VASCULAR HOLE CLOSURE DEVICE
This application claims priority from provisional application Ser. No. 61/330,472, filed May 3, 2010 and is a continuation in part of application Ser. No. 12/854,988, filed Aug. 12, 2010, which claims priority from provisional application Ser. No. 61/241,555, filed Sep. 11, 2009. which is a continuation in part of application Ser. No. 12/358,411, filed Jan. 23, 2009, which claims priority from provisional application Ser. No. 61/066,072, filed Feb. 15, 2008. The entire contents of each of these applications are incorporated herein by reference. This application relates to a vascular device and more particularly to a device for closing openings in vessel walls. During certain types of vascular surgery, catheters are inserted through an incision in the skin and underlying tissue to access the femoral artery in the patient's leg. The catheter is then inserted through the access opening made in the wall of the femoral artery and guided through the artery to the desired site to perform surgical procedures such as angioplasty or plaque removal. After the surgical procedure is completed and the catheter is removed from the patient, the access hole must be closed. This is quite difficult not only because of the high blood flow from the artery, but also because there are many layers of tissue that must be penetrated to reach the femoral artery. Several approaches to date have been used to close femoral access holes. In one approach, manual compression by hand over the puncture site is augmented by a sandbag or weight until the blood coagulates. With this approach, it can take up to six hours for the vessel hole to close and for the patient to be able to ambulate. This inefficiency increases the surgical procedure time as well as the overall cost of the procedure since the hospital staff must physically maintain pressure and the patient's discharge is delayed because of the inability to ambulate. In another approach to close the vessel puncture site, a clamp is attached to the operating table and the patient's leg. The clamp applies pressure to the vessel opening. The patient, however, must still be monitored to ensure the blood is coagulating, requiring additional time of the hospital staff and increasing the cost of the procedure. To avoid the foregoing disadvantages of manual pressure approaches, suturing devices have been developed. One such suturing device, sold by Abbott, advances needles adjacent the vessel wall opening and pulls suture material outwardly through the wall adjacent the opening. The surgeon then ties a knot in the suture, closing the opening. One difficulty with the procedure involves the number of steps required by the surgeon to deploy the needles, capture the suture, withdraw the suture, and tie the knot and secure the suture. Moreover, the surgeon cannot easily visualize the suture because of the depth of the femoral artery (relative to the skin) and essentially ties the suture knot blindly or blindly slips a pre-tied knot into position. Additionally. the ability to tie the knot varies among surgeons; therefore success and accuracy of the hole closure can be dependent on the skill of the surgeon. Yet another disadvantage of this suturing instrument is that the vessel opening is widened for insertion of the instrument, thus creating a bigger opening to close in the case of failure to deliver the closure system. It is also difficult to pass the needle through calcified vessels. U.S. Pat. No. 4,744,364 discloses another approach for sealing a vessel puncture in the form of a device having an expandable closure member with a filament for pulling it against the vessel wall. The closure member is held in place by a strip of tape placed on the skin to hold the filament in place. However, the closure device is still subject to movement which can cause leakage through the puncture. Additionally, if the suture becomes loose, the closure member is not retained and can flow downstream in the vessel. Moreover, since the suture extends through the skin, a potential pathway for infection is created. The closure device in U.S. Pat. No. 5,545,178 includes a resorbable collagen foam plug located within the puncture tract. However, since coagulation typically takes up to twenty minutes and blood can leak in between the plug and tissue tract, manual pressure must be applied to the puncture for a period of time, until the collagen plug expands within the tract. It would therefore be advantageous to provide a device which would more quickly and effectively close openings (punctures) in vessel walls. Such device would advantageously avoid the aforementioned time and expense of applying manual pressure to the opening, simplify the steps required to close the opening, avoid widening of the opening, and more effectively retain the closure device in the vessel. Commonly assigned co-pending patent application Ser. No. 10/847,141, filed May 17, 2004, discloses effective vascular hole closure devices which have the foregoing advantages. It would be further advantageous to provide a vascular hole closure device which is adjustable to accommodate different tissue thicknesses and applies a more constant clamping/retaining force between the intravascular and extravascular components of the device irrespective of tissue thickness. The present invention provides a device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall. The device comprises a covering member positionable inside the vessel against the internal opening of the aperture and having a dimension to prevent egress of fluid through the aperture, and first and second retainers positionable external of the vessel and each having a body of a first transverse dimension and a tip having a second smaller transverse dimension and facing in a direction toward the covering member for advancement toward the covering member. A flexible connecting member operatively connects the covering member and the first retainer and moves the first retainer toward the covering member. In one embodiment, a first opening of the covering member is configured to restrict movement of the connecting member. The device may include a second flexible connecting member operatively connecting the covering member and second retainer for moving the second retainer toward the covering member. In a preferred embodiment, the covering member is composed of a resorbable material. In a preferred embodiment, the flexible connecting members and retainers are composed of a resorbable material. In one embodiment, the retainers are connected to each other by a flexible joining member, and the flexible connecting member includes a suture looped through the covering member and a looped portion to receive the flexible joining member, wherein tensioning of the suture tightens the looped portion and moves the joining member and retainers toward the covering member. In another aspect, the present invention provides a device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall. The device comprises a covering member positionable inside the vessel against the internal opening of the aperture and having a dimension to prevent egress of fluid through the aperture. First and second retainers being one of substantially cylindrical shaped and pill shaped are positionable external of the vessel and a flexible connecting member connects the first retainer to the covering member. Preferably, pulling of the connecting member advances the first retainer toward the covering member. The covering member in some embodiments can have a second opening configured to restrict movement of the connecting member. In some embodiments, a second connecting member connects the second retainer to the covering member. Preferably, the covering member and the first and second retainers are composed of a resorbable material. In one embodiment, the retainers are positioned in a stacked relationship in a delivery position. The covering member is preferably pivotable between a more longitudinal orientation for delivery and a transverse position for placement. In another aspect, the present invention provides a device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall. The device comprises a covering member positionable inside the vessel against the internal opening of the aperture and has a dimension to prevent egress of fluid through the aperture and has a first opening of a first diameter and a second opening of a second larger diameter. A disc shaped retainer is provided for positioning external of the vessel lumen. A flexible connecting member operatively connects the retainer to the covering member and extends through the first and second openings and is connected to the retainer. The first opening is configured to frictionally retain the flexible member to retain the position of the retainer with respect to the covering member. In another aspect, the present invention provides a device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall. The device comprises a covering member positionable inside the vessel against the internal opening of the aperture and has a dimension to prevent egress of fluid through the aperture. First and second retainers are positionable external of the vessel and a joining member connects the first and second retainers. A flexible connecting member has a looped portion for receiving the joining member, wherein movement of the flexible connecting member moves the retainers toward the covering member. In another aspect the present invention provides a method of closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall, the method comprising:
In a preferred embodiment, the step of advancing the first retainer comprises the step of moving a suture attached to the first retainer through an opening having a diameter substantially the same as the outer diameter of the suture. The method may include the step of inserting a second retainer external of the vessel and advancing the second retainer toward the covering member by pulling a suture connected to the second retainer. Preferred embodiment(s) of the present disclosure are described herein with reference to the drawings wherein: Referring now in detail to the drawings where like reference numerals identify similar or like components throughout the several views, More specifically, the closure device includes a covering member or patch positioned within the vessel against the internal wall of the vessel to block blood flow and two retainers positioned external of the vessel wall to retain the covering member in its blocking position. Each retainer is fixedly attached to a suture such that pulling of the suture advances the attached retainer toward the covering member to ultimately position the retainers in a side by side relationship either against or adjacent the external surface of the vessel wall. Turning to Covering member 40, preferably elongated in configuration as shown, is retained in a delivery sheath in a longitudinal position for delivery to the vessel, and then pivots to a transverse position within the vessel lumen (substantially perpendicular to an axis extending through the aperture) for orientation to cover (patch) the vessel aperture on the internal side. This movement is illustrated in The retainers 20, 22 are preferably held in a delivery tube in a stacked relationship (not shown), with retainer 22 atop retainer 20 (or vice versa). The elongated covering member 40 functions to cover (patch) the internal opening in the vessel wall to prevent the egress of blood. With reference to The longitudinal axis of covering member 40 defines a lengthwise dimension and transverse axes define a shorter widthwise dimensions. The widthwise dimension of the covering member 40 can be for example about 2.5 mm (for a 6 Fr device). In a preferred embodiment, the covering member 40 is about 3.1 mm in widthwise dimension. Other dimensions are also contemplated. The width preferably is at least substantially equal to the dimension of the internal opening in the vessel wall to effectively cover the opening. In a preferred embodiment, the covering member 40 has a length of about 8.6 mm (in a 6 French system). Other dimensions are also contemplated. It should be appreciated that alternatively the covering member could be provided with an enlarged width region as illustrated in the embodiment of The elongated covering member can be composed of materials such as polycarbonate or polyurethane. Preferably it is composed of resorbable materials such as lactide/glycolide copolymers that after a period of time resorb in the body. If composed of resorbable material, the covering member could optionally have regions of varying resorbability. Varying degrees of resorbability can be achieved for example by utilizing different materials having differing resorbable characteristics or by varying the mass of the covering member (increased mass increases resorbtion time). Retainers 20 and 22 are preferably composed of resorbable material. The retainers could alternatively be made of non-absorbable polymeric or metallic material. When the retainers 20 and 22 are released from the delivery instrument, they are spaced further from the covering member 40. They are configured to then be advanced toward the covering member 40. More specifically, each retainer 20, 22 is fixedly secured to a respective flexible connecting member illustratively in the form of suture 30, 32. Sutures 30, 32 are preferably made of polymeric material and are preferably resorbable, preferably composed of a material such as polydioxanome. It is also contemplated that alternatively a metallic material could be utilized. As shown, suture 30 has a free end 30 To advance the retainers 20, 22 toward the vessel wall (and covering member 40), the free end 30 The delivery instrument for inserting the closure device extends through an opening in the skin, through the tissue tract to the vessel, through an external opening in the vessel wall, through the aperture in the vessel wall, and through an internal opening on the internal side of the vessel wall into the vessel lumen. The covering member 40 is outside a retainer tube and within a delivery sheath in a tilted position in a manner similar to As shown in Then, to retain the covering member 40 in position against the vessel wall to block blood flow therethrough, sutures 30 and 32 are pulled proximally from their free ends 30 The covering member 40 has a first pair of holes 44 To enhance the retention of the suture of the present invention within the smaller diameter hole, a plurality of internal teeth can be provided. This is shown for example in As shown in The alternate embodiment of The alternate embodiment of In the embodiment of Retainers 320, 322 are joined by a flexible connecting or joining suture (member) 336 attached at opposite ends to the retainers by molding, welding or other methods. The joining suture 336 is received in looped portion 334 of suture (flexible connecting member) 330. Looped portion 334 is formed by a portion of the suture 330 extending from the patch 340, looping around twice and extending back into opening 342 In the embodiment of While the above description contains many specifics, those specifics should not be construed as limitations on the scope of the disclosure, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other possible variations that are within the scope and spirit of the disclosure as defined by the claims appended hereto. A device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall. The device includes a covering member positionable inside the vessel against the internal opening of the aperture and having a dimension to prevent egress of fluid through the aperture. First and second retainers are positionable external of the vessel and have a tip of a smaller transverse dimension and facing in a direction toward the covering member for advancement toward the covering member. A flexible connecting member operatively connects the covering member and the first retainer and moves the first retainer toward the covering member. 1-9. (canceled) 10. A device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall, the device comprising:
a covering member having a longitudinal axis and positionable inside the vessel against the internal opening of the aperture, the covering member having a dimension to prevent egress of fluid through the aperture; first and second retainers positionable external of the vessel, the first and second retainers being one of substantially cylindrical and substantially pill shaped; and a first flexible connecting member operatively connecting the first retainer to the covering member, the first flexible connecting member moving the first retainer toward the covering member. 11. The device of 12. The device of 13. The device of 14. The device of 15. The device of 16. The device of 17-20. (canceled) 21. The device of 22. The device of 23. A device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall, the device comprising:
a covering member having a longitudinal axis and positionable inside the vessel against the internal opening of the aperture, the covering member having a dimension to prevent egress of fluid through the aperture; first and second retainers positionable external of the vessel and proximal of the covering member, the first and second retainers each having a body of a first transverse dimension and having a substantially cylindrical configuration with a longitudinal axis transverse to the longitudinal axis of the covering member in a placement position; and a first flexible connecting member operatively connecting the covering member and the first retainer and a second flexible connecting member operatively connecting the covering member and the second retainer, the first flexible connecting member moving the first retainer toward the covering member and the second flexible connecting member moving the second retainer toward the covering member, the first and second flexible connecting members being independently movable. 24. The device of 25. The device of 26. The device of 27. A device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall, the device comprising:
a covering member having a longitudinal axis and positionable inside the vessel against the internal opening of the aperture, the covering member having a dimension to prevent egress of fluid through the aperture; first and second retainers positionable external of the vessel and proximal of the covering member in a placement position, the first and second retainers each having a body having a substantially cylindrical configuration, the first and second retainers being independently movable toward the covering member; and a first flexible connecting member operatively connecting the covering member and the first retainer, the first flexible connecting member being fixedly secured to the first retainer at one end wherein the first flexible connecting member moves the first retainer toward the covering member as a second end of the first flexible connecting member is moved proximally, the first retainer remaining fixedly secured to the first flexible connecting member at the first end as it is moved toward the covering member. 28. The device of 29. The device of 30. The device of 31. The device of 32. The device of BACKGROUND
TECHNICAL FIELD
BACKGROUND OF RELATED ART
SUMMARY
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS



