OCCUPANT PROTECTION DEVICE
The Present application claims priority from Japanese Patent Application No. 2015-109104 of Kato et al., filed on May 28, 2015 and Japanese Patent Application No. 2015-109105 of Kato et al., filed on May 28, 2015, the entire disclosures of which are incorporated herein by reference. The present invention relates to an occupant protection device which protects a head of an occupant seated in a seat of a vehicle such as a driver's seat and a front passenger seat with an inflatable airbag in the event of a collision or the like. DE198 59 988 A1, by way of example, discloses a known occupant protection device which includes an airbag inflatable with an inflation gas for catching a head of an occupant seated in a vehicle seat in the event of a collision. The airbag of this protection device is so configured, for covering the head of the occupant, to form a cup opening obliquely forward and downward, with more than one pipe-shaped inflatable portions arranged in a grid-like fashion. However, since the airbag of the conventional protection device is deployable into a cup-shape opening obliquely forward and downwardly, the airbag can cover only an upper half region of the head on the front side of the occupant while it covers up to the back on the back side of the occupant. Therefore, it has a room for improvement in an appropriate protection of the whole head of the occupant which is likely to move forward away from the backrest of the seat. An object of the present invention is to provide an occupant protection device having an airbag which is capable of catching the head of a vehicle occupant in an adequate fashion when the head moves forward in the event of a collision of the vehicle or the like. The occupant protection device of the invention is adapted to be mounted on a vehicle such that the airbag, which is inflatable with an inflation gas, catches the head of an occupant seated in a seat of the vehicle when a collision or a potential collision is detected. The airbag includes a front panel section deployable in front of a front face of the head of the occupant for catching the head when the head moves forward, a left panel section deployable on a left side of the head for catching the head when the head moves towards the left, and a right panel section deployable on a right side of the head for catching the head when the head moves towards the right. The front panel section at full airbag deployment includes a main panel region that is deployable in such a manner as to be opposed to the front face of the head and an extended panel region that extends downwardly from the main panel region so as to catch at least an upper part of a thorax of the occupant. With the occupant protection device of the invention, if an occupant draws away from the backrest of the seat and moves forward in the event of a collision of the vehicle, the extended panel region of the front panel section will firstly catch at least the upper region of the thorax of the occupant and suppress a further forward movement of the occupant, and then the main panel region of the front panel section will catch the occupant's head. That is, the front panel section of the airbag will catch not only the occupant's head but also the thorax and prevent a damage which would otherwise be given to the neck of the occupant, thus protecting the head in an adequate fashion. Therefore, the occupant protection device of the invention is capable of catching and protecting the occupant's head with the airbag in an adequate fashion when the head moves forward in the event of a collision of the vehicle. In the occupant protection device of the invention, the airbag includes the left panel section and right panel section in addition to the front panel section. The left and right panel sections will catch the occupant's head if the head moves towards the left or right in the event of a collision. If the head moves rearward upon a collision, the head will be caught and protected with an upper region of the backrest. Therefore, in whichever direction the head moves in the event of a collision of the vehicle, the occupant protection device will protect the head in an adequate fashion. “Head” in this specification is intended to refer to an entire area above the neck of an occupant including the face, chin and ears, not only the head in a narrow sense. It is desired in the occupant protection device of the invention that the airbag further includes a ceiling panel section deployable above the head of the occupant. Such a ceiling panel section will catch the top of the occupant's head in the event of a rollover of the vehicle, and therefore, the occupant protection device will be capable of protecting the occupant's head in more collision patterns of a vehicle. It is further desired in the occupant protection device of the invention that: the airbag includes a primary inflatable region that is inflatable in an initial stage of airbag inflation into an inverse U shape at an upper edge region of each of the left panel section and right panel section;
