ROTARY ACTUATOR
This application is a Divisional application of U.S. patent application Ser. No. 13/686,423 filed Nov. 27, 2012, which claims priority to Japanese Patent Application No. 2011-258508 filed Nov. 28, 2011, the contents of which are all herein incorporated by reference in their entirety. The present invention relates to rotary actuators that output driving torque as a result of output shafts pivoting in a rotational direction due to action of a pressure medium. A rotary actuator having such a configuration as the one disclosed in U.S. Pat. No. 5,601,165 is known as one of the rotary actuators that output driving torque as a result of an output shaft pivoting in a rotational direction due to action of a pressure fluid serving as a pressure medium. In the rotary actuator disclosed in U.S. Pat. No. 5,601,165, ribs are provided within a cylinder as an integral unit, and vanes are provided to an output shaft rotatably installed within the cylinder. Both ends of the cylinder are provided with end caps. The ribs and the inner wall surface of the cylinder, as well as the vanes and the outer wall surface of the output shaft form pressure chambers. Adjoining pressure chambers are alternatively supplied with a pressure fluid, the output shaft thereby pivots in a rotational direction due to action of the pressure fluid, and, as a result, driving torque is output. In the above rotary actuator, seals are inserted into grooves provided on the ribs and the vanes. The seals inserted into the ribs are pressed against the outer wall surface of the output shaft, and the seals inserted into the vanes are pressed against the inner wall surface of the cylinder. Thus the adjoining pressure chambers are sealed against each other. The pressure chambers are also sealed against each other by means of gaskets between the end caps and the output shaft, as well as between the end caps and the vanes. In a conventional general rotary actuator such as the one disclosed in U.S. Pat. No. 5,601,165, a rotary sliding portion between the rotary output shaft and the ribs provided on the cylinder is sealed by the seals inserted into the ribs. A rotary sliding portion between the vanes provided on the rotary output shaft and the cylinder is also sealed by the seals inserted into the vanes. Furthermore, rotary sliding portions between the rotary output shaft and the end caps, as well as between the vane and the end caps are also sealed by the gaskets. Unfortunately, it is difficult to suppress leakage of the pressure fluid in the rotary sliding portions by means of the seals. In the conventional rotary actuators such as the one disclosed in U.S. Pat. No. 5,601,165, leakage occurs from the seals or the gaskets in many cases under the current circumstances. Therefore, the pressure fluid often leaks within the rotary actuator. Moreover, the conventional rotary actuators have a structure in which the seals are inserted into the grooves in the ribs or the vanes, the problem of leakage between the grooves and the seals also arises. Furthermore, since each seal inserted into the groove has corner sections, it is particularly difficult to maintain adhesion to the surface relative to which the seal slides, in those corner sections and in the vicinity thereof, which makes it difficult to suppress leakage. Therefore, the pressure fluid leaks more often within the rotary actuator. In addition, the conventional rotary actuators need high-pressure rotary seals that are used in the rotary sliding portions and pressed with high pressure against the surface relative to which the seals slide. Such seals are therefore different from statically used seals or those for use in linear sliding portions, and another problem arises of significantly shorter duration of the seals during which sealing characteristics intended by the design can be maintained. For that reason, a rotary actuator whose structure does not need the high-pressure rotary seals or is able to significantly reduce the number of the high-pressure rotary seals is desired to be realized. In light of the foregoing situation, it is an object of the present invention to provide a rotary actuator capable of reducing internal leakage of the pressure medium, and whose structure does not need the high-pressure rotary seals or is able to significantly reduce the number of the high-pressure rotary seals. To achieve the above-stated object, the rotary actuator according to a first feature of the present invention is a rotary actuator that outputs driving torque as a result of an output shaft pivoting in a rotational direction due to action of a pressure medium, the rotary actuator comprising: a case; a cylinder that is installed within the case and internally has a hollow space; an output shaft that is rotatably supported with respect to the case, has an axial direction parallel to an axial direction of the cylinder, and is installed in the hollow space; an arm that is integrated with, or fixed to, the output shaft, and extends in a radial direction of the cylinder; and a piston that has a portion extending in an arc, and is installed within the cylinder and supported so as to be able to slide and be displaced with respect to the cylinder along a circumferential direction of the cylinder, wherein one end portion of the piston is rotatably connected to the arm, the cylinder is internally provided with a first pressure chamber in which the output shaft and the arm are housed, and a second pressure chamber that is defined by the cylinder and the piston and in which another end portion of the piston that is located opposite from the end portion thereof connected to the arm is slidably installed, and as a result of a pressure medium being fed into one of the first pressure chamber and the second pressure chamber and discharged from the other, the arm is displaced in the circumferential direction of the cylinder, and the output shaft pivots in the rotational direction. With this configuration, inside the cylinder installed within the case, the pressure medium is fed into one of the first and second pressure chambers and discharged from the other, and the piston thereby slides and is displaced in the circumferential direction of the cylinder. As a result of the arm to which the piston is rotatably connected being driven by the piston, the output shaft pivots with the arm in a rotational direction. Thus the driving torque of the rotary actuator is output. As described above, with the rotary actuator having the above configuration, the first pressure chamber on one end side of the piston that slides with respect to the cylinder and the second pressure chamber on the other end are defined within the cylinder. Thus, such a structure provided with pressure chambers defined by an output shaft, vanes, a cylinder, ribs, and end caps, as the structure of the conventional rotary actuators, is not necessary. That is, the rotary actuator of the above configuration does not need rotary sliding portions between the output shaft and the ribs provided to the cylinder, between the cylinder and vanes provided to the rotary output shaft, and between the rotary output shaft with the vanes and end caps. Accordingly, with the above configuration, internal leakage of the pressure medium within the rotary actuator can be reduced. In addition, the rotary actuator having the above configuration does not need, or is able to greatly reduce the number of the high-pressure rotary seals that are used in the rotary sliding portions and pressed with high pressure against the surface relative to which the seals slide. Consequently, with the above configuration, it is possible to provide the rotary actuator capable of reducing internal leakage of the pressure medium, and whose structure does not need the high-pressure rotary seals or is able to significantly reduce the number of the high-pressure rotary seals. Note that with the above configuration, the piston that drives, via the arm, the output shaft is rotatably connected to the arm. Therefore, even if an external load acts on the output shaft, the arm can be prevented from separating from the piston. Consequently, in the case where a servo control mechanism is built for control of the rotational position of the output shaft driven by the piston that is displaced due to feed and discharge of the pressure oil into/from the first and second pressure chambers, reduction in the responsiveness of this servo mechanism can be suppressed. That is, even if responsiveness of the above servo mechanism is increased, momentary incapability to control the rotational position mentioned above is prevented. The rotary actuator according to a second feature of the present invention is the rotary actuator of the first feature, wherein the cylinder includes a plurality of cylinder blocks each formed in a divided state, the cylinder is integrally assembled by putting together the plurality of cylinder blocks along the axial direction of the cylinder, the cylinder is provided with a piston chamber that houses the piston supported so as to be able to slide and be displaced with respect to the cylinder, and the piston chamber is defined between the cylinder blocks adjoining in the axial direction of the cylinder. With this configuration, the cylinder is assembled by the plurality of cylinder blocks being put together in the axial direction of the cylinder, and the piston chamber is defined between the adjoining cylinder blocks. Therefore, when the piston chamber is formed, a semicircular groove is formed on each cylinder block, and these grooves are combined to constitute the piston chamber. It is thus possible to easily form the piston chamber for housing the piston that slides and is displaced in the circumferential direction of the cylinder, and to easily manufacture the cylinder. The rotary actuator according to a third feature of the present invention is the rotary actuator of the first feature, wherein a plurality of the pistons are provided, and the plurality of pistons are arranged in line along an axial direction of the output shaft. With this configuration, the output shaft is driven via the arm by the plurality of pistons installed in line along the axial direction of the output shaft. Therefore, it is possible to output a larger amount of driving torque with a compact structure, without increasing the size of the cylinder in its radial direction. The rotary actuator according to a fourth feature of the present invention is the rotary actuator of the first feature, wherein a plurality of the arms are provided so as to extend in the radial direction of the cylinder from a plurality of positions on the output shaft. With this configuration, the arms are provided so as to extend from the plurality of positions on the output shaft in the radial direction. In the case where the plurality of pistons for driving, via the arms, the output shaft to rotate are provided, the design associated with the installation position thereof can be made more freely. Note that the arms may be provided so as to extend in the radial direction of the cylinder from the plurality of positions in the axial direction of the output shaft, for example. Furthermore, the arms may be provided so as to extend in radial directions of the cylinder from the plurality of positions on the output shaft, forming different angles in the circumferential direction of the cylinder. The rotary actuator according to a fifth feature of the present invention is the rotary actuator of the fourth feature, wherein the plurality of arms are provided to extend in the radial direction of the cylinder along the same plane perpendicular to the axial direction of the output shaft, a piston unit constituted by the plurality of pistons installed so as to extend in the circumferential direction of the cylinder along the same plane is provided, and the pistons in the piston unit are rotatably connected to the respective arms. With this configuration, the output shaft can be driven to rotate by the plurality of pistons in the piston unit that are installed along the same plane perpendicular to the axial direction of the output shaft. Therefore, it is possible to output a lager amount of driving torque while preventing the rotary actuator from becoming longer in the axial direction of the cylinder, and also preventing the rotary actuator from becoming larger in the radial direction of the cylinder. For example, in the case where the piston unit is constituted by two pistons, it is possible to double the output of the rotary actuator without increasing its length in the axial direction and the size in the radial direction. The rotary actuator according to a sixth feature of the present invention is the rotary actuator of the fifth feature, wherein a plurality of the piston units are provided, and the plurality of piston units are arranged in line along the axial direction of the output shaft. With this configuration, the output shaft is driven via the arms by the plurality of piston units installed in line along the axial direction of the output shaft. Therefore, it is possible to further output a larger amount of driving torque with a compact structure, without increasing the size of the cylinder in its radial direction. The rotary actuator according to a seventh feature of the present invention is the rotary actuator of the first feature, wherein the cylinder is provided with a piston chamber that houses the piston supported so as to be able to slide and be displaced with respect to the cylinder, and the piston chamber is defined by a tubular hollow member that is installed in a main body of the cylinder and extends in an arc. With this configuration, the member for defining the piston chamber is constituted by the tubular hollow member provided separately from the main body of the cylinder. It is therefore possible to easily form the piston chamber having a structure in which the surface relative to which the pistons slide is seamless, and internal leakage can be further reduced. It should be appreciated that the above and other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings. An embodiment for implementing the present invention will be hereinafter described with reference to the drawings. Note that the present invention can be applied widely to rotary actuators that output driving torque as a result of output shafts thereof pivoting in a rotational direction due to action of a pressure medium. The rotary actuator 1 shown in As shown in The case 11 has a case main body portion 21 and a pair of lid portions (22 Within the cylinder 12 a plurality of piston chambers 24 are provided, each being a long hole extending in an arc along the circumferential direction of the cylinder 12. The plurality of piston chamber 24 are provided, each extending in the circumferential direction of the cylinder 12 along the same plane perpendicular to the axial direction of the cylinder 12. Note that in the present embodiment, two piston chambers 24 (24 Furthermore, in the cylinder 12 pairs of piston chambers 24 (24 Each piston chamber 24 is provided as a hole that communicates with the hollow space 23 within the cylinder 12. The piston chamber 24 is defined so that movement of the pressure oil between the piston chamber 24 and the hollow space 23 is regulated by arc pistons (14 Further, the cylinder 12 is provided with a plurality of cylinder blocks 27 formed in a divided state. Each cylinder block 27 is provided as a cylindrical member whose length in the axial direction is short. The cylinder blocks 27 are put together along the axial direction of the cylinder 12 within the case main body portion 21 of the case 11, and thus the cylinder 12 is integrally assembled. Further, each cylinder block 27 is provided with a region formed as a through hole that constitutes part of the hollow space 23, and grooves having a semicircular cross section and extending in an arc along the circumferential direction of the cylinder 12. Each cylinder block 27 installed at a position other than both ends in the axial direction of the cylinder 12 is provided with those grooves on both end faces in the axial direction. Meanwhile, each of the cylinder blocks 27 installed at both ends in the axial direction of the cylinder 12 is provided with the groove on one end face in the axial direction. Those grooves are put together so as to face each other to form a circular cross section between the cylinder blocks 27 adjoining in the axial direction of the cylinder 12, thereby defining the piston chambers 24. Further, in the cylinder blocks 27 adjoining in the axial direction of the cylinder 12, a fitting face on which the above-mentioned grooves each having a semicircular cross section are formed and put together is formed as a plain face so that the cylinder blocks 27 are brought into close contact with each other. Thus leakage of the pressure oil between the adjoining cylinder blocks 27 is sufficiently prevented. Note that a ring-shaped seal member 28 is inserted into one of two adjoining cylinder blocks 27 at an outer circumferential edge portion of the fitting face. The seal member 28 is a seal member for static use with low pressure. Furthermore in the present embodiment, among the plurality of cylinder blocks 27, the cylinder blocks 27 installed at positions other than both ends in the axial direction of the cylinder 12 and the cylinder blocks 27 installed at both ends have different fitting face configurations. In the cylinder blocks 27 installed at positions other than both ends in the axial direction of the cylinder 12, both end faces in the axial direction of the cylinder 12 are provided as fitting faces that are brought into close contact with the cylinder block 27 to be fitted together, and define the piston chamber 24. On the other hand, in the cylinder blocks 27 installed at both ends in the axial direction of the cylinder 12, one end face is provided as a fitting face that is brought into close contact with the cylinder block 27 to be fitted together, and defines the piston chamber 24. The other end face of those cylinder blocks 27 are provided as a fitting face to be brought into close contact with the lid portion (22 Note that when forming the abovementioned grooves each having a semicircular cross section that make holes each with a circular cross section to form the piston chambers 24 as a result of the cylinder blocks 27 being put together, firstly machining of the material of the cylinder blocks 27 is performed to make the grooves extending in an arc in the circumferential direction of the cylinder 12, for example. After the machining, polishing is performed on the machined wall surfaces that constitute the semicircular cross sections, thereby forming the grooves extending in an arc in the circumferential direction of the cylinder 12 having a smooth arc cross section. The output shaft 13 is supported rotatably with respect to the case 11 and installed in the hollow space 23, with the axial direction thereof being parallel to the axial direction of the cylinder 12. The output shaft 13 is provided with a shaft portion 13 The shaft portion 13 Between the outer circumference of the end portion 13 The output shaft 13 and the case 11 are sealed against each other by those seal members (29, 30). Each seal member (29, 30) is formed in a ring shape, and the outer circumference of the output shaft 13 slides in the circumferential direction along the inner circumference of the seal member (29, 30). Therefore, those seal members (29, 30) are configured as the seal members whose specifications are similar to those of the seal members used in the linear sliding portion. Note that those seal members (29, 30) do not necessarily have to be provided. Even in this case, the outer circumference of the output shaft 13 and the inner circumference of the lid portions (22 Furthermore, the seal grooves into which the seal members (29, 30) are inserted do not necessarily have to be provided in the lid portions (22 Each arm unit 15 has a plurality of arms (15 Furthermore, in the present embodiment, each arm (15 The arms 15 The arc pistons (14 Furthermore, the arc pistons (14 As described above, each piston unit 14 is constituted by the plurality of arc pistons (14 The wall surface of each piston chamber (24 Note that when manufacturing the arc pistons (14 The arc pistons (14 The end portion 32 of each arc piston (14 Furthermore, the end portion 32 of each arc piston (14 In the present embodiment, each rotary shaft 33 is configured as a bolt member having a pin-like shaft portion having a columnar shape provided with an external thread portion at its tip. Each rotary shaft 33 is installed so as to pass through the two plate-like portions of the arm (15 As described above, the end portion 32 of each arc piston (14 Here, the configuration of pressure chambers (25, 26 The pressure chamber 25 is provided as a region into which the pressure oil serving as the pressure medium is introduced. The pressure chamber 25 is formed by the hollow space 23, and houses the output shaft 13 and the plurality of arm units 15. To the pressure chamber 25, a plurality of feed/discharge holes 31 through which the pressure oil is fed and discharged are open. The feed/discharge holes 31 are provided as, for example, holes that communicate with the pressure chamber 25 in the lid portion 22 The pressure chambers (26 To each pressure chamber 26 The pressure oil is fed and discharged into/from the pressure chambers 26 In the rotary actuator 1, the pressure oil is supplied to one of the pressure chamber 25 serving as the first pressure chamber and the pressure chambers (26 In the rotary actuator 1, the feed/discharge holes 30 For example, when the pressure oil is fed from the feed/discharge holes (30 Note that the assembly operation of the above-described rotary actuator 1 can be implemented in various orders. Next, an exemplary assembly procedure of the rotary actuator 1 will be discussed. First, for example, an integrated molding of the output shaft 13 and the plurality of arm units 15 is attached to the lid portion 22 When the cylinder blocks 27 are sequentially put together, the arc pistons (14 Next, the configuration of a hydraulic circuit for controlling the operation of the above-described rotary actuator 1 and actuation of the rotary actuator 1 will be discussed. Between the rotary actuator 1 and the hydraulic power source 40 and reservoir circuit 41, a control valve 42 for switching a pressure oil feeding path to the rotary actuator 1 and a pressure oil discharge path from the rotary actuator 1 is provided. That is, the rotary actuator 1 is connected to the hydraulic power source 40 and the reservoir circuit 41 via the control valve 42. The control valve 42 is provided as a valve mechanism for switching the state of connection between a pair of feed/discharge paths (44, 45) that communicate with the rotary actuator 1 and the feed path 40 Furthermore, the control valve 42 is provided as, for example, an electrohydraulic servo valve (EHSV). The control valve 42 operates to switch the state of connection between the feed/discharge paths (44, 45) and the feed path 40 With the above-described configuration, the control valve 42 is able to proportionally switch its position among a neutral valve position 42 Upon the control valve 42 being switched from the neutral valve position 42 As a result of the output shaft 13 pivoting, driving torque is output from the output shaft 13. The driving torque may be output only from one of the end portions 13 Note that in the above-described embodiment, the control valve 42 and the actuator controller 43 are not described as components of the rotary actuator 1, but those may alternatively be included in the components of the rotary actuator 1. For example, the rotary actuator 1 may be defined as having a configuration including the control valve 42 as a component thereof. Alternatively, the rotary actuator 1 may be defined as having a configuration including the control valve 42 and the actuator controller 43 as components thereof. As discussed above, with the rotary actuator 1, the pressure oil (pressure medium) is fed into one of the first pressure chamber 25 and the second pressure chambers (26 As described above, with the rotary actuator 1, the first pressure chamber 25 on one end portion 32 side of each arc piston (14 Consequently, according to the present embodiment, it is possible to provide the rotary actuator 1 capable of reducing internal leakage of pressure medium, and whose structure does not need the high-pressure rotary seals or is able to significantly reduce the number of the high-pressure rotary seals. Furthermore, in the rotary actuator 1, the arc pistons (14 Furthermore, in the rotary actuator 1, the cylinder 12 is assembled by putting together the plurality of cylinder blocks 27 in the axial direction of the cylinder 12, and the piston chambers 24 (24 Moreover, in the rotary actuator 1, the output shaft 13 is driven via the arms (15 Furthermore, in the rotary actuator 1, the output shaft 13 can be driven to rotate by the arc pistons (14 Although an embodiment of the present invention has been described thus far, the present invention is not limited to the embodiment described above, and various modifications may be made within the scope recited in the claims. For example, the present invention modified as below may be implemented. (1) Although the above embodiment has been described, taking, as an example, a mode in which the cylinder is integrally assembled by putting together the cylinder blocks, this need not be the case. For example, the cylinder may be manufactured in a mode in which a block-shaped member used as the material of the cylinder is punched by electromechanical machining to form the piston chambers. (2) Although the above embodiment has been described, taking, as an example, a mode in which the piston chambers are defined between the adjoining cylinder blocks by putting together the grooves with a semicircular cross section that are formed on the respective cylinder blocks, this need not be the case. As shown in In the rotary actuator 2, the plurality of cylinder blocks 27 that are put together and integrated with one another constitute the main body of the cylinder 12. The cylinder 12 in the rotary actuator 2 is further provided with tubular hollow members 46 extending in an arc. A plurality of the hollow members 46 are provided. The hollow members 46 are separately installed in holes (48) formed by combining the adjoining cylinder blocks 27 with one another in the main body of the cylinder 12. That is, two hollow members 46 are installed between each two adjoining cylinder block 27. Piston chambers (47 In the rotary actuator 2 according to the above-described modification, the members for defining the piston chambers 47 (47 (3) The shape of the arm, the number of the installed arms, and the installation position are not limited to those in the mode taken as an example in the above embodiment, and may be modified in various ways for implementation. For example, in the above-described embodiment, a mode in which two arms are provided that extend in the radial direction of the cylinder along the same plane perpendicular to the axial direction of the output shaft has been taken as an example. However, this need not be the case. For example, a mode provided with a single arm or three or more arms extending in the radial direction of the cylinder along the same plane perpendicular to the axial direction of the output shaft may alternatively be implemented. Furthermore, although the above embodiment has been described, taking, as an example, a mode in which the plurality of arms are arranged in line along the axial direction of the output shaft and extend parallel to each other, this need not be the case. For example, a configuration in which a single plate-like arm extending along the axial direction of the output shaft is provided, and the plurality of pistons are rotatably connected to this plate-like arm may alternatively be implemented. In this case, a plurality of slit-like spaces may be formed in the plate-like arm, and the ends of the pistons may be rotatably connected to the respective spaces. Furthermore, in this case, the plurality of pitons may be rotatably connected to the arm by the same columnar pin members extending parallel to the axial direction of the output shaft. Note that the mode of the arms extending in the radial direction of the cylinder from the plurality of positions on the output shaft is not limited to the mode described as an example in the above-described embodiment, and may be modified in various ways for implementation. In the case where the arms are provided so as to extend radially from the plurality of positions on the output shaft, and thus the plurality of pistons for driving, via the arms, the output shaft to rotate are installed, the design associated with the installation position thereof can be made more freely. The present invention can be applied widely to rotary actuators that output driving torque as a result of output shafts thereof pivoting in a rotational direction due to action of a pressure medium. The present invention is not limited to the above-described embodiment, and all modifications, applications and equivalents thereof that fall within the claims, for which modifications and applications would become apparent by reading and understanding the present specification, are intended to be embraced therein. A cylinder is installed within a case, and an output shaft and an arm that is integrated thereto and extends in a radial direction are installed within the cylinder. A piston extending in an arc slides and is displaced in a circumferential direction of the cylinder within the cylinder. One end portion of the piston is rotatably connected to the arm. The cylinder is internally provided with a first pressure chamber in which the arm is housed and a second pressure chamber in which the other end portion of the arm is slidably installed. A pressure medium is fed into one of the first and second pressure chambers and discharged from the other, and the output shaft pivots in a rotational direction. 1. A rotary actuator that outputs driving torque as a result of an output shaft that is supported with respect to a case, pivoting in a rotational direction due to action of a pressure medium, the rotary actuator comprising:
an arm that is integrated with, or fixed to, the output shaft, and extends in a radial direction of the output shaft; a piston that has a portion extending in an arc, and is connected to the arm so as to be rotatable about an axis with respect to the arm, the axis being parallel with an axial direction of the output shaft and being shifted from the output shaft in the radial direction; and a piston housing that is installed within the case, the piston housing forming a piston chamber housing the portion extending in an arc of the piston, wherein the piston is supported so as to be able to slide and be displaced with respect to the piston chamber along a circumferential direction about the output shaft, the case is internally provided with a first pressure chamber in which the output shaft and the arm are housed, and a second pressure chamber that is defined by the piston housing and the piston and in which an end portion of the piston is installed, and as a result of a pressure medium being fed into one of the first pressure chamber and the second pressure chamber and discharged from the other, the arm is displaced in the circumferential direction, and the output shaft pivots in the rotational direction. 2. The rotary actuator according to wherein the output shaft is installed in the hollow space so that the axial direction of the output shaft is parallel to an axial direction of the cylinder, and the cylinder has the piston housing. 3. The rotary actuator according to wherein the cylinder includes a plurality of cylinder blocks each formed in a divided state, the cylinder is integrally assembled by putting together the plurality of cylinder blocks along the axial direction of the cylinder, and the piston chamber is defined between the cylinder blocks adjoining in the axial direction of the cylinder. 4. The rotary actuator according to wherein a plurality of the pistons are provided, and the plurality of pistons are arranged in line along the axial direction of the output shaft. 5. The rotary actuator according to wherein a plurality of the arms are provided so as to extend in the radial directions from a plurality of positions on the output shaft. 6. The rotary actuator according to wherein a plurality of the arms are provided so as to extend in the radial directions from a plurality of positions in the circumferential direction on the output shaft, the plurality of arms are provided to extend in the radial directions along the same plane perpendicular to the axial direction of the output shaft, at least one piston unit constituted by the plurality of pistons installed so as to extend in the circumferential direction along the same plane is provided, and the pistons in the piston unit are rotatably connected to the respective arms. 7. The rotary actuator according to wherein a plurality of the piston units are provided, the plurality of piston units are arranged in line along the axial direction of the output shaft, and the plurality of the arms are provided so as to extend in the radial directions from a plurality of positions in a circumferential direction and in the axial direction of the output shaft on the output shaft. 8. The rotary actuator according to wherein the piston chamber is defined by a tubular hollow member that is installed in a main body of the cylinder and extends in an arc.CROSS-REFERENCE TO RELATED APPLICATION
BACKGROUND OF THE INVENTION
Field of the Invention
Description of the Related Art
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION







