Method and user equipment for transmitting uplink signal, and method and base station for receiving uplink signal
This application claims the benefit of U.S. Patent Application No. 61/392,007, filed on Oct. 11, 2010, which is hereby incorporated by reference as if fully set forth herein. 1. Field of the Invention The present invention relates to a wireless communication system, and more particularly, to a method of configuring a transmitter in consideration of reception capabilities of a base station at a user equipment having a plurality of transmission antennas. 2. Discussion of the Related Art Recently, as capabilities and throughput of a wireless communication system have been maximized, a multiple input multiple output (MIMO) system is attracting considerable attention. MIMO technology employs multiple transmission antennas and multiple reception antennas so as to improve transmission/reception efficiency, instead of a conventional method using one transmission antenna and one reception antenna. In particular, with development of wireless communication technology, the number of transmission antennas supported by a user equipment has been increased. Accordingly, it is necessary to configure a base station to receive signals from a user equipment having various numbers of antennas. However, implementation of such a base station causes extremely high receiver complexity. If reception capabilities of the base station do not match transmission capabilities of the user equipment, the base station may not receive the signal from the user equipment. Alternatively, in order to enable the base station to receive the signals from the user equipment, the user equipment may operate with minimum transmission capabilities. As a result, performance or throughput of a wireless communication system is deteriorated. Accordingly, the present invention is directed to a method and user equipment for transmitting an uplink signal and a method and base station for receiving an uplink signal that substantially obviate one or more problems due to limitations and disadvantages of the related art. An object of the present invention is to provide a method and apparatus for solving mismatch between reception capabilities of a base station and transmission capabilities of a user equipment. Another object of the present invention is to provide a method and apparatus capable of decreasing receiver complexity of a base station. Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for transmitting, at a user equipment having N (N being an integer greater than 1) transmission antennas, an uplink signal to a base station, includes receiving, from the base station, reception capability information of the base station, the reception capability information including information indicating that the base station may receive a signal transmitted through a maximum of M (M being an integer greater than 1) transmission antennas, and transmitting the uplink signal using N transmission antennas if N is not greater than M and transmitting the uplink signal using M transmission antennas if N is greater than M. In another aspect of the present invention, a method for receiving, at a base station, an uplink signal from a user equipment having N (N being an integer greater than 1) transmission antennas, includes transmitting reception capability information of the base station to the user equipment, the reception capability information including information indicating that the base station may receive a signal transmitted through a maximum of M (M being an integer greater than 1) transmission antennas, and configuring at least one of a first receiver for receiving the uplink signal transmitted through one transmission antenna, a second receiver for receiving the uplink signal transmitted through two transmission antennas, . . . , and an M-th receiver for receiving the uplink signal through M transmission antennas. In another aspect of the present invention, a user equipment which has N (N being an integer greater than 1) transmission antennas and transmits an uplink signal to a base station, includes a transmitter, a receiver, and a processor configured to control the transmitter and the receiver, wherein the processor controls the receiver to receive, from the base station, reception capability information of the base station, the reception capability information including information indicating that the base station may receive a signal transmitted through a maximum of M (M being an integer greater than 1) transmission antennas, and wherein the processor controls the transmitter to transmit the uplink signal using N transmission antennas if N is not greater than M and controls the transmitter to transmit the uplink signal using M transmission antennas if N is greater than M. In another aspect of the present invention, a base station which receives an uplink signal from a user equipment having N (N being an integer greater than 1) transmission antennas, includes a transmitter, a receiver, and a processor configured to control the transmitter and the receiver, wherein the processor controls the transmitter to transmit reception capability information of the base station to the user equipment, the reception capability information including information indicating that the base station may receive a signal transmitted through a maximum of M (M being an integer greater than 1) transmission antennas, and wherein the processor controls the receiver to configure at least one of a first receiver for receiving the uplink signal transmitted through one transmission antenna, a second receiver for receiving the uplink signal transmitted through two transmission antennas, . . . , and an M-th receiver for receiving the uplink signal through M transmission antennas. The user equipment may transmit information indicating N which is the number of transmission antennas of the user equipment to the base station. The user equipment may configure an N-th receiver if N is not greater than M and configure an M-th receiver if N is greater than M. The user equipment may transmit the uplink signal to the base station using the configured transmitter. The base station may receive the uplink signal from the user equipment using the configured receiver. According to the present invention, even when reception capabilities of the base station do not match transmission capabilities of the user equipment, the user equipment may not operate with minimum transmission capabilities. According to the present invention, it is possible to decrease receiver complexity of the base station. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings: Hereinafter, the preferred embodiments of the present invention will be described with reference to the accompanying drawings. It is to be understood that the detailed description, which will be disclosed along with the accompanying drawings, is intended to describe the exemplary embodiments of the present invention, and is not intended to describe a unique embodiment with which the present invention can be carried out. The following detailed description includes detailed matters to provide full understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention can be carried out without the detailed matters. In some cases, to prevent the concept of the present invention from being ambiguous, structures and apparatuses of the known art will be omitted, or will be shown in the form of a block diagram based on main functions of each structure and apparatus. Also, wherever possible, the same reference numbers will be used throughout the drawings and the specification to refer to the same or like parts. In the present invention, a User Equipment (UE) denotes a mobile or fixed type user terminal Examples of the UE include various equipments that transmit and receive user data and/or various kinds of control information to and from a base station. The UE may be referred to as, a Terminal Equipment (TE), a Mobile Station (MS), a Mobile Terminal (MT), a User Terminal (UT), a Subscriber Station (SS), a wireless device, a Personal Digital Assistant (PDA), a wireless modem, or a handheld device. Also, in the present invention, a Base Station (BS) means a fixed station that performs communication with a user equipment and/or another base station, and exchanges various kinds of data and control information with the user equipment and another base station. The base station may be referred to another terminology such as an Evolved-NodeB (eNB), a Base Transceiver System (BTS), and an Access Point (AP). The UE and the BS include antennas 500 The memories 200 The antennas 500 The processors 400 The transmitters 100 The signal processing procedure of the receivers 300 A zero-forcing (ZF) receiver, a vertical-Bell laboratories layered space-time (V-BLAST) receiver, a maximum likelihood detection (MLD) receiver, a sub-optimal MLD receiver and so on may be used as the receivers 300 The transmitters 100 Hereinafter, a transmitter including i transmission antennas is referred to as an i-Tx transmitter. In addition, transmission by the i-Tx transmitter is referred to as i-Tx transmission. In order to successfully receive a signal transmitted by the i-Tx transmitter, the receivers 300 A BS must communicate with a UE which enters a coverage area thereof, regardless of the number of transmission antennas included in the UE. Accordingly, the BS is required to configure various types of receivers. For example, if a 1-Tx UE, a 2-Tx UE and a 4-Tx UE are present in a wireless communication system, the BS must configure a 1-Tx receiver in order to receive an uplink signal from the 1-Tx UE, configure a 2-Tx receiver in order to receive an uplink signal from the 2-Tx UE, and configure a 4-Tx receiver in order to receive an uplink signal from the 4-Tx UE. Accordingly, a BS which may configure a 4-Tx receiver is required to configure