Nanoparticles for treatment of allergy

27-07-2021 дата публикации
Номер:
US0011071776B2
Принадлежит: N-Fold LLC, N FOLD LLC
Контакты:
Номер заявки: 83-24-1657
Дата заявки: 16-09-2019







Цитирование НПИ

Aguado et al., Controlled-release vaccines—biodegradable polylactide/polyglycolide (PL/PG) microspheres as antigen vehicles, Immunobiology, 184(2-3): 113-25 (1992).
Almeida et al., Solid lipid nanoparticles as a drug delivery system for peptides and proteins, Adv. Drug Delivery Rev., 59: 478-490 (2007).
Almería, B. et al., A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery, J. Control. Release, 154(2): 203-210 (2011).
Almería, B. et al., Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery, J Colloid Interface Sci., 343(1): 125-133 (2010).
Anderson and Shive, et al., Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv Drug Deliv Rev, 28(1):5-24 (1997).
Andersson, P et al. Protective Effects of the Glucocorticoid, Budesonide, on Lung Anaphylaxis in Actively Sensitized Guinea-Pigs: Inhibition of IgE-but not of IgG-Mediated Anaphylaxis, British Journal of Pharmacology, 76:139-147 (1982).
Apostolopoulos, V. et al., Structural implications for the design of molecular vaccines, Curr. Opin. Mol. Ther., 2(1): 29-36 (2000).
Aqel, et al., “Re-Stenosis of a sirolimus-coated stent in a heart transplant recipient with allograft vasculopathy”, Journal of Heart and Lung Transplantation, 24(9):1444 (2005).
Aziz et al., Oral Vaccines: New Needs, New Possibilities, BioEssays, 29(6): 591-604 (2007).
Bandyopadhyay, A. et al., The impact of nanoparticle ligand density on dendritic-cell targeted vaccines, Biomaterials, 32(11): 3094-3105 (2011).
Bawarski, W.E. et al., Emerging nanopharmaceuticals, Nanomedicine, 4: 273-282 (2008).
Bielinska et al. Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant, Vaccine, 34(34): 4017-4024 (2016).
Blanchette et al., Cellular evaluation of oral chemotherapy carriers, J. Biomed. Mater. Res. A, 72(4): 381-388 (2005).
Blanchette et al., Oral chemotherapeutic delivery: design and cellular response, Ann. Biomed. Eng., 33(2): 142-149 (2005).
Bonifaz, L. et al., Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance, The Journal of Experimental Medicine, 196(12):1627-1638 (2002).
Bonifaz, L. et al., In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination, The Journal of Experimental Medicine, 199(6):815-824 (2004).
Bourges et al., Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles, Invest Ophthalmol Vis Sci, 44:3562-3569 (2003).
Bourla et al., Age-related macular degeneration: a practical approach to a challenging disease, J. Am. Geriatr. Soc., 54: 1130-1135 (2006).
Bramwell et al., Particulate delivery systems for biodefense subunit vaccines, Adv. Drug Deliv. Rev. 57(9): 1247-1265 (2005).
Bramwell et al., The rational design of vaccines, Drug Discovery Today, 10(22): 1527-1534 (2005).
Brigger et al., Nanoparticles in cancer therapy and diagnosis, Adv Drug Deliv Rev, 54:631-651 (2002).
Brunner et al., pH and osmotic pressure inside biodegradable microspheres during erosion, Pharm Res, 16(6):847-53 ( 1999).
Bryniarski, K. et al., Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity, J. Allergy Clin. Immunol., 132(1):170-181 (2013).
Butler, M. et al, Altered expression and endocytic function of CD205 in human dendritic cells, and detection of a CD205-DCL-1 fusion protein upon dendritic cell maturation, Immunology, 120(3): 362-71 (2007).
Calvo et al., Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res., 14(10): 1431-1436 (1997).
Cannizzaro, et al., A novel biotinylated degradable polymer for cell-interactive applications , Biotech Bioeng., 58(5): 529-535 (1998).
Cao et al., Production and surface modification of polylactide-based polymeric scaffolds for soft-tissue engineering, Methods Mol. Biol., 238:87-112 (2004).
Caponetti et al., Microparticles of novel branched copolymers of lactic acid and amino acids: preparation and characterization, J Pharm Sci, 88(1):136-41 (1999).
Capurso, N.A. and Fahmy, T.M, Development of a pH-responsive particulate drug delivery vehicle for localized biologic therapy in inflammatory bowel disease, Yale J. Biol. Med., 84(3): 285-288 (2011).
Capurso, N.A. et al., Development of a nanoparticulate formulation of retinoic acid that suppresses Th17 cells and upregulates regulatory T cells, Self Nonself., 1(4): 335-340 (2010).
Cartiera, M.S. et al., Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin, Mol. Pharm., 7(1): 86-93 (2010).