With this configuration, the primary inflatable region will inflate with the inflation gas in the order of the rear edge inflatable region, the ceiling edge inflatable region, and the front edge inflatable region at the upper edge of each of the left panel section and right panel section. That is, the airbag will be deployed firstly at the rear of the occupant's head, above the head and then in front of the head. This way the airbag will be able to deploy the extended panel region of the front panel section up to the front surface of the occupant's thorax via the rear, the upper side and then the front of the head, without having the extended panel region to be engaged with the head in the course of deployment, although the front panel section is formed so long as to reach the thorax by the extended panel region. If thus the extended panel region is deployed on the front surface of the occupant's thorax without being engaged with the head in the course of inflation, the left panel section and right panel section will also be deployed on the left and right of the head in an adequate fashion, and as a consequence, the airbag will be able to deploy its panel sections smoothly around the head. The airbag of the occupant protection device of the invention is desirably configured such that a lower edge region of each of the left panel section and right panel section serves as a support region that is deployable in such a manner as to contact an upper plane of a shoulder of the occupant and be supported by the shoulder. This configuration will help steady the deployment position of the airbag relative to the occupant's head, and accordingly help deploy the panel sections of the airbag around the head in an adequate fashion since the support regions (i.e., the lower edge regions of the left panel section and right panel section) contact the upper planes of the shoulders of the occupant and are supported by the shoulders at airbag deployment. Moreover, the airbag can be even more adequately configured in accordance with the physical frame of the occupant by adjusting the length in an up and down direction of the left and right panel sections from the support regions. It is also desired in the occupant protection device of the invention that a front edge of each of the left panel section and right panel section is jointed with the front panel section over an entire length in an up and down direction. With this configuration, the left panel section, right panel section and front panel section will be deployed in a gapless, continuous fashion on the left side, right side and in front of the occupant's head at airbag deployment, and will suppress in combination subsequent movements of the head after a part of the airbag once catches the head. As a consequence, the airbag will be able to protect the head quickly and with a sufficient reaction force. Furthermore, it is desired that each of the left panel section and right panel section includes a plurality of vertical inflatable regions inflatable into such a shape as to extend along an up and down direction such that a front edge and a rear edge of each of the left panel section and right panel section come closer to each other at full inflation than before full inflation. Such vertical inflatable regions will be contracted in dimension in a direction perpendicular to the axial direction when inflated. Accordingly, when the vertical inflatable regions are fully inflated, the front edge and the rear edge of each of the left panel section and right panel section come closer to each other due to contraction of the vertical inflatable regions than before full inflation, which will pull the front panel section rearward. That is, the above configuration will help deploy the front panel section of the airbag in the course of inflation up to the front of the occupant's head without having it to be engaged with the head, and move it closer to the front face of the head after the airbag has completed inflation. As a consequence, the front panel section at airbag deployment will catch and protect the occupant' head which moves forward and draws away from the backrest of the seat in a further quick and adequate fashion. The occupant protection device of the invention may also be configured as follows (this configuration will be called a second characterizing configuration): The left panel section and right panel section extend rearward from left and right edges of the front panel section such that the left panel section, front panel section and right panel section form a generally U shape around the head of the occupant as viewed from above at full deployment of the airbag. The airbag includes, in each of the left panel section and right panel section, a frame inflatable region that is inflatable in an inverse-U shape at the upper edge region of each of the left panel section and right panel section. The frame inflatable region of each of the left panel section and right panel section includes a rear edge inflatable region deployable at the rear edge region of the left/right panel section, a front edge inflatable region deployable at the front edge region of the left/right panel section and a ceiling edge inflatable region deployable in such a manner as to connect upper ends of the rear edge inflatable region and front edge inflatable region and having gas communication with the rear edge inflatable region and front edge inflatable