Use of Fluopyram for Controlling Nematodes in Crops and for Increasing Yield

26-09-2013 дата публикации
Номер:
US20130253018A1
Принадлежит: BAYER INTELLECTUAL PROPERTY GMBH
Контакты:
Номер заявки: 62-06-1399
Дата заявки: 30-11-2011

BACKGROUND OF THE INVENTION

[0001]

The present invention relates generally to the use of N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-ethyl}-2,6-dichlorobenzamide (fluopyram) and compositions comprising fluopyram for controlling nematodes in vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes and to methods particularly useful for controlling nematodes and/or increasing crop yield in consisting of vegetables, in particular tomato and cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, in particular, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, flowers and for increasing yield.

[0002]

Fluopyram is defined to be the compound of the formula (I)

[0000]

[0003]

as well as the N-oxides of the compound thereof.

[0004]

Fluopyram is a broad spectrum fungicide with penetrant and translaminar properties for foliar, drip, drench and seed treatment applications on a wide range of different crops against many economically important plant diseases. It is very effective in preventative applications against powdery mildew species, grey mould and white mould species. It has an efficacy against many other plant diseases. Fluopyram has shown activity in spore germination, germ tube elongation and mycelium growth tests. At the biochemical level, fluopyram inhibits mitochondrial respiration by blocking the electron transport in the respiratory chain of Succinate Dehydrogenase (complex II—SDH inhibitor).

[0005]

Fluopyram and its manufacturing process starting from known and commercially available compounds is described in EP-A-1 389 614 and WO 2004/016088.

[0006]

A general description of the nematicidal activity of pyridylethylbenzamide derivatives is found in WO-A 2008/126922.

[0007]

Nematodes are tiny, worm-like, multicellular animals adapted to living in water. The number of nematode species is estimated at half a million. An important part of the soil fauna, nematodes live in a maze of interconnected channels, called pores, that are formed by soil processes. They move in the films of water that cling to soil particles. Plant-parasitic nematodes, a majority of which are root feeders, are found in association with most plants. Some are endoparasitic, living and feeding within the tissue of the roots, tubers, buds, seeds, etc. Others are ectoparasitic, feeding externally through plant walls. A single endoparasitic nematode can kill a plant or reduce its productivity. Endoparasitic root feeders include such economically important pests as the root-knot nematodes (Meloidogyne species), the reniform nematodes (Rotylenchulus species), the cyst nematodes (Heterodera species), and the root-lesion nematodes (Pratylenchus species). Direct feeding by nematodes can drastically decrease a plant's uptake of nutrients and water. Nematodes have the greatest impact on crop productivity when they attack the roots of seedlings immediately after seed germination. Nematode feeding also creates open wounds that provide entry to a wide variety of plant-pathogenic fungi and bacteria. These microbial infections are often more economically damaging than the direct effects of nematode feeding.

[0008]

Current nematode control focuses essentially on the prevention of nematode attack on the plant. Once a plant is parasitized it is virtually impossible to kill the nematode without also destroying the plant.

[0009]

Therefore, it would be advantageous to provide nematode control compounds and methods of treating plants to prevent or reduce nematode damage.

SUMMARY OF THE INVENTION

[0010]

This invention now provides advantageous uses of fluopyram for controlling nematodes infesting crops selected from the group consisting of vegetables, tomato, cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, flowers and for increasing yield.

[0011]

This invention now provides advantageous uses of fluopyram for controlling nematodes infesting crops selected from the group consisting of vegetables, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, tree crops—nuts, flowers and for increasing yield.

[0012]

This invention now provides advantageous uses of fluopyram for controlling nematodes infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, in particular, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, flowers and for increasing yield.

[0013]

This invention now provides advantageous uses of fluopyram for controlling nematodes infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes and for increasing yield.

[0014]

The invention relates further to the use of fluopyram for controlling nematodes selected from the group of genera selected from Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchulus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp. infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes.

[0015]

The invention relates further to the use of fluopyram for controlling nematodes selected from the group of genera selected from Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchulus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp. infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, in particular, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, flowers and for increasing yield.

[0016]

The invention relates further to the use of fluopyram for controlling nematode species selected from the group consisting of Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Aphelenchoides fragariae, Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Cacopaurus pestis, Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella xenoplax (=Mesocriconema xenoplax) and Criconemella spp. in general, Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum and Criconemoides spp. in general, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and Ditylenchus spp. in general, Dolichodorus heterocephalus, Globodera pallida (=Heterodera pallida), Globodera rostochiensis, Globodera solanacearum, Globodera tabacum, Globodera virginiae, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus erythrine, Helicotylenchus multicinctus, Helicotylenchus nannus, Helicotylenchus pseudorobustus and Helicotylenchus spp. in general, Hemicriconemoides, Hemicycliophora arenaria, Hemicycliophora nudata, Hemicycliophora parvana, Heterodera avenae, Heterodera cruciferae, Heterodera glycines, Heterodera oryzae, Heterodera schachtii, Heterodera zeae and Heterodera spp. in general, Hoplolaimus aegyptii, Hoplolaimus californicus, Hoplolaimus columbus, Hoplolaimus galeatus, Hoplolaimus indicus, Hoplolaimus magnistylus, Hoplolaimus pararobustus, Longidorus africanus, Longidorus breviannulatus, Longidorus elongatus, Longidorus laevicapitatus, Longidorus vineacola and Longidorus spp. in general, Meloidogyne acronea, Meloidogyne africana, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne artiella, Meloidogyne chitwoodi, Meloidogyne coffeicola, Meloidogyne ethiopica, Meloidogyne exigua, Meloidogyne graminicola, Meloidogyne graminis, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne kikuyensis, Meloidogyne naasi, Meloidogyne paranaensis, Meloidogyne thamesi and Meloidogyne spp. in general, Meloinema spp., Nacobbus aberrans, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Paratrichodorus allius, Paratrichodorus lobatus, Paratrichodorus minor, Paratrichodorus nanus, Paratrichodorus porosus, Paratrichodorus teres and Paratrichodorus spp. in general, Paratylenchus hamatus, Paratylenchus minutus, Paratylenchus projectus and Paratylenchus spp. in general, Pratylenchus agilis, Pratylenchus alleni, Pratylenchus andinus, Pratylenchus brachyurus, Pratylenchus cerealis, Pratylenchus coffeae, Pratylenchus crenatus, Pratylenchus delattrei, Pratylenchus giibbicaudatus, Pratylenchus goodeyi, Pratylenchus hamatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae and Pratylenchus spp. in general, Pseudohalenchus minutus, Psilenchus magnidens, Psilenchus tumidus, Punctodera chalcoensis, Quinisulcius acutus, Radopholus citrophilus, Radopholus similis, Rotylenchulus borealis, Rotylenchulus parvus, Rotylenchulus reniformis and Rotylenchulus spp. in general, Rotylenchus laurentinus, Rotylenchus macrodoratus, Rotylenchus robustus, Rotylenchus uniformis and Rotylenchus spp. in general, Scutellonema brachyurum, Scutellonema bradys, Scutellonema clathricaudatum and Scutellonema spp. in general, Subanguina radiciola, Tetylenchus nicotianae, Trichodorus cylindricus, Trichodorus minor, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus and Trichodorus spp. in general, Tylenchorhynchus agri, Tylenchorhynchus brassicae, Tylenchorhynchus clarus, Tylenchorhynchus claytoni, Tylenchorhynchus digitatus, Tylenchorhynchus ebriensis, Tylenchorhynchus maximus, Tylenchorhynchus nudus, Tylenchorhynchus vulgaris and Tylenchorhynchus spp. in general, Tylenchulus semipenetrans, Xiphinema americanum, Xiphinema brevicolle, Xiphinema dimorphicaudatum, Xiphinema index and Xiphinema spp. in general.

[0017]

Accordingly, the present invention also relates to the use of compositions comprising

[0018]

A) fluopyram and

[0019]

B) at least one agrochemically active compound,

[0020]

in addition to extenders and/or surfactants

[0021]

for controlling nematodes infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes and for increasing yield.

[0022]

Accordingly, the present invention also relates to the use of compositions comprising

[0023]

A) fluopyram and

[0024]

B) at least one agrochemically active compound,

[0025]

in addition to extenders and/or surfactants

[0026]

for controlling nematodes infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, in particular, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, flowers and for increasing yield.

[0027]

Accordingly, the present invention also relates to the use of compositions comprising

[0028]

A) fluopyram and

[0029]

B) at least one agrochemically active compound,

[0030]

in addition to extenders and/or surfactants

[0031]

for controlling nematodes selected from the group of genera selected from Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchulus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp. infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes and for increasing yield.

[0032]

Accordingly, the present invention also relates to the use of compositions comprising

[0033]

A) fluopyram and

[0034]

B) at least one agrochemically active compound,

[0035]

in addition to extenders and/or surfactants

[0036]

for controlling nematodes selected from the group of genera selected from Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchulus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp. infesting crops selected from the group consisting of vegetables, for controlling nematodes infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, in particular, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, flowers and for increasing yield.

[0037]

Accordingly, the present invention also relates to the use of compositions comprising

[0038]

A) fluopyram and

[0039]

B) at least one agrochemically active compound,

[0040]

in addition to extenders and/or surfactants

[0041]

for controlling nematodes species selected from the group consisting of Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Aphelenchoides fragariae, Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Cacopaurus pestis, Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella xenoplax (=Mesocriconema xenoplax) and Criconemella spp. in general, Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum and Criconemoides spp. in general, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and Ditylenchus spp. in general, Dolichodorus heterocephalus, Globodera pallida (=Heterodera pallida), Globodera rostochiensis, Globodera solanacearum, Globodera tabacum, Globodera virginiae, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus erythrine, Helicotylenchus multicinctus, Helicotylenchus nannus, Helicotylenchus pseudorobustus and Helicotylenchus spp. in general, Hemicriconemoides, Hemicycliophora arenaria, Hemicycliophora nudata, Hemicycliophora parvana, Heterodera avenae, Heterodera cruciferae, Heterodera glycines, Heterodera oryzae, Heterodera schachtii, Heterodera zeae and Heterodera spp. in general, Hoplolaimus aegyptii, Hoplolaimus californicus, Hoplolaimus columbus, Hoplolaimus galeatus, Hoplolaimus indicus, Hoplolaimus magnistylus, Hoplolaimus pararobustus, Longidorus africanus, Longidorus breviannulatus, Longidorus elongatus, Longidorus laevicapitatus, Longidorus vineacola and Longidorus spp. in general, Meloidogyne acronea, Meloidogyne africana, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne artiella, Meloidogyne chitwoodi, Meloidogyne coffeicola, Meloidogyne ethiopica, Meloidogyne exigua, Meloidogyne graminicola, Meloidogyne graminis, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne kikuyensis, Meloidogyne naasi, Meloidogyne paranaensis, Meloidogyne thamesi and Meloidogyne spp. in general, Meloinema spp., Nacobbus aberrans, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Paratrichodorus allius, Paratrichodorus lobatus, Paratrichodorus minor, Paratrichodorus nanus, Paratrichodorus porosus, Paratrichodorus teres and Paratrichodorus spp. in general, Paratylenchus hamatus, Paratylenchus minutus, Paratylenchus projectus and Paratylenchus spp. in general, Pratylenchus agilis, Pratylenchus alleni, Pratylenchus andinus, Pratylenchus brachyurus, Pratylenchus cerealis, Pratylenchus coffeae, Pratylenchus crenatus, Pratylenchus delattrei, Pratylenchus giibbicaudatus, Pratylenchus goodeyi, Pratylenchus hamatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae and Pratylenchus spp. in general, Pseudohalenchus minutus, Psilenchus magnidens, Psilenchus tumidus, Punctodera chalcoensis, Quinisulcius acutus, Radopholus citrophilus, Radopholus similis, Rotylenchulus borealis, Rotylenchulus parvus, Rotylenchulus reniformis and Rotylenchulus spp. in general, Rotylenchus laurentinus, Rotylenchus macrodoratus, Rotylenchus robustus, Rotylenchus uniformis and Rotylenchus spp. in general, Scutellonema brachyurum, Scutellonema bradys, Scutellonema clathricaudatum and Scutellonema spp. in general, Subanguina radiciola, Tetylenchus nicotianae, Trichodorus cylindricus, Trichodorus minor, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus and Trichodorus spp. in general, Tylenchorhynchus agri, Tylenchorhynchus brassicae, Tylenchorhynchus clarus, Tylenchorhynchus claytoni, Tylenchorhynchus digitatus, Tylenchorhynchus ebriensis, Tylenchorhynchus maximus, Tylenchorhynchus nudus, Tylenchorhynchus vulgaris and Tylenchorhynchus spp. in general, Tylenchulus semipenetrans, Xiphinema americanum, Xiphinema brevicolle, Xiphinema dimorphicaudatum, Xiphinema index and Xiphinema spp. in general infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes and for increasing yield.

[0042]

Accordingly, the present invention also relates to the use of compositions comprising

[0043]

A) fluopyram and

[0044]

B) at least one agrochemically active compound,

[0045]

in addition to extenders and/or surfactants

[0046]

for controlling nematodes species selected from the group consisting of Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Aphelenchoides fragariae, Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Cacopaurus pestis, Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella xenoplax (=Mesocriconema xenoplax) and Criconemella spp. in general, Criconemoides ferniae, Criconemoides onoense, Criconemoides ornaturn and Criconemoides spp. in general, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and Ditylenchus spp. in general, Dolichodorus heterocephalus, Globodera pallida (=Heterodera pallida), Globodera rostochiensis, Globodera solanacearum, Globodera tabacum, Globodera virginiae, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus erythrine, Helicotylenchus multicinctus, Helicotylenchus nannus, Helicotylenchus pseudorobustus and Helicotylenchus spp. in general, Hemicriconemoides, Hemicycliophora arenaria, Hemicycliophora nudata, Hemicycliophora parvana, Heterodera avenae, Heterodera cruciferae, Heterodera glycines, Heterodera oryzae, Heterodera schachtii, Heterodera zeae and Heterodera spp. in general, Hoplolaimus aegyptii, Hoplolaimus califormicus, Hoplolaimus columbus, Hoplolaimus galeatus, Hoplolaimus indicus, Hoplolaimus magnistylus, Hoplolaimus pararobustus, Longidorus africanus, Longidorus breviannulatus, Longidorus elongatus, Longidorus laevicapitatus, Longidorus vineacola and Longidorus spp. in general, Meloidogyne acronea, Meloidogyne africana, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne artiella, Meloidogyne chitwoodi, Meloidogyne coffeicola, Meloidogyne ethiopica, Meloidogyne exigua, Meloidogyne graminicola, Meloidogyne graminis, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne kikuyensis, Meloidogyne naasi, Meloidogyne paranaensis, Meloidogyne thamesi and Meloidogyne spp. in general, Heloinema spp., Nacobbus aberrans, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Paratrichodorus allius, Paratrichodorus lobatus, Paratrichodorus minor, Paratrichodorus nanus, Paratrichodorus porosus, Paratrichodorus teres and Paratrichodorus spp. in general, Paratylenchus hamatus, Paratylenchus minutus, Paratylenchus projectus and Paratylenchus spp. in general, Pratylenchus agilis, Pratylenchus alleni, Pratylenchus andinus, Pratylenchus brachyurus, Pratylenchus cerealis, Pratylenchus coffeae, Pratylenchus crenatus, Pratylenchus delattrei, Pratylenchus giibbicaudatus, Pratylenchus goodeyi, Pratylenchus hamatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae and Pratylenchus spp. in general, Pseudohalenchus minutus, Psilenchus magnidens, Psilenchus turnidus, Punctodera chalcoensis, Quinisulcius acutus, Radopholus citrophilus, Radopholus similis, Rotylenchulus borealis, Rotylenchulus parvus, Rotylenchulus reniformis and Rotylenchulus spp. in general, Rotylenchus laurentinus, Rotylenchus macrodoratus, Rotylenchus robustus, Rotylenchus uniformis and Rotylenchus spp. in general, Scutellonema brachyurum, Scutellonema bradys, Scutellonema clathricaudatum and Scutellonema spp. in general, Subanguina radiciola, Tetylenchus nicotianae, Trichodorus cylindricus, Trichodorus minor, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus and Trichodorus spp. in general, Tylenchorhynchus agri, Tylenchorhynchus brassicae, Tylenchorhynchus clarus, Tylenchorhynchus claytoni, Tylenchorhynchus digitatus, Tylenchorhynchus ebriensis, Tylenchorhynchus maximus, Tylenchorhynchus nudus, Tylenchorhynchus vulgaris and Tylenchorhynchus spp. in general, Tylenchulus semipenetrans, Xiphinema americanum, Xiphinema brevicolle, Xiphinema dimorphicaudatum, Xiphinema index and Xiphinema spp. in general infesting crops selected from the group consisting of vegetables, in particular tomato and cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, in particular, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, flowers and for increasing yield.

[0047]

An exemplary method of the invention comprises applying fluopyram of the invention to either soil or a plant (e.g., seeds or foliarly) to control nematode damage and/or increase crop yield.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0048]

Vegetables are for example broccoli, cauliflower, globe artichokes, Sweet corn (maize), peas, beans, kale, collard greens, spinach, arugula, beet greens, bok Choy, chard, choi sum, turnip greens, endive, lettuce, mustard greens, watercress, garlic chives, gai lan, leeks, brussels sprouts, capers, kohlrabi, celery, rhubarb, cardoon, Chinese celery, lemon grass, asparagus, bamboo shoots, galangal, and ginger, potatoes, Jerusalem artichokes, sweet potatoes, taro, yams soybean sprouts, mung beans, urad, alfalfa, carrots, parsnips, beets, radishes, rutabagas, turnips, burdocks, onions, shallots, garlic, tomatoes, curcurbis (cucumbers, squash, pumpkins, melons, luffas, gourds, watermelons), zucchinis peppers, eggplant, tomatillos, christophene, okra, breadfruit and avocado, green beans, lentils, snow peas.

[0049]

Preferred vegetables are tomato cucurbits, potato, pepper, carrots, onions,

[0050]

Tree crops—stone fruits are e.g. apricots, cherries, almonds and peaches.

[0051]

Tree crops—pome fruits are e.g. apples, pears.

[0052]

Tree crops—nuts are e.g. Beech, Brazil nut, Candlenut, Cashew, Chestnuts, including Chinese Chestnut, Sweet Chestnut, Colocynth, Cucurbita ficifolia, Filbert, Gevuina avellana, Hickory, including Pecan, Shagbark Hickory, Terminalia catappa, Hazelnut, Indian Beech, Kola nut, Macadamia, Malabar chestnut, Pistacia, Mamoncillo, Maya nut, Mongongo, Oak acorns, Ogbono nut, Paradise nut, Pili nut, Walnut, Black Walnut, Water Caltrop.

[0053]

In the present context, agrochemically active compounds are to be understood as meaning all substances which are or may be customarily used for treating plants. Fungicides, bactericides, insecticides, acaricides, nematicides, molluscicides, safeners, plant growth regulators and plant nutrients as well as biological control agents may be mentioned as being preferred.

[0054]

Mixing Partners

[0055]

Examples of fungicides which may be mentioned are:

[0056]

1) Inhibitors of the ergosterol biosynthesis, for example (1.1) aldimorph (1704-28-5), (1.2) azaconazole (60207-31-0), (1.3) bitertanol (55179-31-2), (1.4) bromuconazole (116255-48-2), (1.5) cyproconazole (113096-99-4), (1.6) diclobutrazole (75736-33-3), (1.7) difenoconazole (119446-68-3), (1.8) diniconazole (83657-24-3), (1.9) diniconazole-M (83657-18-5), (1.10) dodemorph (1593-77-7), (1.11) dodemorph acetate (31717-87-0), (1.12) epoxiconazole (106325-08-0), (1.13) etaconazole (60207-93-4), (1.14) fenarimol (60168-88-9), (1.15) fenbuconazole (114369-43-6), (1.16) fenhexamid (126833-17-8), (1.17) fenpropidin (67306-00-7), (1.18) fenpropimorph (67306-03-0), (1.19) fluquinconazole (136426-54-5), (1.20) flurprimidol (56425-91-3), (1.21) flusilazole (85509-19-9), (1.22) flutriafol (76674-21-0), (1.23) furconazole (112839-33-5), (1.24) furconazole-cis (112839-32-4), (1.25) hexaconazole (79983-71-4), (1.26) imazalil (60534-80-7), (1.27) imazalil sulfate (58594-72-2), (1.28) imibenconazole (86598-92-7), (1.29) ipconazole (125225-28-7), (1.30) metconazole (125116-23-6), (1.31) myclobutanil (88671-89-0), (1.32) naftifine (65472-88-0), (1.33) nuarimol (63284-71-9), (1.34) oxpoconazole (174212-12-5), (1.35) paclobutrazol (76738-62-0), (1.36) pefurazoate (101903-30-4), (1.37) penconazole (66246-88-6), (1.38) piperalin (3478-94-2), (1.39) prochloraz (67747-09-5), (1.40) propiconazole (60207-90-1), (1.41) prothioconazole (178928-70-6), (1.42) pyributicarb (88678-67-5), (1.43) pyrifenox (88283-41-4), (1.44) quinconazole (103970-75-8), (1.45) simeconazole (149508-90-7), (1.46) spiroxamine (118134-30-8), (1.47) tebuconazole (107534-96-3), (1.48) terbinafine (91161-71-6), (1.49) tetraconazole (112281-77-3), (1.50) triadimefon (43121-43-3), (1.51) triadimenol (89482-17-7), (1.52) tridemorph (81412-43-3), (1.53) triflumizole (68694-11-1), (1.54) triforine (26644-46-2), (1.55) triticonazole (131983-72-7), (1.56) uniconazole (83657-22-1), (1.57) uniconazole-p (83657-17-4), (1.58) viniconazole (77174-66-4), (1.59) voriconazole (137234-62-9), (1.60) 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)cycloheptanol (129586-32-9), (1.61) methyl 1-(2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)-1H-imidazole-5-carboxylate (110323-95-0), (1.62) N′-{5-(di fluoromethyl)-2-methyl-4-[3-(trimethylsilyl)propoxy]phenyl}-N-ethyl-N-methylimidoformamide, (1.63) N-ethyl-N-methyl-N′-{2-methyl-5-(trifluoromethyl)-4-[3-(trimethylsilyl)propoxy]phenyl}imidoformamide and (1.64) O-[1-(4-methoxyphenoxy)-3,3-dimethylbutan-2-yl]1H-imidazole-1-carbothioate (111226-71-2).

[0057]

(2) inhibitors of the respiratory chain at complex I or II, for example (2.1) bixafen (581809-46-3), (2.2) boscalid (188425-85-6), (2.3) carboxin (5234-68-4), (2.4) diflumetorim (130339-07-0), (2.5) fenfuram (24691-80-3), (2.6) fluopyram (658066-35-4), (2.7) flutolanil (66332-96-5), (2.8) fluxapyroxad (907204-31-3), (2.9) furametpyr (123572-88-3), (2.10) furmecyclox (60568-05-0), (2.11) isopyrazam (mixture of syn-epimeric racemate 1RS,4SR,9RS and anti-epimeric racemate 1RS,4SR,9SR) (881685-58-1), (2.12) isopyrazam (anti-epimeric racemate 1RS,4SR,9SR), (2.13) isopyrazam (anti-epimeric enantiomer 1R,4S,9S), (2.14) isopyrazam (anti-epimeric enantiomer 1S,4R,9R), (2.15) isopyrazam (syn epimeric racemate 1RS,4SR,9RS), (2.16) isopyrazam (syn-epimeric enantiomer 1R,4S,9R), (2.17) isopyrazam (syn-epimeric enantiomer 1S,4R,9S), (2.18) mepronil (55814-41-0), (2.19) oxycarboxin (5259-88-1), (2.20) penflufen (494793-67-8), (2.21) penthiopyrad (183675-82-3), (2.22) sedaxane (874967-67-6), (2.23) thifluzamide (130000-40-7), (2.24) 1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide, (2.25) 3-(difluoromethyl)-1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-1H-pyrazole-4-carboxamide, (2.26) 3-(difluoromethyl)-N-[4-fluoro-2-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-1-methyl-1H-pyrazole-4-carboxamide, (2.27) N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (1092400-95-7) (WO 2008148570), (2.28) 5,8-difluoro-N-[2-(2-fluoro-4-{[4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amine (1210070-84-0) (WO2010025451), (2.29) N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.30) N-[(1S,4R)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide and (2.31) N-[(1R,4S)-9-(dichloromethyl ene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide.