Cartiera, M.S. et al., The uptake and intracellular fate of PLGA nanoparticles in epithelial cells, Biomaterials, 30(14): 2790-2798. pp. 1-22 (2009).
Challacombe et al., Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen, Immunology, 76(1): 164-168 (1992).
Cho et al., Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly(L-lactic acid) nanoparticles coated with galactose-carrying polystyrene, J Control Release, 77:7-15 (2001).
Chong, C. S. W. et al., Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery, J. Control Rel., 102:85-99 (2005).
Chong, C. et al., Nanoparticulate Delivery of Therapeutic Vaccine for Chronic Hepatitis B (published doctoral dissertation), University of Alberta, Edmonton, Alberta, Canada, 216 pages, (2005).
Corradetti, B. et al., Paracrine signalling events in embryonic stem cell renewal mediated by affinity targeted nanoparticles, Biomaterials, 33(28): 6634-6643 (2012).
Cremaschi et al., Different kinds of polypeptides and polypeptide-coated nanoparticles are accepted by the selective transcytosis shown in the rabbit nasal mucosa, Biochim. Biophys. Acta, 1416(1-2): 31-38 (1999).
Cremaschi et al., Further analysis of transcytosis of free polypeptides and polypeptide-coated nanobeads in rabbit nasal mucosa, J. Appl. Physiol., 91(1): 211-217 (2001).
Criscione J.M. et al., Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging, Biomaterials, 30(23-24): 3946-3955 (2009).
Criscione, J.M. et al., Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging, Bioconjug. Chem., 22(9): 1784-1792 (2011).
Croll et al., Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis 1: physical, chemical, and theoretical aspects, Biomacromolecules, 5(2):463-73 (2004).
Cu, Y. et al., Ligand-modified gene carriers increased uptake in target cells but reduced DNA release and transfection efficiency, Nanomedicine, 6(2): 334-343 (2010).
Cui et al., Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device, J. Biotechnology, 102(2): 105-115 2003).
De Kozak et al., Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis, Eur J Immunol, 34:3702-3712 (2004).
De Souza Reboucas, J. et al., Nanoparticulate Adjuvants and Delivery Systems for Allergen Immunotherapy, Journal of Biomedicine and Biotechnology, 2012: 1-13 (2012).
Demento et al., Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy, Vaccine, 27(23): 3013-3021 (2009).
Demento et al., TLR9-Targeted Biodegradable Nanoparticles as Immunization Vectors Protect Against West Nile Encephalitis, J. Immunol., 185: 2989-2997 (2010).
Demento, S. L. et al, Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines, Trends Biotechnol., 29(6): 294-306 (2011).
Demento, S. et al., Biomimetic approaches to modulating the T cell immune response with nano- and micro-particles, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2009: 1161-1166 (2009).
Demento, S.L. et al., Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype, Biomaterials, 33(19):4957-4964 (2012).
Dev et al., Kinetics of drug delivery to the arterial wall via polyurethane-coated removable nitinol stent: comparative study of two drugs, Catheterization and Cardiovascular Diagnosis, 34(3): 272-8 (1995).
Dev et al., Sustained local drug delivery to the arterial wall via biodegradable microspheres, Catheterization and Cardiovascular Diagnosis, 41(3): 324-32 (1997).
Dobrovoskaia, M.A. and McNeil, S.E., Immunological properties of engineered nanomaterials, Nature nanotechnology, 2: 469-478 (2007).
Dong, H. et al., Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice, PLoS One, 7(12): e50265 (2012).
Edelman et al., Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury, Proc Nat. Aca. Sci, U.S.A., 87(10): 3773-7 (1990).
Edwards et al., Complement Factor H Polymorphism and Age-Related Macular Degeneration, Science, 308(5720):421-4 (2005).
Elamanchili et al., Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells, Vaccine, 22: 2406-2412 (2004).
Elamanchili, P. et al., “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells, J. Immunother., 30:378-395 (2007).
Eldridge et al., Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies, Infection and Immunity, 59(9): 2978-2986 (1991).
Eldridge et al., Biodegradable microspheres-Vaccine delivery system for oral immunization, Current Topics in Microbiology and Immunology, 146: 59-66 (1989).
Eldridge et al., Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally-administered biodegradable microspheres target the Peyer's patches, J. Control. Release, 11(1-3): 205-214 (1990).
Eliaz and Szoka, Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells, Cancer Res, 61: 2592-2601 (2001).
Eniola et al., Artificial polymeric cells for targeted drug delivery, J Control Release, 87(1-3): 15-22 (2003).
Escribano, M.M. et al., Anaphylactic reaction cause by cherry ingestion, Allergy 51(10): 756-757 (1996).
Evora et al., Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine, J Control Release, 51 (2-3):143-52 (1998).
Fadel, T.R. et al., A carbon nanotube-polymer composite for T-cell therapy, Nat Nanotechnol., 9(8): 639-647 (2014).
Fahmy et al., Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting, Biomaterials, 26(28): 5727-5736 (2005).
Fahmy et al., Targeted for drug delivery, Materials Today, 8(8, Supplement 1): 18-26 (2005).
Fahmy, T.M. et al., A nanoscopic multivalent antigen-presenting carrier for sensitive detection and drug delivery to T cells, Nanomedicine: Nanotechnology, Biology, and Medicine, 3(1): 75-85 (2007).
Fahmy, T.M. et al., Design opportunities for actively targeted nanoparticle vaccines, Nanomedicine (Lond), 3(3): 343-355 (2008).
Fahmy, T.M. et al., Nanosystems for simultaneous imaging and drug delivery to T cells, AAPS J., 9(2): E171-180 (2007).
Fahmy, et al., Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen, Immunity, 14:135-43 (2001).
Faraasen et al., Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate, Pharm Res, 20(2): 237-46 (2003).
Fischer, N.O. et al., Conjugation to nickel-chelating nanolipoprotein particles increases the potency and efficacy of subunit vaccines to prevent West Nile encephalitis, Bioconjugate Chemistry, 21(6): 1018-1022 (2010).
Florindo, H.F. et al., Surface modified polymeric nanoparticles for immunisation against equine strangles, International Journal of Pharmaceutics, 390(1): 25-31 (2010).
Friede et al., Need for new vaccine formulations and potential of particulate antigen and DNA delivery systems, Adv. Drug Deliv. Re., 57(3): 325-331 (2005).
Gang, et al., “Vascular complications following renal transplantation”, Journal of Nephrology and Renal Transplantation, 2(1):122-132 (2009).
Gao, W. et al., Treg versus Th17 lymphocyte lineages are cross-regulated by LIF versus IL-6, Cell Cycle, 8(9):1444-1450 (2009).
Gao, X. et al., In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotechnology, 22(8):969-976 (2004).
Garcia-Garcia et al., Drug-eluting stents, Arch. Cardiol. Mex., 76(3): 297-319 (2006).
Gomez, S. et al., Allergen Immunotherapy With Nanoparticles Containing Lipopolysaccharide A From Brucella Ovis, European Journal of Pharmaceutics and Biopharmaceutics, 70: 711-717 (2008).
Gomez, S. et al., Gantrez AN Nanoparticles as an Adjuvant for Oral Immunotherapy with Allergens, Vaccine, 25: 5263-5271 (2007).
Gref, R., Surface-engineered nanoparticles for multiple ligand coupling, Biomaterials, 24(24): 4529-4537 (2003).
Gref, R., ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B: Biointerfaces, 18(3-4): 301-313 (2000).
Gupta et al., Adjuvants for human vaccines current status, problems, and future prospects, Vaccine, 13(14): 1263-1276 (1995).
Gupta et al., Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines, Adv. Drug Deliv. Rev., 32(3): 225-246 (1998).
Guzman et al., Local intraluminal infusion of biodegradable polymeric nanoparticles, Circulation 94: 1441-1448 (1996).
Haines et al., Complement factor H variant increases the risk of age-related macular degeneration, Science, 308(5720):419-21 (2005).
Hallahan et al., Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels, Cancer Cell, 3:63-74 (2003).
Hamdy, S. et al., Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles, J Biomed Mater Res, 81A:652-662 (2007).
Hammer et al., Synthetic cells-self-assembling polymer membranes and bioadhesive colloids, Annu. Rev. Mater. Res., 31:387-40 (2001).
Hanes, J. et al., New advances in microsphere-based single-dose vaccines, Adv. Drug Deliv. Rev., 28(1): 97-119 (1997).
Hariharan et al., Improved graft survival after renal transplantation in the United States, 1988 to 1996, N. Eng. J. Med., 342(9):605-12 (2000).
Hattori et al., Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer, Journal of Controlled Release, 97: 173-183 (2004).
Hawiger, D. et al., Dendritic Cells Induce Peripheral T Cell Unresponsiveness Under Steady State Conditions In Vivo, The Journal of Experimental Medicine, 194(6):769-779 (2001).
Hawker, C.J. and Wooley, K.L., The Convergence of Synthetic Organic and Polymer Chemistries, Science, 309:1200-1205 (2005).
Heffernan, M.J. and Murthy, N., Polyketal Nanoparticles: A New pH-Sensitive Biodegradable Drug Delivery Vehicle, Bioconjugate Chemistry, 16:1340-1342 (2005).
Hong, E. et al., Configuration-dependent Presentation of Multivalent IL-15:IL-15Rα Enhances the Antigen-specific T Cell Response and Anti-tumor Immunity, J. Biol. Chem., 291(17): 8931-8950 (2016).
