METHODS OF PRODUCING GLYCOLIPIDS
This application is the U.S. National Entry under 35 U.S.C. §371 of Intl. Appl. No. PCT/US2015/023370, filed on Mar. 30, 2015, which claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/973,195, filed on Mar. 31, 2014, which are hereby incorporated herein by reference in their entireties. Provided are methods and yeast cultures for producing glycolipids and glycolipid compositions. Glycolipids such as sophorolipids (SL) are environmentally friendly and renewable biosurfactants used in detergents and other consumer and industrial products. Sophorolipids are amphiphilic molecules comprising a disaccharide of glucose in the form of sophorose, attached to a fatty acyl moiety, which can be either in the free acidic form, or in the cyclic lactone form (See, SL synthesis by fermentation with yeast species Fourteen yeast species have been reported to produce and secrete glycolipids known as sophorolipids (SL) in industrially relevant amounts (at least 1 g/L, see Table 1): All of the previously known SL producing yeasts belong to the phylum Ascomycota except one: In one aspect, a yeast culture is provided. In varying embodiments, the yeast culture comprises a population of basidiomycetous yeast cells, one or more hydrophilic (e.g., non-hydrophobic) carbon sources, and/or at least about 1 g/L glycolipid (e.g., sophorolipid), e.g., at least about 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 7 g/L, 8 g/L, 9 g/L, 10 g/L, 11 g/L, 12 g/L, 13 g/L, 14 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L, 45 g/L, 50 g/L, 100 g/L, 150 g/L, 200 g/L, 250 g/L, 300 g/L, 350 g/L, 400 g/L glycolipid, e.g., up to about 450 g/L of glycolipid, wherein the culture does not comprise one or more hydrophobic carbon sources. In varying embodiments, the culture does not comprise one or more hydrophobic carbon sources selected from the group consisting of oils, alkanes, fatty acids, fatty esters and mixtures thereof. In varying embodiments, the yeast culture comprises a population of basidiomycetous yeast cells, one or more hydrophilic (e.g., non-hydrophobic) carbon sources, one or more hydrophobic carbons sources, and at least about 1 g/L glycolipid (e.g., sophorolipid), e.g., at least about 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 7 g/L, 8 g/L, 9 g/L, 10 g/L, 11 g/L, 12 g/L, 13 g/L, 14 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L, 45 g/L, 50 g/L, 100 g/L, 150 g/L, 200 g/L, 250 g/L, 300 g/L, 350 g/L, 400 g/L glycolipid, e.g., up to about 450 g/L of glycolipid. In varying embodiments, total glycolipids are as measured after 1, 2, 3, 4, 5, 6, 7 or 8 days growth. In varying embodiments, the volume of the culture is at least about 5 L, 10 L, 25 L, 50 L, 75 L, 100 L, 250 L, 500 L, 1000 L, or more. In varying embodiments, the culture comprises less than about 2% (w/v) nitrogen, e.g., in the range of about 0.005% (w/v) to about 2% (w/v) nitrogen. In varying embodiments, the nitrogen source is selected from the group consisting of ammonia, ammonium salt, nitrate, nitrite, nucleotides, nucleosides, proteins, peptides, amino acids, urea and its derivatives, and mixtures thereof. In varying embodiments, the culture comprises about 0.05% (w/v) ammonium chloride. In varying embodiments, the culture comprises one or more hydrophilic carbon sources at a concentration in the range of about 0.2% (w/v) to about 70% (w/v), e.g., in the range of about 0.2% (w/v) to about 10%, 20%, 30%, 40%, 50% or 60% (w/v). In varying embodiments, the culture comprises a carbon to nitrogen ratio of about 5:1 to about 400:1, e.g., from about 10:1 to about 200:1, from about 20:1 to about 100:1, e.g., from about 25:1 to about 75:1, e.g., from about 30:1 to about 40:1, e.g., using a nitrogen source that can be consumed or utilized by the yeast cells. In varying embodiments, the hydrophilic carbon source is selected from the group consisting of monosaccharides, oligosaccharides, polysaccharides, sugar alcohols, polyols, organic acids, esters, aldehydes, ketones, alcohols, waste streams, plant materials, lignocellulosic hydrolysates, and mixtures thereof. In varying embodiments, the hydrophilic carbon source is a monosaccharide, an oligosaccharide or a polysaccharide and comprises one or more sugar moieties selected from the group consisting of glucose, sucrose, xylose, galactose, rhamnose, arabinose, mannose, cellobiose, galacturonic acid, lactose, sophorose, and mixtures thereof. In varying embodiments, the population of basidiomycetous yeast cells comprises cells in the taxonomic class Microbotryomycetes. In varying embodiments, the population of basidiomycetous yeast cells comprises cells in the taxonomic order Sporidiobolales. In varying embodiments, the population of basidiomycetous yeast cells comprises cells genera classified within the taxonomic order Sporidiobolales selected from the group consisting of a) b) c) d) e) f) g) h) i) j) and k) In varying embodiments of the yeast culture, the glycolipid comprises one or more glycolipids listed in Table 2. In varying embodiments, the yeast culture comprises a glycolipid profile comprising: i) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12); ii) at least about 5%, e.g., at least about 10%, 15%, 20%, up to about 25%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 fatty acid methylester or odd/branched chain length (Molecular Formula: C33H56O12); and/or iii) at least about 5%, e.g., at least about 10%, 15%, up to about 20%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 fatty acid (Molecular Formula: C34H58O13). In varying embodiments, the yeast culture comprises a glycolipid profile comprising: at least about 25% of a lactonic glycolipid (e.g., sophorolipid) with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12). In varying embodiments, the yeast culture comprises a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C32H56O12); ii) at least about 7%, e.g., at least about 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, up to about 20%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C32H54O13); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 10%, e.g., at least about 15%, 20%, 25%, 30%, up to 35%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In some embodiments, the yeast culture further comprises: vi) at least about 2%, e.g., at least about 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); and/or vii) at least about 1%, e.g., at least about 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14). In varying embodiments, the yeast culture comprises a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the yeast culture comprises a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 25%, e.g., at least about 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the yeast culture comprises a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 40%, e.g., up to about 50%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the yeast culture comprises a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C32H54O13); ii) at least about 45% of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the one or more hydrophobic carbon sources are selected from the group consisting of oils, alkanes, fatty acids, fatty esters and mixtures thereof. In varying embodiments, the one or more glycolipids are present in the medium in a form that can be harvested without solvent extraction. In a further aspect, provided are methods of producing one or more glycolipids. In some embodiments, the methods comprise culturing a population of basidiomycetous yeast cells in a yeast cell culture comprising one or more hydrophilic (e.g., non-hydrophobic) carbon sources, wherein the culture does not comprise one or more hydrophobic carbon sources, whereby the basidiomycetous yeast cells produce one or more glycolipids (e.g., sophorolipids). In some embodiments, the methods comprise culturing a population of basidiomycetous yeast cells in a yeast cell culture comprising one or more hydrophilic (e.g., non-hydrophobic) carbon sources and one or more hydrophobic carbon sources, whereby the basidiomycetous yeast cells produce one or more glycolipids (e.g., sophorolipids). In varying embodiments, additional hydrophilic carbon source is added, e.g., during any stage of growth including exponential growth, and after the population of basidiomycetous yeast cells reaches stationary phase. In varying embodiments, at least about 1 g/L glycolipid (e.g., sophorolipid), e.g., at least about 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 7 g/L, 8 g/L, 9 g/L, 10 g/L, 11 g/L, 12 g/L, 13 g/L, 14 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L, 45 g/L, 50 g/L, 100 g/L, 150 g/L, 200 g/L, 250 g/L, 300 g/L, 350 g/L, 400 g/L glycolipid, e.g., up to about 450 g/L of glycolipid, is produced. In varying embodiments, total glycolipids are as measured after 1, 2, 3, 4, 5, 6, 7 or 8 days growth. In varying embodiments, the volume of the culture is at least about 5 L, 10 L, 25 L, 50 L, 75 L, 100 L, 250 L, 500 L, 1000 L, or more. In varying embodiments, the culture comprises less than about 2% (w/v) nitrogen, e.g., in the range of about 0.005% (w/v) to about 2% (w/v) nitrogen. In varying embodiments, the nitrogen source is selected from the group consisting of ammonia, ammonium salt, nitrate, nitrite, nucleotides, nucleosides, proteins, peptides, amino acids, urea and its derivatives, and mixtures thereof. In varying embodiments, the culture comprises about 0.05% (w/v) ammonium chloride. In varying embodiments, the culture comprises one or more hydrophilic carbon sources at a concentration in the range of about 0.2% (w/v) to about 70% (w/v), e.g., in the range of about 0.2% (w/v) to about 10%, 20%, 30%, 40%, 50% or 60% (w/v). In varying embodiments, the culture comprises a carbon to nitrogen ratio of about 5:1 to about 400:1, e.g., from about 10:1 to about 200:1, from about 20:1 to about 100:1, e.g., from about 25:1 to about 75:1, e.g., from about 30:1 to about 40:1, e.g., using a nitrogen source that can be consumed or utilized by the yeast cells. In varying embodiments, the hydrophilic carbon source is selected from the group consisting of monosaccharides, oligosaccharides, polysaccharides, sugar alcohols, polyols, organic acids, esters, aldehydes, ketones, alcohols, waste streams, plant materials, lignocellulosic hydrolysates, and mixtures thereof. In varying embodiments, the hydrophilic carbon source is a monosaccharide, an oligosaccharide or a polysaccharide and comprises one or more sugar moieties selected from the group consisting of glucose, sucrose, xylose, galactose, rhamnose, arabinose, mannose, cellobiose, galacturonic acid, lactose, sophorose, and mixtures thereof. In varying embodiments, the population of basidiomycetous yeast cells comprises cells in the taxonomic class Microbotryomycetes. In varying embodiments, the population of basidiomycetous yeast cells comprises cells in the taxonomic order Sporidiobolales. In varying embodiments, the population of basidiomycetous yeast cells comprises genera classified within the taxonomic order Sporidiobolales selected from the group consisting of a) b) c) d) e) g) h) i) j) and k) In varying embodiments of the methods of producing, the yeast culture comprises a glycolipid profile comprising: i) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12); ii) at least about 5%, e.g., at least about 10%, 15%, 20%, up to about 25%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 fatty acid methylester or odd/branched chain length (Molecular Formula: C33H56O12); and/or iii) at least about 5%, e.g., at least about 10%, 15%, up to about 20%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 fatty acid (Molecular Formula: C34H58O13). In varying embodiments of the methods of producing, the yeast culture comprises a glycolipid profile comprising: at least about 25% of a lactonic glycolipid (e.g., sophorolipid) with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12). In varying embodiments of the methods of producing, the yeast culture comprises a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C32H56O12); ii) at least about 7%, e.g., at least about 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, up to about 20%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C32H54O13); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 10%, e.g., at least about 15%, 20%, 25%, 30%, up to 35%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In some embodiments, the yeast culture further comprises: vi) at least about 2%, e.g., at least about 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); and/or vii) at least about 1%, e.g., at least about 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14). In varying embodiments of the methods of producing, the yeast culture comprises a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments of the methods of producing, the yeast culture comprises a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 25%, e.g., at least about 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments of the methods of producing, the yeast culture comprises a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 40%, e.g., up to about 50%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments of the methods of producing, the yeast culture comprises a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C32H54O13); ii) at least about 45% of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments of the methods of producing, the one or more hydrophobic carbon sources are selected from the group consisting of oils, alkanes, fatty acids, fatty esters and mixtures thereof. In varying embodiments, the methods further comprise purifying and/or isolating the glycolipid. In varying embodiments, the glycolipid does not need to be purified from a hydrophobic carbon source. In varying embodiments, the glycolipid can be purified and/or isolated without cell lysis. In some embodiments, the yeast cells secrete the one or more glycolipids into the medium in a form that can be harvested without solvent extraction. In a related aspect, provided are glycolipid compositions produced according to the methods described above and herein. In another aspect, provided are compositions comprising one or more glycolipids listed in Table 2. In varying embodiments, the glycolipid compositions are selected from the group consisting of a cleanser, a detergent, a surfactant (e.g., for recovery of oil), a wetting agent, an antifoam agent, an emulsifier, an emollient, a dispersant (e.g., for cleanup of oil including spilled petroleum), a humectant, an antibacterial agent, an antiviral agent, an antifungal agent, a spermicide, an insecticide, a lubricant, an adhesive, a crystal modifier, an instantizer, a viscosity modifier, a mixing/blending aid, a release agent, a cream, a foam, a mousse, a lotion, a balm, an ointment, and an oleochemical composition. In varying embodiments, glycolipid composition is free of any hydrophobic carbon source. In varying embodiments, the method is performed as a batch, fed batch or continuous-feed process. In varying embodiments, the compositions comprise a glycolipid profile comprising: i) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12); ii) at least about 5%, e.g., at least about 10%, 15%, 20%, up to about 25%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 fatty acid methylester or odd/branched chain length (Molecular Formula: C33H56O12); and/or iii) at least about 