REINFORCED SKATEBOARD DECK
This is a continuation application of co-pending U.S. Ser. No. 12/830,298, now U.S. Pat. No. 8,087,681, filed on Jul. 3, 2010, which is a continuation of U.S. Ser. No. 11/940,233, now U.S. Pat. No. 7,748,725, filed on Nov. 14, 2007, both of which are entitled Reinforced Skateboard Deck and hereby incorporated by reference in their entireties. 1. Field of the Invention The present invention relates to the field of skateboard decks, and more specifically, to skateboard decks incorporating destructive force resistant materials. 2. Background Skateboards are typically used today to ride up, over, and oft of ramps and other structures, and the skateboard deck undergoes considerable stress when the rider and skateboard return to the ground. Skateboard decks have been strengthened by a laminated structure typically a seven-ply hardwood with the grain direction of the plies varied to provide strengthening in more than one direction. Such laminate decks are still subject to failure under significant impacts during typical skateboarding use. It is believed that a common failure of the laminate deck occurs where the top layer of the laminate will fail in tension when loaded, then the second sub-layer below that will in turn fail in tension, and then the next and next, working from the top of the deck to the bottom surface. Skateboard decks have also been provided with fiber reinforcement, typically a fiberglass and resin matrix such as epoxy or other thermosetting resin. Fiber reinforced skateboards are known in the art, with some designs placing the fiber reinforcement between the hardwood veneer layers, while other designs have the fiber on the bottom or top major surface of the skateboard. It is believed that the location where a fiber reinforcement has the greatest effect in strengthening against common failure-inducing loads is the top major surface of the skateboard. When fiber reinforcement is placed in such a way as to be firmly and permanently adhered to the top major surface of the skateboard, the common failure mode is prevented from initiating. This is believed to be because the tensile load is distributed over not only the laminate structure of hardwood veneers, but also by augmenting the strength of the laminate structure by the fiber and resin matrix reinforcement. Propagation of rupture of the laminated hardwood veneers is believed to he reduced, because the fibers are both adding stiffness to the structure, and adding overall tensile strength to the skateboard. Providing a layer of fiber reinforcement over the entire major surfaces of the skateboard deck has practical drawbacks given the common nature of use of skateboards where the edges of the deck are worn away by contact with the ground. The result of such contact and wearing away is that fibers are exposed at the edge of the deck. These exposed fibers, particularly in the case of glass or carbon fiber can be rigid and sharp. In the case of other fibers, such as aramid, or para-aramids or other engineering thermoplastic fibers, the exposed fibers are typically soft and pliable, but in any case create a cosmetically unattractive edge. Therefore, what is needed and heretofore unavailable is a reinforced skateboard deck constructed to resist destructive forces typically occurring during use while protecting the reinforcing elements from wear and tear. In accordance with a preferred embodiment of the present invention, a reinforced skateboard deck may incorporate a lower support section with at least one layer and defining an upper bonding surface and a lower truck mounting surface along with an upper strength enhancement section bonded to the upper bonding surface of the support section with the strength enhancement section including at least one fiber-reinforced layer defining a peripheral edge along with a protective side barrier extending around the peripheral edge of the fiber-reinforced layer, the side barrier being formed of a different material with at least a portion of the side barrier and fiber-reinforced layer cooperating to provide an exposed upper foot bearing surface spaced apart from the truck mounting surface. In one aspect of the present invention, the deck may include trucks and wheels. In another aspect of the present invention, the reinforced region includes a spacer layer. In yet another aspect of the present invention, the reinforced region and the protective side barrier form complementary portions of the exposed foot bearing surface. Methods for constructing a reinforced skateboard deck are disclosed as well. Other aspects of the present invention will become apparent with further reference to the following drawings and detailed description. As shown in An upper layer 14 provides a top surface 16 and a bottom surface 18. The top surface is typically the top structural (riding or foot bearing) surface of the skateboard deck, although a grip tape or other similar layer may be applied over the top surface. Upper layer 14 includes an inlaid, fiber-reinforced layer 20 that provides a portion of top surface 16. Fiber-reinforced layer 20 is typically formed substantially of woven para-aramid fibers. The fiber-reinforced layer may be made with unidirectional or bi-directional para-aramid fibers loosely woven into a fabric. As an example, layer 20 may include Kevlar® (resin transfer molded) fabric encased in an adhesive matrix. As an example, the Kevlar® fabric may be substantially saturated with polyurethane, which is then allowed to harden before further processing. Other components of the adhesive matrix would include a resin of epoxy or polyvinyl. Fiber-reinforced layer 20 defines an edge 22 (see also Upper layer 14 typically includes a side barrier 24 that also provides a portion of top surface 16. Preferably, the side barrier and the fiber-reinforced layer together provide the entire top surface but alternatively other structure may provide a part of the top surface. Also preferably, the side barrier extends around the entire edge of the fiber-reinforced layer. Alternatively, the side barrier extends around only a portion of the edge of the fiber-reinforced layer, in which case some other structure may run alongside a portion of the fiber-reinforced layer or no structure as suitable to the desired skateboard design. The side barrier is typically a wood veneer, and as such includes the fibrous material that is naturally found in wood, however, the side barrier typically does not include any fiber reinforcement such as to leave behind a fringe or sharp edge of fibers as may be the case with Kevlar® or glass or carbon fibers. Alternatively, side barrier 24 may be formed from a thermoplastic sheet. As best seen in As best seen in Side barrier 24 and fiber-reinforced layer 20 are preferably die cut from blank 26 and sheet 32, respectively, but any suitable means may be used. With die-cutting, the same press and die may be used to cut both the blank and the sheet. Side barrier 24 and fiber-reinforced layer 20 are typically of equal thickness although some variation is permitted. Alternatively, the fiber-reinforced layer may be substantially thinner, with the difference made up by a spacer layer 34 (see As shown in As best seen in Typically the lower layers are wood or other structural material with a strand orientation that is varied from layer to layer. As an example, with seven lower layers, two may be oriented to provide maximum cross board strength, while the remaining five maximize along board strength, although this scheme will be varied as appropriate for the desired performance characteristics. Alternatively, upper layer 14 may be formed substantially of an adhesive matrix including a central portion of woven fiber encased therein to provide the fiber-reinforced layer. In this embodiment, the adhesive matrix includes an outer portion without woven fiber to provide the side barrier. As described herein, skateboard deck 10 includes a top (or foot bearing) surface 16 for the rider's feet, and a bottom surface 46 for the connection of trucks and wheels. The top surface is provided in part by a fiber-reinforced layer 20. The top surface is further provided by a side barrier 24 extending around at least a portion of the fiber-reinforced layer. Typical thicknesses for the fiber-reinforced layer after saturation with polyurethanes are between about 0.010 to about 0.050-inches. Typical thicknesses for side barrier 14 is between about 0.040 to about 0.065-inches. The thickness of spacer layer 34 typically is adjusted to the appropriate thickness to accommodate the difference between fiber-reinforced layer 20 and side barrier 24 and provide a flush top surface 16. As an example, where side barrier 14 is 0.060-inches thick, and fiber-reinforced layer 20 is 0.020-includes thick, spacer layer 14 is preferably 0.040-inches in thickness. All of these dimensions may be varied within and beyond these ranges as suited to the particular skateboard design. Side barrier 14 may have varying width dimensions relative to skateboard deck 10 and fiber-reinforced layer 20. The dimensions of the side barrier may be substantially uniform around the edge of the skateboard, or they may vary significantly as desired for specific skateboard characteristics. For example, the side barrier may be narrower along the sides as compared to the nose and tail. Side barrier 14 preferably has a minimum width of 0.125-inches along each long side of the skateboard. Side barrier 14 preferably has a width dimension between about 0.125-inches and about 6-inches adjacent the nose and tail of the skateboard. All of these dimensions may, be varied within and beyond these ranges as suited to the particular skateboard design. With this design, fiber-reinforced layer 20 is inset away from the edge of the skateboard, so that the fibers are shielded from contact when the skateboard edges are scraped on the ground or other surface. Fiber-reinforced layer 20 is preferably inlaid on top surface 16 of deck 10, and additionally or alternatively may be inlaid on lower surface 42. It will be appreciated that the incorporation of the fiber-reinforced layer 20 and/or the fiber-reinforced layer as bonded to another layer of the deck assists in significantly resisting tensile forces commonly associated with use and improves the overall rupture resistance of the deck. When used at or near the top layer as a part thereof, the effectiveness of this rupture resistance feature increases. While the present invention has been described herein in terms of a number of preferred embodiments for skateboard decks, various changes and improvements may also be made to the invention without departing from the scope thereof. The subject matter described herein includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. A reinforced skateboard deck adapted to connect to a set of trucks and wheels to form a skateboard for riding with the deck having a reinforced region constructed to resist rupturing of the deck and a protective side barrier constructed to prevent wear of the reinforced region during use. 1. A reinforced skateboard deck comprising:
a lower support section including at least one layer and defining an upper bonding surface and a lower truck mounting surface; and an upper strength enhancement section at least partially bonded to the upper bonding surface of the support section, the strength enhancement section including at least one fiber-reinforced layer defining a peripheral edge; a protective side barrier extending around the peripheral edge of the fiber-reinforced layer, the side barrier being formed of an abrasion resistant material with at least a portion of the side barrier and fiber-reinforced layer cooperating to provide an exposed upper foot bearing surface spaced apart from the truck mounting surface. 2. The reinforced skateboard deck of the lower support section and upper strength enhancement section cooperate to form a board having an intermediate section with a pair of opposing lateral edge sidewalls between a tail section and a nose section; the protective side barrier includes a first region forming at least a portion of the sidewalls of the board and a second region forming at least a portion of the exposed upper foot bearing surface and defining an opening with a pair of opposing interior edges; and the fiber-reinforced layer is disposed within the opening of the second region, with the second region of the protective side barrier and the reinforced layer being formed of different materials. 3. The reinforced skateboard deck of a pair of trucks detachably coupled against the truck mounting surface of the skateboard deck. 4. The reinforced skateboard deck of a set of wheels coupled to the trucks. 5. The reinforced skateboard deck of the reinforced layer is constructed of a synthetic fiber-reinforced material and the protective side barrier is constructed of a natural fibrous material. 6. The reinforced skateboard deck of an upper surface of the second region of protective side barrier and an upper surface of the reinforced layer are substantially coplanar within a region defined by the exposed foot bearing surface. 7. The reinforced skateboard deck of a length of grip tape affixed over the exposed foot bearing surface of the skateboard deck. 8. The reinforced skateboard deck of the bottommost surface of the reinforced layer is positioned above a centerline of the sidewalls of the board. 9. The reinforced skateboard deck of the fiber-reinforced layer is inlaid within at least a portion of the exposed foot bearing surface and includes a pair of recessed lateral edges; and the protective side barrier includes an outermost edge defining a protective sidewall with at least a portion of the side barrier forming the foot bearing surface and extending laterally across the foot bearing surface toward the recessed lateral edges of the fiber-reinforced layer. 10. A reinforced skateboard deck comprising:
a multi-layer board having a top rupture resistant layer with a first region formed of a fiber-reinforced material and a second region formed of a protective sidewall abutting the fiber-reinforced material, the first and second regions cooperating to form a dual density, coplanar, exposed foot bearing surface with the first region having a pair of outermost lateral edges recessed from a pair of outermost lateral edges of the second region to prevent wear of the first region when the board slides along the protective sidewall in use, the board further including an undersurface constructed to connect to a set of trucks and wheels. 11. The reinforced skateboard deck of the second region is at least partially constructed of a natural fibrous material. 12. The reinforced skateboard deck of a spacer layer disposed between the top rupture resistant layer and an adjacent layer. 13. The reinforced skateboard deck of the fiber-reinforced material is constructed with a greater flex durability than at least one other layer of the board. 14. The reinforced skateboard deck of the fiber-reinforced material is substantially encased in an adhesive matrix. 15. The reinforced skateboard deck of the fiber-reinforced material includes fibers substantially saturated in polyurethane. 16. A method of constructing a reinforced skateboard deck comprising the steps of:
providing an upper non-fiber-reinforced layer and at least one non-fiber-reinforced lower layer; removing a central portion of the upper layer to provide a central opening defined by a side barrier; providing a fiber-reinforced layer to fit within the central opening of the side barrier; placing the fiber-reinforced layer within the central opening of the side barrier to form an exposed upper foot bearing surface including portions of the fiber-reinforced layer and the side barrier; and bonding the lower layer together with the side barrier and the fiber-reinforced layer. 17. The method saturating the fiber-reinforced layer in polyurethane before the bonding step. 18. The method of die cutting the upper layer to form the central opening. 19. The method of pressing the bonded layers together to form a skateboard deck having a raised nose section and raised tail section. 20. The method of inserting and bonding a spacer element between the fiber-reinforced layer and an adjacent layer.BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