region. The airbag further includes a regulating member that prevents the frame inflatable regions of the left panel section and right panel section from moving in a separating direction at airbag deployment. With the occupant protection device configured as above, when the airbag is inflated with an inflation gas and fully deployed, the left panel section and right panel section will be deployed at a side of each of the left side and right side of the occupant's head in a shape-retained fashion due to the frame inflatable regions. The frame inflatable regions in the left panel section and right panel section are prevented from moving in an outward direction in a left and right direction by the regulating member. With this configuration, if the occupant's head moves in a left direction and the left panel section catches the head, the left panel section will be prevented from moving away from the right panel section, thus keeping a sufficient reaction force to arrest the head. If the head moves in a right direction and the right panel section catches the head, the right panel section will be prevented from moving away from the left panel section, thus keeping a sufficient reaction force to arrest the head. Moreover, the left panel section and right panel section are configured to extend rearward from the left and right edges of the front panel section so as to be deployed along a front and rear direction and in parallel to each other on the left and right of the head in a symmetrical fashion with respect to the front panel section. With this configuration, if the occupant's head moves towards the left or right, it will be caught and protected immediately with areas of the left and right panel sections which are deployed right beside the head and closer to the head than the front and rear edges of the left and right panel sections. Therefore, the occupant protection device of the invention is capable of catching the head of the occupant seated in the seat with the airbag in a quick and adequate fashion when the head moves towards the left or right in the event of a collision of the vehicle. In order to exert the above-described advantageous effect, the extended panel region described above is optional. In the occupant protection device with the second characterizing configuration, it is desired that the regulating member is so configured as to bring vicinities of centers in a front and rear direction of the ceiling edge inflatable regions of the frame inflatable regions of the left panel section and right panel section closer to each other than front ends of the left and right ceiling edge inflatable regions at airbag deployment. With this configuration, the distance between the vicinities of the centers in a front and rear direction of the ceiling edge inflatable regions at airbag deployment will be smaller than that between the front ends of the left and right ceiling edge inflatable regions, such that center regions in a front and rear direction of the upper edges of the left panel section and right panel section will be located closer to each other than the front edges. Thus the center regions in a front and rear direction of the upper edges of the left panel section and right panel section and the areas of the left and right panel sections disposed right beside the head will be deployed in proximity to the head on the left and right of the head as if covering the head with a helmet. As a consequence, the airbag as deployed will be capable of catching the head further quickly when the head moves towards the left or right. The regulating member may be composed, by way of example, of a tether that joins the vicinities of the centers in a front and rear direction of the left and right ceiling edge inflatable regions as inflated together. With this configuration, the distance between the joints of the tether to the left and right panel sections can be easily changed by changing the length of the tether. By way of example, if the occupant protection device of the invention is adapted to be mounted on a seat for an occupant of large build, a long tether may be employed to prepare an airbag for use in the device. To the contrary, if the occupant protection device of the embodiment is adapted to be mounted on a seat for an occupant of small build, a short tether may be employed to prepare an airbag for use in the device. The regulating member may also be configured as follows: The airbag further includes a ceiling panel section that is disposed in such a manner as to fill a space between the left and right ceiling edge inflatable regions so as to be deployable above the head of the occupant, a rear upper edge inflatable region that provides gas communication between bent regions formed between the rear edge inflatable region and ceiling edge inflatable region of each of the left panel section and right panel section, and a front upper edge inflatable region that provides gas communication between bent regions formed between the front edge inflatable region and ceiling edge inflatable region of each of the left panel section and right panel section. The ceiling panel section is provided with a top inflatable region that is fed with the inflation gas from at least either one of the rear upper edge