5%, e.g., at least about 10%, 15%, up to about 20%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 fatty acid (Molecular Formula: C34H58O13). In varying embodiments, the compositions comprise a glycolipid profile comprising at least about 25% of a lactonic glycolipid (e.g., sophorolipid) with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12). In varying embodiments, the compositions comprise a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C32H56O12); ii) at least about 7%, e.g., at least about 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, up to about 20%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C32H54O13); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 10%, e.g., at least about 15%, 20%, 25%, 30%, up to 35%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In some embodiments, the yeast culture further comprises: vi) at least about 2%, e.g., at least about 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); and/or vii) at least about 1%, e.g., at least about 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14). In varying embodiments, the compositions comprise a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the compositions comprise a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 25%, e.g., at least about 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the compositions comprise a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid (e.g., sophorolipid) with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 40%, e.g., up to about 50%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the compositions comprise a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid (e.g., sophorolipid) with C18:1 Fatty acid (Molecular Formula: C32H54O13); ii) at least about 45% of a lactonic glycolipid (e.g., sophorolipid) with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid (e.g., sophorolipid) with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In a further aspect, provided is a yeast cell of a yeast strain selected from the group consisting of: a) b) c) d) e) f) g) h) i) j) Further provided is a population of yeast cells comprising one or more yeast strains as described above and herein. Further provided is a yeast culture comprising one or more yeast strains as described above and herein. The term “population of yeast cells” refers to two or more yeast cells. The term “hydrophobic carbon source” refers to an organic compound that is insoluble in water or has a solubility in water of less than 1 g/L. The term “hydrophilic carbon source refers to an organic compound that is soluble in water at concentrations greater than 1 g/L. 1. Introduction Methods, yeast cultures and glycolipid compositions are described herein, based in part on the discovery of yeast species that convert hydrophilic carbon sources (e.g., simple sugars) into lipids, and then secrete them into the medium in a form that can be harvested without solvent extraction—a breakthrough that addresses obstacles of harvesting and extraction, described above. The methods, yeast cultures and glycolipid compositions described herein enable development of yeast-based processes to convert lignocellulosic hydrolysates into a suite of products, including easily harvested lipids, e.g., for use in the sustainable production of biodiesel and other oleochemicals. The methods, yeast cultures and glycolipid compositions described herein overcome the disadvantages of the prior art in that glycolipids are produced by these yeasts in commercially relevant quantities without provision of hydrophobic substrate or substrates. The methods, yeast cultures and glycolipid compositions described herein entail the use of yeasts in phylum Basidiomycota, class Microbotryomycetes, order Sporidiobolales, genera Yeasts have been used as model organisms for decades. The first eukaryotic genome to be sequenced was that of the yeast We identified basidiomycetous yeast strains that are able to secrete glycolipids. In addition to producing between 0.7 and 12 g/L intracellular lipids, primarily triacylglycerols (TAGs), these yeasts are able to secrete up to an estimated 10-12 g/L crude glycolipids. Basidiomycetous yeasts in the order Sporidiobolales are able to directly convert less expensive simple sugars into significant quantities of secreted glycolipids, opening up opportunities to use these glycolipids for a broader range of consumer and industrial surfactant applications. The present yeast cultures, methods and glycolipid compositions facilitate the development of an economically favorable industrial process for biosurfactant production. The advantages of these basidiomycetous yeasts for production of glycolipids include without limitation:
2. Methods of Producing Glycolipids Generally, the methods entail culturing a population of basidiomycetous yeast cells in a yeast culture containing relatively high concentrations of a hydrophilic (e.g., non-hydrophobic) carbon source and low concentrations of nitrogen, and with or without the presence of a hydrophobic carbon source. a. Yeast Cultures Provided are yeast cultures for producing one or more glycolipids according to the methods described herein. In varying embodiments, the yeast culture comprises a population of basidiomycetous yeast cells, a hydrophilic (e.g., non-hydrophobic) carbon source, and at least about 1 g/L total glycolipid, e.g., at least about 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 7 g/L, 8 g/L, 9 g/L, 10 g/L, 11 g/L, 12 g/L, 13 g/L, 14 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L, 45 g/L, 50 g/L, 100 g/L, 150 g/L, 200 g/L, 250 g/L, 300 g/L, 350 g/L, 400 g/L total glycolipid, e.g., up to about 450 g/L of total glycolipid, wherein the culture does not comprise one or more hydrophobic carbon sources. The one or more glycolipids are extracellularly secreted by the yeast cells into the media and can be harvested without cell lysis and extracted without use of organic solvent. In varying embodiments, the culture does not comprise one or more hydrophobic carbon sources. In varying embodiments, the culture comprises one or more hydrophobic carbon sources. In varying embodiments, the one or more hydrophobic carbon sources are selected from the group consisting of oils, hydrocarbons, unsaturated hydrocarbons, fatty acids, fatty esters including glycerides and mixtures thereof, alcohols, diols, sterols, waste streams, hydrolysates, and mixtures thereof. In varying embodiments, the one or more hydrophobic carbon sources include an oil, e.g., a mineral oil, animal oil, a plant oil, a microbial oil (e.g., an algal oil, a yeast oil, a bacterial oil), a fish oil, a vegetable oil or a nutseed oil, e.g., canola oil, rapeseed oil, olive oil, almond oil, walnut oil, peanut oil, coconut oil, or others, or mixtures thereof. In varying embodiments, the one or more hydrophobic carbon sources comprise at least 8 carbon atoms, e.g., an alkane, fatty acid, fatty ester, alcohol, diol comprising 8 or more carbon atoms, e.g., from 8 to 24 carbon atoms. In varying embodiments, the one or more hydrophobic carbon sources are selected from a primary or secondary alcohol or diol having from about 4 to about 24 carbon atoms, e.g., having 8 or more carbon atoms, e.g., from 8 to 24 carbon atoms or from 8 to 14 carbon atoms. In varying embodiments, the one or more hydrophobic carbon sources are selected from an aliphatic linear or branched hydrocarbon, which may contain one or more substituents selected from the group consisting of —OR, —COOH, and an ester with a carbon chain length of about 4 to about 24 carbon atoms, e.g., having 8 or more carbon atoms, e.g., from 8 to 24 carbon atoms or from 8 to 14 carbon atoms. In varying embodiments, the culture comprises less than about 2% (w/v) nitrogen, e.g., in the range of about 0.005% (w/v) to about 2% (w/v) nitrogen. In varying embodiments, the nitrogen source is selected from the group consisting of ammonia, ammonium salt, nitrate, nitrite, nucleotides, nucleosides, proteins, peptides, amino acids, urea and its derivatives, and mixtures thereof. In varying embodiments, the culture comprises about 0.05% (w/v) ammonium chloride. In varying embodiments, the culture comprises one or more hydrophilic carbon sources at a concentration of at least about 0.2% (w/v), e.g., in the range of about 0.2% (w/v) to about 70% (w/v), e.g., in the range of about 0.2% (w/v) to about 10%, 20%, 30%, 40%, 50% or 60% (w/v). In varying embodiments, the culture comprises a carbon to nitrogen ratio of about 5:1 to about 400:1, e.g., from about 10:1 to about 200:1, from about 20:1 to about 100:1, e.g., from about 25:1 to about 75:1, e.g., from about 30:1 to about 40:1, e.g., using a nitrogen source that can be consumed or utilized by the yeast cells. In varying embodiments, the hydrophilic carbon source is selected from the group consisting of monosaccharides, oligosaccharides, polysaccharides, sugar alcohols, polyols, organic acids, esters, aldehydes, ketones, alcohols, waste streams, plant materials, lignocellulosic hydrolysates, and mixtures thereof. In varying embodiments, the hydrophilic carbon source is a monosaccharide, a disaccharide, an oligosaccharide or a polysaccharide and comprises one or more sugars selected from the group consisting of glucose, sucrose, xylose, galactose, rhamnose, arabinose, mannose, cellobiose, galacturonic acid, lactose, sophorose, and mixtures thereof In varying embodiments, the population of basidiomycetous yeast cells in the yeast culture comprises basidiomycetous yeast cells within the taxonomic class Microbotryomycetes. In varying embodiments, the population of basidiomycetous yeast cells comprises cells within the taxonomic order Sporidiobolales. In varying embodiments, the basidiomycetous yeast cells are within the In varying embodiments, the yeast culture comprises hydrophilic carbon source (e.g., a mono- or di-saccharide, e.g., glucose) (30 g/L), yeast extract (1.5 g/L), ammonium chloride (0.5 g/L), potassium phosphate monobasic (7.0 g/L), sodium phosphate dibasic (5.0 g/L), magnesium sulfate hexahydrate (1.5 g/L) and micronutrient solution comprised of various salts (10 mL/L). In varying embodiments, the yeast culture is supplemented with extra hydrophilic carbon source (e.g., a mono- or di-saccharide, e.g., glucose) to a concentration of at least about 50 g/L, e.g., at least about 75 g/L, 100 g/L, 125 g/L, 150 g/L, 175 g/L, 200 g/L, 225 g/L, 250 g/L, 275 g/L or 300 g/L. b. Methods of Producing Glycolipids Provided are methods of producing one or more glycolipids, comprising culturing a population of basidiomycetous yeast cells in a yeast cell culture comprising a hydrophilic carbon source, wherein the culture does not comprise one or more hydrophobic carbon sources, whereby the basidiomycetous yeast cells produce and secrete one or more glycolipids. As discussed above, the yeast cells are grown in a yeast cell culture media having a high carbon to nitrogen (C/N) ratio. In varying embodiments, the hydrophilic carbon source (e.g., a mono- or di-saccharide, e.g., glucose) is added after the population of basidiomycetous yeast cells reaches stationary phase. Embodiments of the yeast culture are as described above. When culturing yeast cells in the herein described yeast cultures and according to the methods described herein, at least about at least about 1 g/L glycolipid, e.g., at least about 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 7 g/L, 8 g/L, 9 g/L, 10 g/L, 11 g/L, 12 g/L, 13 g/L, 14 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L, 45 g/L, 50 g/L, 100 g/L, 150 g/L, 200 g/L, 250 g/L, 300 g/L, 350 g/L, 400 g/L glycolipid, e.g., up to about 450 g/L of glycolipid, are secreted into the yeast culture medium. The population of basidiomycetous yeast cells is cultured in the yeast cell culture medium under conditions sufficient for yeast cell growth and glycolipid production and secretion. The embodiments of illustrative yeast cultures are as described above and herein. For example, in certain embodiments, the yeast cells are cultured at a temperature of about 24° C. with continuous agitation (e.g., in shake flasks, e.g., baffled shake flasks, e.g., at about 200 rpm) for time period sufficient for yeast cell growth and glycolipid production and secretion, e.g., for about 6 hours to about 96 hours post inoculation with yeast cells, e.g., about 6, 12, 24, 48, 72 or 96 hours post inoculation with yeast cells. The yeast cells are further provided with a sufficient amount of a hydrophilic carbon source, e.g., as described above. In varying embodiments, total glycolipids are measured and determined after 1, 2, 3, 4, 5, 6, 7 or 8 days growth. During and after growth in shake flasks, a hydrophobic liquid settles to the bottom of the growth flask. In varying embodiments, the one or more glycolipids secreted by the yeast cells has density in the range of about 1.00 g/mL to about 1.10 g/mL, e.g., from about 1.08 g/mL to about 1.09 g/mL. The secreted extracellular glycolipids have significantly lower processing costs because the costs of lysing of cells and separation of oil from cell debris can be eliminated or greatly reduced. In varying embodiments, the methods further comprise the step of isolating and/or purifying the one or more glycolipids from the yeast culture. Because the glycolipids are extracellularly secreted from the yeast cells, and the yeast cell culture does not contain a hydrophobic carbon source, the one or more glycolipids can be isolated and/or purified from the yeast cell culture without cell lysis or extraction requiring an organic solvent. The secreted glycolipid compounds are denser than water and can be recovered inexpensively using separation methods based on density such as centrifugation, continuous decanting, or simply letting the material settle to the bottom of a container. Accordingly, in varying embodiments, the basidiomycetous yeast cells can be cultured under batch, fed-batch or continuous feed processing conditions. In varying embodiments, using batch, fed-batch or continuous feed cultivation conditions in which the culture is repeatedly or continuously fed allowing the cells to continue producing product, up to several hundred grams of substrate e.g., 100 g, 150 g, 200 g, 250 g, 300 g, 350 g, 400 g, 450 g or 500 g) per liter can be obtained. Embodiments of the one or more glycolipids and glycolipid composition profiles produced according to the methods are as described below. 3. Glycolipids and Glycolipid Profiles Produced According to the Methods Glycolipid biosurfactants include rhamnolipids, sophoroselipids, glucoselipids, cellobioselipids, trehaloselipids, and mannosylerythritol lipids. In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise one or more rhamnolipids, sophoroselipids, glucoselipids, cellobioselipids, trehaloselipids, and/or mannosylerythritol lipids. In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise one or more sophoroselipids or sophorolipids (SL). In varying embodiments, the one or more glycolipids are free of any hydrophobic carbon source, as discussed above. Sophorolipids (SL) are non-petroleum based, biodegradable glycolipid biosurfactants on the market in household and industrial cleaners and in agricultural pest control products, with many more potential uses. Sophorolipids are composed of the disaccharide sophorose linked to a hydroxyl fatty acyl moiety by a glycosidic bond omega or omega-1 C of the fatty acid and the 1′ —OH group of the sophorose sugar. The 6′ or 6″ OH group of either glucose may or may not be acetylated. When mono-acetylated or di-acetylated, the location of acetylation can be either or both the 6′ or 6″ OH group of either glucose. The fatty acid chain length varies from 16 to 20 carbon atoms, and may be saturated or unsaturated. The sugar can be attached to any carbon of the fatty acid. In some embodiments, the sugar can be attached only to the omega or omega-1 carbon (C) of the fatty acid (the acidic form), or also to the carboxylic acid group of the fatty acid (the lactone form). In varying embodiments, the one or more glycolipids produced are a mixture of similar compounds comprised of C16:1, C18:1, C20:1 and C22:1 fatty acids covalently attached or linked to the disaccharide of glucose comprising sophorose (2-O-beta-D-glucopyranosyl-alpha-D-glucose) (see In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise one or more glycolipids listed in Table 2, below. In varying embodiments, the glycolipid sugar moiety or glycan comprises a disaccharide of glucose. In varying embodiments, the disaccharide of glucose comprises sophorose or cellobiose. In varying embodiments, the one or more glycolipids comprise a fatty acid comprising from 14 to 24 carbon atoms in length. In some embodiments, the glycolipid sugar moiety or glycan is attached or bound to the omega or omega-1 carbon of the fatty acid. In some embodiments, the glycolipid sugar moiety or glycan is attached or bound to a central carbon of the fatty acid. In varying embodiments, the glycolipid sugar moiety or glycan is attached or bound to carbon that is not the alpha carbon (carboxyl carbon, C1) of the fatty acid. In varying embodiments, the glycolipid sugar moiety or glycan can be non-acetylated, monoacetylated or diacetylated. In varying embodiments, the monoacetylated glycolipids comprise an acyl group on the 6′ carbon or the 6″ carbon of the disaccharide of glucose. In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise a glycolipid profile comprising: i) at least about 20%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12); ii) at least about 5%, e.g., at least about 10%, 15%, 20%, up to about 25%, of a lactonic glycolipid with C20:0 fatty acid methylester or odd/branched chain length (Molecular Formula: C33H56O12); and/or iii) at least about 5%, e.g., at least about 10%, 15%, up to about 20%, of a monoacetylated lactonic glycolipid with C20:1 fatty acid (Molecular Formula: C34H58O13). In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise a glycolipid profile comprising a glycolipid profile comprising at least about 25% of a lactonic glycolipid with C18:2 FA methylester or odd/branched chain length (Molecular Formula: C31H52O12). In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C32H56O12); ii) at least about 7%, e.g., at least about 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, up to about 20%, of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 10%, e.g., at least about 15%, 20%, 25%, 30%, up to 35%, of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In some embodiments, the yeast culture further comprises: vi) at least about 2%, e.g., at least about 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); and/or vii) at least about 1%, e.g., at least about 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14). In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 25%, e.g., at least about 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, 45%, up to 50%, of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise a glycolipid profile comprising: i) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 15%, e.g., at least about 20%, 25%, 30%, 35%, 40%, up to about 45%, of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 40%, e.g., up to about 50%, of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the one or more glycolipids in the yeast cultures, produced according to the methods, and/or in the glycolipid compositions isolated and/or purified from the yeast cultures comprise a glycolipid profile comprising: i) at least about 10%, e.g., at least about 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, up to about 25%, of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); ii) at least about 45% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or iii) at least about 5%, e.g., at least about 6%, 7%, 8%, 9%, 10%, up to about 12%, of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). In varying embodiments, the one or more glycolipids are selected from those listed in Table 2. In varying embodiments, the population of yeast cells in the yeast cell culture produces one or more glycolipids having a glycolipid profile according to the glycolipid profiles provided in Tables 3a-d. GL_01, GL_02, etc: glycolipid species listed in Table 2. nd: not detected. Each value is the percent of total glycolipids for that strain. “aff.” ( 4. Compositions Comprising Glycolipids Further provided are compositions comprising the one or more glycolipids and/or having a glycolipid profile as described above and herein. Surfactants (both petroleum and bio-based) are used in a broad variety of agricultural, nutritional, cosmetic, veterinary, therapeutic, and industrial applications due to their many activities. Activities include cleansers, detergents, wetting agents, antifoam agents, emulsifiers, dispersants (e.g., for cleanup of oil including spilled petroleum), and humectants. They are used in household and industrial cleansers and detergents, textiles, agrochemicals, photo chemicals, petroleum extraction, construction materials, adhesives, lubricants, mining, and the pulp and paper industry. About half of surfactants are used in household and laundry detergents, and thus end up in the environment. The poor performance of petroleum-based surfactants with regard to sustainability, bio-accumulation, eco-toxicity and/or biodegradability is pushing development of bio-based replacements, or biosurfactants, which can be produced microbially from renewable feedstocks, have lower toxicity, and are biodegradable. Major biosurfactants on the market include surfactin and emulsin, and a variety of glycolipids which are the major class of biosurfactants. Glycolipids including sophorolipids, rhamnolipids, trehalolipids, glucoselipids, cellobioselipids, and mannosylerythritol lipids have potential to be renewable, low-toxicity, biodegradable alternatives to petroleum-based surfactants. Rhamnolipids are produced by a pathogenic bacterium, The acetylated lactone forms have been demonstrated to be effective additives in shampoos, body washes, detergents, and cosmetic products. There are conflicting reports of anti-bacterial activity. The acidic forms have been demonstrated to be effective ingredients in skin treatments and as moisturizing agents. Due to skin-friendly properties, both forms are also used in cosmetics and pharmaceuticals. Glycolipid esters have proven to be excellent moisturizers for cosmetic uses (See, e.g., U.S. Pat. No. 4,297,340). Additional potential uses include spermicides and virucides (Shah, et al., Accordingly, further provided are glycolipid compositions, e.g., comprising one or more of the glycolipids described above and herein, and produced by the methods described herein. Also contemplated are derivatives of the glycolipids described above and herein, and produced by the methods described herein, for example, derivatives of either the glycan or lipid moiety, including hydroxylated fatty acids, sophorose and derivatives, etc. In varying embodiments, the glycolipid composition is one or more of a cleanser, a detergent, a wetting agent, an antifoam agent, an emulsifier, a surfactant, an emollient, a dispersant, a