Hood et al., Tumor regression by targeted gene delivery to the neovasculature, Science, 296(5577):2404-2407 (2002).
Hoshyar, N. et al, The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction, Nanomedicine (Lond.), 11(6): 673-692 (2016).
Huang et al., Monoclonal antibody covalently coupled with fatty acid. A reagent for in vitro liposome targeting, J. Biol. Chem., 255(17):8015-8 (1980).
Humphrey et al., The effect of intramural delivery of polymeric nanoparticles loaded with the antiproliferative 2-aminochromone U-86983 on neointimal hyperplasia development in balloon-injured porcine coronary arteries, Adv. Drug Del. Rev., 24: 87-108 (1997).
International Search Report for PCT/US2005/023444, 3 pages (dated Sep. 26, 2007).
International Search Report for PCT/US2008/054086, 3 pages (dated Sep. 22, 2008).
International Search Report for PCT/US2013/037789, 3 pages (dated Aug. 30, 2013).
International Search Report for PCT/US2014/055625, 3 pages (dated Dec. 8, 2014).
International Search Report for PCT/US2014/32838, 4 pages (dated Sep. 4, 2014).
International Search Report for PCT/US2015/059711, 8 pages (dated May 12, 2016).
International Search Report for PCT/US2019/012634 (Immune Modulation, filed Jan. 8, 2019), issued ISA/US, 4 pages (dated Mar. 26, 2019).
International Search Report for PCT/US2019/0133770 (Nanoparticle Systems, filed Jan. 11, 2019), issued by ISA/US, 4 pages (dated Mar. 29, 2019).
Italia et al., Disease, destination, dose and delivery aspects of ciclosporin: the state of the art, Drug Discov. Today, 11(17-18): 846-854 (2006).
Jain, R.A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, 21:2475-2490 (2000).
Jansen et al., Encapsulation of Guest Molecules into a Dendritic Box, Science, 266(5188): 1226-1229 ( 1994).
Jansen et al., The Dendritic Box: Shape-Selective Liberation of Encapsulated Guests, Journal of the American Chemical Society, 117:4417-4418 (1995).
Jiang et al., Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens, Adv. Drug Deliv. Rev., 57(3): 391-410 (2005).
Johansen et al., Revisiting PLA/PLGA microspheres: an analysis of their potential in parenteral vaccination, Eur J Pharm Biopharm, 50(1):129-46 (2000).
Keegan et al., Biodegradable Microspheres with Enhanced Capacity for Covalently Bound Surface Ligands Macromolecules, 37:9979-84 (2004).
Keegan et al., Biomimetic design in microparticulate vaccines, Biomaterials, 24(24):4435-4443 (2003).
Keegan, M.E. et al., In vitro evaluation of biodegradable microspheres with surface-bound ligands, J. Control Release, 110(3): 574-580 (2006).
Klein et al., Complement factor H polymorphism in age-related macular degeneration, Science, 308(5720):385-9 (2005).
Klimek, L. et al., Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study, Clinical & Experimental Allergy, 41(9): 1305-1312 (2011).
Kobayashi et al., Dendrimer-based Macromolecular MRI Contrast Agents: Characteristics and Application, Mol Imaging, 2:1-10 (2003).
Kobayashi et al., Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody, Bioconjug Chem, 10: 103-11 (1999).
Kohn et al., Single-step immunization using a controlled release, biodegradable polymer with sustained adjuvant activity, J. Immunol. Methods, 95(1): 31-38 (1986).
Kompella et al., Subconjuctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression, Invest Ophthalmol. Vis. Sci., 44: 1192-1201 (2003).
Kono et al., Abstracts of Papers of the American Chemical Society, 221: U377-U377 (2001).
Korsholm et al. T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection, Immunology, 129(1): 75-86 (2009).
Kwon et al., Enhanced antigen presentation and immunostimulation of dendritic cells using acid degradable cationic nanoparticles, J. Control Release, 105(3): 119-212 (2005).
Labhasetwar et al., Arterial uptake of biodegradable nanoparticles: effect of surface modifications, J Pharm Sci, 87:1229-1234 (1998).
Labhasetwar, et al., Nanoparticle drug delivery system for restenosis, Advanced Drug Delivery Reviews, 24:63-85 (1997).
Labowsky, M. et al., An in silico analysis of nanoparticle/cell diffusive transfer: application to nano-artificial antigen-presenting cell: T-cell interaction, Nanomedicine, 11(4): 1019-1028 (2015).
Lamprecht et al., Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease, J Pharmacol Exp Ther, 299(2):775-81 (2001).
Langer and Folkman, Polymers for the sustained release of proteins and other macromolecules, Nature, 263(5580): 797-800 (1976).
Lathia et al., Polymeric contrast agent with targeting potential., Ultrasonics, 42(1-9):763-8 (2004).
Lavik et al., A simple synthetic route to the formation of a block copolymer of poly(lactic-co-glycolic acid) and polylysine for the fabrication of functionalized, degradable structures for biomedical applications, J Biomed Mater Res, 58(3):291-4 (2001).
Leleux et al (Cell Reports (2017), 18(3), 700-710).
Li, Z. et al., Surface Functionalization of Ordered Mesoporous Carbons—A Comparative Study, Langmuir, 21:11999-12006 (2005).
Linblad, E.B., Aluminum adjuvants—in retrospect and prospect, Vaccine, 22(27-28): 3658-3668 (2004).
Liu, Y. et al., Stability and Ostwald ripening of block copolymer stabilized nanoparticles, Abstracts of Papers of the American Chemical Society, The 230th ACS National Meeting, Washington, DC, COLL 402, 1 page (Sep. 1, 2005). URL: http://oasys2.confex.com/acs/230nm/techprogram/P862384.HTM. [Retrieved Apr. 29, 2016].
Look, M. et al., Application of nanotechnologies for improved immune response against infectious diseases in the developing world, Adv. Drug Deliv. Rev., 62(4-5): 378-393 (2010).
Look, M. et al., Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice, J. Clin. Invest., 123(4): 1741-1749 (2013).
Look, M. et al., The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus, Biomaterials, 35(3): 1089-1095 (2014).
Lopes De Menezes et al., In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma, Cancer Res, 58:3320-3330 (1998).
Loudon, G.M., Organic Chemistry, 3rd ed., Benjamin/Cummings Publishing Company, Inc.: Redwood City, Cal., p. 996 (1995).
Luo, D. et al., Controlled DNA delivery systems, Phar. Res., 16: 1300-1308 (1999).
Luo, et al., Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery, Macromolecules, 35:3456-3462 (2002).
Mader et al., Monitoring microviscosity and microacidity of the albumin microenvironment inside degrading microparticles from poly(lactide-co-glycolide) (PLG) or ABA-triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethyleneoxide) B blocks, Pharm Res, 15(5):787-93 (1998).
Mainardes et al., Colloidal carriers for ophthalmic drug delivery, Curr Drug Targets, 6:363-371 (2005).
Mallajosyula, J.K. et al., Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge, Human Vaccines & Immunotherapeutics, 10(3): 586-595 (2014).
Maloy et al., Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles, Immunology, 81(4): 661-667 (1994).
Marx et al., Protection against vaginal SIV transmission with microencapsulated vaccine, Science, 260(5112): 1323-1327 (1992).
Mathiowitz, E. and Langer, R., Polyanhydride Microspheres as Drug Carriers I. Hot-Melt Microencapsulation, Journal of Controlled Release, 5:13-22 (1987).
Mathiowitz, E. et al., Novel Microcapsules for Delivery Systems, Reactive Polymers, 6:275-283 (1987).
Mathiowitz, E. et al., Polyanhydride Microspheres as Drug Carriers II. Microencapsulation by Solvent Removal, Journal of Applied Polymer Science, 35:755-774 (1988).
McHugh, M.D. et al., Paracrine co-delivery of TGF-β and IL-2 using CD4-targeted nanoparticles for induction and maintenance of regulatory T cells, Biomaterials, 59: 172-181 (2015).
McPhail, D. et al., Liposomes encapsulating polymeric chitosan based vesicles—a vesicle in vesicle system for drug delivery, International Journal of Pharmaceutics, 200(1):73-86 (2000).
Mellman, I., Antigen processing and presentation by dendritic cells: cell biological mechanisms, Adv. Exp. Med. Biol., 560: 63-67 (2005).
Mellman, I., and Steinman, R.M., Dendritic cells: specialized and regulated antigen processing machines, Cell, 106(3): 255-258 (2001).
Metcalfe, S.M. and Fahmy, T.M., Targeted nanotherapy for induction of therapeutic immune responses, Trends Mol. Med., 18(2):72-80 (2012).
Moser, C. et al., Virosomal adjuvanted antigen delivery systems, Expert Reviews in Vaccines, 2(2):189-196 (2003).
Mounzer, R. et al., Dynamic imaging of lymphatic vessels and lymph nodes using a bimodal nanoparticulate contrast agent, Lymphat Res. Biol., 5(3): 151-158 (2007).
Mu et al., A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®); PLGA nanoparticles containing vitamin E TPGS, J Control Release, 86(1):33-48 (2003).
Mu et al., Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®), J Control Release, 80(1-3): 129-44 (2002).
Mumper et al., Genetic immunization by jet injection of targeted pDNA-coated nanoparticles, Methods, 31(3): 255-262 (2003).
Murray, C.B. et al., Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annual Reviews of Material Science, 30:545-610 (2000).
Myers, E.W. and Miller, W., Optimal alignments in linear space, Comput. Appl. Biosci., 4(1): 11-17 (1988).
Müller, et al., Surface Modification of PLGA Microspheres, J Biomed Mater Res, 66A(1):55-61 (2003).
Naylor et al., Starburst Dendrimers. 5. Molecular Shape Control, Journal of the American Chemical Society, 111:2339-2341 (1989).
Nellore et al., Evaluation of biodegradable microspheres as vaccine adjuvant or hepatitis B surface antigen, J. Parenter. Sci. Technol., 46(5): 176-180 (1992).
Nelson, G.N. et al., Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo, FASEB J., 22(11): 3888-3895 (2008).
Newman, et al., Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo, J. Biomed. Mater. Res., 60: 480-486 (2002).
Nicolete, R. et al, The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response, International Immunopharmacology, 11(10): 1557-1563 (2011).
Nunn et al., Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata, J Immunol, 174(4):2084-91 (2005).
O'Hagan et al., Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles, Vaccine, 11(9): 965-969 (1993).
O'Hagan, D.T. and Valiante, N.M., Recent Advances in the Discovery and Delivery of Vaccine Adjuvants, Nature Reviews, 2: 727-735 (2003).
O'Reilly, R.K. et al., Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry, Chemistry Materials, 17:5976-5988 (2005).
Ochoa, J. et al., Protective immunity of biodegradable nanoparticle-based vaccine against an experimental challenge with Salmonella enteritidis in mice, Vaccine, 25(22): 4410-4419 (2007).
Olivier, J.C., Drug transport to brain with targeted nanoparticles, NeuroRx, 2:108-119 (2005).
Pan et al., Strategy for the treatment of acute myelogenous leukemia based on folate receptor β-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid, Blood, 100: 594-602 (2002).
Panyam, et al., Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv Drug Deliv Rev, 55(3):329-47 (2003).
Park et al., Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery, Clin Cancer Res, 8:1172-1181(2002).
Park et al., Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrate allowing regionally selective cell adhesion, J Biomater Sci Polym Ed, 9(2):89-110 (1998).
Park et al., Surface modified poly(lactide-co-glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radio isotope, J Biomed Mater Res, 67 A(3):751-60 (2003).
Park, J. et al., Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates, J. Control Release, 156(1): 109-115 (2011).
Park, J. et al., Modulation of CD4+ T lymphocyte lineage outcomes with targeted, nanoparticle-mediated cytokine delivery, Mol. Pharm., 8(1): 143-152 (2011).
Park, J. et al., PEGylated PLGA nanoparticles for the improved delivery of doxorubicin, Nanomedicine, 5(4): 410-418 (2009).
Pashine et al., Targeting the innate immune response with improved vaccine adjuvants, Nat. Med ., 11(4 Suppl): S63-S68 (2005).
Pastorino et al., Doxorubicin-loaded Fab′ Fragments of Anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice, Cancer Research, 63: 86-92 (2003).
Pellegrino, T. et al., On the Development of Collodial Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications, Small, 1(1):48-63 (2005).
Pfaar et al. Sublingual allergen-specific immunotherapy adjuvanted with monophosphoryl lipid A: a phase I/IIa study, Int Arch Allergy Immunol., 154(4): 336-344 (2010).
Pitaksuteepong et al., Uptake of antigen encapsulated in polyethylcyanoacrylate nanoparticles by D1-dendtitic cells, Pharmazie, 59(2): 134-142 (2004 ).
Pochard , P. et al., Targeting Toll-like receptors on dendritic cells modifies the T(H)2 response to peanut allergens in vitro., J Allergy Clin Immunol. Jul. 2010;126(1):92-7.e5 (2010).
Quirk et al., Cell-type-specific adhesion onto polymer surfaces from mixed cell populations, Biotech. Bioeng., 81(5):625-628 (2003).
Ragheb, R.R. et al., Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostic, Magn. Reson. Med., 70(6): 1748-1760 (2013).
Rittchen, S., Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF), Biomaterials, 56: 78-85 (2015).
Saluja, S.S., Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen, Int. J. Nanomedicine, 9: 5231-5246 (2014).
Samstein, R.M. et al., The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles, Biomaterials, 29(6): 703-708 (2008).
Sarti, F. et al, In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A, Biomaterials, 32(16): 4052-4057 (2011).
Satterfield, B.C. et al., Tentacle probe sandwich assay in porous polymer monolith improves specificity, sensitivity and kinetics, Nucleic Acids Res., 36(19): e129 (2008).
Schiffelers et al., Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle, Nucleic Acids Res, 32: e149 (2004).
Schneck, J.P., Monitoring antigen-specific T cells using MHC-Ig dimers, Immunol. Invest., 29:163-9 (2000).
