Capacitive Loop Antenna and Electronic Device
1. Field of the Invention The present invention relates to a capacitive loop antenna and electronic device, and more particularly, to a capacitive loop antenna and electronic device capable of achieving required bandwidth via adjusting capacitive coupling and having smaller size. 2. Description of the Prior Art Since prosperous development of wireless communications in recent years, more and more information is transmitted through wireless networks and thus demands for wireless communications increases. Moreover, advance of laptop and pad computer technology also increases requirements for product outlook compact size thereof, and following the reduced antenna size. A loop antenna is a conductor routed a shape of closed curve in a plane, the closed curve is usually routed as a circle, a square or a triangle, etc. The theory of the loop antenna is similar to that of a dipole antenna as a resonant antenna. Please refer to However, the conventional loop antenna has the feature of low profile, but the design is lack of flexibility and not easy to reduce antenna size. Therefore, how to improve the above disadvantages has become a goal of the industry. It is therefore an object of the present invention to provide a capacitive loop antenna and electronic device via capacitive coupling to achieve required bandwidth and having smaller antenna size. The present invention discloses a capacitive loop antenna including a shorting-to-ground terminal for providing grounding, a feeding terminal for receiving a first radio frequency feeding signal, and a first capacitive loop including a first connection element, a first radiator having an end electrically connected to the signal feeding terminal via the first connection element, to feed the first radio frequency feeding signal to the first radiator, a second connection element, and a second radiator, having an end electrically connected to the shorting-to-ground terminal via the second connection element, wherein a first section of an end of the first radiator is capacitively coupled with the second radiator. The present invention further discloses an electronic device including a radio frequency processing unit for processing a first radio frequency feeding signal, and a capacitive loop antenna including a shorting-to-ground terminal for providing grounding, a signal feeding terminal for receiving the first radio frequency feeding signal, and a first capacitive loop including a first connection element, a first radiator having an end electrically connected to the signal feeding terminal via the first connection element to feed the first radio frequency feeding signal to the first radiator, a second connection element, and a second radiator having an end electrically connected to the shorting-to-ground terminal via the second connection element, wherein a first section of an end of the first radiator is capacitively coupled with the second radiator. These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings. Please refer to In detail, please refer to On the other hand, As shown in Besides, the capacitive loop antenna 20 can further include a radiator RE in a plane with the radiator RD, and vertically formed on a section L3 of the radiator RD capacitively coupled with the section L2. As a result, different capacitances can be derived through adjusting a length and a position of the radiator RE, i.e. shifting the position of the radiator RE on the section L3 to the left and right, so as improve the bandwidth and matching at high frequency. Please refer to Noticeably, the spirit of the present invention is that the capacitive loop antenna 20 can achieve the required high frequency band and low frequency band via adjusting the capacitive coupling between the radiators RA and RB and between the radiators RC and RD and has smaller antenna size. In addition, those skilled in the art should make modifications or alterations accordingly, and not limited to this. For example, the present invention achieves the required low frequency band via adjusting the capacitive coupling between the radiators RA and RB of the capacitive loop CL1, and achieves the required high frequency band via adjusting the capacitive coupling between the radiators RC and RD of the capacitive loop CL2, so as to have the high frequency band and the low frequency band at the same time. Thus, the present invention can be applied to mobile electronic devices, such as laptops, pad computers, mobile phones or e-books. However, in practice, it may utilize only one of the capacitive loops CL1 and CL2 to have either the high frequency band or 1 the low frequency band. Besides, the capacitive loop antenna 20 can also be applied to other electronic devices, as long as the electronic devices include a radio frequency process unit which can process, transmit or receive radio frequency signals. On the other hand, the radiators RA, RB, RC, RD of the capacitive loop CL1 and CL2 can be designed to have at least one turning. Furthermore, the size and the material of the capacitive loop antenna 20 are not limited to any specific type, and those skilled in the art should make proper modifications and adjustments according to the system requirements, so as to meet requirements of the operating frequency band. In the prior art, the loop antenna has a feature of low profile, but antenna design is lack of flexibility and not easy for size reduction. In comparison, the capacitive loop antenna 20 of the present invention can achieve the high frequency band and the low frequency band via adjusting the capacitive coupling between the radiators RA and RB and between the radiators RC and RD, and has smaller antenna size. Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims. A capacitive loop antenna is disclosed. The capacitive loop antenna comprises a shorting-to-ground terminal, for providing grounding, a feeding terminal, for receiving a first radio frequency feeding signal, and a first capacitive loop. The first capacitive loop comprises a first connection element, a first radiator, comprising an end electrically connected to the feeding terminal via the first connection element, to feed the first radio frequency feeding signal to the first radiator, a second connection element, and a second radiator, comprising an end electrically connected to the shorting-to-ground terminal via the second connection element. A first section of another end of the first radiator is capacitively coupled with the second radiator. 1. A capacitive loop antenna, comprising:
a shorting-to-ground terminal, for providing grounding; a feeding terminal, for receiving a first radio frequency feeding signal; and a first capacitive loop, comprising:
a first connection element; a first radiator, comprising an end electrically connected to the signal feeding terminal via the first connection element, to feed the first radio frequency feeding signal to the first radiator; a second connection element; and a second radiator, comprising an end electrically connected to the shorting-to-ground terminal via the second connection element; wherein a first section of another end of the first radiator is capacitively coupled with the second radiator. 2. The capacitive loop antenna of 3. The capacitive loop antenna of 4. The capacitive loop antenna of 5. The capacitive loop antenna of 6. The capacitive loop antenna of a third connection element; a third radiator, comprising an end electrically connected to the signal feeding terminal via the third connection element, to feed the second radio frequency feeding signal to the third radiator; a fourth connection element; and a fourth radiator, comprising an end electrically connected to the shorting-to-ground terminal via the fourth connection element; wherein a second section of another end of the third radiator is capacitively coupled with the fourth radiator. 7. The capacitive loop antenna of 8. The capacitive loop antenna of 9. The capacitive loop antenna of 10. An electronic device, comprising:
a radio frequency processing unit, for processing a first radio frequency feeding signal; and a capacitive loop antenna, comprising: a shorting-to-ground terminal, for providing grounding; a signal feeding terminal, for receiving the first radio frequency feeding signal; and
a first capacitive loop, comprising: a first connection element; a first radiator, comprising an end electrically connected to the signal feeding terminal via the first connection element, to feed the first radio frequency feeding signal to the first radiator; a second connection element; and a second radiator, comprising an end electrically connected to the shorting-to-ground terminal via the second connection element; wherein a first section of another end of the first radiator is capacitively coupled with the second radiator. 11. The electronic device of 12. The electronic device of 13. The electronic device of 14. The electronic device of 15. The electronic device of a third connection element; a third radiator, comprising an end electrically connected to the signal feeding terminal via the third connection element, to feed the second radio frequency feeding signal to the third radiator; a fourth connection element; and a fourth radiator, comprising an end electrically connected to the shorting-to-ground terminal via the fourth connection element; wherein an end of a second section of the third radiator is capacitively coupled with the fourth radiator. 16. The electronic device of 17. The electronic device of 18. The electronic device of BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION