Master-slave same-structure teleoperation fracture reduction mechanism
This is a U.S. National Stage under 35 U.S.C 371 of the International Application PCT/CN2014/000856, filed Sep. 19, 2014, which claims priority under 35 U.S.C. 119(a-d) to CN 201410198120.7, filed May 12, 2014; Field of Invention The present invention relates to a master-slave same-structure teleoperation fracture reduction mechanism, belonging to surgical device field. Description of Related Arts The conventional method is open reduction which depends on a doctor's experiment. Open reduction turns a simple fracture into a compound fracture due to surgery. The incision is exposed in the air which may destroy the blood supply and leads to bone necrosis that delays or prevents the healing. The long operation time and high work intensity make it hard to guarantee the result of the reduction. The intramedullary nail technology is able to deal the above-mentioned problem while during the operation the doctor needs to continuously X-Ray the patient and both the doctor and patient receive high-dose radiation. Precise reduction is hard to realize due to the information captured during the operation is 2-D. Besides, after the surgery the bone may rotate and cause malreduction. The emergency of fracture reduction system solves the problems such as the femoral shaft fracture reduction system published in “ Master-slave teleoperation mechanism is able to give the operator a very real sense of the interaction between the terminal of the mechanism and the operated object and the environment, which is widely applied in the industrial control, aerospace, military, remote surgery etc. The conventional researches include “ In order to overcome the problems in conventional technology, an object of the present invention is to provide a master-slave same-structure teleoperation fracture reduction mechanism to assist the doctor to carry out fracture reduction operation. Accordingly, in order to accomplish the above objects, the present invention comprises a frame assembly, two parallel platform assemblies, a top platform connecting plate (9), an operating handle assembly, two fixing assemblies, a controller(15), six movement assemblies and 24 hydraulic pipes (26) wherein the operating handle assembly is located in the middle of an upper platform of an operation handle parallel platform assembly; two fixing assemblies are located on the top of a fixing assembly parallel platform assembly; the two parallel platform assemblies are disposed on a top plane of the frame assembly; the controller (15) and the six movement assemblies are disposed on a middle plane of the frame assembly; a top platform connecting plate is fixedly connected to the upper platform of the fixing assembly parallel platform assembly; the hydraulic pipes is in communication with motion hydraulic cylinders (7 The frame assembly comprises a bottom support frame (1), a U-shape frame (2), support frame connecting plate (3) and 4 universal wheels (4), wherein the bottom support frame (1) and U-shape frame (2) are connected by standard bolt; U-shape frame (2) and support frame connecting plate (3) are connected by standard bolt; bottom support frame (1) and 4 universal wheels are connected by standard bolts respectively; the support frame (1) is a cubical frame structure assembled by several rod structures, which is for supporting a main body of the present invention and placing components; the U-shape frame (2) is a U-shape structure which is for connecting the bottom support frame (1) and the support frame connecting plate (3); the support frame connecting plate (3) is a rectangle plate which is for connecting the fixing assemblies; the universal wheels (4) are standard castors which are for supporting and moving the present invention; The parallel platform assemblies comprises the upper platform (5), twelve universal joints (6), six platform hydraulic cylinders (7 A bottom end of the top platform connecting plate (9) is fixedly connected with the upper platform (5) of the fixing assembly parallel platform and an upper end of the top platform connecting plate (9) is fixedly connected with one of the fixing assemblies, wherein the top platform connecting plate (9) is a plate with a boss which is for connecting one of the parallel platform assemblies and one of the fixing assemblies; The operating handle assemblies comprises an operating handle (10) and an operating button (11), wherein the operating handle (10) is connected with the upper platform (5) of the operation handle parallel platform and the operating button (11) is fixedly connected with the operating handle (10); the operating handle (10) is a column with a round plate on one end which is for handheld operating the parallel platform assembly, wherein the operating button (11) is a standard button which is for on/off control the controller (15); Each of the fixing assemblies comprises a fixing baseplate (12), two baseplate connecting blocks (13) and two curved poles (14), wherein the fixing baseplate (12) is connected with support frame connecting plate (3) and the top platform connecting plate (9) respectively; the baseplate connecting blocks (13) are embedded in a groove on the fixing baseplate (12) and fixedly connected with the fixing baseplate (12) by standard bolts; the curved poles (14) are fixedly connected with the baseplate connecting blocks (13), wherein the fixing baseplate (12) is a plate with one groove on each of the two sides which is for fixing the baseplate connecting block (13); the baseplate connecting blocks (13) is a cubic structure with threaded holes which is for connecting the fixing baseplate (12) and the curved poles (14), wherein each of the curved poles (14) is a pole structure with a curve on one end which is for connecting a fixing nail fixed on broken bones; the controller (15) is fixedly connected with the bottom support frame (1), wherein the controller (15) is a standard controller which is for collecting signals from encoders (18), limit switches (19) and hydraulic sensors (25) and controlling the motion of DC motors (17); Each of the movement assembly comprises a fixing platform (16), a DC motor (17), a encoder (18), two limit switches (19), a guide rail (20), a sliding block (21), a screw rod (22), a sliding block connector (23), two motion hydraulic cylinders (7 Twelve of the 24 hydraulic pipes (26) is connected with the movement assemblies and the operating handle parallel platform assemblies and the rest twelve hydraulic pipes are connected with the movement assemblies and the fixing assembly parallel platform assemblies which are connected with the top platform connecting plate (9) and the fixing assemblies, wherein the hydraulic pipes are standard hydraulic pipes for power transfer for parallel platform and movement assemblies. Compared with the conventional technology, the present invention has the following benefits:
Element reference: 1-bottom support frame, 2-U-shape frame, 3-support frame connecting plate, 4-universal wheel, 5-upper platform, 6-universal joint, 7 Referring to A master-slave same-structure teleoperation fracture reduction mechanism comprises a frame assembly, two parallel platform assemblies, a top platform connecting plate 9, an operating handle assembly, two fixing assemblies, a controller 15, six movement assemblies and 24 hydraulic pipes 26. The universal wheel 4 is able to walk in straight line and turn. Each of the parallel platform assemblies has 6-DOF. The operating handle parallel platform acts as operation end and fixed connected with the operating handle assembly. The fixing assembly parallel assembly acts as the slave end which connected with the top platform connecting plate 9 and one of the fixing assembly. Each of the universal joints 6 has 2-DOF. The piston rod of the hydraulic cylinders 7 The present invention work in the following procedure: plant two fixing nail in the two ends of the broken bone and adjust the position of baseplate connecting block 13 in the groove on the fixing baseplate 12 to connect the fixing nails with the curved poles; turn on the operating handle 11 and control the movement of the operating handle parallel assembly by the operating handle 10; Check the oil pressure in the hydraulic pipe 26 by the hydraulic sensor 25, which is pressure of the hydraulic cylinder 7 One skilled in the art will understand that the embodiment of the present invention as shown in the drawings and described above is exemplary only and not intended to be limiting. It will thus be seen that the objects of the present invention have been fully and effectively accomplished. Its embodiments have been shown and described for the purposes of illustrating the functional and structural principles of the present invention and is subject to change without departure from such principles. Therefore, this invention includes all modifications encompassed within the spirit and scope of the following claims. A master-slave same structure teleoperation fracture reduction mechanism includes a frame assembly, two parallel platform assemblies, a top platform connecting plate (9), an operating handle assembly, two fixing assemblies, a controller (15), six movement assemblies and 24 hydraulic pipes (26). The operating handle assembly is located in the middle of the upper platform (5), and the two fixing assemblies are located on the top of the parallel platform assembly. The two parallel platform assemblies are disposed on the frame assembly; the controller (15) and the six movement assemblies are disposed on the frame assembly; A top platform connecting plate (9) is connected to the fixing assembly parallel platform assembly. The hydraulic pipes (26) is in communication with motion hydraulic cylinders (7a) and the other end of the hydraulic pipes is in communication with one of platform hydraulic cylinders (7b). The invention assists a doctor to achieve fracture reduction. 1. A master-slave same-structure teleoperation fracture reduction mechanism, comprising: a frame assembly, two parallel platform assemblies with similar structure of six-degree-of-freedom, a top platform connecting plate (9), an operating handle assembly, two fixing assemblies for connecting broken bones, a controller (15), six movement assemblies and 24 hydraulic pipes (26); wherein the operating handle assembly is located in a middle of an upper platform (5) of an operation handle parallel platform assembly; two fixing assemblies are located on a top of a fixing assembly parallel platform assembly; the two parallel platform assemblies are disposed on a top plane of the frame assembly; the controller (15) and the six movement assemblies are disposed on a middle plane of the frame assembly; the top platform connecting plate (9) is fixedly connected to the fixing assembly parallel platform assembly; a first end of each of the hydraulic pipes (26) is in communication with one of motion hydraulic cylinders (7 wherein the frame assembly comprises a bottom support frame (1), a U-shape frame (2), a support frame connecting plate (3) and 4 universal wheels (4), wherein the bottom support frame (1) and the U-shape frame (2) are connected by a standard bolt; the U-shape frame (2) and the support frame connecting plate (3) are connected by a standard bolt; the bottom support frame (1) and the 4 universal wheels are connected by standard bolts respectively; the support frame (1) is a cubical frame structure assembled by several rod structures, which is for supporting a main body of the master-slave same-structure teleoperation fracture reduction mechanism and placing components; the U-shape frame (2) is a U-shape structure which is for connecting the bottom support frame (1) and the support frame connecting plate (3); the support frame connecting plate (3) is a rectangle plate which is for connecting the fixing assemblies; the universal wheels (4) are standard castors which are for supporting and moving the master-slave same-structure teleoperation fracture reduction mechanism; wherein each of the parallel platform assemblies comprises the upper platform (5), twelve universal joints (6), six platform hydraulic cylinders (7 wherein a bottom end of the top platform connecting plate (9) is fixedly connected with the upper platform (5) of the fixing assembly parallel platform and a top end of the top platform connecting plate (9) is fixedly connected with one of the fixing assemblies, wherein the top platform connecting plate (9) is a plate with a boss, which is for connecting one of the parallel platform assemblies and one of the fixing assemblies; wherein the operating handle assembly comprises an operating handle (10) and an operating button (11), wherein the operating handle (10) is connected with the upper platform (5) of the operating handle parallel platform assembly and the operating button (11) is fixedly connected with the operating handle (10); the operating handle (10) is a column with a round plate on one end, which is for manually operating the parallel platform assemblies, wherein the operating button (11) is a standard button which is for on/off control the controller (15); wherein each of the fixing assemblies comprises a fixing baseplate (12), two baseplate connecting blocks (13) and two curved poles (14), wherein the fixing baseplate (12) is connected with the support frame connecting plate (3) and the top platform connecting plate (9) respectively; the baseplate connecting blocks (13) are embedded in grooves on the fixing baseplate (12) and fixedly connected with the fixing baseplate (12) with standard bolts; the curved poles (14) are fixedly connected with the baseplate connecting blocks, wherein the fixing baseplate (12) is a plate with the grooves on both sides, which is for fixing the baseplate connecting blocks (13); the baseplate connecting blocks (13) is a cubic structure with threaded holes which is for connecting the fixing baseplate (12) and the curved poles (14), wherein each of the curved poles (14) is a pole structure with a curve on one end, which is for connecting a fixing nail fixed on broken bones; wherein the controller (15) is fixedly connected with the bottom support frame (1), wherein the controller (15) is a standard controller which is for sampling signals from encoders (18), limit switches (19) and hydraulic sensors (25); and controlling the motion of a DC (direct current) motors (17); wherein each of the movement assembly comprising a fixing platform (16), the DC motor (17), one of the encoders (18), two limit switches (19), a guide rail (20), a sliding block (21), a screw rod (22), a sliding block connector (23), two motion hydraulic cylinders (7 wherein twelve of the 24 hydraulic pipes (26) are connected with the movement assemblies and the operating handle parallel platform assembly and the rest twelve hydraulic pipes are connected with the movement assemblies and the fixing assembly parallel platform assembly which is connected with the top platform connecting plate (9) and the fixing assemblies, wherein each of the hydraulic pipes are standard hydraulic pipe for power transfer for the parallel platform assemblies and the movement assemblies.CROSS REFERENCE OF RELATED APPLICATION
BACKGROUND OF THE PRESENT INVENTION
SUMMARY OF THE PRESENT INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




