SEALING DEVICE FOR ELEVATOR
This is a Continuation Application of U.S. Ser. No. 11/203,090, filed Aug. 15, 2005, which is a continuation of PCT Application No. PCT/JP2004/010372, filed Jul. 14, 2004, which was published under PCT Article 21(2) in English. The entire contents of both of these applications are incorporated herein by reference. This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2003-202455, filed Jul. 28, 2003, the entire contents of which are incorporated herein by reference. 1. Field of the Invention The present invention relates to a sealing device for an elevator, which seals a gap between a doorway member provided in the gate of an elevator and a door device provided adjacent to the doorway member. 2. Description of the Related Art The gate of an elevator is provided between an elevator hall in a building and an elevator shaft. The doorway member is set in the gate. A hall door is installed adjacent to the doorway member. The hall door opens when the cage, which moves up and down in the shaft, arrives at an elevator hall, thus enabling passengers to get on or off the cage. Then, when the cage departs from the elevator hall, the door closes. In general, the hall door of an elevator is opened or closed by rolling hanger rollers provided at an upper section of the door along a hanger rail provided at an upper portion of the doorway member. In order for the hall door to smoothly open and close, a gap is created between the hall door and a three-sided frame of the doorway member, or a doorsill. In case of a fire occurring in the building, the smoke and toxic gas due to the fire can enter the shaft of the elevator through the gap in the hall door. As a result, the smoke may spread to some other floors through the gap of the hall door of these floors, thus exposing the residents to danger. In order to avoid such situations, some elevators are equipped with a sealing mechanism installed for the hall door, or a smoke shutting facilities such as a shutter, door and screen installed near the hall door. However, when such smoke shutting facilities that include a shutter are provided, the production cost is naturally increased. Further, the storage space and guide mechanisms that are provided afterwards deteriorate the appearance of the elevator. As a method of prohibiting the deterioration of the appearance, there is a widely popular technique, in which a sealing mechanism is set in the hall door such that the gap between the hall door and the doorway member is shut while the door is closed. There have been a number of techniques proposed as the sealing mechanism. According to these techniques, a rubber or some other elastic member is mounted on the circumference of the door to seal the gap by the elastic member as it is pressed between the door and doorway when the door is closed. Of the members to be sealed, provided around the door, a doorstop portion and a rear side end portion of the door can be pressed by bringing the door into contact with the seal member just before the door is closed. Therefore, in connection with these members, the gaps can be sealed with a relatively simple sealing mechanism that uses a rubber, a metal plate, etc. On the other hand, in the upper section of the door and the doorsill portion, such seal member, if a rubber or a thin metal plate is simply mounted, entails the following problem. That is, the seal member and the door are in contact with each other at all times and they slide on against each other when opening or closing the door. Therefore, the seal member wears out or loses stiffness to deteriorate its smoke shutting performance. Further, as the slide resistance is increased, the door can no longer be opened or closed smoothly or the noise created when the door slides may be increased. Jpn. Pat. Appln. KOKAI Publications Nos. 6-234488 and 7-76477 each disclose a mechanism for shutting the gap in the upper section of the door, in which the seal member is brought into contact with the member on the other side when the door has been closed. In this mechanism, the seal member is set inclined and mounted on the upper section of the door. This mechanism is designed to inhibit the seal member and the other member from contacting with each other while opening or closing the door. In this manner, the door can be opened or closed smoothly and at the same time, the damage to the seal member is prevented. Apart from the above, there has been proposed a technique in which the seal member does not slide at all times but it is made abut against the other member by an actuator only when a fire occurs, for example, in Jpn. Pat. Appln. KOKAI Publication No. 2003-34481. According to this document, the attracting force of an electromagnet is released in reply to an output made by a smoke sensor, and the gap shut member is pushed out with a spring to shut the gap. Further, Jpn. Pat. Appln. KOKAI Publication No. 7-247086 discloses a technique that provides a smoke shutting mechanism that bends in a labyrinth-like manner around the door. This mechanism is designed to interrupt the smoke by making the gap into a labyrinth-like form. With this mechanism, there is not sliding portion, and therefore the seal member is never worn out. However, the invention having the configurations disclosed in Jpn. Pat. Appln. KOKAI Publication No. 6-234488 or 7-76477 requires an extra space in the installation in the height direction, for inclining the seal member. Therefore, it is difficult to carry out the reform of adding the smoke shutting mechanism to an already installed door while retaining the measurements of the already installed door and its guide mechanism. Further, since the seal member is set inclined, it is difficult to appropriately adjust the pressing force and contact area both of the seal members provided for the doorstop of the door and the inclined seal member. As a result, it takes a lot of time and labor to adjust the seal member. Further, with these inventions, the inclined seal member