not only a 4-Tx receiver but also a 2-Tx receiver and a 1-Tx receiver. However, implementation of a BS which may configure various types of receivers increases complexity of receiver implementation. As a result, BS implementation and mounting costs are increased. Accordingly, UE manufacturers release UEs including a large number of transmission antennas, whereas communication providers usually use BSs with reception capabilities lower than the transmission capabilities of the released UEs. For example, although a 4-Tx UE has been released and used for wireless communication, it takes considerable time to use a BS including a 4-Tx receiver in wireless communication. Referring to As compared to MIMO transmission for transmitting different information through a plurality of antennas while using the same frequency resources, the same spatial resources and the same time resources, 1-Tx transmission has inferior information transmission capabilities. In general, the 4-Tx UE is implemented to configure not only a 1-Tx transmitter and a 4-Tx transmitter but also a 2-Tx transmitter. Accordingly, it is not preferable that the UE which may configure a 2-Tx transmitter so as to operate as a 2-Tx UE unconditionally falls back to a 1-Tx UE, in terms of wireless system performance improvement. Referring to The BS may configure at least one of a 1-Tx receiver, a 2-Tx receiver, . . . , and an M-Tx receiver (S206 Referring to In contrast, if N is greater than M, since the BS cannot configure the N-Tx receiver, the receiver having maximum capacity among the receivers which may be configured by the BS becomes an M-Tx receiver. Accordingly, the UE configures an M-Tx transmitter such that the uplink signal transmitted from the UE is received using the M-Tx receiver (S240). That is, the UE operates as the M-Tx UE and transmits the uplink signal to the UE (S250). The BS may configure all the 1-Tx receiver, the 2-Tx receiver, . . . , and the 4-Tx receiver and find a receiver having the best reception performance through a blind detection process. For example, if the quality of the signal received through the 2-Tx receiver is the best, it may be determined that the UE operates as the 2-Tx UE. If it is determined that the UE operates as the 2-Tx UE, the BS may detect the uplink signal from the UE through the 2-Tx receiver. According to the embodiment of Referring to The BS may configure a receiver in the reception capabilities of the BS based on the transmission capability information of the UE (S260 The processor 400 The processor 400 The processor 400 Hereinafter, an example of applying the present invention to the 3GPP LTE/LTE-A system will be described. However, the present invention is not limited thereto. For example, although a mobile communication system is described based on a mobile communication system corresponding to the 3GPP LTE/LTE-A system in the following description, the present invention is applicable to other mobile communication systems excluding unique items of 3GPP LTE/LTE-A. The UE having multiple antenna ports may be configured in a single antenna port mode and a multiple antenna port mode. If the UE is configured in the single antenna port mode, the UE operates as a 1-Tx UE regardless of the number of antenna ports included in the UE. If the UE is configured in the multiple antenna port mode, the number of antenna ports used for uplink transmission by the UE is restricted by reception capabilities of the BS. In particular, if the number N of antenna ports of the UE is greater than the number M of antenna ports which may be detected by the BS, the number of antenna ports used for uplink transmission by the UE is restricted by reception capabilities of the BS. The configuration of the transmitter according to a physical uplink shared channel (PUSCH) transmission mode is as follows. In Table 1, a demodulation antenna port or a DMRS antenna port refers to an antenna port for transmitting a demodulation reference signal. The UE which operates in the single antenna port mode performs uplink transmission using one demodulation antenna port. Alternatively, for PUSCH transmission scheduled by a downlink control information (DCI) format 0 received from the BS, the UE performs uplink transmission using one demodulation antenna port. That is, the UE configures a 1-Tx receiver. The UE which may configure four DMRS antenna ports transmits a PUSCH using two antenna ports if reception capabilities of the BS are 2Tx and transmits a PUSCH using four antenna ports if reception capabilities of the BS are 4Tx. As another example, if the number of antenna ports of the UE is 2, sounding reference signal (SRS) antenna ports may be configured as shown in Table 2. If the number of antenna ports of the UE is four, SRS antenna ports may be configured as shown in Table 3. The SRS antenna port refers to an antenna port used for SRS transmission. Referring to Table 3, the UE having four antenna ports may configure a single antenna port or antenna ports of corresponding in number to reception capabilities of the BS, for SRS transmission. According to the present invention, even when reception capabilities of the BS do not match transmission capabilities of the UE and thus the UE including multiple antennas may not use a maximum number of transmission antennas, the UE does not unconditionally fall back to a 1-Tx UE. Instead, the UE operates to maximize transmission capabilities within reception capabilities of the BS. For example, if the 4-Tx UE is connected to the BS which may receive an uplink signal through up to 2-Tx transmission, the UE may configure a 2-Tx transmitter so as to perform MIMO transmission. Accordingly, according to the present invention, it is possible to improve system performance and throughput of a wireless communication system. The embodiments of the present invention can be applied to a BS, a UE, or other communication devices in a wireless communication system. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. A method for transmitting, at a user equipment having N (N being an integer greater than 1) transmission antennas, an uplink signal to a base station and a method for receiving, at the base station, an uplink signal from the user equipment are disclosed. The base station transmits reception capability information of the base station to the user equipment. Reception capability information includes information indicating that the base station may receive a signal transmitted through a maximum of M (M being an integer greater than 1) transmission antennas. The user equipment transmits the uplink signal using N transmission antennas if N is not greater than M and transmits the uplink signal using M transmission antennas if N is greater than M. 1. A method for receiving, at a base station, an uplink signal from a user equipment having N (N being an integer greater than 1) transmission antennas, the method comprising:
transmitting reception capability information of the base station to the user equipment, the reception capability information including information indicating that the base station may receive a signal transmitted through a maximum of M transmission antennas, where M is an integer greater than 1; and configuring at least one of a first receiver for receiving the uplink signal transmitted through one transmission antenna, a second receiver for receiving the uplink signal transmitted through two transmission antennas, . . . , and an M-th receiver for receiving the uplink signal through M transmission antennas. 2. The method according to receiving, from the user equipment, information indicating N which is the number of transmission antennas of the user equipment; and configuring an N-th receiver if N is not greater than M and configuring an M-th receiver if N is greater than M. 3. The method according to 4. A base station which receives an uplink signal from a user equipment having N transmission antennas, where N is an integer greater than 1, comprising:
a transmitter; a receiver; and a processor configured to control the transmitter and the receiver, wherein the processor controls the transmitter to transmit reception capability information of the base station to the user equipment, the reception capability information including information indicating that the base station may receive a signal transmitted through a maximum of M transmission antennas, where M is an integer greater than 1, and wherein the processor controls the receiver to configure at least one of a first receiver for receiving the uplink signal transmitted through one transmission antenna, a second receiver for receiving the uplink signal transmitted through two transmission antennas, . . . , and an M-th receiver for receiving the uplink signal through M transmission antennas. 5. The base station according to 6. The base station according to BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION
Single antenna 0 A single antenna port for demodula- port mode tion, 3GPP LTE Release-8 transmission supported Multiple 0 A single antenna port for antenna demodulation, 3GPP LTE port mode Release-8 transmission supported New multiple Up to 4 precoded DMRS antenna antenna port DCI ports. The number of antenna port is format defined according to BS reception capabilities (2Tx, 4Tx) Off 1 2 Off 1 2 or 4 (according to BS reception capabilities)




CPC - классификация
HH0H01H01QH01Q1H01Q1/H01Q1/2H01Q1/24H01Q1/246H04H04BH04B7H04B7/H04B7/0H04B7/04H04B7/040H04B7/0404H04B7/041H04B7/0413H04B7/045H04B7/0452H04B7/06H04B7/062H04B7/0628H04B7/069H04B7/0691H04WH04W4H04W48H04W48/H04W48/1H04W48/16H04W8H04W8/H04W8/2H04W8/24H04W88H04W88/H04W88/0H04W88/02IPC - классификация
HH0H01H01QH01Q1H01Q1/H01Q1/2H01Q1/24H04H04BH04B7H04B7/H04B7/0H04B7/00H04B7/04H04B7/06H04WH04W4H04W48H04W48/H04W48/1H04W48/16H04W8H04W8/H04W8/2H04W8/24H04W88H04W88/H04W88/0H04W88/02Цитирование НПИ
370/332375/299
455/562.1