Schöll, I. et al., Biodegradable PLGA Particles for Improved Systemic and Mucosal Treatment of Type I Allergy, Immunol. Allergy Clin. N. Am., 26(2): 349-364 (2006).
Sehgal K et al., Nanoparticle-mediated combinatorial targeting of multiple human dendritic cell (DC) subsets leads to enhanced T cell activation via IL-15-dependent DC crosstalk, J. Immunol., 193(5): 2297-2305 (2014).
Serebrisky, D et al., CpG oligodeoxynucleotides can reverse Th2-associated allergic airway responses and alter the B7.1/B7.2 expression in a murine model of asthma, J Immunol., 165(10) :5906-5912 (2000).
Sesardic et al., European union regulatory developments for new vaccine adjuvants and delivery systems, Vaccine, 22(19): 2452-2456 (2004).
Shastri, N., Needles in haystacks: identifying specific peptide antigens for T cells, Curr. Opin. Immunol., 8(2): 271-277 (1996).
Shen et al., Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles, Immunity, 117(1): 78-88 (2006).
Shenderova et al., The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins, Pharm Res, 16(2):241-248 (1999).
Shirali, A.C. et al., Nanoparticle delivery of mycophenolic acid upregulates PD-L1 on dendritic cells to prolong murine allograft survival, Am. J. Transplant, 11(12): 2582-2592 (2011).
Siefert, A.L. et al., Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy, Biomaterials, 97: 85-96 (2016).
Siefert, A.L. et al., Immunomodulatory nanoparticles ameliorate disease in the Leishmania (Viannia) panamensis mouse model, Biomaterials, 108: 168-176 (2016).
Silin, D.S. and Lyubomska, V., Overcoming immune tolerance during oral vaccination against actinobacillus pleuropneumoniae, J. Vet. Med. B. Infect. Dis. Vet. Public Health, 49(4): 169-175 (2002).
Silin, D.S. et al., Oral Vaccination: Where are we?, Exp. Opin. Drug Deliv., 4(4): 323-340 (2007).
Singh et al., Advances in vaccine adjuvants for infectious diseases, Curr. HIV Res., 1(3): 309-20 (2003).
Singh et al., Controlled release microparticles as a single dose diphtheria toxoid vaccine: immunogenicity in small animal models, Vaccine, 16(4): 346-352 (1998).
Singh et al., Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine, Infect. Immun., 65(5): 1716-1721 (1997).
Singh et al., Immunogenicity studies on diphtheria toxoid loaded biodegradable microspheres, Int. J. Pharmaceutics, 85(1-3): R5-R8 (1992).
Singh, M. and O'Hagan, D.T., Recent advances in vaccine adjuvants, Pharm. Res., 19(6): 715-728 (2002).
Sirivastava et al (Journal of Allergy and Clinical Immunology (2016), 138(2), 536-543).
Solbrig, et al., Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells, Mol. Pharmaceut., 4(1): 47-57 (2007).
Song et al., Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model, J Control Release, 54: 201-211 (1998).
Srivastava, K.D. et al., Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy, J. Allergy Clin. Immunol., 138(2): 536-543e4 (2016).
Steenblock, E.R. and Fahmy, T.M., A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells, Mol Ther., 16(4): 765-772 (2008).
Stern, E. et al., Spatiotemporal control over molecular delivery and cellular encapsulation from electropolymerized micro- and nanopatterned surfaces, Adv. Funct. Mater., 19(18): 2888-2895 (2009).
Storni et al., Immunity in response to particulate antigen delivery systems, Adv. Drug Deliv. Rev., 57(3): 333-55 (2005).
Strohbehn G et al., Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance, J. Neurooncol, 121(3): 441-449 (2015).
Summerton, J.E., Endo-Porter: A Novel Reagent for Safe, Effective Delivery of Substances into Cells, Ann. N.Y. Acad. Sci., 1058: 62-75 (2005).
Supplementary Partial European Search Report for EP 13781604, 7 pages (dated Oct. 14, 2015).
Sussman, G.L. et al., The Spectrum of IgE-Mediated Responses to Latex, The Journal of the American Medical Association, 265(21):2844-2847 (1991).
Sykulev et al., High-affinity reactions between antigen-specific T-cell receptors and peptides associated with allogeneic and syngeneic major histocompatibility complex class I proteins, Proc Natl Acad Sci US A, 91: 11487-11491 (1994).
Tacken, P.J. et al, Targeting antigens to dendritic cells in vivo, Immunobiology, 211(6-8): 599-608 (2006).
Tanahashi, K. and Mikos, A.G., Effect of hydrophilicity and agmatine modification on degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels, J. Biomed. Res. A., 67(4): 1148-1154 (2003).
Tanaka et al, Structure of FK506: a novel immunosuppressant isolated from a Streptomyces, J. Am. Chem. Soc, 109: 5031-5033 (1987).
Thomasin et al., Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 1. Overview and theoretical considerations, J Pharm Sci, 87(3):259-68 (1998).
Tomalia et al., Starburst dendrimers: Molecular level control of size, shape, surface chemistry, topology and flexibility of atoms to macroscopic matter, Angewandte Chemie—International Edition in English, 29:138-175 (1990).
Trindade, T. et al., Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives, Chemistry Materials, 13:3843-3858 (2001).
Vacic, A., Determination of molecular configuration by debye length modulation, J. Am. Chem. Soc.,133(35): 13886-13889 (2011).
Van Der Lubben, I.M. et al., Chitosan for mucosal vaccination, Advanced Drug Delivery Reviews, 52:139-144 (2001).
Visscher et al., Biodegradation of and tissue reaction to 50:50 poly(Dl-lactide-co-glycolide) microcapsules, J Biomed Mater Vies. 19(3):349-65 ( 1985).
Wagener, K.B. and Gomez, F.J., ADMET Polymerization, Encyclopedia of Materials: Science and Technology, 48-53 (2001).
Wan et al., Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment, Biomaterials. 25(19):4777-83 (2004).
Wang et al (Journal of Biomedical Nanotechnology (2018), 14(10), 1806-1815).Abstract Only at This Time.
Wang, et al., Preparation and characterization of poly(lactic-co-glycolic acid) microspheres for targeted delivery of a novel anticancer agent, taxol, Chem. Pharm. Bull. (Tokyo), 44(10):1935-40 (1996).
Wartlick et al., Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells, J Drug Target, 12:461-471 (2004).
Wassef et al., Liposomes as carriers for vaccines, Immunomethods, 4(3): 217-222 (1994).
Weber, A. et al., Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2, Allergy, 42(6): 464-470 (1987).
Weiss, S.J. and Halsey, J.F., A nurse with anaphylaxis to stone fruits and latex sensitivity: potential diagnostic difficulties to consider, Ann. Allergy Asthma Immunol., 77(6): 504-508 (1996).
Wikingsson, L.D. and Sjöholm, I., Polyacryl starch microparticles as adjuvant in oral immunisation inducing mucosal and systemic immune responses in mice, Vaccine, 20:3355-3363 (2002).
Written Opinion for PCT/US15/59711, 9 pages (dated May 12, 2016).
Written Opinion for PCT/US2005/023444, 5 pages (dated Sep. 26, 2007).
Written Opinion for PCT/US2008/054086, 6 pages (dated Sep. 22, 2008).
Written Opinion for PCT/US2013/037789, 11 pages (dated Aug. 30, 2013).
Written Opinion for PCT/US2014/055625, 16 pages (dated Dec. 8, 2014).
Written Opinion for PCT/US2014/32838, 15 pages (dated Sep. 4, 2014).
Written Opinion for PCT/US2019/012634 (Immune Modulation, filed Jan. 8, 2019), issued ISA/US, 9 pages (dated Mar. 26, 2019).
Written Opinion for PCT/US2019/0133770 (Nanoparticle Systems, filed Jan. 11, 2019), issued by ISA/US, 11 pages (dated Mar. 29, 2019).
Xu et al. Recombinant Mycobacterium bovis BCG expressing the chimeric protein of antigen 85B and ESAT-6 enhances the Th1 cell-mediated response, Clin Vaccine Immunol., 16(8):1121-1126 (2009).
Yamaguchi and Anderson, In vivo biocompatibility studies of medisorb, 65/35 D,L-lactide/glycolide copolymer microspheres, J. Controlled Ref., 24(1-3):81-93 (1993).
Yang et al., Plasma-treated, collagen-anchored polylactone: Its cell affinity evaluation under shear or shear-free conditions, J. Biomed Mater Res, 67A(4): 1139-47 (2003).
Yoo et al., PAMAM dendrimers as delivery agents for antisense oligonucleotides, Pharm Res, 16:1799-804 (1999).
Zhao et al (Nanomedicine (New York, NY, United States) (2017).
Zhao, J.W. et al., Modelling of a targeted nanotherapeutic ‘stroma’ to deliver the cytokine LIF or XAV939, a potent inhibitor of Wnt-β-catenin signalling, for use in human fetal dopaminergic grafts in Parkinson's disease, Dis. Model Mech., 7(10): 1193-1203 (2014).
Zheng et al., Production of microspheres with surface amino groups from blends of Poly(lactide-co-glycolide) and Poly(epsilon-CBz-L-lysine) and use for encapsulation, Biotechnology Progress, 15(4): 763-767 (1999).
Zou, et al., “Rapamycin-loaded nanoparticles for inhibition of neointimal hyperlasia in experimental vein grafts”, Journal of Cardiothoracic Surgery, 6(69):1-8 (2011). [With Retraction].
Получить PDF