is pressed, and therefore a component of force is created in the direction in which the door is opened, by means of the reactive force of the seal member. Consequently, it requires a large force to close the door and maintain the door closed. As a result, the driving mechanism and the mechanism for closing the door are increased in size. The mechanism disclosed in Jpn. Pat. Appln. KOKAI Publication No. 2003-34481 requires a large space for installing the actuator. Further, this mechanism requires, for example, a control device for processing output signals from the smoke sensor, a wiring for the actuator and a recovery mechanism that is used to recover the mechanism after the sealing mechanism has been operated due to a power failure, an error by the smoke sensor, etc. Hence, the device becomes complicated. In the mechanism disclosed in Jpn. Pat. Appln. KOKAI Publication No. 7-247086, the gap must be sufficiently narrow in order for the smoke shutting function to work appropriately. To maintain the narrow gap, high-precision parts are required. This mechanism, if installed not precisely, creates noise when members slide on each other, and therefore it is very difficult to adjust the set positions of the members when installed. According to the present invention, there is provided a highly durable sealing device for an elevator door that is free of possibilities of wear-out of the seal member and an excessive frictional force, which requires a small installation space, easily adjustment and no wiring operation or a control device, and does not create an excessive reactive force or large noise of sliding when closing the door. An embodiment of the sealing device according to the present invention includes a doorway member, a door, a movable member, a push down mechanism and a sealing mechanism. The doorway member is provided for a gate of an elevator. The door is provided adjacent to the doorway, and it is opened and closed with respect to the doorway member. The movable member is set horizontally and provided to be movable in a vertical direction for the doorway. The movable member is elastically urged upwards by urging means. The push-down mechanism pushes down the movable member downwards against the force of the urging means immediately before the door is closed after the door moves in the direction in which the door is closed. The sealing mechanism is maintained in a non-contact state with respect to the door when the door is moving, and seals the gap between the door and the doorway member as it is brought into contact with the upper section of the door by the operation of the movable member when it is pushed down by the push down mechanism. In this case, the sealing mechanism includes a belt-like seal member made of an elastic member, which is set horizontally in the doorway member. The seal member is stretched while the door is open. When the movable member is pushed downwards by the push-down mechanism, the seal member bends its vertical mid portion to bring the portion into contact with the upper section of the door. In this manner, the gap between the door and the doorway member is shut. Alternatively, the sealing mechanism includes a belt-like seal member made of an elastic member, which is set horizontally in the doorway member. When the movable member is pushed downwards by the push-down mechanism, the seal member bends to bring itself into contact with the upper section of the door. Thus, the gap between the door and the doorway member is shut. Alternatively, the sealing mechanism includes a belt-like seal member made of an elastic member, which is set horizontally on the movable member. When the movable member is pushed downwards by the push-down mechanism, the seal member is brought into contact with the upper section of the door and the doorway member to bridge therebetween. Thus, the gap between the door and the doorway member is shut. In another embodiment, the push-down mechanism includes a cam member and a push member. The cam member is provided for either one of the doorway member and door, and the push member is provided for the other. Immediately before the door is closed, the cam member and the push member engage with each other to push the movable member downwards. The seal member of the sealing mechanism is made of one of a rubber sheet, a noncombustible rubber sheet, a film-like resin material and a thin metal plate. The first embodiment of the present invention will now be described with reference to A pair of hall doors 6 In order to prevent the hanger rollers 4 The lower portions of the hall doors 6 Next, the sealing mechanisms provided for the upper sections of the hall doors 6 As shown in A folded portion 10 A belt-like fluorine-based rubber sheet 30 serving as a seal member is provided horizontally along the longitudinal direction of the folded portion 10 A back support plate 33 and a front support plate 34, each formed of a synthetic resin, are mounted on an inner side of the lower end portion of the header case 11. As shown in Torsion springs 35 serving as the urging means are attached between end portions of the upper holder plate 32 and lower holder plate 31 on both sides. The upper holder plate 32 is elastically urged upwards by the torsion springs 35. Cam plates 36 serving as the cam members are symmetrically attached to sections near the end portions of the upper holder plate 32 on both sides. Cam rollers 37 that serve as push members and correspond to the cam plates 36, respectively, are rotatably set to the hanger 5 An upper edge of each of the cam plates 36 is formed into a cam portion 36 The operation of this embodiment will now be described. When the hall doors 6 From this state, the hall doors 6 As the rubber sheet 30 is pushed down, the vertical mid portion of the rubber sheet 30 is elastically bent to project to the shaft side. The mid portion of the rubber sheet 30, as it is bent, is brought into tight contact with the upper sections of the hall doors 6 As described