взятым в количестве 58 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при температуре 1700°C в течение 50 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 90-120 нм.

[30]

Пример 11. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали бутанолом (н-бутанол, н-бутиловый спирт) C4H9OH - представителем одноосновных спиртов, взятым в количестве 48 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 5 ГПа при температуре 1450°C в течение 35 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-90 нм.

[31]

Пример 12. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали 2-метилпропанолом-1 (изобутиловый спирт, изобутанол), взятым в количестве 30 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 6 ГПа при температуре 1750°C в течение 55 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм.

[32]

Пример 13. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали бензиловым спиртом (фенилкарбинолом С6Н5СН2ОН), взятым в количестве в количестве 50 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 7,5 ГПа при температуре 1400°C в течение 30 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 120-160 нм.

[33]

Пример 14. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали циклогексанолом (гексалином) - алициклическим одноосновным спиртом (формула С6Н11ОН), взятым в количестве в количестве 25 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 5,5 ГПа при температуре 1500°C в течение 50 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм.

[34]

Пример 15. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали пропиловым спиртом (пропан-1-ол, 1-пропанол С3Н7ОН - одноосновный спирт), взятым в количестве 35 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 6,0 ГПа при температуре 1450°C в течение 40 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 90-120 нм.

[35]

Пример 16. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали пентаном, взятым в количестве 30 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 7,0 ГПа при температуре 1750°C в течение 55 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм.

[36]

Пример 17. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали гептаном, взятым в количестве 50 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 6,5 ГПа при температуре 1350°C в течение 20 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 50-80 нм.

[37]

Пример 18. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали нонаном, взятым в количестве 22 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 7,5 ГПа при температуре 1350°C в течение 15 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-150 нм с максимумом 40-60 нм.

[38]

Пример 19. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали деканом, взятым в количестве 58 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 5,0 ГПа при температуре 1700°C в течение 55 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 100-160 нм.

[39]

Пример 20. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали ундеканом, взятым в количестве 40 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 7,0 ГПа при температуре 1550°C в течение 45 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 50-250 нм с максимумом 80-100 нм.

[40]

Пример 21. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали гексадеканом, взятым в количестве 45 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 7,5 ГПа при температуре 1500°C в течение 35 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 80-120 нм.

[41]

Пример 22. Получали кристаллические алмазные частицы так же, как в примере 9, за исключением того, что порошок детонационных наноалмазов пропитывали парафином (содержащим ациклические углеводороды ряда С18-С35 - октадекан, нонадекан, эйкозан до тетратриаконтана и пентатриаконтана), взятым в количестве 45 мас. % от веса детонационных наноалмазов. Выдержку состава проводили при статическом давлении 7,5 ГПа при температуре 1500°C в течение 35 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 80-120 нм.

[42]



Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас. % до 58 мас. %, выдержку полученного состава при статическом давлении 5-8 ГПа и температуре 1300-1800°C в течение 10-60 секунд. Изобретение позволяет непосредственно получать алмазные частицы размером 50-500 нм, тем самым исключая необходимость дополнительного их измельчения. 3 з.п. ф-лы, 1 ил.



1. Способ получения кристаллических алмазных частиц, включающий пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас. % до 58 мас. %, выдержку полученного состава при статическом давлении 5-8 ГПа и температуре 1300-1800°C в течение 10-60 секунд.

2. Способ по п. 1, отличающийся тем, что в качестве ациклического углеводорода используют гексан.

3. Способ по п. 1, отличающийся тем, что в качестве одноосновного спирта используют этиловый спирт.

4. Способ по п. 1, отличающийся тем, что в качестве одноосновного спирта используют изопропиловый спирт.