[0058]

(3) inhibitors of the respiratory chain at complex III, for example (3.1) ametoctradin (865318-97-4), (3.2) amisulbrom (348635-87-0), (3.3) azoxystrobin (131860-33-8), (3.4) cyazofamid (120116-88-3), (3.5) coumethoxystrobin (850881-30-0), (3.6) coumoxystrobin (850881-70-8), (3.7) dimoxystrobin (141600-52-4), (3.8) enestroburin (238410-11-2) (WO 2004/058723), (3.9) famoxadone (131807-57-3) (WO 2004/058723), (3.10) fenamidone (161326-34-7) (WO 2004/058723), (3.11) fenoxystrobin (918162-02-4), (3.12) fluoxastrobin (361377-29-9) (WO 2004/058723), (3.13) kresoxim-methyl (143390-89-0) (WO 2004/058723), (3.14) metominostrobin (133408-50-1) (WO 2004/058723), (3.15) orysastrobin (189892-69-1) (WO 2004/058723), (3.16) picoxystrobin (117428-22-5) (WO 2004/058723), (3.17) pyraclostrobin (175013-18-0) (WO 2004/058723), (3.18) pyrametostrobin (915410-70-7) (WO 2004/058723), (3.19) pyraoxystrobin (862588-11-2) (WO 2004/058723), (3.20) pyribencarb (799247-52-2) (WO 2004/058723), (3.21) triclopyricarb (902760-40-1), (3.22) trifloxystrobin (141517-21-7) (WO 2004/058723), (3.23) (2E)-2-(2-{[6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl]oxy}phenyl)-2-(methoxyimino)-N-methylethanamide (WO 2004/058723), (3.24) (2E)-2-(methoxyimino)-N-methyl-2-(2-{[({(1E)-1-[3-(trifluoromethyl)phenyl]ethylidene}amino)oxy]methyl}phenyl)ethanamide (WO 2004/058723), (3.25) (2E)-2-(methoxyimino)-N-methyl-2-{2-[(E)-({1-[3-(trifluoromethyl)phenyl]ethoxy} imino)methyl]phenyl}ethanamide (158169-73-4), (3.26) (2E)-2-{2-[({[(1E)-1-(3-{[(E)-1-fluoro-2-phenylethenyl]oxy}phenyl)ethylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide (326896-28-0), (3.27) (2E)-2-{2-[({[(2E,3E)-4-(2,6-dichlorophenyl)but-3-en-2-ylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide, (3.28) 2-chloro-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)pyridine-3-carboxamide (119899-14-8), (3.29) 5-methoxy-2-methyl-4-(2-{[({(1E)-1-[3-(trifluoromethyl)phenyl]ethylidene}amino)oxy]methyl}phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one, (3.30) methyl (2E)-2-{2-[({cyclopropyl [(4-methoxyphenyl)imino]methyl}sulfanyl)methyl]phenyl}-3-methoxyprop-2-enoate (149601-03-6), (3.31) N-(3-ethyl-3,5,5-trimethyl cyclohexyl)-3-(formylamino)-2-hydroxybenzamide (226551-21-9), (3.32) 2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide (173662-97-0) and (3.33) (2R)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide (394657-24-0).

[0059]

(4) Inhibitors of the mitosis and cell division, for example (4.1) benomyl (17804-35-2), (4.2) carbendazim (10605-21-7), (4.3) chlorfenazole (3574-96-7), (4.4) diethofencarb (87130-20-9), (4.5) ethaboxam (162650-77-3), (4.6) fluopicolide (239110-15-7), (4.7) fuberidazole (3878-19-1), (4.8) pencycuron (66063-05-6), (4.9) thiabendazole (148-79-8), (4.10) thiophanate-methyl (23564-05-8), (4.11) thiophanate (23564-06-9), (4.12) zoxamide (156052-68-5), (4.13) 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine (214706-53-3) and (4.14) 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyridazine (1002756-87-7).

[0060]

(5) Compounds capable to have a multisite action, like for example (5.1) bordeaux mixture (8011-63-0), (5.2) captafol (2425-06-1), (5.3) captan (133-06-2) (WO 02/12172), (5.4) chlorothalonil (1897-45-6), (5.5) copper hydroxide (20427-59-2), (5.6) copper naphthenate (1338-02-9), (5.7) copper oxide (1317-39-1), (5.8) copper oxychloride (1332-40-7), (5.9) copper(2+) sulfate (7758-98-7), (5.10) dichlofluanid (1085-98-9), (5.11) dithianon (3347-22-6), (5.12) dodine (2439-10-3), (5.13) dodine free base, (5.14) ferbam (14484-64-1), (5.15) fluorofolpet (719-96-0), (5.16) folpet (133-07-3), (5.17) guazatine (108173-90-6), (5.18) guazatine acetate, (5.19) iminoctadine (13516-27-3), (5.20) iminoctadine albesilate (169202-06-6), (5.21) iminoctadine triacetate (57520-17-9), (5.22) mancopper (53988-93-5), (5.23) mancozeb (8018-01-7), (5.24) maneb (12427-38-2), (5.25) metiram (9006-42-2), (5.26) metiram zinc (9006-42-2), (5.27) oxine-copper (10380-28-6), (5.28) propamidine (104-32-5), (5.29) propineb (12071-83-9), (5.30) sulphur and sulphur preparations including calcium polysulphide (7704-34-9), (5.31) thiram (137-26-8), (5.32) tolylfluanid (731-27-1), (5.33) zineb (12122-67-7) and (5.34) ziram (137-30-4).

[0061]

(6) Compounds capable to induce a host defence, for example (6.1) acibenzolar-5-methyl (135158-54-2), (6.2) isotianil (224049-04-1), (6.3) probenazole (27605-76-1) and (6.4) tiadinil (223580-51-6).

[0062]

(7) Inhibitors of the amino acid and/or protein biosynthesis, for example (7.1) andoprim (23951-85-1), (7.2) blasticidin-S (2079-00-7), (7.3) cyprodinil (121552-61-2), (7.4) kasugamycin (6980-18-3), (7.5) kasugamycin hydrochloride hydrate (19408-46-9), (7.6) mepanipyrim (110235-47-7), (7.7) pyrimethanil (53112-28-0) and (7.8) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline (861647-32-7) (WO2005070917).

[0063]

(8) Inhibitors of the ATP production, for example (8.1) fentin acetate (900-95-8), (8.2) fentin chloride (639-58-7), (8.3) fentin hydroxide (76-87-9) and (8.4) silthiofam (175217-20-6).

[0064]

(9) Inhibitors of the cell wall synthesis, for example (9.1) benthiavalicarb (177406-68-7), (9.2) dimethomorph (110488-70-5), (9.3) flumorph (211867-47-9), (9.4) iprovalicarb (140923-17-7), (9.5) mandipropamid (374726-62-2), (9.6) polyoxins (11113-80-7), (9.7) polyoxorim (22976-86-9), (9.8) validamycin A (37248-47-8) and (9.9) valifenalate (283159-94-4; 283159-90-0).

[0065]

(10) Inhibitors of the lipid and membrane synthesis, for example (10.1) biphenyl (92-52-4), (10.2) chloroneb (2675-77-6), (10.3) dicloran (99-30-9), (10.4) edifenphos (17109-49-8), (10.5) etridiazole (2593-15-9), (10.6) iodocarb (55406-53-6), (10.7) iprobenfos (26087-47-8), (10.8) isoprothiolane (50512-35-1), (10.9) propamocarb (25606-41-1), (10.10) propamocarb hydrochloride (25606-41-1), (10.11) prothiocarb (19622-08-3), (10.12) pyrazophos (13457-18-6), (10.13) quintozene (82-68-8), (10.14) tecnazene (117-18-0) and (10.15) tolclofos-methyl (57018-04-9).

[0066]

(11) Inhibitors of the melanine biosynthesis, for example (11.1) carpropamid (104030-54-8), (11.2) diclocymet (139920-32-4), (11.3) fenoxanil (115852-48-7), (11.4) phthalide (27355-22-2), (11.5) pyroquilon (57369-32-1), (11.6) tricyclazole (41814-78-2) and (11.7) 2,2,2-trifluoroethyl {3-methyl-1-[(4-methylbenzoyl)amino]butan-2-yl}carbamate (851524-22-6) (WO2005042474).

[0067]

(12) Inhibitors of the nucleic acid synthesis, for example (12.1) benalaxyl (71626-11-4), (12.2) benalaxyl-M (kiralaxyl) (98243-83-5), (12.3) bupirimate (41483-43-6), (12.4) clozylacon (67932-85-8), (12.5) dimethirimol (5221-53-4), (12.6) ethirimol (23947-60-6), (12.7) furalaxyl (57646-30-7), (12.8) hymexazol (10004-44-1), (12.9) metalaxyl (57837-19-1), (12.10) metalaxyl-M (mefenoxam) (70630-17-0), (12.11) ofurace (58810-48-3), (12.12) oxadixyl (77732-09-3) and (12.13) oxolinic acid (14698-29-4).

[0068]

(13) Inhibitors of the signal transduction, for example (13.1) chlozolinate (84332-86-5), (13.2) fenpiclonil (74738-17-3), (13.3) fludioxonil (131341-86-1), (13.4) iprodione (36734-19-7), (13.5) procymidone (32809-16-8), (13.6) quinoxyfen (124495-18-7) and (13.7) vinclozolin (50471-44-8).

[0069]

(14) Compounds capable to act as an uncoupler, for example (14.1) binapacryl (485-31-4), (14.2) dinocap (131-72-6), (14.3) ferimzone (89269-64-7), (14.4) fluazinam (79622-59-6) and (14.5) meptyldinocap (131-72-6).

[0070]

(15) Further compounds, for example (15.1) benthiazole (21564-17-0), (15.2) bethoxazin (163269-30-5), (15.3) capsimycin (70694-08-5), (15.4) carvone (99-49-0), (15.5) chinomethionat (2439-01-2), (15.6) pyriofenone (chlazafenone) (688046-61-9), (15.7) cufraneb (11096-18-7), (15.8) cyflufenamid (180409-60-3), (15.9) cymoxanil (57966-95-7), (15.10) cyprosulfamide (221667-31-8), (15.11) dazomet (533-74-4), (15.12) debacarb (62732-91-6), (15.13) dichlorophen (97-23-4), (15.14) diclomezine (62865-36-5), (15.15) difenzoquat (49866-87-7), (15.16) difenzoquat methylsulphate (43222-48-6), (15.17) diphenylamine (122-39-4), (15.18) ecomate, (15.19) fenpyrazamine (473798-59-3), (15.20) flumetover (154025-04-4), (15.21) fluoroimide (41205-21-4), (15.22) flusulfamide (106917-52-6), (15.23) flutianil (304900-25-2), (15.24) fosetyl-aluminium (39148-24-8), (15.25) fosetyl-calcium, (15.26) fosetyl-sodium (39148-16-8), (15.27) hexachlorobenzene (118-74-1), (15.28) irumamycin (81604-73-1), (15.29) methasulfocarb (66952-49-6), (15.30) methyl isothiocyanate (556-61-6), (15.31) metrafenone (220899-03-6), (15.32) mildiomycin (67527-71-3), (15.33) natamycin (7681-93-8), (15.34) nickel dimethyldithiocarbamate (15521-65-0), (15.35) nitrothal-isopropyl (10552-74-6), (15.36) octhilinone (26530-20-1), (15.37) oxamocarb (917242-12-7), (15.38) oxyfenthiin (34407-87-9), (15.39) pentachlorophenol and salts (87-86-5), (15.40) phenothrin, (15.41) phosphorous acid and its salts (13598-36-2), (15.42) propamocarb-fosetylate, (15.43) propanosine-sodium (88498-02-6), (15.44) proquinazid (189278-12-4), (15.45) pyrimorph (868390-90-3), (15.45e) (2 E)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one (1231776-28-5), (15.45z) (2 Z)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one (1231776-29-6), (15.46) pyrroInitrine (1018-71-9) (EP-A 1 559 320), (15.47) tebufloquin (376645-78-2), (15.48) tecloftalam (76280-91-6), (15.49) tolnifanide (304911-98-6), (15.50) triazoxide (72459-58-6), (15.51) trichlamide (70193-21-4), (15.52) zarilamid (84527-51-5), (15.53) (3S,6S,7R,8R)-8-benzyl-3-[({3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2-yl}carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl 2-methylpropanoate (517875-34-2) (WO2003035617), (15.54) 1-(4-{4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl} piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone (1003319-79-6) (WO 2008013622), (15.55) 1-(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl} piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone (1003319-80-9) (WO 2008013622), (15.56) 1-(4-{4-[5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl} piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone (1003318-67-9) (WO 2008013622), (15.57) 1-(4-methoxyphenoxy)-3,3-dimethylbutan-2-yl1H-imidazole-1-carboxylate (111227-17-9), (15.58) 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine (13108-52-6), (15.59) 2,3-dibutyl-6-chlorothieno[2,3-d]pyrimidin-4(3H)-one (221451-58-7), (15.60) 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetrone, (15.61) 2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-(4-{4-[(5R)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)ethanone (1003316-53-7) (WO 2008013622), (15.62) 2[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-(4-{4-[(5S)-5-phenyl-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)ethanone (1003316-54-8) (WO 2008013622), (15.63) 2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]-1-{4-[4-(5-phenyl-4,5-dihydro-1,2-oxazol-3-yl)-1,3-thiazol-2-yl]piperidin-1-yl}ethanone (1003316-51-5) (WO 2008013622), (15.64) 2-butoxy-6-iodo-3-propyl-4H-chromen-4-one, (15.65) 2-chloro-5-[2-chloro-1-(2,6-difluoro-4-methoxyphenyl)-4-methyl-1H-imidazol-5-yl]pyridine, (15.66) 2-phenylphenol and salts (90-43-7), (15.67) 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline (861647-85-0) (WO2005070917), (15.68) 3,4,5-trichloropyridine-2,6-dicarbonitrile (17824-85-0), (15.69) 3-[5-(4-chlorophenyl)-2,3-dimethyl-1,2-oxazolidin-3-yl]pyridine, (15.70) 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, (15.71) 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)-3,6-dimethylpyridazine, (15.72) 5-amino-1,3,4-thiadiazole-2-thiol, (15.73) 5-chloro-N′-phenyl-N′-(prop-2-yn-1-yl)thiophene-2-sulfonohydrazide (134-31-6), (15.74) 5-fluoro-2-[(4-fluorobenzyl)oxy]pyrimidin-4-amine (1174376-11-4) (WO2009094442), (15.75) 5-fluoro-2-[(4-methylbenzyl)oxy]pyrimidin-4-amine (1174376-25-0) (WO2009094442), (15.76) 5-methyl-6-octyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine, (15.77) ethyl (2Z)-3-amino-2-cyano-3-phenylprop-2-enoate, (15.78) N′-(4-{[3-(4-chlorobenzyl)-1,2,4-thiadiazol-5-yl]oxy}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamide, (15.79) N-(4-chlorobenzyl)-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, (15.80) N-[(4-chlorophenyl)(cyano)methyl]-3-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]propanamide, (15.81) N-[(5-bromo-3-chloropyridin-2-yl)methyl]-2,4-dichloropyridine-3-carboxamide, (15.82) N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-dichloropyridine-3-carboxamide, (15.83) N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2-fluoro-4-iodopyridine-3-carboxamide, (15.84) N-{(E)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluorophenyl]methyl}-2-phenylacetamide (221201-92-9), (15.85) N-{(Z)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluorophenyl]methyl}-2-phenylacetamide (221201-92-9), (15.86) N′-{4-[(3-tert-butyl-4-cyano-1,2-thiazol-5-yl)oxy]-2-chloro-5-methylphenyl}-N-ethyl-N-methylimidoformamide, (15.87) N-methyl-2-(1-{[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1,3-thiazole-4-carboxamide (922514-49-6) (WO 2007014290), (15.88) N-methyl-2-(1-{[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-N-[(1R)-1,2,3,4-tetrahydronaphthalen-1-yl]-1,3-thiazole-4-carboxamide (922514-07-6) (WO 2007014290), (15.89) N-methyl-2-(1-{[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-N-[(1S)-1,2,3,4-tetrahydronaphthalen-1-yl]-1,3-thiazole-4-carboxamide (922514-48-5) (WO 2007014290), (15.90) pentyl {6-[({[(1-methyl-1H-tetrazol-5-yl)(phenyl)methylidene]amino}oxy)methyl]pyridin-2-yl}carbamate, (15.91) phenazine-1-carboxylic acid, (15.92) quinolin-8-ol (134-31-6), (15.93) quinolin-8-ol sulfate (2:1) (134-31-6) and (15.94) tert-butyl {6-[({[(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate.

[0071]

(16) Further compounds, for example (16.1) 1-methyl-3-(trifluoromethyl)-N-[2′-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, (16.2) N-(4′-chlorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (16.3) N-(2′,4′-dichlorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (16.4) 3-(difluoromethyl)-1-methyl-N-[4′-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, (16.5) N-(2′,5′-difluorobiphenyl-2-yl)-1-methyl-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide, (16.6) 3-(difluoromethyl)-1-methyl-N-[4′-(prop-1-yn-1-yl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.7) 5-fluoro-1,3-dimethyl-N-[4′-(prop-1-yn-1-yl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.8) 2-chloro-N-[4′-(prop-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.9) 3-(difluoromethyl)-N-[4′-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]-1-methyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.10) N-[4′-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]-5-fluoro-1,3-dimethyl-H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.11) 3-(difluoromethyl)-N-(4′-ethynylbiphenyl-2-yl)-1-methyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.12) N-(4′-ethynylbiphenyl-2-yl)-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.13) 2-chloro-N-(4′-ethynylbiphenyl-2-yl)pyridine-3-carboxamide (known from WO 2004/058723), (16.14) 2-chloro-N-[4′-(3,3-dimethylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.15) 4-(difluoromethyl)-2-methyl-N-[4′-(trifluoromethyl)biphenyl-2-yl]-1,3-thiazole-5-carboxamide (known from WO 2004/058723), (16.16) 5-fluoro-N-[4′-(3-hydroxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3-dimethyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.17) 2-chloro-N-[4′-(3-hydroxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.18) 3-(difluoromethyl)-N-[4′-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1-methyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.19) 5-fluoro-N-[4′-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]-1,3-dimethyl-1H-pyrazole-4-carboxamide (known from WO 2004/058723), (16.20) 2-chloro-N-[4′-(3-methoxy-3-methylbut-1-yn-1-yl)biphenyl-2-yl]pyridine-3-carboxamide (known from WO 2004/058723), (16.21) (5-bromo-2-methoxy-4-methylpyridin-3-yl)(2,3,4-trimethoxy-6-methylphenyl)methanone (known from EP-A 1 559 320), (16.22) N-[2-(4-{[3-(4-chlorophenyl)prop-2-yn-1-yl]oxy}-3-methoxyphenyl)ethyl]-N2-(methylsulfonyl)valinamide (220706-93-4), (16.23) 4-oxo-4-[(2-phenylethyl)amino]butanoic acid and (16.24) but-3-yn-1-yl {6-[({[(Z)-(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate.

[0072]

All named mixing partners of the classes (1) to (16) can, if their functional groups enable this, optionally form salts with suitable bases or acids.

[0073]

Examples of bactericides which may be mentioned are:

[0074]

bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.

[0075]

The active ingredients specified herein by their “common name” are known and described, for example, in the Pesticide Manual (“The Pesticide Manual”, 14th Ed., British Crop Protection Council 2006) or can be searched in the internet (e.g. http://www.alanwood.net/pesticides).

[0076]

(1) Acetylcholinesterase (AChE) inhibitors, for example

[0077]

carbamates, e.g. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC, and Xylylcarb; or organophosphates, e.g. Acephate, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Cadusafos, Chlorethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Coumaphos, Cyanophos, Demeton-5-methyl, Diazinon, Dichlorvos/DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Disulfoton, EPN, Ethion, Ethoprophos, Famphur, Fenamiphos, Fenitrothion, Fenthion, Fosthiazate, Heptenophos, Imicyafos, Isofenphos, Isopropyl O-(methoxyaminothio-phosphoryl) salicylate, Isoxathion, Malathion, Mecarbam, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimiphos-methyl, Profenofos, Propetamphos, Prothiofos, Pyraclofos, Pyridaphenthion, Quinalphos, Sulfotep, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorfon, and Vamidothion.

[0078]

(2) GABA-gated chloride channel antagonists, for example

[0079]

cyclodiene organochlorines, e.g. Chlordane and Endosulfan; or

[0080]

phenylpyrazoles (fiproles), e.g. Ethiprole and Fipronil.

[0081]

(3) Sodium channel modulators/voltage-dependent sodium channel blockers, for example

[0082]

pyrethroids, e.g. Acrinathrin, Allethrin, d-cis-trans Allethrin, d-trans Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S-cyclopentenyl isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma-Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta-Cypermethrin, theta-Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(1R)-trans isomers], Deltamethrin, Empenthrin [(EZ)-(1R) isomers), Esfenvalerate, Etofenprox, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, tau-Fluvalinate, Halfenprox, Imiprothrin, Kadethrin, Permethrin, Phenothrin [(1R)-trans isomer), Prallethrin, Pyrethrine (pyrethrum), Resmethrin, Silafluofen, Tefluthrin, Tetramethrin, Tetramethrin [(1R) isomers)], Tralomethrin, and Transfluthrin; or

[0083]

DDT; or Methoxychlor.

[0084]

(4) Nicotinic acetylcholine receptor (nAChR) agonists, for example

[0085]

neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam; or

[0086]

Nicotine.

[0087]

(5) Nicotinic acetylcholine receptor (nAChR) allosteric activators, for example

[0088]

spinosyns, e.g. Spinetoram and Spinosad.

[0089]

(6) Chloride channel activators, for example

[0090]

avermectins/milbemycins, e.g. Abamectin, Emamectin benzoate, Lepimectin, and Milbemectin.

[0091]

(7) Juvenile hormone mimics, for example

[0092]

juvenile hormon analogues, e.g. Hydroprene, Kinoprene, and Methoprene; or

[0093]

Fenoxycarb; or Pyriproxyfen.

[0094]

(8) Miscellaneous non-specific (multi-site) inhibitors, for example

[0095]

alkyl halides, e.g. Methyl bromide and other alkyl halides; or

[0096]

Chloropicrin; or Sulfuryl fluoride; or Borax; or Tartar emetic.

[0097]

(9) Selective homopteran feeding blockers, e.g. Pymetrozine; or Flonicamid.

[0098]

(10) Mite growth inhibitors, e.g. Clofentezine, Hexythiazox, and Diflovidazin; or

[0099]

Etoxazole.

[0100]

(11) Microbial disruptors of insect midgut membranes, e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl.

[0101]

(12) Inhibitors of mitochondrial ATP synthase, for example Diafenthiuron; or

[0102]

organotin miticides, e.g. Azocyclotin, Cyhexatin, and Fenbutatin oxide; or

[0103]

Propargite; or Tetradifon.

[0104]

(13) Uncouplers of oxidative phoshorylation via disruption of the proton gradient, for example Chlorfenapyr, DNOC, and Sulfluramid.

[0105]

(14) Nicotinic acetylcholine receptor (nAChR) channel blockers, for example Bensultap, Cartap hydrochloride, Thiocyclam, and Thiosultap-sodium.

[0106]

(15) Inhibitors of chitin biosynthesis, type 0, for example Bistrifluoron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron, and Triflumuron.

[0107]

(16) Inhibitors of chitin biosynthesis, type 1, for example Buprofezin.

[0108]

(17) Moulting disruptors, for example Cyromazine.

[0109]

(18) Ecdysone receptor agonists, for example Chromafenozide, Halofenozide, Methoxyfenozide, and Tebufenozide.

[0110]

(19) Octopamine receptor agonists, for example Amitraz.

[0111]

(20) Mitochondrial complex III electron transport inhibitors, for example Hydramethylnon; or Acequinocyl; or Fluacrypyrim.

[0112]

(21) Mitochondrial complex I electron transport inhibitors, for example

[0113]

METI acaricides, e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, and Tolfenpyrad; or

[0114]

Rotenone (Derris).

[0115]

(22) Voltage-dependent sodium channel blockers, e.g. Indoxacarb; or Metaflumizone.

[0116]

(23) Inhibitors of acetyl CoA carboxylase, for example

[0117]

tetronic and tetramic acid derivatives, e.g. Spirodiclofen, Spiromesifen, and Spirotetramat.

[0118]

(24) Mitochondrial complex IV electron transport inhibitors, for example

[0119]

phosphines, e.g. Aluminium phosphide, Calcium phosphide, Phosphine, and Zinc phosphide; or

[0120]

Cyanide.

[0121]

(25) Mitochondrial complex II electron transport inhibitors, for example Cyenopyrafen.

[0122]

(28) Ryanodine receptor modulators, for example

[0123]

diamides, e.g. Chlorantraniliprole, Cyantraniliprole and Flubendiamide.

[0124]

Further active ingredients with unknown or uncertain mode of action, for example Amidoflumet, Azadirachtin, Benclothiaz, Benzoximate, Bifenazate, Bromopropylate, Chinomethionat, Cryolite, Cyantraniliprole (Cyazypyr), Cyflumetofen, Dicofol, Diflovidazin, Fluensulfone, Flufenerim, Flufiprole, Fluopyram, Fufenozide, Imidaclothiz, Iprodione, Meperfluthrin, Pyridalyl, Pyrifluquinazon, Tetramethylfluthrin, and iodomethane; furthermore products based on Bacillus firmus (including but not limited to strain CNCM 1-1582, such as, for example, VOTiVO™, BioNem) or one of the following known active compounds: 3-bromo-N-{2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (known from WO2005/077934), 4-{[(6-bromopyridin-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), 4-{[(6-fluoropyridin-3-yl)methyl](2,2-difluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), 4-{[(2-chloro-1,3-thiazol-5-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), 4-{[(6-chlorpyridin-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115644), Flupyradifurone, 4-{[(6-chlor-5-fluoropyridin-3-yl)methyl](methyl)amino}furan-2(5H)-one (known from WO2007/115643), 4-{[(5,6-dichloropyridin-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one (known from WO2007/115646), 4-{[(6-chloro-5-fluoropyridin-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-one (known from WO2007/115643), 4-{[(6-chloropyridin-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-one (known from EP-A-0 539 588), 4-{[(6-chlorpyridin-3-yl)methyl](methyl)amino}furan-2(5H)-one (known from EP-A-0 539 588), {[1-(6-chloropyridin-3-yl)ethyl](methyl)oxido-λ4-sulfanylidene}cyanamide (known from WO2007/149134) and its diastereomers {[(1R)-1-(6-chloropyridin-3-yl)ethyl](methyl)oxido-λ4-sulfanylidene}cyanamide (A) and {[(1S)-1-(6-chloropyridin-3-yl)ethyl](methyl)oxido-λ4-sulfanylidene}cyanamide (B) (also known from WO2007/149134) as well as Sulfoxaflor and its diastereomers [(R)-methyl(oxido) {(1R)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (A1) and [(S)-methyl(oxido){(1S)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (A2), referred to as group of diastereomers A (known from WO2010/074747, WO2010/074751), [(R)-methyl(oxido) {(1S)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (B1) and [(S)-methyl(oxido) {(1R)-1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-λ4-sulfanylidene]cyanamide (B2), referred to as group of diastereomers B (also known from WO2010/074747, WO2010/074751), and 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1,4-dioxa-9-azadispiro[4.2.4.2]tetradec-11-en-10-one (known from WO2006/089633), 3-(4′-fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one (known from WO2008/067911), 1-{2-fluoro-4-methyl-5-[(2,2,2-trifluorethyl)sufinyl]phenyl}-3-(trifluoromethyl)-1H-1,2,4-triazol-5-amine (known from WO2006/043635), [(3S,4aR,12R,12aS,12bS)-3-[(cyclopropylcarbonyl)oxy]-6,12-dihydroxy-4,12b-dimethyl-11-oxo-9-(pyridin-3-yl)-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H,11H-benzo[f]pyrano[4,3-b]chromen-4-yl]methyl cyclopropanecarboxylate (known from WO2008/066153), 2-cyano-3-(difluoromethoxy)-N,N-dimethylbenzenesulfonamide (known from WO2006/056433), 2-cyano-3-(difluoromethoxy)-N-methylbenzenesulfonamide (known from WO2006/100288), 2-cyano-3-(difluoromethoxy)-N-ethylbenzenesulfonamide (known from WO2005/035486), 4-(difluoromethoxy)-N-ethyl-N-methyl-1,2-benzothiazol-3-amine 1,1-dioxide (known from WO2007/057407), N-[1-(2,3-dimethylphenyl)-2-(3,5-dimethylphenyl)ethyl]-4,5-dihydro-1,3-thiazol-2-amine (known from WO2008/104503), {1′-[(2E)-3-(4-chlorophenyl)prop-2-en-1-yl]-5-fluorospiro[indole-3,4′-piperidin]-1(2H)-yl}(2-chloropyridin-4-yl)methanone (known from WO2003/106457), 3-(2,5-dimethylphenyl)-4-hydroxy-8-methoxy-1,8-diazaspiro[4.5]dec-3-en-2-one (known from WO2009/049851), 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1,8-diazaspiro[4.5]dec-3-en-4-yl ethyl carbonate (known from WO2009/049851), 4-(but-2-yn-1-yloxy)-6-(3,5-dimethylpiperidin-1-yl)-5-fluoropyrimidine (known from WO2004/099160), (2,2,3,3,4,4,5,5-octafluoropentyl)(3,3,3-trifluoropropyl)malononitrile (known from WO2005/063094), (2,2,3,3,4,4,5,5-octafluoropentyl)(3,3,4,4,4-pentafluorobutyl)malononitrile (known from WO2005/063094), 8-[2-(cyclopropylmethoxy)-4-(trifluoromethyl)phenoxy]-3-[6-(trifluoromethyl)pyridazin-3-yl]-3-azabicyclo[3.2.1]octane (known from WO2007/040280), Flometoquin, PF1364 (CAS-Reg. No. 1204776-60-2) (known from JP2010/018586), 5-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-(1H-1,2,4-triazol-1-yl)benzonitrile (known from WO2007/075459), 5-[5-(2-chloropyridin-4-yl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-(1H-1,2,4-triazol-1-yl)benzonitrile (known from WO2007/075459), 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-2-methyl-N-{2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl}benzamide (known from WO2005/085216), 4-{[(6-chloropyridin-3-yl)methyl](cyclopropyl)amino}-1,3-oxazol-2(5H)-one, 4-{[(6-chloropyridin-3-yl)methyl](2,2-difluoroethyl)amino}-1,3-oxazol-2(5H)-one, 4-{[(6-chloropyridin-3-yl)methyl](ethyl)amino}-1,3-oxazol-2(5H)-one, 4-{[(6-chloropyridin-3-yl)methyl](methyl)amino}-1,3-oxazol-2(5H)-one (all known from WO2010/005692), NNI-0711 (known from WO2002/096882), 1-acetyl-N-[4-(1,1,1,3,3,3-hexafluoro-2-methoxypropan-2-yl)-3-isobutylphenyl]-N-isobutyryl-3,5-dimethyl-1H-pyrazole-4-carboxamide (known from WO2002/096882), methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-chloro-3-methylbenzoyl]-2-methylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2-ethylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2-methylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-1,2-diethylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-2-ethylhydrazinecarboxylate (known from WO2005/085216), (5RS,7RS;5RS,7SR)-1-(6-chloro-3-pyridylmethyl)-1,2,3,5,6,7-hexahydro-7-methyl-8-nitro-5-propoxyimidazo[1,2-a]pyridine (known from WO2007/101369, N-[2-(5-amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (known from CN102057925), and methyl 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-2-ethyl-1-methylhydrazinecarboxylate (known from WO2011/049233).

[0125]

Examples of molluscicides which may be mentioned are metaldehyde and methiocarb.

[0126]

Examples of safeners which may be mentioned are:

  • (1) Heterocyclic carboxylic acid derivates, for example dichlorophenylpyrazolin-3-carboxylic acid derivatives, e.g. 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-4,5-dihydro-1H-pyrazole-3-carboxylic acid, diethyl 1-(2,4-dichlorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate (“mefenpyr-diethyl”), and similar compounds known from WO 91/07874; for example dichlorophenylpyrazolecarboxylic acid derivatives, e.g. ethyl 1-(2,4-dichlorophenyl)-5-methyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 5-tert-butyl-1-(2,4-dichlorophenyl)-1H-pyrazole-3-carboxylate and similar compounds known from EP-A 0 333 131 and EP-A 0 269 806; for example 1,5-diphenylpyrazole-3-carboxylic acid derivatives, e.g. ethyl 1-(2,4-dichlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate, methyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate, and similar compounds known from EP-A 0 268 554; for example triazolecarboxylic acid derivatives, e.g. fenchlorazole, fenchlorazole-ethyl, and similar compounds known from EP-A 0 174 562 and EP-A 0 346 620; for example 2-isoxazoline-3-carboxylic acid derivatives, e.g. ethyl 5-(2,4-dichlorobenzyl)-4,5-dihydro-1,2-oxazole-3-carboxylate, ethyl 5-phenyl-4,5-dihydro-1,2-oxazole-3-carboxylate and similar compounds known from WO 91/08202, or 5,5-diphenyl-4,5-dihydro-1,2-oxazole-3-carboxylic acid, ethyl 5,5-diphenyl-4,5-dihydro-1,2-oxazole-3-carboxylate (“isoxadifen-ethyl”), propyl 5,5-diphenyl-4,5-dihydro-1,2-oxazole-3-carboxylate, ethyl 5-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1,2-oxazole-3-carboxylate known from WO 95/07897.
  • (2) Derivatives of 8-quinolinol, for example derivatives of (quinolin-8-yloxy)acetic acid, e.g. heptan-2-yl [(5-chloroquinolin-8-yl)oxy]acetate (“cloquintocet-mexyl”), 4-methylpentan-2-yl [(5-chloroquinolin-8-yl)oxy]acetate, 4-(allyloxy)butyl [(5-chloroquinolin-8-yl)oxy]acetate, 1-(allyloxy)propan-2-yl [(5-chloroquinolin-8-yl)oxy]acetate, ethyl [(5-chloroquinolin-8-yl)oxy]acetate, methyl [(5-chloroquinolin-8-yl)oxy]acetate, allyl [(5-chloroquinolin-8-yl)oxy]acetate, 2-{[propylideneamino]oxy}ethyl [(5-chloroquinolin-8-yl)oxy]acetate, 2-oxopropyl [(5-chloroquinolin-8-yl)oxy]acetate, and similar compounds known from EP-A 0 086 750, EP-A 0 094 349, EP-A 0 191 736 or EP-A 0 492 366, as well as [(5-chloroquinolin-8-yl)oxy]acetic acid, its hydrates and salts, e.g. the lithium, sodium, potassium, calcium, magnesium, aluminum, iron, ammonium, quartanary ammonium, sulfonium or phosphonium salts as known from WO 02/34048; for example derivatives of [(5-chloroquinolin-8-yl)oxy]malonic acid, e.g diethyl [(5-chloroquinolin-8-yl)oxy]malonate, diallyl [(5-chloroquinolin-8-yl)oxy]malonate, ethyl methyl [(5-chloroquinolin-8-yl)oxy]malonate, and similar compounds known from EP-A 0 582 198.
  • (3) Dichloroacetamides, which are often used as pre-emergence safeners (soil active safeners), e.g. “dichlormid” (N,N-diallyl-2,2-dichloroacetamide), “R-29148” (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) and “R-28725” (3-dichloroacetyl-2,2,-dimethyl-1,3-oxazolidine) both of the company Stauffer, “benoxacor” (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine), “PPG-1292” (N-allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloroacetamide) of PPG Industries, “DKA-24” (N-allyl-N-[(allylaminocarbonyl)methyl]-dichloroacetamide) of Sagro-Chem, “AD-67” or “MON 4660” (3-dichloroacetyl-1-oxa-3-aza-spiro[4,5]decane) of Nitrokemia and Monsanto, “TI-35” (1-dichloroacetyl-azepane) of TRI-Chemical RT, “diclonon” (dicyclonon) or “BAS145138” or “LAB 145138” (3-dichloroacetyl-2,5,5-trimethyl-1,3-diazabicyclo[4.3.0]nonane) of BASF, “Furilazol” or “MON 13900” [(RS)-3-dichloroacetyl-5-(2-furyl)-2,2-dimethyloxazolidine], as well as there (R)-isomer.
  • (4) Acylsulfonamides, for example N-acylsulfonamide of the formula (II)

[0000]

    • or its salts (known from WO 97/45016), wherein
    • R1 represents (C1-C6)alkyl, which is unsubstituted or mono- to trisubstituted by substituents selected from the group consisting of halogen, (C1-C4)alkoxy, (C1-C6)haloalkoxy and (C1-C4)alkylthio;
    • R2 represents halogen, (C1-C4)alkyl, (C1-C4)alkoxy, CF3;
    • m is 1 or 2;
    • or for example 4-(benzoylsulfamoyl)benzamides of the formula (III)

[0000]

    • or its salts (known from WO 99/16744), wherein
    • R3, R4 independently of one another represent hydrogen, (C1-C6)alkyl, (C3-C6)alkenyl, (C3-C6)alkynyl, (C3-C6)cycloalkyl,
    • R5 represents halogen, (C1-C4)alkyl, (C1-C4)haloalkyl or (C1-C4)alkoxy
    • n is 1 or 2,
    • in particular compounds of formula (III), wherein
    • R3=cyclopropyl, R4=hydrogen and R5n=2-OMe, (“cyprosulfamide”),
    • R3=cyclopropyl, R4=hydrogen and R5n=5-C1-2-OMe,
    • R3=ethyl, R4=hydrogen and R5n=2-OMe,
    • R3=isopropyl, R4=hydrogen and R5n=5-C1-2-OMe,
    • R3=isopropyl, R4=hydrogen and R5n=2-OMe.
    • or for example benzoylsulfamoylphenylureas of the formula (IV)

[0000]

      • (known from EP-A 0 365 484), wherein
    • R6, R7 independently of one another represent hydrogen, (C1-C8)alkyl, (C3-C6)alkenyl, (C3-C6)alkynyl,
    • R8 represents halogen, (C1-C4)alkyl, (C1-C4)alkoxy, CF3
    • r is 1 or 2;
    • in particular
    • 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methyl urea,
    • 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethyl urea,
    • 1-[4-(N-4,5-dimethylbenzoylsulfamoyl)phenyl]-3-methyl urea.
  • (5) Hydroxyaromatic compounds and aromatic-aliphatic carboxylic acid derivatives, e.g. ethyl 3,4,5-triacetoxybenzoate, 4-hydroxy-3,5-dimethoxybenzoic acid, 3,5-dihydroxybenzoic acid, 2,4-di-hydroxybenzoic acid, 4-fluoro-2-hydroxybenzoic acid, 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid (cf. WO 2004/084631, WO 2005/015994, WO 2005/016001).
  • (6) 1,2-Dihydrochinoxalin-2-ones, e.g. 1-methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-one, 1-methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydrochinoxalin-2-one hydrochlorid, 1-(2-methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydrochinoxalin-2-one (cf. WO 2005/112630).
  • (7) Diphenylmethoxyacetic acid derivatives, e.g. methyl (diphenylmethoxy)acetate (CAS-Reg. No. 41858-19-9), ethyl (diphenylmethoxy)acetate or (diphenylmethoxy)acetic acid (cf. WO 98/38856).
  • (8) Compounds of formula (V)

[0000]

    • or its salts (known from WO 98/27049), wherein
    • R9 represents halogen, (C1-C4)alkyl, (C1-C4)haloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy,
    • R10 represents hydrogen or (C1-C4)alkyl,
    • R10 represents hydrogen, in each case unsubstituted or mono- to trisubstituted (C1-C8)alkyl, (C2-C4)alkenyl, (C2-C4)alkynyl, or aryl, where the substituents are selected from the group consisting of halogen and (C1-C8)alkoxy,
    • s is 0, 1 or 2.
  • (9) 3-(5-Tetrazolylcarbonyl)-2-chinolones, e.g. 1,2-dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbo-nyl)-2-chinolone (CAS-Reg. No. 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolone (CAS-Reg. No. 95855-00-8) (cf. WO 99/00020).
  • (10) Compounds of the formulae (VI-a) and (VI-b)

[0000]

    • (known from WO 2007/023719 and WO 2007/023764), wherein
    • R12 represents halogen, (C1-C4)alkyl, methoxy, nitro, cyano, CF3, OCF3,
    • Y, Z independently represent O or S,
    • t is 0, 1, 2, 3 or 4,
    • R13 represents (C1-C16)alkyl, (C2-C6)alkenyl, aryl, benzyl, halogenobenzyl,
    • R14 represents hydrogen or (C1-C6)alkyl.
  • (11) Oxyimino compounds, known as seed treatment agents, e.g. “oxabetrinil” [(Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitril], “fluxofenim” [1-(4-chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl)-oxime], and “cyometrinil” or “CGA-43089” [(Z)-cyanomethoxyimino(phenyl)acetonitril], all known as seed treatment safener for sorghum against damage by metolachlor.
  • (12) Isothiochromanones, e.g. methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS-Reg. No. 205121-04-6) and similar compounds known from WO 98/13361.
  • (13) Compounds from the group consisting of “naphthalic anhydrid” (1,8-naphthalinedicarboxylic acid anhydride), which is known as seed treatment safener for corn (maize) against damage by thiocarbamate herbicides, “fenclorim” (4,6-dichloro-2-phenylpyrimidine), which is known as seed treatment safener in sown rice against damage by pretilachlor, “flurazole” (benzyl-2-chloro-4-trifluoromethyl-1,3-thiazol-5-carboxylate), which is known as seed treatment safener for sorghum against damage by alachlor and metolachlor, “CL 304415” (CAS-Reg. No. 31541-57-8), (4-carboxy-3,4-dihydro-2H-1-benzopyran-4-acetic acid) of American Cyanamid, which is known as safener for corn (maize) against damage by imidazolinones, “MG 191” (CAS-Reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) of Nitrokemia, known as safener for corn (maize), “MG-838” (CAS-Reg. No. 133993-74-5), (2-propenyl 1-oxa-4-azaspiro[4.5]decane-4-carbodithioate) of Nitrokemia, “Disulfoton” (O,O-diethyl-S-2-ethylthioethyl phosphorodithioate), “dietholate” (0,0-diethyl-O-phenylphosphorothioate), “mephenate” (4-chlorophenyl-methylcarbamate).
  • (14) Compounds, which besides herbicidal activity als exhibit Safener activity in crops like rice, e.g. “Dimepiperate” or “MY-93” (S-1-methyl-1-phenylethyl-piperidin-1-carbothioate), which is known as safener for rice against damage by molinate, “daimuron” or “SK 23” [1-(1-methyl-1-phenylethyl)-3-p-tolyl-urea], which is known as safener for rice against damage by imazosulfuron, “cumyluron”=“JC-940” [3-(2-chlorophenylmethyl)-1-(1-methyl-1-phenyl-ethyl)urea](cf. JP-A 60-087254), which is known as safener for rice against damage by some herbicides, “methoxyphenon” or “NK 049” (3,3′-dimethyl-4-methoxy-benzophenone), which is known as safener for rice against damage by some herbicides, “CSB” [1-bromo-4-(chloromethylsulfonyl)benzene] of Kumiai (CAS-Reg. No. 54091-06-4), which is known as safener for rice against damage by some herbicides.
  • (15) Compounds, which are mainly used as herbicides, but which exhibit also safener activity on some crops, e.g. (2,4-dichlorophenoxy)acetic acid (2,4-D), (4-chlorophenoxy)acetic acid, (R,S)-2-(4-chlor-o-tolyloxy)propionic acid (mecoprop), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), (4-chloro-o-tolyloxy)acetic acid (MCPA), 4-(4-chloro-o-tolyloxy)butyric acid, 4-(4-chlorophenoxy)butyric acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 1-(ethoxycarbonyl)ethyl-3,6-dichloro-2-methoxybenzoate (lactidichlor-ethyl).

[0177]

Examples of plant growth regulators which may be mentioned are chlorocholine chloride and ethephon.

[0178]

Examples of plant nutrients which may be mentioned are customary inorganic or organic fertilizers for supplying plants with macro- and/or micronutrients.

[0179]

In a preferred embodiment the present invention relates to the use of a composition comprising fluopyram and one or more of the following insecticides:

[0180]

Carbamates, preferably Aldicarb, Methiocarb, Oxamyl and Thiodicarb;

[0181]

Organophosphates, preferably Fenamiphos, Fosthiazate, Ethoprofos, Imicyafos;

[0182]

Fiproles, preferably Fipronil and Ethiprole;

[0183]

Chlornicotinyls (Neonicotinoids), preferably Imidacloprid, Clothianidin, Thiacloprid and Thiamethoxam;

[0184]

Pyrethroids, preferably Beta-Cyfluthrin, Lambda-Cyhalothrin, Deltamethrin, Tefluthrin, Transfluthrin;

[0185]

Ryanodine receptor modulators (Anthranilamids), preferably Rynaxypyr (Chlorantraniliprole), Cyazypyr (Cyantraniliprole);

[0186]

Macrolids (Spinosyns), preferably, Spinosad, Spinetoram;

[0187]

Avermectins/milbemycins, preferably Abamectin;

[0188]

Tetronic and tetramic acid derivatives (Ketoenols), preferably Spirotetramat, Spirodiclofen and Spiromesifen;

[0189]

Miscellaneous non-specific (multi-site) inhibitors, preferably Flonicamid

[0190]

Active ingredients with unknown or uncertain mode of action, preferably 4-[(2,2-difluoroethyl)amino]furan-2(5H)-one-2-chloro-5-Ethylpyridin (1:1), Sulfoxaflor.

[0191]

In a preferred embodiment the present invention relates to the use of a composition comprising fluopyram and one or more of the following fungicides

[0192]

(2.1) bixafen (581809-46-3), (2.2) boscalid (188425-85-6), (2.8) fluxapyroxad (907204-31-3), (2.9) (2.11) isopyrazam (mixture of syn-epimeric racemate 1RS,4SR,9RS and anti-epimeric racemate 1RS,4SR,9SR) (881685-58-1), (2.12) isopyrazam (anti-epimeric racemate 1RS,4SR,9SR), (2.13) isopyrazam (anti-epimeric enantiomer 1R,4S,9S), (2.14) isopyrazam (anti-epimeric enantiomer 1S,4R,9R), (2.15) isopyrazam (syn epimeric racemate 1RS,4SR,9RS), (2.16) isopyrazam (syn-epimeric enantiomer 1R,4S,9R), (2.17) isopyrazam (syn-epimeric enantiomer 1S,4R,9S), (2.20) penflufen (494793-67-8), (2.21) penthiopyrad (183675-82-3), (2.22) sedaxane (874967-67-6), (2.23) thifluzamide (130000-40-7), (2.24) 1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide, (2.25) 3-(difluoromethyl)-1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-1H-pyrazole-4-carboxamide, (2.26) 3-(difluoromethyl)-N-[4-fluoro-2-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-1-methyl-1H-pyrazole-4-carboxamide, (2.27) N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (1092400-95-7) (WO 2008148570), (2.28) 5,8-difluoro-N-[2-(2-fluoro-4-{[4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amine (1210070-84-0) (WO2010025451), (2.29) N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, (2.30) N-[(1S,4R)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide and (2.31) N—[(1R,4S)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide,

  • (7.7) pyrimethanil (53112-28-0), (3.22) trifloxystrobin (141517-21-7).

