OFFSHORE CARGO RACK FOR USE IN TRANSFERRING FLUID HOLDING TANK LOADS BETWEEN A MARINE VESSEL AND AN OFFSHORE PLATFORM
This is a continuation of U.S. patent application Ser. No. 12/409,154, filed 23 Mar. 2009 (issuing as U.S. Pat. No. 8,231,316 on 31 Jul. 2012), which is a non-provisional patent application of U.S. Provisional Patent Application Ser. No. 61/146,949, filed 23 Jan. 2009, each of which is hereby incorporated herein by reference. Priority of U.S. Provisional Patent Application Ser. No. 61/146,949, filed 23 Jan. 2009, incorporated herein by reference, is hereby claimed. International Application No. PCT/US2010/028287, filed on 23 Mar. 2010 (published as International Publication No. W02010/111252 on 30 Sep. 2010), is hereby incorporated herein by reference. Not applicable 1. Field of the Invention The present invention relates to cargo racks for transferring goods between marine vessels and offshore platforms such as oil and gas well drilling and production platforms. More particularly, the present invention relates to an improved cargo rack that enables a user to load the rack with multiple fluid holding tank loads and to then transport the entire rack using a lifting device such as a crane or a forklift from the marine vessel to the platform. Additionally, the entire rack can be moved on land or on the platform with a crane or forklift. A manifold arrangement directs flow from each tank to a common discharge. 2. General Background In the exploration of oil and gas in a marine environment, fixed, semi-submersible, jack-up, and other offshore marine platforms are used during drilling operations. Fixed platforms are typically used for production of oil and gas from wells after they have been drilled. Drilling and production require that an enormous amount of supplies be transported from land based storage facilities. Supplies are typically transferred to offshore platforms using very large marine vessels called work boats. These work boats can be in excess of one hundred feet in length and have expansive deck areas for carrying cargo that is destined for an offshore platform. Supplies are typically transferred from a land based dock area to the marine vessel using a lifting device such as a crane or a mobile lifting and transport device such as a forklift. Once a work boat arrives at a selected offshore platform, supplies or products are typically transferred from the deck of the work boat to the platform using a lifting device such as a crane. Once on the deck of a drilling platform or production platform, space is at a premium. The storage of supplies on an offshore oil well drilling or production platform is a huge problem. Liquids that must be transferred to the offshore platform can include: any liquid useful in the exploration, drilling or production of oil and/or gas. Many cargo transport and lifting devices have been patented. The table below lists some patents that relate generally to pallets, palletized racks, and other cargo racks. The present invention provides an improved cargo rack apparatus that includes a frame having a front, a rear, and upper and lower end portions. The lower end portion of the frame provides a structural perimeter beam that can be preferably a plurality of beams that are welded end to end to form a generally square or rectangular base. A raised floor is attached to the perimeter beam or beams. A pair of open-ended parallel forklift tine tubes or sockets are provided that communicate with the perimeter beam (or beams) at both the front and the rear of the frame. Openings in the perimeter beam align with these forklift tine sockets or tubes. The frame preferably includes a plurality of side walls that extend upwardly from the perimeter beam including at least left and right side walls and front and rear gated side walls. A plurality of gates are mounted to the frame including a gate at least in the front and at the rear of the frame. Preferably a pair of gates can be provided both at the front and at the rear of the frame. Each gate is movable between open and closed positions. The gates enable a forklift to place loads on the raised floor by accessing either the front or the rear of the frame. The frame provides positioning beams that segment the raised floor into a plurality of load holding positions. A manifold directs fluid from each tank to a common discharge. For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein: Transport apparatus 10 provides a frame 11 having upper end portion 12 and lower end portion 13. Lower end portion 13 provides undercarriage 14 with a floor 15. Floor 15 is subdivided into a plurality (e.g. four) of sections, each section for carrying a fluid containing tank or module 16. Frame 11 provides sidewalls 46, 47 and a plurality of doors 35. Each door 35 is pivotally attached at hinges 48, to frame 11. In Branched header 17 has a single flow outlet 25 that received fluid flow from a plurality of branch flowlines 18-21. Valve 22 can be placed in header 17 downstream of flowlines 18-21. Each branch flowline 18-21 extends to a position that is next to a fluid containing tank or module 16. For example, each branch flowline 18-21 can extend generally to a corner or corner column 42-45 or to a side wall 46-47 of frame 11. Each branch flowline 18-21 extends to a riser section 32. Each riser section 32 can be located at a position that is next to outlet piping 23 of a tank or module 16. The riser section 32 can include a preferably flexible section 24 (e.g. hose) of each branch flowline 18-21. The flexible section 24 extends above floor 15 and connects with the outlet piping 23 of a module or tank 16 above floor 15 as shown. The riser section 32 can be rotatable about a generally vertical axis at rotary joint 50. This combination of rotation and the flexible section 24 assist in forming a connection between a branch flowline 18-21 and a tank or module 16 (see Flow from any tank or module 16 can be controlled with a valve 52 of the outlet fitting 23 using valve handle 53. Valve 52 is a part of section 26 of outlet fitting 23. Section 26 can be a one piece, cast member which includes an elbow 37 (e.g. twenty degree elbow). Section 26 connects to elbow outlet fitting 54 which drains tank 16. The undercarriage 14 has forklift tine sockets 27, 28 that are receptive of the tines of a forklift. The frame 11 can also be lifted with rigging such as slings and a crane lift line connected to corner fittings 30 (see Doors 35 on frame 11 can be pivotally attached thereto and closed using latch 36. Doors 35 enable a module or tank 16 to be added to or removed from a selected section of floor 15 using a forklift. In Frame 11 can be as shown in The following is a list of suitable parts and materials for the various elements of the preferred embodiment of the present invention. All measurements disclosed herein are at standard 20 temperature and pressure, at sea level on Earth, unless indicated otherwise. The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims. A cargo rack for transferring loads between a marine vessel and an offshore marine platform provides a frame having a front, a rear, and upper and lower end portions. The lower end portion has a perimeter beam base, a raised floor and a pair of open-ended parallel fork tine tubes that communicate with the perimeter beam at the front and rear of the frame. Openings in the perimeter beam base align with the forklift tine tubes. The frame includes fixed side walls extending upwardly from the perimeter beam. A plurality of gates are movably mounted on the frame, each gate being movable between open and closed positions, the gates enabling a forklift to place fluid holding tanks on the floor by accessing either the front of the frame or the rear of the frame. A manifold arrangement with fittings enables transfer of fluid in any tank to a common outlet. 1. A cargo rack comprising:
a) a frame having a front, a rear, and upper and lower end portions; b) a plurality of fluid load modules that are supported with the frame during use; c) the lower end portion having a perimeter beam base with a floor providing multiple load holding positions, each configured to hold a separate one of the fluid load modules; d) the frame including a plurality of side walls that attach to and extend upwardly from the perimeter beam base and including at least left and right side walls, the frame having four corners with a corner column at each corner; e) a plurality of gates that are movably mounted to the frame, including a pair of gates at the front and a pair of gates at the rear of the frame, each gate being movably between open and closed; f) a header under the floor having a plurality of branch flow lines and a common discharge, each branch flow line being positioned to form a fluid conveying connection with a fluid tank; and g) a discharge fitting on each tank that is connectable with a branch flow line. 2. The cargo rack of 3. The cargo rack of 4. The cargo rack of 5. The cargo rack of 6. The cargo rack of 7. The cargo rack of 8. The cargo rack of 9. The cargo rack of 10. The cargo rack of 11. A fluid tank cargo rack, comprising;
a) a structural, transportable frame having a lower end portion with an undercarriage and a floor above the undercarriage; b) sections on the frame having a plurality of storage locations for holding multiple, separate tanks; c) a common flow outlet for discharging a selected fluid from a selected tank; d) a branched header supported by the frame is below the floor; and e) piping that connects to the branched header, enabling a selected of the tanks to transfer its contents to the branched flowline for transmission to the common flow outlet. 12. The fluid tank cargo rack of 13. The fluid tank cargo rack of 14. The fluid tank cargo rack of 15. The fluid tank cargo rack of 16. The fluid tank cargo rack of 17. The fluid tank cargo rack of 18. The fluid tank cargo rack of 19. The fluid tank cargo rack of 20. The fluid tank cargo rack of 21. The fluid tank cargo rack of 22. A liquid tank transport apparatus, comprising;
a) a structural, transportable frame; b) an undercarriage on the frame having a storage area that houses a branched header; c) a floor above the undercarriage having multiple storage locations, each for holding one of a plurality of tanks; d) a common flow outlet for discharging a selected fluid from a selected tank; e) each tank being a transportable, crane liftable unit; f) one or more gates on the frame that enable a tank to be transferred to or removed from the floor; and g) piping that enables a selected of the tanks to transfer its contents to the header. 23. The liquid tank transport apparatus of 24. The liquid tank transport apparatus of 25. The liquid tank transport apparatus of 26. The liquid tank transport apparatus of 27. The liquid tank transport apparatus of 28. The liquid tank transport apparatus of 29. The liquid tank transport apparatus of 30. The liquid tank transport apparatus of 31. The liquid tank transport apparatus of 32. The liquid tank transport apparatus of 33. A liquid tank transport apparatus, comprising;
a) a structural, transportable frame; b) an undercarriage on the frame having a header with multiple flowlines and a common flow outlet; c) a plurality of tanks on the undercarriage, each having an interior for holding a liquid; d) a plurality of tank outlets for discharging a selected fluid from a selected tank; e) risers on the frame that extend above undercarriage and configured to receive flow from a tank; and f) a piping system that includes multiple flow lines, at least one flow line communicating with each tank, and each flow line communicating with the branched header. CROSS-REFERENCE TO RELATED APPLICATIONS
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable
REFERENCE TO A “MICROFICHE APPENDIX”
BACKGROUND OF THE INVENTION
2, 683, 010 “Pallet and Spacer” Jul. 6, 1954 3, 916, 803 “Loading Platform” Nov. 4, 1975 4, 165, 806 “Palletizing System Aug. 28, 1979 for Produce Cartons and the Like” 4, 828, 311 “Metal Form Pallet” May 9, 1989 5, 156, 233 “Safety Anchor for Oct. 20, 1992 Use with Slotted Beams” 5, 292, 012 “Tank Handling and Mar. 8, 1994 Protection Structure” 5, 507, 237 “Lifting Apparatus Apr. 16, 1996 for Use with Bulk Bags” 6, 357, 365 “Intermediate Bulk Mar. 19, 2002 Container Lifting Rack” 6, 371, 299 “Crate Assembly and Apr. 16, 2002 Improved Method” BRIEF SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION
PARTS LIST PART NO. DESCRIPTION 10 transport apparatus 11 frame 12 upper end portion 13 lower end portion 14 undercarriage 15 floor 16 module 17 header 18 flowline 19 flowline 20 flowline 21 flowline 22 valve 23 outlet piping 24 flexible section 25 flow outlet 26 section 27 forklift tine socket 28 forklift tine socket 29 vertical section 30 corner fitting 31 horizontal plate 32 riser section 33 opening 34 guard 35 door 36 latch 37 elbow 38 leg 39 forklift socket or channel 40 drip pan 41 forklift guard 42 corner column 43 corner column 44 corner column 45 corner column 46 side wall 47 side wall 48 hinge 49 hinge 50 rotary joint 51 elbow 52 valve 53 valve handle 54 elbow outlet fitting 55 undercarriage 56 fitting