humectant, an anti-bacterial agent, an anti-viral agent, an anti-fungal agent, a spermicide an insecticide, a lubricant, an adhesive, a crystal modifier, an instantizer, a viscosity modifier, a mixing/blending aid, and/or a release agent. The glycolipid compositions find use in numerous applications, including without limitation, household and industrial cleansers and detergents, textiles, agrochemicals such as control of fungal and insect pests, food processing such as cleaning agents for fresh and frozen fruits, vegetables, meats and processed foods, food processing such as rheologic modifiers in food applications including doughs, pastas and emulsions such as mayonnaise, dressings, and syrups, food processing such as antiadherents, photo chemicals, petroleum extraction such as release agents for fracking, construction materials such as lubricants and demolding agents for brick, ceramic, cement and concrete, mining such as adjuvants in the coal industry, pulp and paper industry, cosmetics such as creams, foams, mousses, balms, ointments, personal care formulations such as shampoos, body washes, conditioners, soaps, creams, skin treatments, and moisturizing agents, therapeutics such as ointments and creams, spermicides, anti-viral and anti-cancer agents, leather auxiliary agents, fuel oil emulsification for improved atomization, yielding a more complete combustion, bioremediation of contaminated soils, groundwater and surface water, dust suppression in mines and quarries, release agents for asphalt truck beds, facilitates castable aqueous emulsions for the manufacture of explosives, ingredient in metal working fluids, and oleochemicals such as biodiesel, platform chemicals. Additional uses of the glycolipid compositions produced by the present methods are described, e.g., in U.S. Patent Publication Nos. 2012/0022241 and 2013/0072414, hereby incorporated herein by reference for all purposes. The following examples are offered to illustrate, but not to limit the claimed invention. We performed a pilot study to determine whether additional related yeast species also secrete glycolipids. Sixteen of the 21 known species in the We further identified the molecular weight and structural components of these glycolipids, shown in Yeast strains The results are consistent with the conclusion that increasing amounts of product with increasing amount of carbon source. However, the efficiency with increasing amount of carbon source tends to drop in this particular condition. In all 4 runs, the growth conditions were as follows: Aeration: 0.5 void volumes per minute (2 L/min), 27+/−1C, Looped RPM with dissolved oxygen to maintain a minimum DO=20% (so agitation ranged from 200-900 RPM), 7 days incubation, pH ranged from 6.3-5.98. In fed-batch runs, 50 of the 150 g/L glucose was fed after 48 hours, throughout a period of 48 hours. Adjusting the glucose concentration and feed rate, and aeration, can increase yields even more. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes. Provided are methods and yeast cultures for producing glycolipids and glycolipid compositions. 1. A yeast culture comprising: a population of basidiomycetous yeast cells, one or more hydrophilic carbon sources, and/or at least about 1 g/L glycolipid, wherein the culture does not comprise one or more hydrophobic carbon sources. 2. The yeast culture of 3. A yeast culture comprising: a population of basidiomycetous yeast cells, one or more hydrophilic carbon sources, one or more hydrophobic carbon sources and at least about 1 g/L glycolipid. 4. The yeast culture of any one of 5. The yeast culture of any one of 6. The yeast culture of any one of 7. The yeast culture of any one of 8. The yeast culture of any one of 9. The yeast culture of any one of 10. The yeast culture of 11. The yeast culture of any one of 12. The yeast culture of any one of 13. The yeast culture of any one of 14. The yeast culture of any one of 15. The yeast culture of any one of 16. The yeast culture of any one of 17. The yeast culture of 18. The yeast culture of any one of 19. The yeast culture of any one of a) b) c) d) e) f) g) h) i) j) and k) 20. The yeast culture of any one of 21. The yeast culture of 22. The yeast culture of any one of 23. The yeast culture of any one of 24. The yeast culture 25. The yeast culture of any one of 26. The yeast culture of any one of i) at least about 20% of a lactonic glycolipid with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12); ii) at least about 5% of a lactonic glycolipid with C20:0 fatty acid methylester or odd/branched chain length (Molecular Formula: C33H56O12); and/or iii) at least about 5% of a monoacetylated lactonic glycolipid with C20:1 fatty acid (Molecular Formula: C34H58O13). 27. The yeast culture of any one of 28. The yeast culture of any one of i) at least about 5% of a lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C32H56O12); ii) at least about 7% of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); iii) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 10% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 29. The yeast culture of vi) at least about 2% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); and/or vii) at least about 1% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14). 30. The yeast culture of any one of i) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 15% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 10% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 20% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 31. The yeast culture of any one of i) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 25% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 20% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 5% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 32. The yeast culture of any one of i) at least about 5% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 10% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 5% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 40% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 33. The yeast culture of any one of i) at least about 10% of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); ii) at least about 45% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or iii) at least about 5% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 34. The yeast culture of any one of 35. A method of producing one or more glycolipids, comprising culturing a population of basidiomycetous yeast cells in a yeast cell culture comprising one or more hydrophilic carbon sources, wherein the culture does not comprise one or more hydrophobic carbon sources, whereby the basidiomycetous yeast cells produce one or more glycolipids. 36. The method of 37. A method of producing one or more glycolipids, comprising culturing a population of basidiomycetous yeast cells in a yeast cell culture comprising one or more hydrophilic carbon sources and one or more hydrophobic carbon sources, whereby the basidiomycetous yeast cells produce one or more glycolipids. 38. The method of any one of 39. The method of any one of 40. The method of any one of 41. The method of any one of 42. The method of any one of 43. The method of any one of 44. The method of any one of 45. The method of any one of 46. The method of 47. The method of any one of 48. The method of any one of 49. The method of any one of 50. The method of any one of 51. The method of any one of 52. The method of any one of 53. The method of 54. The method of any one of 55. The method of any one of a) b) c) d) e) f) g) h) i) j) and k) 56. The method of any one of 57. The method of 58. The method of any one of 59. The method of any one of 60. The method of 61. The method of any one of 62. The method of any one of i) at least about 20% of a lactonic glycolipid with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12); ii) at least about 5% of a lactonic glycolipid with C20:0 fatty acid methylester or odd/branched chain length (Molecular Formula: C33H56O12); and/or iii) at least about 5% of a monoacetylated lactonic glycolipid with C20:1 fatty acid (Molecular Formula: C34H58O13). 63. The method of any one of C31H52O12). 64. The method of any one of i) at least about 5% of a lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C32H56O12); ii) at least about 7% of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); iii) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 10% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 65. The method of vi) at least about 2% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); and/or vii) at least about 1% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14). 66. The method of any one of i) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 15% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 10% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 20% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 67. The method of any one of i) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 25% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 20% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 5% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 68. The method of any one of i) at least about 5% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 10% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 5% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 40% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 69. The method of any one of i) at least about 10% of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); ii) at least about 45% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or iii) at least about 5% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 70. The method of any one of 71. The method of 72. The method of any one of 73. The method of any one of 74. The method of any one of 75. A glycolipid composition produced according to the method of any one of 76. The glycolipid composition of 77. The glycolipid composition of any one of 78. A composition comprising one or more glycolipids listed in Table 2. 79. The composition of i) at least about 20% of a lactonic glycolipid with C18:2 fatty acid methylester or odd/branched chain length (Molecular Formula: C31H52O12); ii) at least about 5% of a lactonic glycolipid with C20:0 fatty acid methylester or odd/branched chain length (Molecular Formula: C33H56O12); and/or iii) at least about 5% of a monoacetylated lactonic glycolipid with C20:1 fatty acid (Molecular Formula: C34H58O13). 80. The composition of any one of 81. The composition of i) at least about 5% of a lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C32H56O12); ii) at least about 7% of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); iii) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 10% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 82. The composition of vi) at least about 2% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); and/or vii) at least about 1% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14). 83. The composition of i) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 15% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 10% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 20% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 84. The composition of i) at least about 10% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 25% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 20% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 5% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 15% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 85. The composition of i) at least about 5% of a monoacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C34H58O13); ii) at least about 10% of a diacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C34H56O14); iii) at least about 5% of a diacetylated lactonic glycolipid with C20:1 Fatty acid (Molecular Formula: C36H60O14); iv) at least about 20% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or v) at least about 40% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 86. The composition of i) at least about 10% of a monoacetylated lactonic glycolipid with C18:1 Fatty acid (Molecular Formula: C32H54O13); ii) at least about 45% of a lactonic glycolipid with C18:2 Fatty acid methylester (Molecular Formula: C31H52O12); and/or iii) at least about 5% of a lactonic glycolipid with C20:0 Fatty acid methylester (Molecular Formula: C33H56O12). 87. The composition of any one of 88. The composition of any one of 89. A yeast cell of a yeast strain selected from the group consisting of:
a) b) c) d) e) f) g) h) i) j) 90. A population of yeast cells comprising one or more yeast strains of 91. A yeast culture comprising one or more yeast strains of CROSS-REFERENCE TO RELATED APPLICATIONS
FIELD
BACKGROUND
Yeast Species Reported To Produce And Secrete Commercially Relevant Amounts Of Sophorolipids Species Year of publication Reference 2012 [6] 1961 [7, 8] (syn. 2008 [9] 2010 [10] 1967 [11] (syn. 2010 [12, 13] 2010 [12] 2010 [12] 2013 [14] 1968 [15] 1970 [16-19] (syn. 2006 [20] 2008 [21] (syn. 1984 [22] (syn. SUMMARY
Definitions
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION
1 C28H48O12 576.69 1.72 Lactonic glycolipid 9-Hexadecenoic acid, 15-[(2-O-β-D-glucopyranosyl-β-D- with C16:1 Fatty acid glucopyranosyl)oxy]-, intramol. 1,4″-ester 2 C30H52O12 604.75 2.48 Lactonic glycolipid 9-Octadecenoic acid, 17-[(2-O-β-D-glucopyranosyl-β-D- with C18:1 Fatty acid glucopyranosyl)oxy]-, intramol. 1,4″-ester 3 C32H56O12 632.80 3.12 Lactonic glycolipid 11-Eicosanoic acid, 19-[(2-O-β-D-glucopyranosyl-β-D- with C20:1 Fatty acid glucopyranosyl)oxy]-, intramol. 1,4″-ester 4 C34H60O12 660.86 3.52 Lactonic glycolipid 13-Docosenoic acid, 21-[(2-O-β-D-glucopyranosyl-β-D- with C22:1 Fatty acid glucopyranosyl)oxy]-, intramol. 1,4″-ester 5 C30H50O13 618.73 2.10 Monoacetylated Lactonic 9-Hexadecenoic acid, 15-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C16:1 glucopyranosyl)oxy]-, intramol. 1,4″-ester Fatty acid or 9-Hexadecenoic acid, 15-[[2-O-(6-O-acetyl-β-D-glucopyranosyl)-β-D- glucopyranosyl]oxy]-, intramol. 1,4″-ester 6 C32H54O13 646.79 2.87 Monoacetylated Lactonic 9-Octadecenoic acid, 17-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C18:1 glucopyranosyl)oxy]-, intramol. 1,4″-ester Fatty acid or 9-Octadecenoic acid, 17-[[2-O-(6-O-acetyl-β-D-glucopyranosyl)-β-D- glucopyranosyl]oxy]-, intramol. 1,4″-ester 7 C34H58O13 674.84 3.29 Monoacetylated Lactonic 11-Eicosanoic acid, 19-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C20:1 glucopyranosyl)oxy]-, intramol. 1,4″-ester Fatty acid or 11-Eicosanoic acid, 19-[[2-O-(6-O-acetyl-β-D-glucopyranosyl)-β-D- glucopyranosyl]oxy]-, intramol. 1,4″-ester 8 C36H62O13 702.89 3.69 Monoacetylated Lactonic 13-Docosenoic acid, 21-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C22:1 glucopyranosyl)oxy]-, intramol. 1,4″-ester Fatty acid or 13-Docosenoic acid, 21-[[2-O-(6-O-acetyl-β-D-glucopyranosyl)-β-D- glucopyranosyl]oxy]-, intramol. 1,4″-ester 9 C30H48O14 632.71 1.79 Diacetylated 9-Tetradecenoic acid, 13-[[6-O-acetyl-2-O-(6-O-acetyl-β-D- Lactonic glycolipid glucopyranosyl)-β-D-glucopyranosyl]oxy]-, intramol. 1,4″-ester with C14:1 Fatty acid 10 C32H52O14 660.77 2.52 Diacetylated 9-Hexadecenoic acid, 15-[[6-O-acetyl-2-O-(6-O-acetyl-β-D- Lactonic glycolipid glucopyranosyl)-β-D-glucopyranosyl]oxy]-, intramol. 1,4″-ester with C16:1 Fatty acid 11 C34H56O14 688.82 3.10 Diacetylated 9-Octadecenoic acid, 17-[[6-O-acetyl-2-O-(6-O-acetyl-β-D- Lactonic glycolipid glucopyranosyl)-β-D-glucopyranosyl]oxy]-, intramol. 1,4″-ester with C18:1 Fatty acid 12 C36H60O14 716.88 3.47 Diacetylated 11-Eicosanoic acid, 19-[[6-O-acetyl-2-O-(6-O-acetyl-β-D-glucopyranosyl)- Lactonic glycolipid β-D-glucopyranosyl]oxy]-, intramol. 1,4″-ester with C20:1 Fatty acid 13 C31H52O12 616.76 3.07 Lactonic glycolipid Methyl 9,12-octadecadienoate 17-[(2-O-β-D-glucopyranosyl-β-D- with C18:2 Fatty acid glucopyranosyl)oxy]-, intramol. 1,4″-ester methylester 14 C33H56O12 644.81 3.45 Lactonic glycolipid Methyl eicosanoate 19-[(2-O-β-D-glucopyranosyl-β-D- with C20:0 Fatty acid glucopyranosyl)oxy]-, intramol. 1,4″-ester methylester 15 C32H54O13 646.79 1.08 Acidic glycolipid with Eicosatrienoic acid, 19-[(2-O-β-D-glucopyranosyl-β-D- C20:3 Fatty acid glucopyranosyl)oxy]-, 16 C32H54O14 662.78 1.31 Monoacetylated acidic 9,12-Octadecadienoic acid, 17-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C18:2 glucopyranosyl)oxy]-, or 9,12-Octadecadienoic acid, 17-[[2-O-(6-O- Fatty acid acetyl-β-D-glucopyranosyl)-β-D-glucopyranosyl]oxy]-, 17 C34H58O14 690.84 1.87 Monoacetylated acidic 11,14-Eicosadienoic acid, 19-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C20:2 glucopyranosyl)oxy]-, Fatty acid or 11,14-Eicosadienoic acid, 19-[[2-O-(6-O-acetyl-β-D-glucopyranosyl)-β- D-glucopyranosyl]oxy]-, 18 C34H56O14 688.82 1.08 Monoacetylated acidic Eicosatrienoic acid, 19-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C20:3 glucopyranosyl)oxy]-, Fatty acid or Eicosatrienoic acid, 19-[[2-O-(6-O-acetyl-β-D-glucopyranosyl)-β-D- glucopyranosyl]oxy]-, 19 C36H66O14 722.93 1.44 Monoacetylated acidic Docosanoic acid, 21-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C22:0 glucopyranosyl)oxy]-, Fatty acid (isomer A) or Docosanoic acid, 21-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glucopyranosyl)oxy]-, 20 C36H66O14 722.93 1.59 Monoacetylated acidic Docosanoic acid, 21-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glycolipid with C22:0 glucopyranosyl)oxy]-, Fatty acid (isomer B) or Docosanoic acid, 21-[(6-O-acetyl-2-O-β-D-glucopyranosyl-β-D- glucopyranosyl)oxy]-, 21 C32H54O15 678.78 0.55 Diacetylated acidic 9-Hexadecenoic acid, 15-[[6-O-acetyl-2-O-(6-O-acetyl-β-D- glycolipid with C16:1 glucopyranosyl)-β-D-glucopyranosyl]oxy]-, Fatty acid 22 C34H58O15 706.84 0.80 Diacetylated acidic 9-Octadecenoic acid, 17-[[6-O-acetyl-2-O-(6-O-acetyl-β-D- glycolipid with C18:1 glucopyranosyl)-β-D-glucopyranosyl]oxy]-, Fatty acid 23 C38H68O15 764.96 1.88 Diacetylated acidic Docosanoic acid, 21-[[6-O-acetyl-2-O-(6-O-acetyl-β-D-glucopyranosyl)-β- glycolipid with C22:0 D-glucopyranosyl]oxy]-, Fatty acid 24 C40H72O15 793.02 2.57 Diacetylated acidic Tetracosanoic acid, 23-[[6-O-acetyl-2-O-(6-O-acetyl-β-D- glycolipid with C24:0 glucopyranosyl)-β-D-glucopyranosyl]oxy]-, Fatty acid 25 C39H70O15 778.99 2.23 Diacetylated acidic SL Methyl docosanoate, 21-[[6-O-acetyl-2-O-(6-O-acetyl-β-D- with C22:0 Fatty acid glucopyranosyl)-β-D-glucopyranosyl]oxy]-, methylester 26 C29H50O11 574.720 Unknown (C29H50O11) 27 C31H54O11 602.775 Unknown (C31H54O11) 28 C30H54O11 590.764 Unknown (C30H54O11) Tables 3A-D
Profiles of Glycolipid Species Produced by Basidiomycetous Yeast Species in the Phaff Yeast Culture Collection
Y-67009 81-84 0.0097 0.1035 0.0489 0.0029 0.0102 0.06 0.026 Y-67018 04-877 0.0422 3.5806 5.8705 0.0233 0.1078 8.9467 11.1175 Y-67017 05-775 0.0824 4.323 6.0044 0.0249 0.1645 13.4006 15.3295 Y-67014 06-583 0.0445 2.5715 5.5554 0.4142 0.2669 8.4284 11.9318 Y-67010 68-43 0.625 2.7409 5.1914 1.1312 0.0237 8.8468 12.3729 Y-67016 05-632 0.0001 0.0203 0.3509 0.0364 0.0084 0.4387 11.1815 Y-67013 09-1303 0.1988 3.6513 5.6073 0.8772 0.5624 8.1274 12.3984 Y-67012 09-163 0.161 2.7162 2.3632 0.0137 0.3586 16.7612 7.0736 Y-17302 67-67 0.1096 1.3283 5.5552 0.0278 0.1222 3.3346 5.8014 Y-12675 67-20 0.0023 0.0546 0.0997 0.0151 0.0081 0.1774 0.2414 Y-67015 08-225 0.0033 0.1039 1.0969 0.0237 0.0068 0.8164 16.9191 Y-17069 10-162 0.0074 0.0608 0.1502 0.006 0.01 0.2298 0.3757 Y-67011 68-257 0.0028 0.0549 0.3584 0.0161 0.0001 2.8791 6.0896 Y-67009 81-84 0.003 0.001 0.0026 0.0118 0.0052 27.7663 3.4103 Y-67018 04-877 0.0344 0.0147 0.1147 3.4372 1.5044 29.921 22.037 Y-67017 05-775 0.0411 0.0105 0.0874 2.3449 0.9736 25.4548 14.5552 Y-67014 06-583 0.4693 0.0057 0.3564 3.5429 1.8015 29.8501 13.7706 Y-67010 68-43 1.5099 0.4612 0.0237 2.9266 2.2824 21.1511 11.3258 Y-67016 05-632 0.0588 0.0012 0.4687 19.1007 13.2349 25.3099 22.1654 Y-67013 09-1303 2.3467 0.0312 0.0312 3.9761 2.3535 22.1001 8.4611 Y-67012 09-163 0.0169 0.0093 0.1075 1.5562 0.2294 48.725 7.5512 Y-17302 67-67 0.1573 0.1024 0.1966 4.4139 1.9813 30.1747 21.6825 Y-12675 67-20 0.0211 0.013 0.0003 0.0628 0.0441 0.3079 0.1594 Y-67015 08-225 0.112 0.0022 0.1926 30.7457 22.3245 7.7966 18.4463 Y-17069 10-162 0.0127 0.0069 0.0003 0.1976 0.0803 0.8978 0.4493 Y-67011 68-257 0.0076 0.0022 0.0095 12.406 9.0879 23.1439 43.9026 Y-67009 81-84 0.0014 0.0001 0.0001 0.001 0.0001 0.0017 0.0001 Y-67018 04-877 0.0008 0.0022 nd 0.0013 0.003 0.0032 0.0025 Y-67017 05-775 nd 0.002 0.0008 0.0008 0.0016 0.0017 nd Y-67014 06-583 0.264 0.151 0.0057 0.1183 0.0057 0.0057 0.3572 Y-67010 68-43 1.3381 0.7028 0.4627 0.555 1.902 1.902 0.0237 Y-67016 05-632 nd nd 0.0004 nd nd nd 0.0003 Y-67013 09-1303 0.7036 0.6757 0.0312 0.0312 1.525 1.5496 0.5659 Y-67012 09-163 0.0037 0.0041 0.0001 0.0001 0.0001 0.0027 0.0039 Y-17302 67-67 0.1228 0.0478 0.0026 0.0588 0.1016 0.106 0.2539 Y-12675 67-20 0.0049 0.0183 0.007 0.0003 0.8678 0.8046 0.0003 Y-67015 08-225 nd 0.0007 nd 0.0007 0.0028 0.0036 0.0023 Y-17069 10-162 52.3762 9.4158 17.0036 1.4493 0.0118 0.0118 3.5172 Y-67011 68-257 0.0039 0.0056 0.0017 0.0001 0.0043 0.0048 0.0047 Y-67009 81-84 0.0011 0.001 0.001 0.0001 49.697 18.7635 0.0705 Y-67018 04-877 nd 0.0008 0.0016 nd 5.5728 7.5214 0.1382 Y-67017 05-775 0.0007 0.0011 0.0011 0.0011 7.958 8.9784 0.256 Y-67014 06-583 0.2901 0.1342 0.0057 0.1349 9.8843 8.7178 0.9162 Y-67010 68-43 1.0222 0.487 0.487 0.6111 8.973 7.167 3.7537 Y-67016 05-632 nd 0.0008 0.0005 0.0004 2.8344 4.7757 0.0117 Y-67013 09-1303 0.0312 1.218 1.218 1.0796 8.8722 7.9423 3.8335 Y-67012 09-163 0.003 0.0041 0.0025 0.0001 6.2906 5.828 0.214 Y-17302 67-67 0.0561 0.1194 0.1194 0.0026 7.7543 15.4439 0.8231 Y-12675 67-20 0.0003 64.4957 31.7499 0.5594 0.1322 0.1121 0.0399 Y-67015 08-225 0.0009 nd nd 0.002 0.4403 0.9054 0.0513 Y-17069 10-162 13.2706 0.0179 0.0119 0.0003 0.1787 0.2058 0.0444 Y-67011 68-257 0.0036 0.0029 0.0029 0.0015 0.225 1.7106 0.0678 EXAMPLES
Example 1
Pilot Study
Y-67009 81-84 12.74 Y-67018 04-877 8.67 Y-67017 05-775 6.53 Y-67014 06-583 4.07 Y-67010 68-43M 3.52 Y-67016 05-632 3.12 Y-67013 09-1303 3.04 Y-67012 09-163 2.66 Y-17302 67-67 2.61 Y-12675 67-20 2.29 Y-67015 08-225 2.06 Y-17069 10-162 1.84 Y-67011 68-257 0.62 A Y-67009 81-84 B Strain 1 Y-67018 04-877 B Strain 2 Y-67017 05-775 D Y-67014 06-583 E Y-67010 68-43 F Y-67016 05-632 G Y-67013 09-1303 I Y-67012 09-163 J Strain 1 Y-17302 67-67 J Strain 3 10-1109 Y-12675 67-20 K Y-67015 08-225 Y-17069 10-162 L Y-67011 68-257 * illustrates the species and Phaff Yeast Culture Collection (UCDFST) strain ID numbers of the yeasts described in FIGS. 2 through 4. Species C strain 2 and Species J strain 3 are not depicted in FIG. 4 because they do not produce extracellular glycolipids. Example 2
Scaling Up Into 7 L (4 L Culture Volume) Fed Batch Fermentors
Dry Cell Weight 16.59 32.77 14.39 22.71 (g/L) (97.5% up) (36.9% up) Extracellular 3.98 7.32 7.69 15.22 lipid (g/L) (83.92% up) (97.92% up) Total Microbial 20.57 40.09 22.08 37.93 production (g/L) (41.1% (26.73% (44.16% (25.28% conversion) conversion) conversion) conversion) REFERENCES