[0194]

In conjunction with the present invention “controlling” denotes a preventive or curative reduction of the nematode infestation in comparison to the untreated crop, more preferably the infestation is essentially repelled, most preferably the infestation is totally suppressed.

[0195]

Pathosystems

[0196]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in coffee belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Pratylenchus brachyurus, Pratylenchus coffeae, Meloidogyne exigua, Meloidogyne incognita, Meloidogyne coffeicola, Helicotylenchus spp. and also consisting of Meloidogyne paranaensis, Rotylenchus spp., Xiphinema spp., Tylenchorhynchus spp., Scutellonema spp.

[0197]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in potato belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci and also consisting of Pratylenchus alleni, Pratylenchus andinus, Pratylenchus cerealis, Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Belonolaimus longicaudatus, Trichodorus cylindricus, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus, Paratrichodorus minor, Paratrichodorus allius, Paratrichodorus nanus, Paratrichodorus teres, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne thamesi, Meloidogyne incognita, Meloidogyne chitwoodi, Meloidogyne javanica, Nacobbus aberrans, Globodera rostochiensis, Globodera pallida, Ditylenchus destructor, Radopholus similis, Rotylenchulus reniformis, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Aphelenchoides fragariae, Meloinema spp.

[0198]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in tomato belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Pratylenchus penetrans and also consisting of Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus vulnus, Paratrichodorus minor, Meloidogyne exigua, Nacobbus aberrans, Globodera solanacearum, Dolichodorus heterocephalus, Rotylenchulus reniformis.

[0199]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in tomato belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Helicotylenchulus sp., Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Pratylenchus penetrans and also consisting of Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus vulnus, Paratrichodorus minor, Meloidogyne exigua, Nacobbus aberrans, Globodera solanacearum, Dolichodorus heterocephalus, Rotylenchulus reniformis.

[0200]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in pepper belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci and also consisting of Pratylenchus alleni, Pratylenchus andinus, Pratylenchus cerealis, Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Belonolaimus longicaudatus, Trichodorus cylindricus, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus, Paratrichodorus minor, Paratrichodorus allius, Paratrichodorus nanus, Paratrichodorus teres, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne thamesi, Meloidogyne incognita, Meloidogyne chitwoodi, Meloidogyne javanica, Nacobbus aberrans, Globodera rostochiensis, Globodera pallida, Ditylenchus destructor, Radopholus similis, Rotylenchulus reniformis, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Aphelenchoides fragariae, Meloinema spp.

[0201]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in carrots belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci and also consisting of Pratylenchus alleni, Pratylenchus andinus, Pratylenchus cerealis, Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Belonolaimus longicaudatus, Trichodorus cylindricus, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus, Paratrichodorus minor, Paratrichodorus allius, Paratrichodorus nanus, Paratrichodorus teres, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne thamesi, Meloidogyne incognita, Meloidogyne chitwoodi, Meloidogyne javanica, Nacobbus aberrans, Globodera rostochiensis, Globodera pallida, Ditylenchus destructor, Radopholus similis, Rotylenchulus reniformis, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Aphelenchoides fragariae, Meloinema spp.

[0202]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in onions belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci and also consisting of Pratylenchus alleni, Pratylenchus andinus, Pratylenchus cerealis, Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Belonolaimus longicaudatus, Trichodorus cylindricus, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus, Paratrichodorus minor, Paratrichodorus allius, Paratrichodorus nanus, Paratrichodorus teres, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne thamesi, Meloidogyne incognita, Meloidogyne chitwoodi, Meloidogyne javanica, Nacobbus aberrans, Globodera rostochiensis, Globodera pallida, Ditylenchus destructor, Radopholus similis, Rotylenchulus reniformis, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Aphelenchoides fragariae, Meloinema spp.

[0203]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in cucurbits belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Rotylenchulus reniformis and also consisting of Pratylenchus thornei.

[0204]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in cucurbits belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Rotylenchulus reniformis and also consisting of Pratylenchus thornei.

[0205]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in cotton belonging to at least one species selected from the group of the phytoparasitic nematodes consisting of Belonolaimus longicaudatus, Meloidogyne incognita, Hoplolaimus columbus, Hoplolaimus galeatus, Rotylenchulus reniformis.

[0206]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in corn belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Belonolaimus longicaudatus, Paratrichodorus minor and also consisting of Pratylenchus brachyurus, Pratylenchus delattrei, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus zeae, (Belonolaimus gracilis), Belonolaimus nortoni, Longidorus breviannulatus, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne graminis, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne naasi, Heterodera avenae, Heterodera oryzae, Heterodera zeae, Punctodera chalcoensis, Ditylenchus dipsaci, Hoplolaimus aegyptii, Hoplolaimus magnistylus, Hoplolaimus galeatus, Hoplolaimus indicus, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus pseudorobustus, Xiphinema americanum, Dolichodorus heterocephalus, Criconemella ornata, Criconemella onoensis, Radopholus similis, Rotylenchulus borealis, Rotylenchulus parvus, Tylenchorhynchus agri, Tylenchorhynchus clarus, Tylenchorhynchus claytoni, Tylenchorhynchus maximus, Tylenchorhynchus nudus, Tylenchorhynchus vulgaris, Quinisulcius acutus, Paratylenchus minutus, Hemicycliophora parvana, Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Scutellonema brachyurum, Subanguina radiciola.

[0207]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in soybean belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus penetrans, Pratylenchus scribneri, Belonolaimus longicaudatus, Heterodera glycines, Hoplolaimus columbus and also consisting of Pratylenchus coffeae, Pratylenchus hexincisus, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus alleni, Pratylenchus agilis, Pratylenchus zeae, Pratylenchus vulnus, (Belonolaimus gracilis), Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne hapla, Hoplolaimus columbus, Hoplolaimus galeatus, Rotylenchulus reniformis.

[0208]

Fluopyram and compositions comprising fluopyram is very particularly useful in controlling nematodes in soybean belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus penetrans, Pratylenchus scribneri, Belonolaimus longicaudatus, Hoplolaimus columbus and also consisting of Pratylenchus coffeae, Pratylenchus hexincisus, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus alleni, Pratylenchus agilis, Pratylenchus zeae, Pratylenchus vulnus, (Belonolaimus gracilis), Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne hapla, Hoplolaimus columbus, Hoplolaimus galeatus, Rotylenchulus reniformis.

[0209]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in tobacco belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Meloidogyne incognita, Meloidogyne javanica and also consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae, Longidorus elongatu, Paratrichodorus lobatus, Trichodorus spp., Meloidogyne arenaria, Meloidogyne hapla, Globodera tabacum, Globodera solanacearum, Globodera virginiae, Ditylenchus dipsaci, Rotylenchus spp., Helicotylenchus spp., Xiphinema americanum, Criconemella spp., Rotylenchulus reniformis, Tylenchorhynchus claytoni, Paratylenchus spp., Tetylenchus nicotianae.

[0210]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in citrus belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus coffeae and also consisting of Pratylenchus brachyurus, Pratylenchus vulnus, Belonolaimus longicaudatus, Paratrichodorus minor, Paratrichodorus porosus, Trichodorus Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Rotylenchus macrodoratus, Xiphinema americanum, Xiphinema brevicolle, Xiphinema index, Criconemella spp., Hemicriconemoides, (Radopholus similis), Radopholus citrophilus, Hemicycliophora arenaria, Hemicycliophora nudata, Tylenchulus semipenetrans.

[0211]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in banana belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus coffeae, Radopholus similis and also consisting of Pratylenchus giibbicaudatus, Pratylenchus loosi, Meloidogyne spp., Helicotylenchus multicinctus, Helicotylenchus dihystera, Rotylenchulus spp.

[0212]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in pine apple belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus zeae, Pratylenchus pratensis, Pratylenchus brachyurus, Pratylenchus goodeyi., Meloidogyne spp., Rotylenchulus reniformis and also consisting of Longidorus elongatus, Longidorus laevicapitatus, Trichodorus primitivus, Trichodorus minor, Heterodera spp., Ditylenchus myceliophagus, Hoplolaimus californicus, Hoplolaimus pararobustus, Hoplolaimus indicus, Helicotylenchus dihystera, Helicotylenchus nannus, Helicotylenchus multicinctus, Helicotylenchus erythrine, Xiphinema dimorphicaudatum, Radopholus similis, Tylenchorhynchus digitatus, Tylenchorhynchus ebriensis, Paratylenchus minutus, Scutellonema clathricaudatum, Scutellonema bradys, Psilenchus tumidus, Psilenchus magnidens, Pseudohalenchus minutus, Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum.

[0213]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in sugarcane belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci and also consisting of Pratylenchus alleni, Pratylenchus andinus, Pratylenchus cerealis, Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne acronea, Meloidogyne artiella, Meloidogyne incognita, Meloidogyne graminicola, Meloidogyne javanica, Meloidogyne thamesi, Meloidogyne hapla, Meloidogyne ethiopica, Meloidogyne africana, Meloidogyne kikuyensis, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus pseudorobustus, Rotylenchulus borealis, Rotylenchulus parvus, Rotylenchulus reniformis, Scutellonema brachyurum.

[0214]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in grapes belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Xiphinema americanum, Xiphinema index and also consisting of Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus neglectus, Pratylenchus brachyurus, Pratylenchus thornei, Tylenchulus semipenetrans.

[0215]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in tree crops—pome fruits, belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus penetrans and also consisting of Pratylenchus vulnus, Longidorus elongatus, Meloidogyne incognita, Meloidogyne hapla.

[0216]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in tree crops—stone fruits, belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Pratylenchus penetrans, Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Criconemella xenoplax and also consisting of Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus zeae, Belonolaimus longicaudatus, Helicotylenchus dihystera, Xiphinema americanum, Criconemella curvata, Tylenchorhynchus claytoni, Paratylenchus hamatus, Paratylenchus projectus, Scutellonema brachyurum, Hoplolaimus galeatus.

[0217]

Fluopyram and compositions comprising fluopyram is particularly useful in controlling nematodes in tree crops—nuts, belonging to at least one species selected from the group of the phytoparasitic nematodes, especially consisting of Trichodorus spp., Criconemella rusium and also consisting of Pratylenchus vulnus, Paratrichodorus spp., Meloidogyne incognita, Helicotylenchus spp., Tylenchorhynchus spp., Cacopaurus pestis.

[0218]

Definition of Plant Parts

[0219]

According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, tubers, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, tubers, runners and seeds also belong to plant parts.

[0220]

As already mentioned above, it is possible to treat all plants and their parts according to the invention. In one embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding, such as crossing or protoplast fusion, and parts thereof, are treated. In a further embodiment, transgenic plants and plant cultivars obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated. The term “parts” or “parts of plants” or “plant parts” has been explained above.

[0221]

GMOs

[0222]

Plants of the plant cultivars which are in each case commercially available or in use can be treated according to the invention. Plant cultivars are to be understood as meaning plants having novel properties (“traits”) which can be obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. This can be varieties, bio- and genotypes.

[0223]

The transgenic plants or plant cultivars (i.e. those obtained by genetic engineering) which can be treated according to the invention include all plants which, in the genetic modification, received genetic material which imparted particularly advantageous useful traits to these plants. Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, better quality and/or a higher nutritional value of the harvested products, better storage stability and/or processability of the harvested products. Further and particularly emphasized examples of such properties are a better defense of the plants against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria and/or viruses, and also increased tolerance of the plants to certain herbicidal active compounds. Particular emphasis is given to vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular citrus fruits, pine apples and bananas, and grapes.

[0224]

The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants of which a heterologous gene has been stably integrated into genome. The expression “heterologous gene” essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology or RNA interference—RNAi—technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

[0225]

Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive (“synergistic”) effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.

[0226]

At certain application rates, fluopyram and compositions comprising fluopyram according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of fluopyram and compositions comprising fluopyram according to the invention, for example against nematodes. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms. In the present case, unwanted microorganisms are to be understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, fluopyram and compositions comprising fluopyram according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds. At certain application rates, fluopyram and compositions comprising fluopyram according to the invention may also have a yield-increasing effect in plants.

[0227]

Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

[0228]

Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.

[0229]

Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.

[0230]

Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.

[0231]

Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and U.S. Pat. No. 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens.

[0232]

Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 91/02069).

[0233]

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.

[0234]

Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), the genes encoding a Petunia EPSPS (Shah et al., 1986, Science 233, 478-481), a Tomato EPSPS (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289), or an Eleusine EPSPS (WO 01/66704). It can also be a mutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747 or WO02/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in U.S. Pat. Nos. 5,776,760 and 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 02/36782, WO 03/092360, WO 05/012515 and WO 07/024,782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. U.S. patent application Ser. No. 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468,205, 11/760,570, 11/762,526, 11/769,327, 11/769,255, 11/943,801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described in e.g. U.S. patent application Ser. No. 11/588,811, 11/185,342, 12/364,724, 11/185,560 or 12/423,926.

[0235]

Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in U.S. patent application Ser. No. 11/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S. Pat. Nos. 5,561,236; 5,648,477; 5,646,024; 5,273,894; 5,637,489; 5,276,268; 5,739,082; 5,908,810 and 7,112,665.

[0236]

Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). Hydroxyphenylpyruvatedioxygenases HPPD is an are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, and WO 99/24586, WO 2009/144079, WO 2002/046387, or U.S. Pat. No. 6,768,044. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having_prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928. Further, plants can be made more tolerant to HPPD-inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.

[0237]

Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pryimidinyoxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described for example in Tranel and Wright (2002, Weed Science 50:700-712), but also, in U.S. Pat. Nos. 5,605,011, 5,378,824, 5,141,870, and 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described in U.S. Pat. Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and international publication WO 96/33270. Other imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351, and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 07/024,782 and U.S. Patent Application No. 61/288,958.

[0238]

Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in U.S. Pat. No. 5,084,082, for rice in WO 97/41218, for sugar beet in U.S. Pat. No. 5,773,702 and WO 99/057965, for lettuce in U.S. Pat. No. 5,198,599, or for sunflower in WO 01/065922.

[0239]

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.

[0240]

An “insect-resistant transgenic plant”, as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:

[0241]

1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al. (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al. (2005) at the Bacillus thuringiensis toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g., proteins of the Cry protein classes Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1D, Cry1F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP 1999141 and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in and U.S. patent application Ser. No. 12/249,016; or

[0242]

2) a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al. 2001, Nat. Biotechnol. 19: 668-72; Schnepf et al. 2006, Applied Environm. Microbiol. 71, 1765-1774) or the binary toxin made up of the Cry1A or Cry1F proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. patent application Ser. No. 12/214,022 and EP 08010791.5); or

[0243]

3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.105 protein produced by corn event MON89034 (WO 2007/027777); or

[0244]

4) a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or

[0245]

5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at:

[0246]

http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or

[0247]

6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or

[0248]

7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or

[0249]

8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102; or

[0250]

9) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a crystal protein from Bacillus thuringiensis, such as the binary toxin made up of VIP3 and Cry 1A or Cry1F (U.S. Patent Appl. Nos. 61/126,083 and 61/195,019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. patent application Ser. No. 12/214,022 and EP 08010791.5).

[0251]

10) a protein of 9) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein)

[0252]

Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.

[0253]

An “insect-resistant transgenic plant”, as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.

[0254]

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:

[0255]

1) plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants as described in WO 00/04173, WO/2006/045633, EP 04077984.5, or EP 06009836.5.

[0256]

2) plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells, as described e.g. in WO 2004/090140.

[0257]

3) plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase as described e.g. in EP 04077624.7, WO 2006/133827, PCT/EP07/002,433, EP 1999263, or WO 2007/107326.

[0258]

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:

[0259]

1) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications. Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP 0571427, WO 95/04826, EP 0719338, WO 96/15248, WO 96/19581, WO 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO 98/27212, WO 98/40503, WO99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185, WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 00/22140, WO 2006/063862, WO 2006/072603, WO 02/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1, EP 07090009.7, WO 01/14569, WO 02/79410, WO 03/33540, WO 2004/078983, WO 01/19975, WO 95/26407, WO 96/34968, WO 98/20145, WO 99/12950, WO 99/66050, WO 99/53072, U.S. Pat. No. 6,734,341, WO 00/11192, WO 98/22604, WO 98/32326, WO 01/98509, WO 01/98509, WO 2005/002359, U.S. Pat. No. 5,824,790, U.S. Pat. No. 6,013,861, WO 94/04693, WO 94/09144, WO 94/11520, WO 95/35026, WO 97/20936

[0260]

2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP 0663956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4-glucans as disclosed in WO 95/31553, US 2002031826, U.S. Pat. No. 6,284,479, U.S. Pat. No. 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249, plants producing alpha-1,6 branched alpha-1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, EP 06077301.7, U.S. Pat. No. 5,908,975 and EP 0728213,

[0261]

3) transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006304779, and WO 2005/012529.

[0262]

4) transgenic plants or hybrid plants, such as onions with characteristics such as ‘high soluble solids content’, ‘low pungency’ (LP) and/or ‘long storage’ (LS), as described in U.S. patent application Ser. Nos. 12/020,360 and 61/054,026.

[0263]

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:

    • a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549
    • b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 2004/053219
    • c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333
    • d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO 02/45485
    • e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g. through downregulation of fiber-selective 13-1,3-glucanase as described in WO 2005/017157, or as described in EP 08075514.3 or U.S. Patent Appl. No. 61/128,938
    • f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351

[0270]

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include:

[0271]

a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in U.S. Pat. No. 5,969,169, U.S. Pat. No. 5,840,946 or U.S. Pat. No. 6,323,392 or U.S. Pat. No. 6,063,947

[0272]

b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in U.S. Pat. No. 6,270,828, U.S. Pat. No. 6,169,190, or U.S. Pat. No. 5,965,755

[0273]

c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in U.S. Pat. No. 5,434,283 or U.S. patent application Ser. No. 12/668,303

[0274]

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as potatoes which are virus-resistant, e.g. against potato virus Y (event SY230 and SY233 from Tecnoplant, Argentina), which are disease resistant, e.g. against potato late blight (e.g. RB gene), which show a reduction in cold-induced sweetening (carrying the Nt-Inhh, IIR-INV gene) or which possess a dwarf phenotype (Gene A-20 oxidase).

[0275]

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in U.S. Patent Appl. No. 61/135,230, and EP 08075648.9, WO09/068,313 and WO10/006,732.

[0276]

Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non-regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending. At any time this information is readily available from APHIS (4700 River Road Riverdale, Md. 20737, USA), for instance on its internet site (URL http://www.aphis.usda.gov/brs/not_reg.html). On the filing date of this application the petitions for nonregulated status that were pending with APHIS or granted by APHIS were those listed in table B which contains the following information:

    • Petition: the identification number of the petition. Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference.
    • Extension of Petition: reference to a previous petition for which an extension is requested.
    • Institution: the name of the entity submitting the petition.
    • Regulated article: the plant species concerned.
    • Transgenic phenotype: the trait conferred to the plants by the transformation event.
    • Transformation event or line: the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.
    • APHIS documents: various documents published by APHIS in relation to the Petition and which can be requested with APHIS.

[0284]

Additional particularly useful plants containing single transformation events or combinations of transformation events are listed for example in the databases from various national or regional regulatory agencies (see for example http://gmoinfo.irc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).

[0285]

The present invention relates also to the use of fluopyram and compositions comprising fluopyram for controlling nematodes in plants containing transformation events, or a combination of transformation events, and that are listed for example in the databases for various national or regional regulatory agencies including Event 1143-14A (cotton, insect control, not deposited, described in WO2006/128569); Event 1143-51B (cotton, insect control, not deposited, described in WO2006/128570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US2002120964 or WO2002/034946); Event 17053 (rice, herbicide tolerance, deposited as PTA-9843, described in WO2010/117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO2010/117735); Event 281-24-236 (cotton, insect control—herbicide tolerance, deposited as PTA-6233, described in WO2005/103266 or US2005216969); Event 3006-210-23 (cotton, insect control—herbicide tolerance, deposited as PTA-6233, described in US2007143876 or WO2005/103266); Event 3272 (corn, quality trait, deposited as PTA-9972, described in WO2006098952 or US2006230473); Event 40416 (corn, insect control—herbicide tolerance, deposited as ATCC PTA-11508, described in WO2011/075593); Event 43A47 (corn, insect control—herbicide tolerance, deposited as ATCC PTA-11509, described in WO2011/075595); Event 5307 (corn, insect control, deposited as ATCC PTA-9561, described in WO2010/077816); Event ASR-368 (bent grass, herbicide tolerance, deposited as ATCC PTA-4816, described in US2006162007 or WO2004053062); Event B16 (corn, herbicide tolerance, not deposited, described in US2003126634); Event BPS-CV127-9 (soybean, herbicide tolerance, deposited as NCIMB No. 41603, described in WO2010/080829); Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US2009217423 or WO2006/128573); Event CE44-69D (cotton, insect control, not deposited, described in US20100024077); Event CE44-69D (cotton, insect control, not deposited, described in WO2006/128571); Event CE46-02A (cotton, insect control, not deposited, described in WO2006/128572); Event COT102 (cotton, insect control, not deposited, described in US2006130175 or WO2004039986); Event COT202 (cotton, insect control, not deposited, described in US2007067868 or WO2005054479); Event COT203 (cotton, insect control, not deposited, described in WO2005/054480); Event DAS40278 (corn, herbicide tolerance, deposited as ATCC PTA-10244, described in WO2011/022469); Event DAS-59122-7 (corn, insect control—herbicide tolerance, deposited as ATCC PTA 11384, described in US2006070139); Event DAS-59132 (corn, insect control—herbicide tolerance, not deposited, described in WO2009/100188); Event DAS68416 (soybean, herbicide tolerance, deposited as ATCC PTA-10442, described in WO2011/066384 or WO2011/066360); Event DP-098140-6 (corn, herbicide tolerance, deposited as ATCC PTA-8296, described in US2009137395 or WO2008/112019); Event DP-305423-1 (soybean, quality trait, not deposited, described in US2008312082 or WO2008/054747); Event DP-32138-1 (corn, hybridization system, deposited as ATCC PTA-9158, described in US20090210970 or WO2009/103049); Event DP-356043-5 (soybean, herbicide tolerance, deposited as ATCC PTA-8287, described in US20100184079 or WO2008/002872); Event EE-1 (brinjal, insect control, not deposited, described in WO2007/091277); Event FI117 (corn, herbicide tolerance, deposited as ATCC 209031, described in US2006059581 or WO1998/044140); Event GA21 (corn, herbicide tolerance, deposited as ATCC 209033, described in US2005086719 or WO1998/044140); Event GG25 (corn, herbicide tolerance, deposited as ATCC 209032, described in US2005188434 or WO1998/044140); Event GHB119 (cotton, insect control—herbicide tolerance, deposited as ATCC PTA-8398, described in WO2008/151780); Event GHB614 (cotton, herbicide tolerance, deposited as ATCC PTA-6878, described in US2010050282 or WO2007/017186); Event GJ11 (corn, herbicide tolerance, deposited as ATCC 209030, described in US2005188434 or WO1998/044140); Event GM RZ13 (sugar beet, virus resistance, deposited as NCIMB-41601, described in WO2010/076212); Event H7-1 (sugar beet, herbicide tolerance, deposited as NCIMB 41158 or NCIMB 41159, described in US2004172669 or WO2004/074492); Event JOPLIN1 (wheat, disease tolerance, not deposited, described in US2008064032); Event LL27 (soybean, herbicide tolerance, deposited as NCIMB41658, described in WO2006/108674 or US2008320616); Event LL55 (soybean, herbicide tolerance, deposited as NCIMB 41660, described in WO2006/108675 or US2008196127); Event LLcotton25 (cotton, herbicide tolerance, deposited as ATCC PTA-3343, described in WO2003013224 or US2003097687); Event LLRICE06 (rice, herbicide tolerance, deposited as ATCC-23352, described in U.S. Pat. No. 6,468,747 or WO2000/026345); Event LLRICE601 (rice, herbicide tolerance, deposited as ATCC PTA-2600, described in US20082289060 or WO2000/026356); Event LY038 (corn, quality trait, deposited as ATCC PTA-5623, described in US2007028322 or WO2005061720); Event MIR162 (corn, insect control, deposited as PTA-8166, described in US2009300784 or WO2007/142840); Event MIR604 (corn, insect control, not deposited, described in US2008167456 or WO2005103301); Event MON15985 (cotton, insect control, deposited as ATCC PTA-2516, described in US2004-250317 or WO2002/100163); Event MON810 (corn, insect control, not deposited, described in US2002102582); Event MON863 (corn, insect control, deposited as ATCC PTA-2605, described in WO2004/011601 or US2006095986); Event MON87427 (corn, pollination control, deposited as ATCC PTA-7899, described in WO2011/062904); Event MON87460 (corn, stress tolerance, deposited as ATCC PTA-8910, described in WO2009/111263 or US20110138504); Event MON87701 (soybean, insect control, deposited as ATCC PTA-8194, described in US2009130071 or WO2009/064652); Event MON87705 (soybean, quality trait—herbicide tolerance, deposited as ATCC PTA-9241, described in US20100080887 or WO2010/037016); Event MON87708 (soybean, herbicide tolerance, deposited as ATCC PTA9670, described in WO2011/034704); Event MON87754 (soybean, quality trait, deposited as ATCC PTA-9385, described in WO2010/024976); Event MON87769 (soybean, quality trait, deposited as ATCC PTA-8911, described in US20110067141 or WO2009/102873); Event MON88017 (corn, insect control—herbicide tolerance, deposited as ATCC PTA-5582, described in US2008028482 or WO2005/059103); Event MON88913 (cotton, herbicide tolerance, deposited as ATCC PTA-4854, described in WO2004/072235 or US2006059590); Event MON89034 (corn, insect control, deposited as ATCC PTA-7455, described in WO2007/140256 or US2008260932); Event MON89788 (soybean, herbicide tolerance, deposited as ATCC PTA-6708, described in US2006282915 or WO2006/130436); Event MS11 (oilseed rape, pollination control—herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in WO2001/031042); Event MS8 (oilseed rape, pollination control—herbicide tolerance, deposited as ATCC PTA-730, described in WO2001/041558 or US2003188347); Event NK603 (corn, herbicide tolerance, deposited as ATCC PTA-2478, described in US2007-292854); Event PE-7 (rice, insect control, not deposited, described in WO2008/114282); Event RF3 (oilseed rape, pollination control—herbicide tolerance, deposited as ATCC PTA-730, described in WO2001/041558 or US2003188347); Event RT73 (oilseed rape, herbicide tolerance, not deposited, described in WO2002/036831 or US2008070260); Event T227-1 (sugar beet, herbicide tolerance, not deposited, described in WO2002/44407 or US2009265817); Event T25 (corn, herbicide tolerance, not deposited, described in US2001029014 or WO2001/051654); Event T304-40 (cotton, insect control—herbicide tolerance, deposited as ATCC PTA-8171, described in US2010077501 or WO2008/122406); Event T342-142 (cotton, insect control, not deposited, described in WO2006/128568); Event TC1507 (corn, insect control—herbicide tolerance, not deposited, described in US2005039226 or WO2004/099447); Event VIP1034 (corn, insect control—herbicide tolerance, deposited as ATCC PTA-3925., described in WO2003/052073), Event 32316 (corn, insect control-herbicide tolerance, deposited as PTA-11507, described in WO2011/084632), Event 4114 (corn, insect control-herbicide tolerance, deposited as PTA-11506, described in WO2011/084621).

[0286]

The present invention relates also to the use of fluopyram and compositions comprising fluopyram for controlling nematodes in plants carrying the one or more of the events listed in table A below:

[0000]

A-1ASR368Scotts SeedsGlyphosate tolerance derived by inserting a modified 5-Agrostis stoloniferaUS 2006-162007
enolpyruvylshikimate-3-phosphate synthase (EPSPS)Creeping Bentgrass
encoding gene from Agrobacterium tumefaciens, parent line B99061
A-2GM RZ13Beet Necrotic Yellow Vein Virus (BNYVV) resistanceBeta vulgaris (sugar beet)WO2010076212
A-3H7-1Monsanto CompanyGlyphosate herbicide tolerant sugar beet produced byBeta vulgaris (sugar beet)WO 2004-074492
inserting a gene encoding the enzyme 5-
enolypyruvylshikimate-3-phosphate synthase (EPSPS)
from the CP4 strain of Agrobacterium tumefaciens,; WO 2004-074492
A-4T120-7Bayer CropScience (AventisIntroduction of the PPT-acetyltransferase (PAT) encodingBeta vulgaris (sugar beet)
CropScience(AgrEvo))gene from Streptomyces viridochromogenes, an aerobic
soil bacteria. PPT normally acts to inhibit glutamine
synthetase, causing a fatal accumulation of ammonia.
Acetylated PPT is inactive.
A-5GTSB77Novartis Seeds; MonsantoGlyphosate herbicide tolerant sugar beet produced byBeta vulgaris (sugar beet)
Companyinserting a gene encoding the enzyme 5-
enolypyruvylshikimate-3-phosphate synthase (EPSPS)
from the CP4 strain of Agrobacterium tumefaciens.
A-6T227-1Glyphosate tolerance; US 2004-117870Beta vulgaris (sugar beet)US 2004-117870
A-723-18-17, 23-198Monsanto CompanyHigh laurate (12:0) and myristate (14:0) canola producedBrassica napus (Argentine
(formerly Calgene)by inserting a thioesterase encoding gene from theCanola)
California bay laurel (Umbellularia californica).
A-845A37, 46A40Pioneer Hi-BredHigh oleic acid and low linolenic acid canola producedBrassica napus (Argentine
International Inc.through a combination of chemical mutagenesis to selectCanola)
for a fatty acid desaturase mutant with elevated oleic acid,
and traditional back-crossing to introduce the low linolenic acid trait.
A-946A12, 46A16Pioneer Hi-BredCombination of chemical mutagenesis, to achieve the highBrassica napus (Argentine
International Inc.oleic acid trait, and traditional breeding with registeredCanola)
canola varieties.
A-GT200Monsanto CompanyGlyphosate herbicide tolerant canola produced byBrassica napus (Argentine
10inserting genes encoding the enzymes 5-Canola)
enolypyruvylshikimate-3-phosphate synthase (EPSPS)
from the CP4 strain of Agrobacterium tumefaciens and
glyphosate oxidase from Ochrobactrum anthropi.
A-GT73, RT73Monsanto CompanyGlyphosate herbicide tolerant canola produced byBrassica napus (Argentine
11inserting genes encoding the enzymes 5-Canola)
enolypyruvylshikimate-3-phosphate synthase (EPSPS)
from the CP4 strain of Agrobacterium tumefaciens and
glyphosate oxidase from Ochrobactrum anthropi.
A-HCN10Aventis CropScienceIntroduction of the PPT-acetyltransferase (PAT) encodingBrassica napus (Argentine
12gene from Streptomyces viridochromogenes, an aerobicCanola)
soil bacteria. PPT normally acts to inhibit glutamine
synthetase, causing a fatal accumulation of ammonia.
Acetylated PPT is inactive.
A-HCN92Bayer CropScience (AventisIntroduction of the PPT-acetyltransferase (PAT) encodingBrassica napus (Argentine
13Crop Science(AgrEvo))gene from Streptomyces viridochromogenes, an aerobicCanola)
soil bacteria. PPT normally acts to inhibit glutamine
synthetase, causing a fatal accumulation of ammonia.
Acetylated PPT is inactive.
A-MS1, RF1Aventis CropScienceMale-sterility, fertility restoration, pollination controlBrassica napus (Argentine
14=>PGS1(formerly Plant Geneticsystem displaying glufosinate herbicide tolerance. MSCanola)
Systems)lines contained the barnase gene from Bacillus
amyloliquefaciens, RF lines contained the barstar gene
from the same bacteria, and both lines contained the
phosphinothricin N-acetyltransferase (PAT) encoding
gene from Streptomyces hygroscopicus.
A-MS1, RF2Aventis CropScienceMale-sterility, fertility restoration, pollination controlBrassica napus (Argentine
15=>PGS2(formerly Plant Geneticsystem displaying glufosinate herbicide tolerance. MSCanola)
Systems)lines contained the barnase gene from Bacillus
amyloliquefaciens, RF lines contained the barstar gene
from the same bacteria, and both lines contained the
phosphinothricin N-acetyltransferase (PAT) encoding
gene from Streptomyces hygroscopicus.
A-MS8 × RF3Bayer CropScience (AventisMale-sterility, fertility restoration, pollination controlBrassica napus (Argentine
16CropScience(AgrEvo))system displaying glufosinate herbicide tolerance. MSCanola)
lines contained the barnase gene from Bacillus
amyloliquefaciens, RF lines contained the barstar gene
from the same bacteria, and both lines contained the
phosphinothricin N-acetyltransferase (PAT) encoding
gene from Streptomyces hygroscopicus.
A-MS-B2Male sterility; WO 01/31042Brassica napus (Argentine
17Canola)
A-MS-BN1/RF-BN1Male sterility/restoration; WO 01/41558Brassica napus (Argentine
18Canola)
A-NS738, NS1471,Pioneer Hi-BredSelection of somaclonal variants with altered acetolactateBrassica napus (Argentine
19NS1473International Inc.synthase (ALS) enzymes, following chemical mutagenesis.Canola)
Two lines (P1, P2) were initially selected with
modifications at different unlinked loci. NS738 contains
the P2 mutation only.
A-OXY-235Aventis CropScienceTolerance to the herbicides bromoxynil and ioxynil byBrassica napus (Argentine
20(formerly Rhone Poulencincorporation of the nitrilase gene from KlebsiellaCanola)
Inc.)pneumoniae.
A-PHY14, PHY35Aventis CropScienceMale sterility was via insertion of the barnase ribonucleaseBrassica napus (Argentine
21(formerly Plant Geneticgene from Bacillus amyloliquefaciens; fertility restorationCanola)
Systems)by insertion of the barstar RNase inhibitor; PPT resistance
was via PPT-acetyltransferase (PAT) from Streptomyces
hygroscopicus.
A-PHY36Aventis CropScienceMale sterility was via insertion of the barnase ribonucleaseBrassica napus (Argentine
22(formerly Plant Geneticgene from Bacillus amyloliquefaciens; fertility restorationCanola)
Systems)by insertion of the barstar RNase inhibitor; PPT resistance
was via PPT-acetyltransferase (PAT) from Streptomyces
hygroscopicus.
A-RT73Glyphosate resistance; WO 02/36831Brassica napus (ArgentineWO 02/36831
23Canola)
A-T45 (HCN28)Bayer CropScience (AventisIntroduction of the PPT-acetyltransferase (PAT) encodingBrassica napus (Argentine
24Crop Science(AgrEvo))gene from Streptomyces viridochromogenes, an aerobicCanola)
soil bacteria. PPT normally acts to inhibit glutamine
synthetase, causing a fatal accumulation of ammonia.
Acetylated PPT is inactive.
A-HCR-1Bayer CropScience (AventisIntroduction of the glufosinate ammonium herbicideBrassica rapa (Polish
25Crop Science(AgrEvo))tolerance trait from transgenic B. napus line T45. This traitCanola)
is mediated by the phosphinothricin acetyltransferase
(PAT) encoding gene from S. viridochromogenes.
A-ZSR500/502Monsanto CompanyIntroduction of a modified 5-enol-pyruvylshikimate-3-Brassica rapa (Polish
26phosphate synthase (EPSPS) and a gene fromCanola)
Achromobacter sp that degrades glyphosate by conversion
to aminomethylphosphonic acid (AMPA) and glyoxylate
by interspecific crossing with GT73.
A-EE-1Insect resistance (Cry1Ac)BrinjalWO 2007/091277
27
A-55-1/63-1Cornell UniversityPapaya ringspot virus (PRSV) resistant papaya producedCarica papaya (Papaya)
28by inserting the coat protein (CP) encoding sequences
from this plant potyvirus.
A-X17-2University of FloridaPapaya ringspot virus (PRSV) resistant papaya producedCarica papaya (Papaya)
29by inserting the coat protein (CP) encoding sequences
from PRSV isolate H1K with a thymidine inserted after
the initiation codon to yield a frameshift. Also contains
nptII as a selectable marker.
A-RM3-3, RM3-4,Bejo Zaden BVMale sterility was via insertion of the barnase ribonucleaseCichorium intybus (Chicory)
30RM3-6gene from Bacillus amyloliquefaciens; PPT resistance was
via the bar gene from S. hygroscopicus, which encodes the
PAT enzyme.
A-A, BAgritope Inc.Reduced accumulation of S-adenosylmethionine (SAM),Cucumis melo (Melon)
32and consequently reduced ethylene synthesis, by
introduction of the gene encoding S-adenosylmethionine
hydrolase.
A-CZW-3Asgrow (USA); SeminisCucumber mosiac virus (CMV), zucchini yellows mosaicCucurbita pepo (Squash)
33Vegetable Inc. (Canada)(ZYMV) and watermelon mosaic virus (WMV) 2 resistant
squash (Curcurbita pepo) produced by inserting the coat
protein (CP) encoding sequences from each of these plant
viruses into the host genome.
A-ZW20Upjohn (USA); SeminisZucchini yellows mosaic (ZYMV) and watermelon mosaicCucurbita pepo (Squash)
34Vegetable Inc. (Canada)virus (WMV) 2 resistant squash (Curcurbita pepo)
produced by inserting the coat protein (CP) encoding
sequences from each of these plant potyviruses into the
host genome.
A-66Florigene Pty Ltd.Delayed senescence and sulfonylurea herbicide tolerantDianthus
35carnations produced by inserting a truncated copy of thecaryophyllus (Carnation)
carnation aminocyclopropane cyclase (ACC) synthase
encoding gene in order to suppress expression of the
endogenous unmodified gene, which is required for
normal ethylene biosynthesis. Tolerance to sulfonyl urea
herbicides was via the introduction of a chlorsulfuron
tolerant version of the acetolactate synthase (ALS)
encoding gene from tobacco.
A-4, 11, 15, 16Florigene Pty Ltd.Modified colour and sulfonylurea herbicide tolerantDianthus
36carnations produced by inserting two anthocyanincaryophyllus (Carnation)
biosynthetic genes whose expression results in a
violet/mauve colouration. Tolerance to sulfonyl urea
herbicides was via the introduction of a chlorsulfuron
tolerant version of the acetolactate synthase (ALS)
encoding gene from tobacco.
A-959A, 988A,Florigene Pty Ltd.Introduction of two anthocyanin biosynthetic genes toDianthus
371226A, 1351A,result in a violet/mauve colouration; Introduction of acaryophyllus (Carnation)
1363A, 1400Avariant form of acetolactate synthase (ALS).
A-3560.4.3.5Glyphosate/ALS inhibitor-tolerance; WO 2008002872Glycine max L. (Soybean)WO 2008002872,
38US2010184079
A-A2704-12, A2704-Bayer CropScience (AventisGlufosinate ammonium herbicide tolerant soybeanGlycine max L. (Soybean)WO 2006/108674
3921CropScience(AgrEvo))produced by inserting a modified phosphinothricin
acetyltransferase (PAT) encoding gene from the soil
bacterium Streptomyces viridochromogenes.; WO
2006/108674
A-A5547-127Bayer CropScience (AventisGlufosinate ammonium herbicide tolerant soybeanGlycine max L. (Soybean)
40CropScience(AgrEvo))produced by inserting a modified phosphinothricin
acetyltransferase (PAT) encoding gene from the soil
bacterium Streptomyces viridochromogenes.
A-A5547-35Bayer CropScience (AventisGlufosinate tolerance; WO 2006/108675Glycine max L. (Soybean)WO 2006/108675
41CropScience(AgrEvo))
A-DP-305423-1Pioneer Hi-BredHigh oleic acid/ALS inhibitor tolerance;Glycine max L. (Soybean)WO 2008/054747
42International Inc.
A-DP356043Pioneer Hi-BredSoybean event with two herbicide tolerance genes:Glycine max L. (Soybean)
43International Inc.glyphosate N-acetlytransferase, which detoxifies
glyphosate, and a modified acetolactate synthase (A
A-G94-1, G94-19,DuPont Canada AgriculturalHigh oleic acid soybean produced by inserting a secondGlycine max L. (Soybean)
44G168Productscopy of the fatty acid desaturase (GmFad2-1) encoding
gene from soybean, which resulted in “silencing” of the
endogenous host gene.
A-GTS 40-3-2Monsanto CompanyGlyphosate tolerant soybean variety produced by insertingGlycine max L. (Soybean)
45a modified 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS) encoding gene from the soil bacterium
Agrobacterium tumefaciens.
A-GU262Bayer CropScience (AventisGlufosinate ammonium herbicide tolerant soybeanGlycine max L. (Soybean)
46Crop Science(AgrEvo))produced by inserting a modified phosphinothricin
acetyltransferase (PAT) encoding gene from the soil
bacterium Streptomyces viridochromogenes.
A-MON87701Monsanto Companyinsect resistance (CryIac); WO 2009064652Glycine max L. (Soybean)WO 2009064652
47
A-MON87705Monsanto Companyaltered fatty acid levels (mid-oleic and low saturate); WOGlycine max L. (Soybean)WO 2010037016
482010037016
A-MON87754Monsanto Companyincreased oil content;Glycine max L. (Soybean)WO 2010024976
49
A-MON87769Monsanto Companystearidonic acid (SDA) comprising oil;Glycine max L. (Soybean)WO 2009102873
50
A-MON89788Monsanto CompanyGlyphosate-tolerant soybean produced by inserting aGlycine max L. (Soybean)WO2006130436
51modified 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS) encoding aroA (epsps) gene from Agrobacterium
tumefaciens CP4;
A-MON89788,Monsanto CompanyGlyphosate tolerance, WO2006130436Glycine max L. (Soybean)
52MON19788
A-OT96-15Agriculture & Agri-FoodLow linolenic acid soybean produced through traditionalGlycine max L. (Soybean)
53Canadacross-breeding to incorporate the novel trait from a
naturally occurring fanl gene mutant that was selected for
low linolenic acid.
A-W62, W98Bayer CropScience (AventisGlufosinate ammonium herbicide tolerant soybeanGlycine max L. (Soybean)
54CropScience(AgrEvo))produced by inserting a modified phosphinothricin
acetyltransferase (PAT) encoding gene from the soil
bacterium Streptomyces hygroscopicus.
A-15985Monsanto CompanyInsect resistant cotton derived by transformation of theGossypium hirsutum
55DP50B parent variety, which contained event 531L. (Cotton)
(expressing Cry1Ac protein), with purified plasmid DNA
containing the cry2Ab gene from B. thuringiensis subsp.
kurstaki.
A-1143-14AInsect resistance (Cry1Ab)Gossypium hirsutumWO 2006/128569
56L. (Cotton)
A-1143-51BInsect resistance (Cry1Ab)Gossypium hirsutumWO 2006/128570
57L. (Cotton)
A-19-51ADuPont Canada AgriculturalIntroduction of a variant form of acetolactate synthaseGossypium hirsutum
58Products(ALS).L. (Cotton)
A-281-24-236DOW AgroSciences LLCInsect-resistant cotton produced by inserting the cry1FGossypium hirsutum
59gene from Bacillus thuringiensis var. aizawai. The PATL. (Cotton)
encoding gene from Streptomyces viridochromogenes was
introduced as a selectable marker.
A-3006-210-23DOW AgroSciences LLCInsect-resistant cotton produced by inserting the cry1AcGossypium hirsutum
60gene from Bacillus thuringiensis subsp. kurstaki. The PATL. (Cotton)
encoding gene from Streptomyces viridochromogenes was
introduced as a selectable marker.
A-31807/31808Calgene Inc.Insect-resistant and bromoxynil herbicide tolerant cottonGossypium hirsutum
61produced by inserting the cry1Ac gene from BacillusL. (Cotton)
thuringiensis and a nitrilase encoding gene from Klebsiella
pneumoniae.
A-BXNCalgene Inc.Bromoxynil herbicide tolerant cotton produced byGossypium hirsutum
62inserting a nitrilase encoding gene from KlebsiellaL. (Cotton)
pneumoniae.
A-CE43-67BInsect resistance (Cry1Ab)Gossypium hirsutumWO
63L. (Cotton)2006/128573, US
2011020828
A-CE44-69DInsect resistance (Cry1Ab)Gossypium hirsutumWO 2006/128571
64L. (Cotton)
A-CE46-02AInsect resistance (Cry1Ab)Gossypium hirsutumWO 2006/128572
65L. (Cotton)
A-Cot102Syngenta Seeds, Inc.Insect-resistant cotton produced by inserting the vip3A(a)Gossypium hirsutumUS 2006-130175,
66gene from Bacillus thuringiensis AB88. The APH4L. (Cotton)WO2004039986,
encoding gene from E. coli was introduced as a selectableUS 2010298553
marker.;
A-COT202Syngenta Seeds, Inc.Insect resistance (VIP3A)Gossypium hirsutumUS2009181399
67L. (Cotton)
A-Cot202Syngenta Seeds, Inc.Insect resistance (VIP3)Gossypium hirsutumUS 2007-067868
68L. (Cotton)
A-Cot67BSyngenta Seeds, Inc.Insect-resistant cotton produced by inserting a full-lengthGossypium hirsutum
69cry1Ab gene from Bacillus thuringiensis. The APH4L. (Cotton)
encoding gene from E. coli was introduced as a selectable
marker.
A-DAS-21Ø23-5 ×DOW AgroSciences LLCWideStrike ™, a stacked insect-resistant cotton derivedGossypium hirsutum
70DAS-24236-5from conventional cross-breeding of parental lines 3006-L. (Cotton)
210-23 (OECD identifier: DAS-21Ø23-5) and 281-24-236
(OECD identifier: DAS-24236-5).
A-DAS-21Ø23-5 ×DOW AgroSciences LLCStacked insect-resistant and glyphosate-tolerant cottonGossypium hirsutum
71DAS-24236-5 ×and Pioneer Hi-Bredderived from conventional cross-breeding of WideStrikeL. (Cotton)
MON88913International Inc.cotton (OECD identifier: DAS-21Ø23-5 × DAS-24236-5)
with MON88913, known as RoundupReady Flex (OECD
identifier: MON-88913-8).
A-DAS-21Ø23-5 ×DOW AgroSciences LLCWideStrike ™/Roundup Ready ® cotton, a stacked insect-Gossypium hirsutum
72DAS-24236-5 ×resistant and glyphosate-tolerant cotton derived fromL. (Cotton)
MON-Ø1445-2conventional cross-breeding of WideStrike cotton (OECD
identifier: DAS-21Ø23-5 × DAS-24236-5) with
MON1445 (OECD identifier: MON-Ø1445-2).
A-EE-GH3Glyphosate toleranceGossypium hirsutumWO 2007/017186
73L. (Cotton)
A-EE-GH5Insect resistance (Cry1Ab)Gossypium hirsutumWO 2008/122406
74L. (Cotton)
A-EE-GH6Insect resistance (cry2Ae)Gossypium hirsutumWO2008151780,
75L. (Cotton)US2010218281
A-event 281-24-236Insect resistance (Cry1F)Gossypium hirsutumWO 2005/103266
76L. (Cotton)
A-Event-1JK Agri Genetics Ltd (India)Insect-resistant cotton produced by inserting the cry1AcGossypium hirsutum
77gene from Bacillus thuringiensis subsp. kurstaki HD-73L. (Cotton)
(B.t.k.).
A-event3006-210-23Insect resistance (Cry1Ac)Gossypium hirsutumWO 2005/103266
78L. (Cotton)
A-GBH614Bayer CropScience (AventisGlyphosate herbicide tolerant cotton produced by insertingGossypium hirsutum
79CropScience(AgrEvo))2mepsps gene into variety Coker312 by AgrobacteriumL. (Cotton)
under the control of Ph4a748At and TPotpC
A-LLCotton25Bayer CropScience (AventisGlufosinate ammonium herbicide tolerant cotton producedGossypium hirsutum
80CropScience(AgrEvo))by inserting a modified phosphinothricin acetyltransferaseL. (Cotton)
(PAT) encoding gene from the soil bacterium
Streptomyces hygroscopicus; WO 2003013224, WO
2007/017186
A-LLCotton25 ×Bayer CropScience (AventisStacked herbicide tolerant and insect resistant cottonGossypium hirsutum
81MON15985CropScience(AgrEvo))combining tolerance to glufosinate ammonium herbicideL. (Cotton)
from LLCotton25 (OECD identifier: ACS-GHØØ1-3)
with resistance to insects from MON15985 (OECD
identifier: MON-15985-7)
A-MON 15985Insect resistance (Cry1A/Cry2Ab)Gossypium hirsutumUS 2004-250317
82L. (Cotton)
A-MON1445/1698Monsanto CompanyGlyphosate herbicide tolerant cotton produced by insertingGossypium hirsutum
83a naturally glyphosate tolerant form of the enzyme 5-L. (Cotton)
enolpyruvyl shikimate-3-phosphate synthase (EPSPS)
from A. tumefaciens strain CP4.
A-MON15985 ×Monsanto CompanyStacked insect resistant and glyphosate tolerant cottonGossypium hirsutum
84MON88913produced by conventional cross-breeding of the parentalL. (Cotton)
lines MON88913 (OECD identifier: MON-88913-8) and
15985 (OECD identifier: MON-15985-7). Glyphosate
tolerance is derived from MON88913 which contains two
genes encoding the enzyme 5-enolypyruvylshikimate-3-
phosphate synthase (EPSPS) from the CP4 strain of
Agrobacterium tumefaciens. Insect resistance is derived
MON15985 which was produced by transformation of the
DP50B parent variety, which contained event 531
(expressing Cry1Ac protein), with purified plasmid DNA
containing the cry2Ab gene from B. thuringiensis subsp.
kurstaki.
A-MON-15985-7 ×Monsanto CompanyStacked insect resistant and herbicide tolerant cottonGossypium hirsutum
85MON-Ø1445-2derived from conventional cross-breeding of the parentalL. (Cotton)
lines 15985 (OECD identifier: MON-15985-7) and
MON1445 (OECD identifier: MON-Ø1445-2).
A-MON531/757/1076Monsanto CompanyInsect-resistant cotton produced by inserting the cry1AcGossypium hirsutum
86gene from Bacillus thuringiensis subsp. kurstaki HD-73L. (Cotton)
(B.t.k.).
A-LLcotton25Glufosinate resistanceGossypium hirsutumWO 2003013224
87L. (Cotton)
A-MON88913Monsanto CompanyGlyphosate herbicide tolerant cotton produced by insertingGossypium hirsutumWO 2004/072235
88two genes encoding the enzyme 5-enolypyruvylshikimate-L. (Cotton)
3-phosphate synthase (EPSPS) from the CP4 strain of
Agrobacterium tumefaciens,; WO 2004/072235
A-MON-ØØ531-6 ×Monsanto CompanyStacked insect resistant and herbicide tolerant cottonGossypium hirsutum
89MON-Ø1445-2derived from conventional cross-breeding of the parentalL. (Cotton)
lines MON531 (OECD identifier: MON-ØØ531-6) and
MON1445 (OECD identifier: MON-Ø1445-2).
A-PV-GHGT07Glyphosate toleranceGossypium hirsutumUS 2004-148666
90(1445)L. (Cotton)
A-T304-40Insect-resistance (Cry1Ab)Gossypium hirsutumWO2008/122406,
91L. (Cotton)US2010077501
A-T342-142Insect resistance (Cry1Ab)Gossypium hirsutumWO 2006/128568
92L. (Cotton)
A-X81359BASF Inc.Tolerance to imidazolinone herbicides by selection of aHelianthus
93naturally occurring mutant.annuus (Sunflower)
A-RH44BASF Inc.Selection for a mutagenized version of the enzymeLens culinaris (Lentil)
94acetohydroxyacid synthase (AHAS), also known as
acetolactate synthase (ALS) or acetolactate pyruvate-
lyase.
A-FP967University of Saskatchewan,A variant form of acetolactate synthase (ALS) wasLinum usitatissimum
95Crop Dev. Centreobtained from a chlorsulfuron tolerant line of A. thalianaL. (Flax, Linseed)
and used to transform flax.
A-5345Monsanto CompanyResistance to lepidopteran pests through the introductionLycopersicon
96of the cry1Ac gene from Bacillus thuringiensis subsp.esculentum (Tomato)
Kurstaki.
A-8338Monsanto CompanyIntroduction of a gene sequence encoding the enzyme 1-Lycopersicon
97amino-cyclopropane-1-carboxylic acid deaminase (ACCd)esculentum (Tomato)
that metabolizes the precursor of the fruit ripening
hormone ethylene.
A-1345-4DNA Plant TechnologyDelayed ripening tomatoes produced by inserting anLycopersicon
98Corporationadditional copy of a truncated gene encoding 1-esculentum (Tomato)
aminocyclopropane-1-carboxyllic acid (ACC) synthase,
which resulted in downregulation of the endogenous ACC
synthase and reduced ethylene accumulation.
A-35 1 NAgritope Inc.Introduction of a gene sequence encoding the enzyme S-Lycopersicon
99adenosylmethionine hydrolase that metabolizes theesculentum (Tomato)
precursor of the fruit ripening hormone ethylene
A-B, Da, FZeneca SeedsDelayed softening tomatoes produced by inserting aLycopersicon
100truncated version of the polygalacturonase (PG) encodingesculentum (Tomato)
gene in the sense or anti-sense orientation in order to
reduce expression of the endogenous PG gene, and thus
reduce pectin degradation.
A-FLAVR SAVRCalgene Inc.Delayed softening tomatoes produced by inserting anLycopersicon
101additional copy of the polygalacturonase (PG) encodingesculentum (Tomato)
gene in the anti-sense orientation in order to reduce
expression of the endogenous PG gene and thus reduce
pectin degradation.
A-J101, J163Monsanto Company andGlyphosate herbicide tolerant alfalfa (lucerne) producedMedicago sativa (Alfalfa)
102Forage Geneticsby inserting a gene encoding the enzyme 5-
Internationalenolypyruvylshikimate-3-phosphate synthase (EPSPS)
from the CP4 strain of Agrobacterium tumefaciens.
A-C/F/93/08-02Societe NationalTolerance to the herbicides bromoxynil and ioxynil byNicotiana tabacum
103d'Exploitation des Tabacs etincorporation of the nitrilase gene from KlebsiellaL. (Tobacco)
Allumettespneumoniae.
A-Vector 21-41Vector Tobacco Inc.Reduced nicotine content through introduction of a secondNicotiana tabacum
104copy of the tobacco quinolinic acidL. (Tobacco)
phosphoribosyltransferase (QTPase) in the antisense
orientation. The NPTII encoding gene from E. coli was
introduced as a selectable marker to identify
transformants.
A-CL121, CL141,BASF Inc.Tolerance to the imidazolinone herbicide, imazethapyr,Oryza sativa (Rice)
105CFX51induced by chemical mutagenesis of the acetolactate
synthase (ALS) enzyme using ethyl methanesulfonate
(EMS).
A-GAT-OS2Glufosinate toleranceOryza sativa (Rice)WO 01/83818
106
A-GAT-OS3Glufosinate toleranceOryza sativa (Rice)US 2008-289060
107
A-IMINTA-1,BASF Inc.Tolerance to imidazolinone herbicides induced byOryza sativa (Rice)
108IMINTA-4chemical mutagenesis of the acetolactate synthase (ALS)
enzyme using sodium azide.
A-LLRICE06,Aventis CropScienceGlufosinate ammonium herbicide tolerant rice producedOryza sativa (Rice)
109LLRICE62by inserting a modified phosphinothricin acetyltransferase
(PAT) encoding gene from the soil bacterium
Streptomyces hygroscopicus).
A-LLRICE601Bayer Crop Science (AventisGlufosinate ammonium herbicide tolerant rice producedOryza sativa (Rice)
110CropScience(AgrEvo))by inserting a modified phosphinothricin acetyltransferase
(PAT) encoding gene from the soil bacterium
Streptomyces hygroscopicus).
A-PE-7Insect resistance (Cry1Ac)Oryza sativa (Rice)WO 2008/114282
111
A-PWC16BASF Inc.Tolerance to the imidazolinone herbicide, imazethapyr,Oryza sativa (Rice)
112induced by chemical mutagenesis of the acetolactate
synthase (ALS) enzyme using ethyl methanesulfonate
(EMS).
A-TT51Insect resistance (Cry1Ab/Cry1Ac)Oryza sativa (Rice)CN1840655
113
A-C5United States Department ofPlum pox virus (PPV) resistant plum tree producedPrunus domestica (Plum)
114Agriculture - Agriculturalthrough Agrobacterium-mediated transformation with a
Research Servicecoat protein (CP) gene from the virus.
A-ATBT04-6,Monsanto CompanyColorado potato beetle resistant potatoes produced bySolanum tuberosum
115ATBT04-27,inserting the cry3A gene from Bacillus thuringiensisL. (Potato)
ATBT04-30,(subsp. Tenebrionis).
ATBT04-31,
ATBT04-36,
SPBT02-5,
SPBT02-7
A-BT6, BT10, BT12,Monsanto CompanyColorado potato beetle resistant potatoes produced bySolanum tuberosum
116BT16, BT17,inserting the cry3A gene from Bacillus thuringiensisL. (Potato)
BT18, BT23(subsp. Tenebrionis).
A-RBMT15-101,Monsanto CompanyColorado potato beetle and potato virus Y (PVY) resistantSolanum tuberosum
117SEMT15-02,potatoes produced by inserting the cry3A gene fromL. (Potato)
SEMT15-15Bacillus thuringiensis (subsp. Tenebrionis) and the coat
protein encoding gene from PVY.
A-RBMT21-129,Monsanto CompanyColorado potato beetle and potato leafroll virus (PLRV)Solanum tuberosum
118RBMT21-350,resistant potatoes produced by inserting the cry3A geneL. (Potato)
RBMT22-082from Bacillus thuringiensis (subsp. Tenebrionis) and the
replicase encoding gene from PLRV.
A-EH92-527BASF Plant ScienceCrop composition; Amflora; Unique EU identifier: BPS-Solanum tuberosum
11925271-9L. (Potato)
A-AP205CLBASF Inc.Selection for a mutagenized version of the enzymeTriticum aestivum (Wheat)
120acetohydroxyacid synthase (AHAS), also known as
acetolactate synthase (ALS) or acetolactate pyruvate-
lyase.
A-AP602CLBASF Inc.Selection for a mutagenized version of the enzymeTriticum aestivum (Wheat)
121acetohydroxyacid synthase (AHAS), also known as
acetolactate synthase (ALS) or acetolactate pyruvate-
lyase.
A-BW255-2,BASF Inc.Selection for a mutagenized version of the enzymeTriticum aestivum (Wheat)
122BW238-3acetohydroxyacid synthase (AHAS), also known as
acetolactate synthase (ALS) or acetolactate pyruvate-
lyase.
A-BW7BASF Inc.Tolerance to imidazolinone herbicides induced byTriticum aestivum (Wheat)
123chemical mutagenesis of the acetohydroxyacid synthase
(AHAS) gene using sodium azide.
A-Event 1Fusarium resistance (trichothecene 3-O-acetyltransferase);Triticum aestivum (Wheat)
124CA 2561992
A-JOPLIN1disease (fungal) resistance (trichothecene 3-O-Triticum aestivum (Wheat)
125acetyltransferase); US 2008064032
A-MON71800Monsanto CompanyGlyphosate tolerant wheat variety produced by inserting aTriticum aestivum (Wheat)
126modified 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS) encoding gene from the soil bacterium
Agrobacterium tumefaciens, strain CP4.
A-SWP965001Cyanamid Crop ProtectionSelection for a mutagenized version of the enzymeTriticum aestivum (Wheat)
127acetohydroxyacid synthase (AHAS), also known as
acetolactate synthase (ALS) or acetolactate pyruvate-
lyase.
A-Teal 11ABASF Inc.Selection for a mutagenized version of the enzymeTriticum aestivum (Wheat)
128acetohydroxyacid synthase (AHAS), also known as
acetolactate synthase (ALS) or acetolactate pyruvate-
lyase.
A-176Syngenta Seeds, Inc.Insect-resistant maize produced by inserting the cry1AbZea mays L. (Maize)
129gene from Bacillus thuringiensis subsp. kurstaki. The
genetic modification affords resistance to attack by the
European corn borer (ECB).
A-3272Self processing corn (alpha-amylase)Zea mays L. (Maize)US 2006-230473,
130US2010063265
A-3751IRPioneer Hi-BredSelection of somaclonal variants by culture of embryos onZea mays L. (Maize)
131International Inc.imidazolinone containing media.
A-676, 678, 680Pioneer Hi-BredMale-sterile and glufosinate ammonium herbicide tolerantZea mays L. (Maize)
132International Inc.maize produced by inserting genes encoding DNA adenine
methylase and phosphinothricin acetyltransferase (PAT)
from Escherichia coli and Streptomyces
viridochromogenes, respectively.
A-ACS-ZMØØ3-2 ×Bayer CropScience (AventisStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
133MON-ØØ81Ø-6CropScience(AgrEvo))derived from conventional cross-breeding of the parental
lines T25 (OECD identifier: ACS-ZMØØ3-2) and
MON810 (OECD identifier: MON-ØØ81Ø-6).
AB16Glufosinate resistanceZea mays L. (Maize)US 2003-126634
134
A-B16 (DLL25)Dekalb Genetics CorporationGlufosinate ammonium herbicide tolerant maize producedZea mays L. (Maize)
135by inserting the gene encoding phosphinothricin
acetyltransferase (PAT) from Streptomyces
hygroscopicus.
A-BT11 (X4334CBR,Syngenta Seeds, Inc.Insect-resistant and herbicide tolerant maize produced byZea mays L. (Maize)WO 2010148268
136X4734CBR)inserting the cry1Ab gene from Bacillus thuringiensis
subsp. kurstaki, and the phosphinothricin N-
acetyltransferase (PAT) encoding gene from S. viridochromogenes.
A-BT11 × GA21Syngenta Seeds, Inc.Stacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
137produced by conventional cross breeding of parental lines
BT11 (OECD unique identifier: SYN-BTØ11-1) and
GA21 (OECD unique identifier: MON-ØØØ21-9).
ABT11 × MIR162Syngenta Seeds, Inc.Stacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
138produced by conventional cross breeding of parental lines
BT11 (OECD unique identifier: SYN-BTØ11-1) and
MIR162 (OECD unique identifier: SYN-IR162-4).
Resistance to the European Corn Borer and tolerance to
the herbicide glufosinate ammonium (Liberty) is derived
from BT11, which contains the cry1Ab gene from Bacillus
thuringiensis subsp. kurstaki, and the phosphinothricin N-
acetyltransferase (PAT) encoding gene from S. viridochromogenes.
Resistance to other lepidopteran pests,
including H. zea, S. frugiperda, A. ipsilon, and S. albicosta,
is derived from MIR162, which contains the
vip3Aa gene from Bacillus thuringiensis strain AB88.
A-BT11 × MIR162 ×Syngenta Seeds, Inc.Bacillus thuringiensis Cry1Ab delta-endotoxin protein andZea mays L. (Maize)
139MIR604the genetic material necessary for its production (via
elements of vector pZO1502) in Event Bt11 corn (OECD
Unique Identifier: SYN-BTØ11-1) × Bacillus
thuringiensis Vip3Aa20 insecticidal protein and the
genetic material necessary for its production (via elements
of vector pNOV1300) in Event MIR162 maize (OECD
Unique Identifier: SYN-IR162-4) × modified Cry3A
protein and the genetic material necessary for its
production (via elements of vector pZM26) in Event
MIR604 corn (OECD Unique Identifier: SYN-IR6Ø4-5).
A-BT11 × MIR604Syngenta Seeds, Inc.Stacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
140produced by conventional cross breeding of parental lines
BT11 (OECD unique identifier: SYN-BTØ11-1) and
MIR604 (OECD unique identifier: SYN-IR6Ø5-5).
Resistance to the European Corn Borer and tolerance to
the herbicide glufosinate ammonium (Liberty) is derived
from BT11, which contains the cry1Ab gene from Bacillus
thuringiensis subsp. kurstaki, and the phosphinothricin N-
acetyltransferase (PAT) encoding gene from S. viridochromogenes.
Corn rootworm-resistance is derived
from MIR604 which contains the mcry3A gene from
Bacillus thuringiensis.
A-BT11 × MIR604 ×Syngenta Seeds, Inc.Stacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
141GA21produced by conventional cross breeding of parental lines
BT11 (OECD unique identifier: SYN-BTØ11-1), MIR604
(OECD unique identifier: SYN-IR6Ø5-5) and GA21
(OECD unique identifier: MON-ØØØ21-9). Resistance to
the European Corn Borer and tolerance to the herbicide
glufosinate ammonium (Liberty) is derived from BT11,
which contains the cry1Ab gene from Bacillus
thuringiensis subsp. kurstaki, and the phosphinothricin N-
acetyltransferase (PAT) encoding gene from S. viridochromogenes.
Corn rootworm-resistance is derived
from MIR604 which contains the mcry3A gene from
Bacillus thuringiensis. Tolerance to glyphosate herbcicide
is derived from GA21 which contains a a modified EPSPS
gene from maize.
A-CBH-351Aventis CropScienceInsect-resistant and glufosinate ammonium herbicideZea mays L. (Maize)
142tolerant maize developed by inserting genes encoding
Cry9C protein from Bacillus thuringiensis subsp tolworthi
and phosphinothricin acetyltransferase (PAT) from
Streptomyces hygroscopicus.
A-DAS-06275-8DOW AgroSciences LLCLepidopteran insect resistant and glufosinate ammoniumZea mays L. (Maize)
143herbicide-tolerant maize variety produced by inserting the
cry1F gene from Bacillus thuringiensis var aizawai and the
phosphinothricin acetyltransferase (PAT) from
Streptomyces hygroscopicus.
A-DAS-59122-7DOW AgroSciences LLCCorn rootworm-resistant maize produced by inserting theZea mays L. (Maize)US 2006-070139,
144and Pioneer Hi-Bredcry34Ab1 and cry35Ab1 genes from Bacillus thuringiensisUS 2011030086
International Inc.strain PS149B1. The PAT encoding gene from
Streptomyces viridochromogenes was introduced as a
selectable marker; US 2006-070139
A-DAS-59122-7 ×DOW AgroSciences LLCStacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
145NK603and Pioneer Hi-Bredproduced by conventional cross breeding of parental lines
International Inc.DAS-59122-7 (OECD unique identifier: DAS-59122-7)
with NK603 (OECD unique identifier: MON-ØØ6Ø3-6).
Corn rootworm-resistance is derived from DAS-59122-7
which contains the cry34Ab1 and cry35Ab1 genes from
Bacillus thuringiensis strain PS149B1. Tolerance to
glyphosate herbcicide is derived from NK603.
A-DAS-59122-7 ×DOW AgroSciences LLCStacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
146TC1507 × NK603and Pioneer Hi-Bredproduced by conventional cross breeding of parental lines
International Inc.DAS-59122-7 (OECD unique identifier: DAS-59122-7)
and TC1507 (OECD unique identifier: DAS-Ø15Ø7-1)
with NK603 (OECD unique identifier: MON-ØØ6Ø3-6).
Corn rootworm-resistance is derived from DAS-59122-7
which contains the cry34Ab1 and cry35Ab1 genes from
Bacillus thuringiensis strain PS149B1. Lepidopteran
resistance and toleraance to glufosinate ammonium
herbicide is derived from TC1507. Tolerance to
glyphosate herbcicide is derived from NK603.
A-DAS-Ø15Ø7-1 ×DOW AgroSciences LLCStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
147MON-ØØ6Ø3-6derived from conventional cross-breeding of the parental
lines 1507 (OECD identifier: DAS-Ø15Ø7-1) and NK603
(OECD identifier: MON-ØØ6Ø3-6).
A-DBT418Dekalb Genetics CorporationInsect-resistant and glufosinate ammonium herbicideZea mays L. (Maize)
148tolerant maize developed by inserting genes encoding
Cry1AC protein from Bacillus thuringiensis subsp kurstaki
and phosphinothricin acetyltransferase (PAT) from
Streptomyces hygroscopicus
A-DK404SRBASF Inc.Somaclonal variants with a modified acetyl-CoA-Zea mays L. (Maize)
149carboxylase (ACCase) were selected by culture of
embryos on sethoxydim enriched medium.
A-DP-098140-6Glyphosate tolerance/ALS inhibitor toleranceZea mays L. (Maize)WO
1502008/112019,
US2010240059
A-DP-Ø9814Ø-6Pioneer Hi-BredCorn line 98140 was genetically engineered to express theZea mays L. (Maize)
151(Event 98140)International Inc.GAT4621 (glyphosate acetyltransferase) and ZM-HRA
(modified version of a maize acetolactate synthase)
proteins. The GAT4621 protein, encoded by the gat4621
gene, confers tolerance to glyphosate-containing
herbicides by acetylating glyphosate and thereby rendering
it non-phytotoxic. The ZM-HRA protein, encoded by the
zm-hra gene, confers tolerance to the ALS-inhibiting class
of herbicides.
A-Event 3272Syngenta Seeds, Inc.Maize line expressing a heat stable alpha-amylase geneZea mays L. (Maize)
152amy797E for use in the dry-grind ethanol process. The
phosphomannose isomerase gene from E. coli was used as
a selectable marker.
A-Event 98140Pioneer Hi-BredMaize event expressing tolerance to glyphosate herbicide,Zea mays L. (Maize)
153International Inc.via expression of a modified bacterial glyphosate N-
acetlytransferase, and ALS-inhibiting herbicides, vial
expression of a modified form of the maize acetolactate
synthase enzyme.
A-EXP1910ITSyngenta Seeds, Inc.Tolerance to the imidazolinone herbicide, imazethapyr,Zea mays L. (Maize)
154(formerly Zeneca Seeds)induced by chemical mutagenesis of the acetolactate
synthase (ALS) enzyme using ethyl methanesulfonate
(EMS).
A-FI117Glyphosate resistanceZea mays L. (Maize)U.S. Pat. No. 6,040,497
155
A-GA21Monsanto CompanyGlyphosate resistance: Introduction, by particleZea mays L. (Maize)U.S. Pat. No. 6,040,497
156bombardment, of a modified 5-enolpyruvyl shikimate-3-
phosphate synthase (EPSPS), an enzyme involved in the
shikimate biochemical pathway for the production of the
aromatic amino acids;
A-GA21 × MON810Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
157derived from conventional cross breeding of the parental
lines GA21 (OECD identifider: MON-ØØØ21-9) and
MON810 (OECD identifier: MON-ØØ81Ø-6).
A-GAT-ZM1Glufosinate toleranceZea mays L. (Maize)WO 01/51654
158
A-GG25Glyphosate resistanceZea mays L. (Maize)U.S. Pat. No. 6,040,497
159
A-GJ11Glyphosate resistance; U.S. Pat. No. 6,040,497Zea mays L. (Maize)
160
A-ITPioneer Hi-BredTolerance to the imidazolinone herbicide, imazethapyr,Zea mays L. (Maize)
161International Inc.was obtained by in vitro selection of somaclonal variants.
A-LY038Monsanto CompanyAltered amino acid composition, specifically elevatedZea mays L. (Maize)U.S. Pat. No. 7,157,281,
162levels of lysine, through the introduction of the cordapAUS2010212051;
gene, derived from Corynebacterium glutamicum,US 2007028322
encoding the enzyme dihydrodipicolinate synthase
(cDHDPS);
A-MIR162Insect resistanceZea mays L. (Maize)WO 2007142840
163
A-MIR604Syngenta Seeds, Inc.Corn rootworm resistant maize produced byZea mays L. (Maize)EP 1 737 290
164transformation with a modified cry3A gene. The
phosphomannose isomerase gene from E. coli was used as
a selectable marker; (Cry3a055)
A-MIR604 × GA21Syngenta Seeds, Inc.Stacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
165produced by conventional cross breeding of parental lines
MIR604 (OECD unique identifier: SYN-IR6Ø5-5) and
GA21 (OECD unique identifier: MON-ØØØ21-9). Corn
rootworm-resistance is derived from MIR604 which
contains the mcry3A gene from Bacillus thuringiensis.
Tolerance to glyphosate herbcicide is derived from GA21.
A-MON80100Monsanto CompanyInsect-resistant maize produced by inserting the cry1AbZea mays L. (Maize)
166gene from Bacillus thuringiensis subsp. kurstaki. The
genetic modification affords resistance to attack by the
European corn borer (ECB).
A-MON802Monsanto CompanyInsect-resistant and glyphosate herbicide tolerant maizeZea mays L. (Maize)
167produced by inserting the genes encoding the Cry1Ab
protein from Bacillus thuringiensis and the 5-
enolpyruvylshikimate-3-phosphate synthase (EPSPS) from
A. tumefaciens strain CP4.
A-MON809Pioneer Hi-BredResistance to European corn borer (Ostrinia nubilalis) byZea mays L. (Maize)
168International Inc.introduction of a synthetic cry1Ab gene. Glyphosate
resistance via introduction of the bacterial version of a
plant enzyme, 5-enolpyruvyl shikimate-3-phosphate
synthase (EPSPS).
A-MON810Monsanto CompanyInsect-resistant maize produced by inserting a truncatedZea mays L. (Maize)US 2004-180373
169form of the cry1Ab gene from Bacillus thuringiensis
subsp. kurstaki HD-1. The genetic modification affords
resistance to attack by the European corn borer (ECB);
A-MON810 ×Monsanto CompanyStacked insect resistant and glyphosate tolerant maizeZea mays L. (Maize)
170MON88017derived from conventional cross-breeding of the parental
lines MON810 (OECD identifier: MON-ØØ81Ø-6) and
MON88017 (OECD identifier: MON-88Ø17-3). European
corn borer (ECB) resistance is derived from a truncated
form of the cry1Ab gene from Bacillus thuringiensis
subsp. kurstaki HD-1 present in MON810. Corn rootworm
resistance is derived from the cry3Bb1 gene from Bacillus
thuringiensis subspecies kumamotoensis strain EG4691
present in MON88017. Glyphosate tolerance is derived
from a 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS) encoding gene from Agrobacterium tumefaciens
strain CP4 present in MON88017.
A-MON832Monsanto CompanyIntroduction, by particle bombardment, of glyphosateZea mays L. (Maize)
171oxidase (GOX) and a modified 5-enolpyruvyl shikimate-3-
phosphate synthase (EPSPS), an enzyme involved in the
shikimate biochemical pathway for the production of the
aromatic amino acids.
A-MON863Monsanto CompanyCorn root worm resistant maize produced by inserting theZea mays L. (Maize)
172cry3Bb1 gene from Bacillus thuringiensis subsp.
kumamotoensis.
A-MON863 ×Monsanto CompanyStacked insect resistant corn hybrid derived fromZea mays L. (Maize)
173MON810conventional cross-breeding of the parental lines MON863
(OECD identifier: MON-ØØ863-5) and MON810 (OECD
identifier: MON-ØØ81Ø-6)
A-MON863 ×Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
174MON810 × NK603derived from conventional cross-breeding of the stacked
hybrid MON-ØØ863-5 × MON-ØØ81Ø-6 and NK603
(OECD identifier: MON-ØØ6Ø3-6).
A-MON863 × NK603Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
175derived from conventional cross breeding of the parental
lines MON863 (OECD identifier: MON-ØØ863-5) and
NK603 (OECD identifier: MON-ØØ6Ø3-6).
A-MON87460Drought tolerance; Water deficit tolerance;Zea mays L. (Maize)WO 2009/111263
176
A-MON88017Monsanto CompanyCorn rootworm-resistant maize produced by inserting theZea mays L. (Maize)WO2005059103
177cry3Bb1 gene from Bacillus thuringiensis subspecies
kumamotoensis strain EG4691. Glyphosate tolerance
derived by inserting a 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS) encoding gene from
Agrobacterium tumefaciens strain CP4 (Glyphosate
tolerance);
A-MON89034Monsanto CompanyMaize event expressing two different insecticidal proteinsZea mays L. (Maize)WO 2007140256
178from Bacillus thuringiensis providing resistance to number
of lepidopteran pests; nsect resistance (Lepidoptera -
Cry1A.105-Cry2Ab);
A-MON89034 ×Monsanto CompanyStacked insect resistant and glyphosate tolerant maizeZea mays L. (Maize)
179MON88017derived from conventional cross-breeding of the parental
lines MON89034 (OECD identifier: MON-89Ø34-3) and
MON88017 (OECD identifier: MON-88Ø17-3).
Resistance to Lepiopteran insects is derived from two
crygenes present in MON89043. Corn rootworm
resistance is derived from a single cry genes and
glyphosate tolerance is derived from the 5-
enolpyruvylshikimate-3-phosphate synthase (EPSPS)
encoding gene from Agrobacterium tumefaciens present in
MON88017.
A-MON89034 ×Monsanto CompanyStacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
180NK603produced by conventional cross breeding of parental lines
MON89034 (OECD identifier: MON-89034-3) with
NK603 (OECD unique identifier: MON-ØØ6Ø3-6).
Resistance to Lepiopteran insects is derived from two
crygenes present in MON89043. Tolerance to glyphosate
herbcicide is derived from NK603.
A-MON89034 ×Monsanto CompanyStacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
181TC1507 ×produced by conventional cross breeding of parental lines:
MON88017 ×MON89034, TC1507, MON88017, and DAS-59122.
DAS-59122-7Resistance to the above-ground and below-ground insect
pests and tolerance to glyphosate and glufosinate-
ammonium containing herbicides.
A-MON-ØØ6Ø3-6 ×Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
182MON-ØØ81Ø-6derived from conventional cross-breeding of the parental
lines NK603 (OECD identifier: MON-ØØ6Ø3-6) and
MON810 (OECD identifier: MON-ØØ81Ø-6).
A-MON-ØØ81Ø-6 ×Monsanto CompanyStacked insect resistant and enhanced lysine content maizeZea mays L. (Maize)
183LY038derived from conventional cross-breeding of the parental
lines MON810 (OECD identifier: MON-ØØ81Ø-6) and
LY038 (OECD identifier: REN-ØØØ38-3).
A-MON-ØØ863-5 ×Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
184MON-ØØ6Ø3-6derived from conventional cross-breeding of the parental
lines MON863 (OECD identifier: MON-ØØ863-5) and
NK603 (OECD identifier: MON-ØØ6Ø3-6).
A-MON-ØØ863-5 ×Monsanto CompanyStacked insect resistant corn hybrid derived fromZea mays L. (Maize)
185MON-ØØ81Ø-6conventional cross-breeding of the parental lines MON863
(OECD identifier: MON-ØØ863-5) and MON810 (OECD
identifier: MON-ØØ81Ø-6)
A-MON-ØØ863-5 ×Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
186MON-ØØ81Ø-6 ×derived from conventional cross breeding of the stacked
MON-ØØ6Ø3-6hybrid MON-ØØ863-5 × MON-ØØ81Ø-6 and NK603
(OECD identifier: MON-ØØ6Ø3-6).
A-MON-ØØØ21-9 ×Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
187MON-ØØ81Ø-6derived from conventional cross-breeding of the parental
lines GA21 (OECD identifider: MON-ØØØ21-9) and
MON810 (OECD identifier: MON-ØØ81Ø-6).
A-MS3Bayer CropScience (AventisMale sterility caused by expression of the barnaseZea mays L. (Maize)
188CropScience(AgrEvo))ribonuclease gene from Bacillus amyloliquefaciens; PPT
resistance was via PPT-acetyltransferase (PAT).
A-MS6Bayer CropScience (AventisMale sterility caused by expression of the barnaseZea mays L. (Maize)
189CropScience(AgrEvo))ribonuclease gene from Bacillus amyloliquefaciens; PPT
resistance was via PPT-acetyltransferase (PAT).
A-NK603Monsanto CompanyIntroduction, by particle bombardment, of a modified 5-Zea mays L. (Maize)
190enolpyruvyl shikimate-3-phosphate synthase (EPSPS), an
enzyme involved in the shikimate biochemical pathway for
the production of the aromatic amino acids.
A-NK603 × MON810Monsanto CompanyStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
191derived from conventional cross breeding of the parental
lines NK603 (OECD identifier: MON-ØØ6Ø3-6) and
MON810 (OECD identifier: MON-ØØ81Ø-6).
A-NK603 × T25Monsanto CompanyStacked glufosinate ammonium and glyphosate herbicideZea mays L. (Maize)
192tolerant maize hybrid derived from conventional cross-
breeding of the parental lines NK603 (OECD identifier:
MON-ØØ6Ø3-6) and T25 (OECD identifier: ACS-
ZM003-2).
A-PV-ZMGT32Glyphosate toleranceZea mays L. (Maize)US 2007-056056
193(NK603)
A-E6611.32.1.38/Pioneer Hi-Bred1) MS45: anther-specific 5126 (Zea mays) promoter >Zea mays L. (Maize)WO 2009103049,
194DP-32138-1/International Inc.fertility restoration Ms45 (Zea mays) coding sequence >MX 2010008977
32138fertility restoration Ms45 (Zea mays) 3′-untranslated
region 2) ZM-AA1: polygalacturonase 47 (Zea mays)
promoter > brittle-1 (Zea mays) chloroplast transit peptide
> alpha-amylase-1 (Zea mays) truncated coding sequence
> >In2-1 (Zea mays) 3′-untranslated region 3) DSRED2:
35S (Cauliflower Mosaic Virus) enhancer > lipid transfer
protein-2 (Hordeum vulgare) promoter > red fluorescent
protein (Dicosoma sp.) variant coding sequence > protein
inhibitor II (Solanum tuberosum) 3′-untranslated region
A-PV-ZMIR13Insect resistance (Cry3Bb);Zea mays L. (Maize)US 2006-095986
195(MON863)
A-SYN-BTØ11-1 ×Syngenta Seeds, Inc.Stacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
196MON-ØØØ21-9produced by conventional cross breeding of parental lines
BT11 (OECD unique identifier: SYN-BTØ11-1) and
GA21 (OECD unique identifier: MON-ØØØ21-9).
A-T14Bayer CropScience (AventisGlufosinate herbicide tolerant maize produced by insertingZea mays L. (Maize)
197CropScience(AgrEvo))the phosphinothricin N-acetyltransferase (PAT) encoding
gene from the aerobic actinomycete Streptomyces
viridochromogenes.
A-T14, T25Bayer CropScience (AventisGlufosinate herbicide tolerant maize produced by insertingZea mays L. (Maize)
198Crop Science(AgrEvo))the phosphinothricin N-acetyltransferase (PAT) encoding
gene from the aerobic actinomycete Streptomyces
viridochromogenes.
A-T25 × MON810Bayer CropScience (AventisStacked insect resistant and herbicide tolerant corn hybridZea mays L. (Maize)
199CropScience(AgrEvo))derived from conventional cross-breeding of the parental
lines T25 (OECD identifier: ACS-ZMØØ3-2) and
MON810 (OECD identifier: MON-ØØ81Ø-6).
A-TC1507Mycogen (c/o DowInsect-resistant and glufosinate ammonium herbicideZea mays L. (Maize)U.S. Pat. No. 7,435,807
200AgroSciences); Pioneer (c/otolerant maize produced by inserting the cry1F gene from
Dupont)Bacillus thuringiensis var. aizawai and the
phosphinothricin N-acetyltransferase encoding gene from
Streptomyces viridochromogenes; Insect resistance
(Cry1F);
A-TC1507 × DAS-DOW AgroSciences LLCStacked insect resistant and herbicide tolerant maizeZea mays L. (Maize)
20159122-7and Pioneer Hi-Bredproduced by conventional cross breeding of parental lines
International Inc.TC1507 (OECD unique identifier: DAS-Ø15Ø7-1) with
DAS-59122-7 (OECD unique identifier: DAS-59122-7).
Resistance to lepidopteran insects is derived from TC1507
due the presence of the cry1F gene from Bacillus
thuringiensis var. aizawai. Corn rootworm-resistance is
derived from DAS-59122-7 which contains the cry34Ab1
and cry35Ab1 genes from Bacillus thuringiensis strain
PS149B1. Tolerance to glufosinate ammonium herbcicide
is derived from TC1507 from the phosphinothricin N-
acetyltransferase encoding gene from Streptomyces
viridochromogenes.
A-VIP1034Insect resistance;Zea mays L. (Maize)WO 03/052073
202
A-MS-B2Male sterilityBrassica sspWO 01/31042
203
A-MS-BN1/RF-BN1Male sterility/restorationBrassica sspWO 01/41558
204
A-RT73Glyphosate resistanceBrassica sspWO 02/36831
205
A-MON 87708MONSANTODicamba herbicide tolerance, transformation vector PV-Glycine max L. (Soybean)WO 2011034704
206TECHNOLOGY LLCGMHT4355 1) DMO: full length transcript (Peanut
Chlorotic Streak Virus) promoter > tobacco Etch Virus
leader > ribulose 1,5-biphosphate carboxylase small
subunit (Pisum sativum) chloroplast transit peptide >
dicamba mono-oxygenase (Stenotrophomonas
maltophilia) coding sequence > ribulose-1,5-bisphosphate
carboxylase small subunit E9 (Pisum sativum) 3′-
untranslated region. A CP4 epsps chimeric gene contained
within a second T-DNA on the transformation vector used
was segregated away.
A-EE-GM3/FG72BAYER BIOSCIENCE NV1) Ph4a748 ABBC: sequence including the promoterGlycine max L. (Soybean)WO 2011063411
207[BE]; MS TECHNOLOGIESregion of the histone H4 gene of Arabidopsis thaliana,
LLCcontaining an internal duplication>5′tev: sequence
including the leader sequence of the tobacco etch
virus>TPotp Y: coding sequence of an optimized transit
peptide derivative (position 55 changed into Tyrosine),
containing sequence of the RuBisCO small subunit genes
of Zea mays (corn) and Helianthus annuus
(sunflower)>hppdPf W336: the coding sequence of the 4-
hydroxyphenylpyruvate dioxygenase of Pseudomonas
fluorescens strain A32 modified by the replacement of the
amino acid Glycine 336 with a Tryptophane>3′nos:
sequence including the 3′ untranslated region of the
nopaline synthase gene from the T-DNA of pTiT37 of
Agrobacterium tumefaciens. 2) Ph4a748: sequence
including the promoter region of the histone H4 gene of
Arabidopsis thaliana>intron1 h3At: first intron of gene II
of the histone H3.III variant of Arabidopsis thaliana
>TPotp C: coding sequence of the optimized transit
peptide, containing sequence of the RuBisCO small
subunit genes of Zea mays (corn) and Helianthus annuus
(sunflower)>2mepsps: the coding sequence of the double-
mutant 5-enol-pyruvylshikimate-3-phosphate synthase
gene of Zea mays>3′histonAt: sequence including the 3′
untranslated region of the histone H4 gene of Arabidopsis
thaliana
A-416/pDAB4468-DOW AGROSCIENCESA novel aad-12 transformation event for herbicideGlycine max L. (Soybean)WO 2011066384
2080416LLCtolerance in soybean plants - referred to herein as
pDAB4468-0416. The aad-12 gene (originally from
Delftia acidovorans) encodes the aryloxyalkanoate
dioxygenase (AAD-12) protein. The trait confers tolerance
to 2,4-dichlorophenoxyacetic acid, for example, and to
pyridyloxyacetate herbicides. The aad-12 gene, itself, for
herbicide tolerance in plants was first disclosed in WO
2007/053482.
A-127ALS/AHAS inhibitor-toleranceGlycine max L. (Soybean)WO2010080829
209
A-A5547-35Glufosinate toleranceGlycine max L. (Soybean)WO 2006/108675
210
A-A2704-12Glufosinate toleranceGlycine max L. (Soybean)WO 2006/108674
211
A-Kefeng No. 6CHINA NAT RICE RESTransgenic rice Kefeng 6 is a transformation eventOryza sativa (Rice)CN 101824411
212INSTcontaining two insect-resistant genes, cry1Ac and SCK
(modified CpTI gene) in China.
A-17053Glyphosate toleranceOryza sativa (Rice)WO2010117737
213
A-17314Glyphosate toleranceOryza sativa (Rice)WO2010117735
214
A-Event 1Fusarium resistance (trichothecene 3-O-acetyltransferase)WheatCA 2561992
215
A-JOPLIN1disease (fungal) resistance (trichothecene 3-O-WheatUS 2008064032
216acetyltransferase)
A-DAS-40278-9DOW AgroSciences LLCRB7 MARv3>zmUbiquitin 1 promoter>aad1>zmPER5Zea mays L. (Maize)WO 2011022469
2173′UTR>RB 7 MARv4. The aad-1 gene confers tolerance
to 2,4-dichlorophenoxyacetic acid and
aryloxyphenoxypropionate (commonly referred to as “fop”
herbicides such as quizalofop) herbicides
A-MIR604Syngenta Participations AG1) CRY3A: metallotionin-like gene (Zea mays) promoterZea mays L. (Maize)US 2005216970,
218> delta-endotoxin cry3a (Bacillus thuringiensis subsp.US 2008167456,
tenebrionis) coding sequence, modified to include aUS 2011111420
cathepsin-G protease recognition site and maize codon
optimized > nopaline synthase (Agrobacterium
tumefaciens) 3′-untranslated region 2) PMI: polyubiquitin
(Zea mays) promoter (incl. first intron) > mannose-6-
phosphate isomerase (Escherichia coli) coding sequence >
nopaline synthase (Agrobacterium tumefaciens) 3′-
untranslated region
A-MON 87427MONSANTOThe transgene insert and expression cassette of MONZea mays L. (Maize)WO 2011062904
219TECHNOLOGY LLC87427 comprises the promoter and leader from the
cauliflower mosaic virus (CaMV) 35 S containing a
duplicated enhancer region (P-e35S); operably linked to a
DNA leader derived from the first intron from the maize
heat shock protein 70 gene (I-HSP70); operably linked to
a DNA molecule encoding an N-terminal chloroplast
transit peptide from the shkG gene from Arabidopsis
thaliana EPSPS (Ts-CTP2); operably linked to a DNA
molecule derived from the aroA gene from the
Agrobacterium sp. strain CP4 and encoding the CP4
EPSPS protein; operably linked to a 3′ UTR DNA
molecule derived from the nopaline synthase (T-NOS)
gene from Agrobacterium tumefaciens.
A-DP-004114-3Pioneer Hi-Bredcry1F, cry34Ab1, cry35Ab1, and pat: resistance to certainZea mays L. (Maize)US 2011154523
220International Inc.lepidopteran and coleopteran pests, as well as tolerance to
phosphinothricin.
A-DP-032316-8Pioneer Hi-BredCry1F, cry34Ab1, cry35Ab1, pat: resistance to certainZea mays L. (Maize)US 2011154524
221International Inc.lepidopteran and coleopteran pests, as well as tolerance to
phosphinothricin
A-DP-040416-8 aPioneer Hi-BredCry1F, cry34Ab1, cry35Ab1, pat: resistance to certainZea mays L. (Maize)US 20110154525
222International Inc.lepidopteran and coleopteran pests, as well as tolerance to
phosphinothricin
A-DP-043A47-3Pioneer Hi-BredCry1F, cry34Ab1, cry35Ab1, pat: resistance to certainZea mays L. (Maize)US20110154526
223International Inc.lepidopteran and coleopteran pests, as well as tolerance to
phosphinothricin
A-5307Insect (corn rootworm) resistance (FR8a)Zea mays L. (Maize)WO2010077816
224

[0287]

Formulations

[0288]

Suitable extenders and/or surfactants which may be contained in the compositions according to the invention are all formulation auxiliaries which can customarily be used in plant treatment compositions.

[0289]

In the compositions according to the invention the ratio of fluopyram to an agrochemically active compound of group (B) can be varied within a relatively wide range. In general, between 0.02 and 2.0 parts by weight, preferably between 0.05 and 1.0 part by weight, of fluopyram is employed per part by weight of agrochemically active compound.

[0290]

When employing the active compounds of the formula (I) which can be used according to the invention, the application rates can be varied within a certain range, depending on the type of application. In the treatment of seed, the application rates of active compound of the formula (I) are generally between 10 and 10000 mg per kilogram of seed, preferably between 10 and 300 mg per kilogram of seed. When used in solid formulations, the application rates of active compound of the formula (I) are generally between 20 and 800 mg per kilogram of formulation, preferably between 30 and 700 mg per kilogram of formulation.

[0291]

According to the invention, carrier is to be understood as meaning a natural or synthetic, organic or inorganic substance which is mixed or combined with the active compounds for better applicability, in particular for application to plants or plant parts or seeds. The carrier, which may be solid or liquid, is generally inert and should be suitable for use in agriculture.

[0292]

Suitable solid carriers are: for example ammonium salts and natural ground minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral oils and vegetable oils, and also derivatives thereof. It is also possible to use mixtures of such carriers. Solid carriers suitable for granules are: for example crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals and also granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks. Suitable emulsifiers and/or foam-formers are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, and also protein hydrolysates. Suitable dispersants are: for example lignosulphite waste liquors and methylcellulose.

[0293]

Suitable liquefied gaseous extenders or carriers are liquids which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellants, such as butane, propane, nitrogen and carbon dioxide.

[0294]

Tackifiers, such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules and latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, or else natural phospholipids, such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Other possible additives are mineral and vegetable oils.

[0295]

If the extender used is water, it is also possible for example, to use organic solvents as auxiliary solvents. Suitable liquid solvents are essentially: aromatic compounds, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic compounds or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols, such as butanol or glycol, and also ethers and esters thereof, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulphoxide, and also water.

[0296]

The compositions according to the invention may comprise additional further components, such as, for example, surfactants. Suitable surfactants are emulsifiers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surfactants. Examples of these are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates. The presence of a surfactant is required if one of the active compounds and/or one of the inert carriers is insoluble in water and when the application takes place in water. The proportion of surfactants is between 5 and 40 percent by weight of the composition according to the invention.

[0297]

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide, Prussian blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

[0298]

If appropriate, other additional components may also be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, stabilizers, sequestering agents, complex formers. In general, the active compounds can be combined with any solid or liquid additive customarily used for formulation purposes.

[0299]

In general, the compositions according to the invention comprise between 0.05 and 99 percent by weight of the active compound combination according to the invention, preferably between 10 and 70 percent by weight, particularly preferably between 20 and 50 percent by weight, most preferably 25 percent by weight.

[0300]

The active compound combinations or compositions according to the invention can be used as such or, depending on their respective physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold-fogging concentrates, warm-fogging concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, pastes, pesticide-coated seed, suspension concentrates, suspoemulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for the treatment of seed, wettable powders, natural products and synthetic substances impregnated with active compound, and also microencapsulations in polymeric substances and in coating materials for seed, and also ULV cold-fogging and warm-fogging formulations.

[0301]

The formulations mentioned can be prepared in a manner known per se, for example by mixing the active compounds or the active compound combinations with at least one additive. Suitable additives are all customary formulation auxiliaries, such as, for example, organic solvents, extenders, solvents or diluents, solid carriers and fillers, surfactants (such as adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and tackifiers), dispersants and/or binders or fixatives, preservatives, dyes and pigments, defoamers, inorganic and organic thickeners, water repellents, if appropriate siccatives and UV stabilizers, gibberellins and also water and further processing auxiliaries. Depending on the formulation type to be prepared in each case, further processing steps such as, for example, wet grinding, dry grinding or granulation may be required.