above, the gap between the door header 10 and the upper sections of the hall doors 6 Further, according to the sealing device of this embodiment, the sealing mechanism can be installed in a small space with regard to its height direction as well as its thickness direction. Therefore, the sealing mechanism can be installed in an already built hall door without requiring a large-scale reform in its renewal construction. The rubber sheet 30 of the sealing mechanism does not slide on the hall doors 6 This embodiment is directed to a door device of biparting type in which doorstop portions of a pair of hall doors 6 The second embodiment of the present invention will now be described in connection with a case where the present invention is applied to a door device of the one side sliding type with reference to As shown in As shown in The door header 12 has a stepped section at a horizontal mid portion. The door header 12 has the folded portion 12 As shown in The lower end portion of the rubber sheet 40 The back support plate 33 and front support plate 34, each formed of a synthetic resin, are attached to the inner surface of the lower end portion of the header case 11. The upper end portion of the rubber sheet 40 The upper holder plate 32 is provided with the cam plates 46 The upper edges of the cam plates 46 As shown in As shown in The lower end portion of the rubber sheet 40 A stand plate 13 is mounted on an inner side of the folded portion 12 As shown in The cam plate 46 The upper edges of the cam plates 46 The cam portion 46 The operation of this embodiment will now be described. When the hall doors 6 Even when the hall doors 6 As the rubber sheets 40 As described above, the gap between the door header 12 and the upper sections of the hall doors 6 Further, as in the case of the first embodiment, the sealing mechanism of this embodiment can be installed in a small space with regard to its height direction as well as its thickness direction. Therefore, the sealing mechanism can be installed in an already constructed building without requiring a large-scale reform in the elevator renewal construction. Further, the rubber sheets 40 The third embodiment of the present invention will now be described with reference to A belt-like fluorine-based rubber sheet 60 is provided horizontally on the folded portion 14 The back support plate 33 and front support plate 34, each formed of a synthetic resin, are attached to the inner surface of the lower end portion of the header case 11. A holder plate 62 serving as a movable member is inserted to be slidable in the vertical direction between the back support plate 33 and front support plate 34. The lower edge of the holder plate 62 comes in contact with a side surface of the rubber sheet 60. As in the case of the upper holder plate 32 in the first embodiment, the holder plate 62 is elastically urged upwards by a torsion spring serving as urging means. Then, just before the hall door 6 In this embodiment, when the hall door 6 From this state, when the hall door 6 In this manner, the flow of the air from an elevator hall to the shaft is shut off, and therefore the smoke of a fire cannot enter the shaft from the elevator hall. Thus, the sealing device of this embodiment can prevent the shaft from serving as a chimney, thereby suppressing the spreading of the fire. Further, the diffusion of the smoke to some other floor can be prevented. Further, as in the case of the first embodiment, the sealing mechanism of this embodiment can be installed in a small space with regard to its height direction as well as its thickness direction. Therefore, the sealing mechanism can be installed in an already constructed building without requiring a large-scale reform in its renewal construction. Further, the rubber sheet 60 of the sealing mechanism does not slide on the hall door 6 The fourth embodiment of the present invention will now be described with reference to In this embodiment, a filler member 70 is fit between a folded portion 15 The back support plate 33 and front support plate 34, each formed of a synthetic resin, are attached to the inner surface of the lower end portion of the header case 11. A holder plate 71 serving as a movable member is inserted to be slidable in the vertical direction between the back support plate 33 and front support plate 34. A fluorine-based rubber sheet 72 is fixed on a side surface of the holder plate 71. This rubber sheet 72 is provided horizontally along the longitudinal direction of the folded portion 15 As in the case of the upper holder plate 32 in the first embodiment, the holder plate 71 is elastically urged upwards by a torsion spring serving as urging means. Then, just before the hall door 6 In this embodiment, when the hall door 6 From this state, when the hall door 6 In this manner, the flow of the air from an elevator hall to the shaft is shut off, and therefore the smoke of a fire cannot enter the shaft from the elevator hall. Thus, the sealing device of this embodiment can prevent the shaft from serving as a chimney, thereby suppressing the spreading of the fire. Further, the diffusion of the smoke to some other floor can be prevented. Further, as in the case of the first embodiment, the sealing mechanism of this embodiment can be installed in a small space with regard to its height direction as well as its thickness direction. Therefore, the sealing mechanism can be installed in an already constructed building without requiring a large-scale reform in its renewal construction. Further, the rubber sheet 72 of the sealing mechanism does not slide on the hall door 6 In each of the above-described embodiments, a fluorine-based rubber sheet is used as the seal member; however the present invention is not limited to this, but a rubber material, resin material, film-like material, thin metal plate, etc. can be used as the seal member. Further, in each of the above-described embodiments, a cam plate is provided in each movable member and a cam roller that engages with the cam plate is provided in the hanger of each door as the push down mechanism designed to push down the movable member. However, the present invention is not limited to this structure, but it is alternatively possible to take such a structure that a cam roller is provided in each movable member and a cam plate that engages with the cam roller is provided in the hanger of each door. It is further alternatively possible that an easily slidable projection is used simple in place of the movable member. Furthermore, it is possible to use a plate spring, coil spring, or the elastic property of the seal member itself instead of the torsion spring as the urging means for elastically urging the movable member upwards. As described above, according to the present invention, there is provided a sealing device for an elevator door that is free of possibilities of wear-out of the seal member and an excessive frictional force, which requires a small installation space, easily adjustment and no wiring or a control device, and does not create an excessive reactive force or large noise of sliding when closing the door. The sealing device of the present invention can be applied not only to a door device of an elevator, but also to door devices of a slide open/close type, which requires an air-tightness. A sealing device for an elevator door includes a doorway member, doors, a movable member, a push-down mechanism and a sealing mechanism. The doorway member is provided for a gate. The doors open or close along the doorway member. The movable member is set horizontally and provided to be movable in a vertical direction in the doorway member, and it is urged upwards by an urging unit. The push-down mechanism pushes down the movable member against the force of the urging unit just before the doors are closed. The sealing mechanism is kept non-contact with the doors while they are moving, and seals the gap between the doors and the doorway member as it is brought into contact with upper section of the doors when the movable member is pushed down by the push-down mechanism. 1. A sealing device for an elevator door, comprising:
a doorway member provided for a gate of an elevator; a door provided adjacent to the doorway member and opening or closing with respect to the doorway member; a movable member provided horizontally in the doorway member and movably in a vertical direction and urged elastically upwards by an urging unit; a push-down mechanism configured to push the movable member downwards against the urging unit just before the door is closed while the door is moved in a closing direction; and a sealing mechanism configured to maintain a non-contact state with respect to the door while the door is moving, and to seal a gap between the door and the doorway member when the sealing mechanism is brought into contact with both an upper portion of the door and the doorway member as the movable member is pushed down by the push-down mechanism, the sealing mechanism includes a belt seal member provided horizontally in the doorway member and made of an elastic member, a lower edge of the seal member is fixed to the doorway member; and the seal member is bent to come into contact with the upper portion of the door to seal the gap between the door and the doorway member being urged by the movable member when the movable member is pushed down by the push-down mechanism. 2. The sealing device according to the push-down mechanism includes a cam member provided in one of the doorway member and the door, and a pressing member provided in an other one, and the cam member and the pressing member engage with each other just before the door is closed, to push the movable member downwards. 3. The sealing device according to the seal member is made of one of a rubber sheet, a noncombustible rubber sheet, a film resin material and a thin metal plate. 4. A method for sealing an elevator door, the elevator door comprising:
a doorway member provided for a gate of an elevator; a door provided adjacent to the doorway member and opening or closing with respect to the doorway member; a movable member provided horizontally in the doorway member and movably in a vertical direction and urged elastically upwards by an urging unit; a push-down mechanism configured to push the movable member downwards against the urging unit just before the door is closed while the door is moved in a closing direction, wherein the method comprises the steps of: forming a sealing mechanism and maintaining the sealing mechanism in a non-contact state with respect to the door while the door is moving, the sealing mechanism includes a belt seal member provided horizontally in the doorway member and made of an elastic member; bringing the sealing mechanism into contact with an upper portion of the door to seal a gap between the doorway member and the door when the sealing mechanism is brought into contact with both an upper portion of the door and the doorway member as the movable member is pushed down by the push-down mechanism; fixing a lower edge of the seal member to the doorway member, wherein the seal member is bent to come into contact with the upper portion of the door to seal the gap between the door and the doorway member being urged by the movable member when the movable member is pushed down by the push-down mechanism. 5. the method according to the push-down mechanism includes a cam member provided in one of the doorway member and the door, and a pressing member provided in an other one of the doorway member and the door, and the cam member and the pressing member engage with each other just before the door is closed, to push the movable member downwards. 6. the method according to the seal member is made of one of a rubber sheet, a noncombustible rubber sheet, a film resin material and a thin metal plate. CROSS-REFERENCE TO RELATED APPLICATIONS
BACKGROUND OF THE INVENTION
BRIEF SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
DETAILED DESCRIPTION OF THE INVENTION