[0302]

Organic diluents that may be present are all polar and non-polar organic solvents that are customarily used for such purposes. Preferred are ketones, such as methyl isobutyl ketone and cyclohexanone, furthermore amides, such as dimethylformamide and alkanecarboxamides, such as N,N-dimethyldecanamide and N,N-dimethyloctanamide, furthermore cyclic compounds, such as N-methylpyrrolidone, N-octylpyrrolidone, N-dodecylpyrrolidone, N-octylcaprolactam, N-dodecylcaprolactam and butyrolactone, additionally strongly polar solvents, such as dimethyl sulphoxide, furthermore aromatic hydrocarbons, such as xylene, Solvesso™, mineral oils, such as white spirit, petroleum, alkylbenzenes and spindle oil, moreover esters, such as propylene glycol monomethyl ether acetate, dibutyl adipate, hexyl acetate, heptyl acetate, tri-n-butyl citrate and di-n-butyl phthalate, and furthermore alcohols, such as, for example, benzyl alcohol and 1-methoxy-2-propanol.

[0303]

Solid carriers suitable for granules are: for example crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals and also granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks.

[0304]

Suitable surfactants (adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and tackifiers) are customary ionic and nonionic substances. Examples which may be mentioned are ethoxylated nonylphenols, polyalkylene glycol ethers of straight-chain or branched alcohols, products of reactions of alkylphenols with ethylene oxide and/or propylene oxide, products of reactions of fatty amines with ethylene oxide and/or propylene oxide, furthermore fatty esters, alkylsulphonates, alkyl sulphates, alkyl ether sulphates, alkyl ether phosphates, aryl sulphates, ethoxylated arylalkylphenols, such as, for example, tristyrylphenol ethoxylates, furthermore ethoxylated and propoxylated arylalkylphenols and also sulphated or phosphated arylalkylphenol ethoxylates or ethoxy- and propoxylates. Mention may furthermore be made of natural and synthetic water-soluble polymers, such as lignosulphonates, gelatine, gum arabic, phospholipids, starch, hydrophobically modified starch and cellulose derivatives, in particular cellulose esters and cellulose ethers, furthermore polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid and copolymers of (meth)acrylic acid and (meth)acrylic acid esters, and moreover also alkali metal hydroxide-neutralized copolymers of methacrylic acid and methacrylic ester and condensates of optionally substituted naphthalenesulphonic acid salts with formaldehyde.

[0305]

Suitable solid fillers and carriers are all substances customarily used for this purpose in crop pretection compositions. Inorganic particles, such as carbonates, silicates, sulphates and oxides having a mean particle size of from 0.005 to 20 m, particularly preferably from 0.02 to 10 m, may be mentioned as being preferred. Examples which may be mentioned are ammonium sulphate, ammonium phosphate, urea, calcium carbonate, calcium sulphate, magnesium sulphate, magnesium oxide, aluminium oxide, silicon dioxide, finely divided silicic acid, silica gels, natural and synthetic silicates and alumosilicates and vegetable products such as cereal meal, wood powder and cellulose powder.

[0306]

Suitable colorants that may be present in the seed dressing formulations to be used according to the invention include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamin B, C.I. Pigment Red 112 and C.I. Solvent Red 1. The colorants used can be inorganic pigments, for example iron oxide, titanium oxide, Prussian Blue, and organic dyes, such as alizarin, azo and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

[0307]

Suitable wetting agents that may be present in the seed dressing formulations to be used according to the invention include all substances which promote wetting and are customary in the formulation of agrochemically active compounds. Preference is given to using alkylnaphthalenesulphonates, such as diisopropyl- or diisobutylnaphthalenesulphonates.

[0308]

Suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations to be used according to the invention include all nonionic, anionic and cationic dispersants which are customary in the formulation of agrochemically active compounds. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Particularly suitable nonionic dispersants are ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers, and also tristryrylphenol polyglycol ethers and their phosphated or sulphated derivatives. Particularly suitable anionic dispersants are lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.

[0309]

Defoamers that may be present in the seed dressing formulations to be used according to the invention include all foam-inhibiting compounds which are customary in the formulation of agrochemically active compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organofluorine compounds and mixtures thereof.

[0310]

Preservatives that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. By way of example, mention may be made of dichlorophen and benzyl alcohol hemiformal.

[0311]

Secondary thickeners that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided silicic acids.

[0312]

Suitable adhesives that may be present in the seed dressing formulations to be used according to the invention include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.

[0313]

Suitable gibberellins that may be present in the seed dressing formulations to be used according to the invention are preferably the gibberellins A1, A3 (=gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler “Chemie der Pflanzenschutz- and Schidlingsbekimpfungsmittel” [Chemistry of Crop Protection Agents and Pesticides], Vol. 2, Springer Verlag, 1970, pp. 401-412).

[0314]

The formulations generally comprise between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.

[0315]

The active compound combinations according to the invention can be present in commercial formulations and in the use forms prepared from these formulations as a mixture with other active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators or herbicides. A mixture with fertilizers is also possible.

[0316]

The treatment according to the invention of the plants and plant parts with the active compound combinations or compositions is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seeds, furthermore as a powder for dry seed treatment, a solution for seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more coats, etc.

[0317]

Preference is given to application by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching) and drip irrigating.

[0318]

The application of the formulations is carried out in accordance with customary agricultural practice in a manner adapted to the application forms. Customary applications are, for example, dilution with water and spraying of the resulting spray liquor, application after dilution with oil, direct application without dilution, seed dressing or soil application of carrier granules.

[0319]

The active compound content of the application forms prepared from the commercial formulations can vary within wide limits. The active compound concentration of the application forms can be from 0.0000001 up to 95% by weight of active compound, preferably between 0.0001 and 2% by weight.

[0320]

The compositions according to the invention do not only comprise ready-to-use compositions which can be applied with suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use.

[0321]

Application Methods

[0322]

The treatment according to the invention of the plants and plant parts with Fluopyram or compositions is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, stem injection, in-furrow application, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seeds, furthermore as a powder for dry seed treatment, a solution for seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more layers, etc. It is furthermore possible to apply the active compounds by the ultra-low volume method, or to inject the active compound preparation or the active compound itself into the soil.

[0323]

Generally, fluopyram is applied in a rate of 10 g to 20 kg per ha, preferably 50 g to 10 kg per ha, most preferably 100 g to 5 kg per ha.

[0324]

The invention furthermore comprises a method for treating seed. The invention furthermore relates to seed treated according to one of the methods described in the preceding paragraph.

[0325]

Fluopyram or compositions comprising fluopyram according to the invention are especially suitable for treating seed. A large part of the damage to crop plants caused by harmful organisms is triggered by an infection of the seed during storage or after sowing as well as during and after germination of the plant. This phase is particularly critical since the roots and shoots of the growing plant are particularly sensitive, and even small damage may result in the death of the plant. Accordingly, there is great interest in protecting the seed and the germinating plant by using appropriate compositions.

[0326]

The control of nematodes by treating the seed of plants has been known for a long time and is the subject of continuous improvements. However, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with the additional application of crop protection agents after sowing or after the emergence of the plants or which at least considerably reduce additional application. It is furthermore desirable to optimize the amount of active compound employed in such a way as to provide maximum protection for the seed and the germinating plant from attack by nematodes, but without damaging the plant itself by the active compound employed. In particular, methods for the treatment of seed should also take into consideration the intrinsic nematicidal properties of transgenic plants in order to achieve optimum protection of the seed and the germinating plant with a minimum of crop protection agents being employed.

[0327]

Accordingly, the present invention also relates in particular to a method for protecting seed and germinating plants against attack by nematodes by treating the seed with Fluopyram or a composition comprising fluopyram according to the invention. The invention also relates to the use of the compositions according to the invention for treating seed for protecting the seed and the germinating plant against nematodes. Furthermore, the invention relates to seed treated with a composition according to the invention for protection against nematodes.

[0328]

The control of nematodes which damage plants post-emergence is carried out primarily by treating the soil and the above-ground parts of plants with crop protection compositions. Owing to the concerns regarding a possible impact of the crop protection composition on the environment and the health of humans and animals, there are efforts to reduce the amount of active compounds applied.

[0329]

One of the advantages of the present invention is that, because of the particular systemic properties of Fluopyram or a composition comprising fluopyram according to the invention, treatment of the seed with Fluopyram or these compositions not only protects the seed itself, but also the resulting plants after emergence, from nematodes. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.

[0330]

Fluopyram or the compositions comprising fluopyram according to the invention are suitable for protecting seeds of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes.

[0331]

Fluopyram or the compositions comprising fluopyram according to the invention are particularly suitable for protecting seed of soy, in particular against Heterodera glycines.

[0332]

Fluopyram or the compositions comprising fluopyram according to the invention are suitable for protecting seed of curcubits, in particular against Meloidogyne incognita.

[0333]

As also described further below, the treatment of transgenic seed with Fluopyram or compositions according to the invention is of particular importance. This refers to the seed of plants containing at least one heterologous gene which allows the expression of a polypeptide or protein having insecticidal properties. The heterologous gene in transgenic seed can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. Preferably, this heterologous gene is from Bacillus sp., the gene product having activity against the European corn borer and/or the Western corn rootworm.

[0334]

Particularly preferably, the heterologous gene originates from Bacillus thuringiensis.

[0335]

In the context of the present invention, Fluopyram or a composition comprising fluopyram according to the invention are applied on their own or in a suitable formulation to the seed. Preferably, the seed is treated in a state in which it is sufficiently stable so that the treatment does not cause any damage. In general, treatment of the seed may take place at any point in time between harvesting and sowing. Usually, the seed used is separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. Thus, it is possible to use, for example, seed which has been harvested, cleaned and dried to a moisture content of less than 15% by weight. Alternatively, it is also possible to use seed which, after drying, has been treated, for example, with water and then dried again.

[0336]

When treating the seed, care must generally be taken that the amount of Fluopyram or a composition comprising fluopyram according to the invention applied to the seed and/or the amount of further additives is chosen in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged. This must be borne in mind in particular in the case of active compounds which may have phytotoxic effects at certain application rates.

[0337]

Fluopyram or a composition comprising fluopyram according to the invention can be applied directly, that is to say without comprising further components and without having been diluted. In general, it is preferable to apply the compositions to the seed in the form of a suitable formulation. Suitable formulations and methods for the treatment of seed are known to the person skilled in the art and are described, for example, in the following documents: U.S. Pat. No. 4,272,417 A, U.S. Pat. No. 4,245,432 A, U.S. Pat. No. 4,808,430 A, U.S. Pat. No. 5,876,739 A, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.

[0338]

Fluopyram or a composition comprising fluopyram which can be used according to the invention can be converted into customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations.

[0339]

These formulations are prepared in a known manner by mixing the active compounds or active compound combinations with customary additives, such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water as well.

[0340]

Suitable colorants that may be present in the seed dressing formulations which can be used according to the invention include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamine B, C.I. Pigment Red 112, and C.I. Solvent Red 1.

[0341]

Suitable wetting agents that may be present in the seed dressing formulations which can be used according to the invention include all substances which promote wetting and are customary in the formulation of active agrochemical substances. With preference it is possible to use alkylnaphthalene-sulphonates, such as diisopropyl- or diisobutylnaphthalene-sulphonates.

[0342]

Suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations which can be used according to the invention include all nonionic, anionic, and cationic dispersants which are customary in the formulation of active agrochemical substances. With preference, it is possible to use nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Particularly suitable nonionic dispersants are ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers, and tristyrylphenol polyglycol ethers, and their phosphated or sulphated derivatives. Particularly suitable anionic dispersants are lignosulphonates, polyacrylic salts, and arylsulphonate-formaldehyde condensates.

[0343]

Defoamers that may be present in the seed dressing formulations to be used according to the invention include all foam-inhibiting compounds which are customary in the formulation of agrochemically active compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organofluorine compounds and mixtures thereof.

[0344]

Preservatives that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. By way of example, mention may be made of dichlorophen and benzyl alcohol hemiformal.

[0345]

Secondary thickeners that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided silicic acids.

[0346]

Suitable adhesives that may be present in the seed dressing formulations to be used according to the invention include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.

[0347]

Suitable gibberellins that may be present in the seed dressing formulations to be used according to the invention are preferably the gibberellins A1, A3 (=gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler “Chemie der Pflanzenschutz- and Schidlingsbekimpfungsmittel” [Chemistry of Crop Protection Agents and Pesticides], Vol. 2, Springer Verlag, 1970, pp. 401-412).

[0348]

The seed dressing formulations which can be used according to the invention may be used directly or after dilution with water beforehand to treat seed of any of a very wide variety of types. The seed dressing formulations which can be used according to the invention or their dilute preparations may also be used to dress seed of transgenic plants. In this context, synergistic effects may also arise in interaction with the substances formed by expression.

[0349]

Suitable mixing equipment for treating seed with the seed dressing formulations which can be used according to the invention or the preparations prepared from them by adding water includes all mixing equipment which can commonly be used for dressing. The specific procedure adopted when dressing comprises introducing the seed into a mixer, adding the particular desired amount of seed dressing formulation, either as it is or following dilution with water beforehand, and carrying out mixing until the formulation is uniformly distributed on the seed. Optionally, a drying operation follows.

[0350]

The nematicidal compositions according to the invention can be used for the curative or protective control of nematodes. Accordingly, the invention also relates to curative and protective methods for controlling nematodes using the fluopyram and compositions containing fluopyram according to the invention, which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow. Preference is given to application onto the plant or the plant parts, the fruits or the soil.

[0351]

The compositions according to the invention for controlling nematodes in crop protection comprise an active, but non-phytotoxic amount of the compounds according to the invention. “Active, but non-phytotoxic amount” shall mean an amount of the composition according to the invention which is sufficient to control or to completely kill the plant disease caused by nematodes, which amount at the same time does not exhibit noteworthy symptoms of phytotoxicity. These application rates generally may be varied in a broader range, which rate depends on several factors, e.g. the nematodes, the plant or crop, the climatic conditions and the ingredients of the composition according to the invention.

[0352]

The fact that the active compounds, at the concentrations required for the controlling of plant diseases, are well tolerated by plants permits the treatment of aerial plant parts, of vegetative propagation material and seed, and of the soil.

[0353]

In an exemplary seed treatment method, an aqueous composition comprising fluopyram can be applied at a rate to provide in the range of 0.5 g to 10 kg, preferably 0.8 g to 5 kg, most preferably 1 g to 1 kg Fluopyram per 100 kg (dt) of seeds.

[0354]

In a further embodiment the present invention relates to the use of fluopyram for controlling Meloidogyne incognita in tomato.

[0355]

In a further embodiment the present invention relates to the use of fluopyram for controlling Helicotylenchus sp. in tomato.

[0356]

In a further embodiment the present invention relates to the use of fluopyram for controlling Meloidogyne hapla in potato.

[0357]

In a further embodiment the present invention relates to the use of fluopyram for controlling Tylenchulus semipenetrans in citrus.

[0358]

In a further embodiment the present invention relates to the use of fluopyram for controlling Radopholus similis in banana.

[0359]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a plant drench application for controlling nematodes.

[0360]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a plant drench application for controlling nematodes in tomato.

[0361]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a plant in-furrow application for controlling nematodes.

[0362]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a plant in-furrow application for controlling nematodes in potato.

[0363]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a drench application for controlling nematodes.

[0364]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a drench application for controlling nematodes in citrus.

[0365]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a drench application for controlling nematodes in banana.

[0366]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a stem injection application for controlling nematodes.

[0367]

In a further embodiment the present invention relates to a method of treatment comprising applying fluopyram as a stem injection application for controlling nematodes in banana.

[0368]

In a further embodiment the present invention relates to the use of compositions comprising fluopyram for controlling Meloidogyne incognita in tomato.

[0369]

In a further embodiment the present invention relates to the use of compositions comprising fluopyram for controlling Helicotylenchus sp. in tomato.

[0370]

In a further embodiment the present invention relates to the use of compositions comprising fluopyram for controlling Meloidogyne hapla in potato.

[0371]

In a further embodiment the present invention relates to the use of compositions comprising fluopyram for controlling Tylenchulus semipenetrans in citrus.

[0372]

In a further embodiment the present invention relates to the use of compositions comprising fluopyram for controlling Radopholus similis in banana.

[0373]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a plant drench application for controlling nematodes.

[0374]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a plant drench application for controlling nematodes in tomato.

[0375]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a plant in-furrow application for controlling nematodes.

[0376]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a plant in-furrow application for controlling nematodes in potato.

[0377]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a drench application for controlling nematodes.

[0378]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a drench application for controlling nematodes in citrus.

[0379]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a drench application for controlling nematodes in banana.

[0380]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a stem injection application for controlling nematodes.

[0381]

In a further embodiment the present invention relates to a method of treatment comprising applying compositions comprising fluopyram as a stem injection application for controlling nematodes in banana.

[0382]

The general concepts of the invention are described in the following examples, which are not to be considered as limiting.

Example A

[0383]

Meloidogyne incognita in Tomato—at Plant Drench Application

[0384]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0385]

Soil which contains a mixed population of the Southern Root Knot Nematode (Meloidogyne incognita) is drenched with the formulation at planting of the tomatoes.

[0386]

After the specified period the nematicidal activity is determined on the basis of the percentage of gall formation. 100% means that no galls were found; 0% means that the number of galls found on the roots of treated plants was equal to that in untreated control plants.

[0387]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Meloidogyne incognita - Test on tomato
ConcentrationEfficacy
Active Ingredientin mg/plantin % after 92d
Fluopyram suspension2076.5
concentrate (SC) 5001050.1
547.1

Example B

[0388]

Helicotylenchulus sp. in Tomato—at Plant Drench Application

[0389]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0390]

Soil which contains a mixed population of Spiral Nematodes (Helicotylenculus spp.) is drenched with the formulation at planting of the tomatoes.

[0391]

After the specified period the nematicidal activity is determined by counting the nematodes. 100% means that no nematodes were found; 0% means that the number of nematodes found in treated soil was equal to that in untreated soil.

[0392]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Helicotylenchulus spp - Test on tomato
ConcentrationEfficacy
Active Ingredientin mg/plantin % after 60d
Fluopyram SC 50030085
10079
1082

Example C

[0393]

Meloidogyne hapla in Potato—at Plant In-Furrow Application

[0394]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0395]

Soil which contains a mixed population of the Northern Root Knot Nematode (Meloidogyne hapla) is treated with an in-furrow application with the formulation at planting of the potatoes.

[0396]

After the specified period the nematicidal activity is determined on the basis of the percentage of infested tubers. 100% means that no infested tubers were found; 0% means that the number of infested tubers of treated plants was equal to that in untreated control plants.

[0397]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Meloidogyne hapla - Test on potato
ConcentrationEfficacy
Active Ingredientin g ai/hain % after 169d
Fluopyram SC 50040043.4

Example D

[0398]

Tylenchulus semipenetrans in Citrus—Drench Application

[0399]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0400]

Soil under citrus tree canopy which contains a mixed population of the citrus nematode (Tylenchulus semipenetrans) is drenched with the formulation.

[0401]

After the specified period the nematicidal activity is determined by counting the nematodes. 100% means that no nematodes were found; 0% means that the number of nematodes found in treated soil was equal to that in untreated soil.

[0402]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Tylenchulus semipenetrans - Test on citrus
ActiveConcentrationEfficacy
Ingredientin g ai/hain % 131d after first appl.
Fluopyram500 (1 appl.)41.5
SC 500250 (2 appl. at 29 d interval)48.1

Example E

[0403]

Radopholus similis in Banana—Drench Application

[0404]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0405]

Soil under bananas which is infested with a mixed population of the Banana root nematode (Radopholus similis) is drenched with the formulation.

[0406]

After the specified period the nematicidal activity is determined by counting the nematodes in the banana roots. 100% means that no nematodes were found; 0% means that the number of nematodes found in the treated plots was equal to that in untreated plots.

[0407]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Radopholus similis - Test on banana
ConcentrationEfficacy
Active Ingredientin g ai/plantin % after 61d
Fluopyram SC 5000.395.8

Example G

[0408]

Radopholus similis in Banana—Stem Injection

[0409]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0410]

Stems of Bananas, which were growing in soil infested with a mixed population of the Banana root nematode (Radopholus similis), are injected with the formulation.

[0411]

After the specified period the nematicidal activity is determined by counting the nematodes in the banana roots. 100% means that no nematodes were found; 0% means that the number of nematodes found in treated plots was equal to that in untreated plots.

[0412]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Radopholus similis - Test on banana
ConcentrationEfficacy
Active Ingredientin g ai/plantin % after 91d
Fluopyram SC 5000.384.6
0.1562.6

Example H

[0413]

Meloidogyne incognita in Tomato—Drip Application after Transplanting

[0414]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0415]

Soil which contains a mixed population of the Southern Root Knot Nematode (Meloidogyne incognita) is treated via drip irrigation with the formulation 6 days after transplanting of the tomatoes.

[0416]

After the specified period the nematicidal activity is determined on the basis of the percentage of gall formation. 100% means that no galls were found; 0% means that the number of galls found on the roots of treated plants was equal to that in untreated control plants.

[0417]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Meloidogyne incognita - Test on tomato
ConcentrationEfficacy
Active Ingredientin gr/hain % after 56d
Fluopyram SC 50050095.5
37586.2
25076.5

Example I

[0418]

Meloidogyne javanica in Cucumber—at Plant Drip Application

[0419]

To produce a suitable preparation the formulation is diluted with water to the desired concentration.

[0420]

Soil which contains a mixed population of the Root Knot Nematode (Meloidogyne javanica) is treated via drip irrigation with the formulation at planting of the cucumber.

[0421]

After the specified period the nematicidal activity is determined on the basis of the percentage of gall formation. 100% means that no galls were found; 0% means that the number of galls found on the roots of treated plants was equal to that in untreated control plants.

[0422]

In this test, for example, the following formulation from the preparation examples shows good activity:

[0000]

Meloidogyne javanica - Test on cucumber
ConcentrationEfficacy
Active Ingredientin gr/hain % after 61d
Fluopyram SC 50075095.4
50080.6
37580.1
25075.7
12575.7



[0000]

The present invention relates generally to the use of pyridylethylbenzamide derivatives for controlling nematodes and to methods particularly useful for controlling nematodes and/or increasing crop yield.



1. An N{[3 chloro-5 (trifluoromethyl)-2 pyridinyl]ethyl}-2,6 dichlorobenzamide (fluopyram) of formula (I)

and/or an N-oxide thereof capable of being used for controlling nematodes infesting at least one crop selected from the group consisting of vegetables, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, tree crops, nuts, and flowers and/or capable of being used for increasing yield of said at least one crop.

2. An N{[3 chloro-5 (trifluoromethyl)-2 pyridinyl]ethyl}-2,6 dichlorobenzamide (fluopyram) of formula (I)

and/or an N-oxide thereof capable of being used for controlling nematodes infesting at least one crop selected from the group consisting of vegetables, tomato, cucurbits, potato, pepper, carrots, onions, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, citrus fruits, pine apples and bananas, and grapes, tree crops—pome fruits, tree crops—stone fruits, tree crops—nuts, and flowers and/or capable of being used for increasing yield.

3. A composition comprising

A) fluopyram and/or an N-oxide thereof and

B) at least one agrochemically active compound,

at least one extender and/or surfactant, wherein said composition is capable of being used for controlling nematodes infesting at least one crop selected from the group consisting of vegetables, corn, soy, cotton, tobacco, coffee, sugarcane, fruits, tree crops, nuts, and flowers and/or capable of being used for increasing yield of said at least one crop.

4. The composition according to claim 3, wherein fluopyram and/or the N-oxide has been applied to said at least one crop at a rate of 100 g to 5 kg per ha.

5. A method of controlling nematodes comprising applying fluopyram and/or an N-oxide thereof according to claim 1, to a plant.

6. A method of treating seeds for control of nematodes in a crop selected from the group consisting of vegetables, potato, corn, soy, cotton and banana, comprising applying a compound according to claim 1 to a seed.

7. A method for increasing yield, comprising applying fluopyram and/or an N-oxide thereof according to claim 1, to a plant.

8. A method for increasing yield, comprising applying fluopyram and/or an N-oxide thereof according to claim 1 to a seed.