inflatable region and front upper edge inflatable region, and the top inflatable region includes a plurality of vertical inflatable regions that are disposed side by side in a left and right direction and each inflatable into a rod shape extending along a front and rear direction. The vertical inflatable regions serve as the regulating member by helping reduce a dimension in a left and right direction of the ceiling panel section at full airbag deployment in comparison with that before full inflation. In this instance, the vertical inflatable regions of the top inflatable region are desirably disposed in a vicinity of the centers in a front and rear direction of the ceiling edge inflatable regions, because such a configuration will be able to deploy the center regions in a front and rear direction of the upper edges of the left panel section and right panel section and the areas of the left and right panel sections disposed right beside the head in proximity to the head on the left and right of the head as if covering the head with a helmet. It will be appreciated that the front panel section of the airbag of the occupant protection device with the second characterizing configuration may include a main panel region deployable in such a manner as to be opposed to the front face of the occupant's head and an extended panel region that extends downwardly from the main panel region for catching at least an upper part of the thorax of the occupant as the occupant moves forward. Further, in the occupant protection device with the second characterizing configuration, it is desired that the front panel section includes a plurality of vertical inflatable regions each extending in an up and down direction and disposed side by side in order to bring the left and right edges of the front panel section closer to each other at full airbag inflation than before full inflation. Since such vertical inflatable regions contract in dimension in a direction perpendicular to the axial direction when inflated, when the front panel section is fully inflated, the left and right edges of the front panel section come closer to each other than before full inflation due to contraction of the vertical inflatable regions and the left panel section and right panel section extending rearward from the left and right edges of the front panel section come close to each other as well, such that the areas of the left and right panel sections deployable right beside the head are further approximated to the head. That is, the above configuration will help deploy the left panel section and right panel section of the airbag in the course of inflation on the left and right of the occupant's head without having them to be engaged with the head, and approximate them to the left plane and right plane of the head after the airbag has completed inflation. As a consequence, the areas of the left panel section and right panel section deployed right beside the head will catch and protect the occupant' head movable towards the left or right in a further quick and adequate fashion at airbag deployment. Preferred embodiments of the present invention are described below with reference to the accompanying drawings. However, the invention is not limited to the embodiments disclosed herein. All modifications within the appended claims and equivalents relative thereto are intended to be encompassed in the scope of the claims. An occupant protection device MP embodying the invention includes an airbag 15 for protecting the head H of an occupant M seated in a seat 1 of a vehicle V and an inflator 10 for feeding the airbag 15 with an inflation gas G, as shown in The mounting base 6 further includes a case or housing 8 for housing the airbag 15 in a folded-up configuration. The seat 1 includes a seat section 2 and the backrest 3, and the backrest 3 includes a main body 4 to support the back B of the occupant M and a headrest 5 disposed on the backrest 3 for supporting the rear side Hb of the head H of the occupant M. The mounting base 6 is disposed inside the main body 4 of the backrest 3. The vehicle V on which the seat 1 is mounted has self-driving capability, and therefore, no problem will occur if the airbag 15 covers the head H of the driver (occupant M) and deprives him of his sight when the occupant protection device MP is actuated. Further, since the occupant protection device MP is mounted on the backrest 3 of the seat 1, the airbag 15 will smoothly cover and protect the head H of the driver (occupant M) if the driver is seated in such a manner as to face away from the traveling direction of the vehicle V, i.e., face away from the front windshield WS, when the occupant protection device MP is actuated. The airbag 15 can be formed by jointing a plurality of flexible sheet members of fabrics or the like of polyamide or the like by sewing, adhesion or the like. The airbag 15 can also be made by one-piece woven technology, molding technologies such as injection molding and blow molding. Referring to The airbag 15 of the illustrated embodiment further includes a ceiling panel section 25 which has a generally rectangular plate shape and is deployable above the occupant's head H and a rear panel section 27 which has a generally rectangular plate shape and is deployable at the rear of the occupant's head H, specifically, at the rear of the headrest 5. Front, rear, left and right in this specification are intended to refer to the front, rear, left and right as viewed from the occupant M. That is, “front” refers to a forward direction as viewed from the occupant M, “rear” refers to a rear direction as viewed from the occupant M, and “left” and “right” refer to left and right as viewed from the occupant M. In the illustrated embodiment, the front edge 21 In other words, the airbag 15 of the illustrated embodiment is inflatable into such a generally parallelepiped or box that is composed of the interconnected five panel sections 17, 21, 23, 25 and 27 and has a generally rectangular opening 15 The front panel section 17 is designed to cushion the occupant's head H in the event that the head H moves towards the front direction FD, i.e., moves in such a manner as to draw away from the backrest 3 of the seat 1. If the head H has not so moved, the front panel section 17 will be deployed at a distance from the head H in a front direction FD. The left panel section 21 is designed to cushion the occupant's head H in the event that the head H moves towards the left direction LD. If the head H has not so moved, the left panel section 21 will be deployed at a distance from the head H in a left direction LD. The right panel section 23 is designed to cushion the occupant's head H in the event that the head H moves towards the right direction RD. If the head H has not so moved, the right panel section 23 will be deployed at a distance from the head H in a right direction RD. The ceiling panel section 25 is designed to catch a vicinity of the top Ht of the occupant's head H in the event of a rollover of the vehicle V. If the vehicle V has not overturned, the ceiling panel section 25 will be deployed at a distance from the occupant's head H in an upward direction UD ( The front panel section 17 of the airbag 15 as inflated includes a main panel region 18 which is deployable in such a manner as to be opposed to the front face Hf of the occupant's head H and an extended panel region 19 extending downwardly from the main panel region 18. The extended panel region 19 is designed to catch at least an upper part Cu of the thorax C of the occupant M when the occupant M moves towards a front direction FD and away from the backrest 3 of the seat 1 at airbag deployment. The extended panel region 19 of the illustrated embodiment is so sized that the lower end almost reaches the second rib bone from the bottom of a standard male adult (AM50 dummy). The airbag 15 includes a gas admitting region 30 which is inflatable with an inflation gas G in such a manner as to separate an inner wall 30 Referring to The primary inflatable region 32 includes two inflatable regions (main stream inflatable regions) 46 (46L and 46R) each of which is inflatable into an inverse-U shaped rod (or a pipe) at the upper edge 21 The lower ends 36 The airbag 15 of the illustrated embodiment further includes an inflatable region 42 and an inflatable region 44 which are arranged along a left and right direction and provides gas communication between the left and right main stream inflatable regions 46L and 46R. Specifically, the inflatable region 42 connects the bent regions 46 In the illustrated embodiment, the inflatable regions 36, 38, 40, 42 and 44 are disposed on five sides of the outer surface of the generally parallelepiped airbag 15 as inflated, i.e., on each side where the front panel section 17, left panel section 21, right panel section 23, ceiling panel section 25 and rear panel section 27 intersect. If each of these inflatable regions is inflated into a rod shape, they will form a frame in combination and exert rigidity, and provide a shape retention property to the airbag 15 as inflated. That is, these inflatable regions 36, 38, 40, 42 and 44 serve as a frame inflatable region 34 which helps keep the airbag 15 in a generally parallelepiped shape at airbag deployment. An inflation gas G fed from the inlet pots 32 Other than the branched inflatable regions 48, the secondary inflatable region 50 includes a plurality of panel inflatable regions 52 disposed within an area of each of the front panel section 17, left panel section 21 and right panel section 23. Each of the panel inflatable regions 52 admits an inflation gas G from the main stream inflatable regions 46L and 46R and is inflatable into a panel shape. A front inflatable region 54 serves as the panel inflatable region 52 disposed in the front panel section 17. The front inflatable region 54 includes, at the lower end, a horizontal inflatable region 56 inflatable into a rod extending in a left and right direction. The front inflatable region 54 further includes two vertical inflatable regions 58 which extend upwardly from the horizontal inflatable region 56 and are disposed side by side. Each of the vertical inflatable regions 58 is inflatable into a rod. The horizontal inflatable region 56 is disposed in a generally quarter area at the lower end region of the front panel section 17 and includes one each inlet port 54 The front inflatable region 54 is designed to admit an inflation gas G from the left and right front edge inflatable regions 40 via the left and right inlet ports 54 The vertical inflatable regions 58 constitute a head arresting section for cushioning mainly the head H of an occupant M when he moves forward, and constitute the aforementioned main panel region 18 ( The front inflatable region 54 includes a plurality of (two, in the illustrated embodiment) vertical inflatable regions 58 extending in an up and down direction. Such a vertical inflatable region 58 contracts in dimension in a direction perpendicular to the axial direction when inflated. Accordingly, when the front panel section 17 is fully inflated, the left and right edges 17 More specifically, since the vertical inflatable regions 58 are disposed above the horizontal inflatable region 56 and in a vicinity of the center in an up and down direction of the front panel section 17, when the airbag 15 is inflated, the front edges 21 A side inflatable region 60 disposed in each of the left panel section 21 and right panel section 23 serves as the panel inflatable region 52. Each of the side inflatable region 60 includes, at the lower region, three vertical inflatable regions 61 each inflatable into a rod extending in an up and down direction. The vertical inflatable regions 61 are disposed side by side along a front and rear direction. The side inflatable region 60 further includes, at the upper region, a horizontal inflatable region 66 which is inflatable into a rod extending along a front and rear direction. The vertical inflatable regions 61 are composed of a rear region 62, a front region 63 and a central region 64 disposed between the rear region 62 and front region 63. Each of the vertical inflatable regions 61 is in gas communication with the horizontal inflatable region 66 by the upper end 61 Each of the side inflatable regions 60 is configured such that the rear region 62 of the vertical inflatable regions 61 admits an inflation gas G from the rear edge inflatable region 36 via the rear inlet port 60 Each of the side inflatable regions 60 is also configured such that the lower ends 61 The horizontal inflatable region 66 is disposed in a generally upper half area of each of the side inflatable regions 60 at airbag deployment and constitutes a head arresting section for arresting the occupant's head H when he moves towards the left or right. Each of the side inflatable region 60 includes a plurality of (three, in the illustrated embodiment) vertical inflatable regions 61 extending in an up and down direction. Such a vertical inflatable region 61 contracts in dimension in a direction perpendicular to the axial direction when inflated, as described above. Accordingly, when the left panel section 21 and right panel section 23 are fully inflated, the front and rear edges 21 Since the vertical inflatable regions 61 are disposed in the lower end region in each of the left and right panel sections 21 and 23, when the vertical inflatable regions 61 are inflated, the horizontal inflatable region 56 (or the extended panel region 19) of the front panel section 17 is especially pulled towards the rear panel section 27. The uninflatable region 70 has its portions 74, 78, 83 and 86 in the five panel sections 17, 21, 23, 25 and 27 for partitioning the inflatable regions or filling a gap between the inflatable regions and reducing the volume of the inflatable area of the airbag. Referring to Referring to The linear closed region 80 extends upwardly from the lower edge 15 Referring to Referring to To describe the panel sections 17, 21, 23, 25 and 27 of the airbag 15 again adding the configuration of the gas admitting region 30 and uninflatable region 70, the front panel section 17 is composed of the front inflatable region 54 (of the panel inflatable region 52), left and right front edge inflatable regions 40 (of the frame inflatable region 34), an inner region of the front upper edge inflatable region 44 and front portion 74 of the uninflatable region 70. Each of the left and right panel sections 21 and 23 is composed of the side inflatable region 60 (of the panel inflatable region 52), an inner region of the main stream inflatable region 46 and side portion 78 of the uninflatable region 70. The ceiling panel section 25 is composed of the left and right ceiling edge inflatable regions 38 (of the frame inflatable region 34), an inner region of each of the front and rear branched inflatable regions 48 (42 and 44), the panel region 84 of the ceiling portion 83 of the uninflatable region 70 and the tether 91. The rear panel section 27 is composed of the left and right rear edge inflatable regions 36 (of the frame inflatable region 34), an inner region of the rear upper edge inflatable region 42 and the panel region 87 of the rear portion 86 of the uninflatable region 70. To describe the panel sections 17, 21, 23, 25 and 27 except the frame inflatable region 34 and tether 91, the front panel section 17 is composed of the front inflatable region 54 (of the panel inflatable region 52) and the front portion 74 of the uninflatable region 70, and each of the left and right panel sections 21 and 23 is composed of the side inflatable region 60 (of the panel inflatable region 52) and side portion 78 of the uninflatable region 70. The ceiling panel section 25 is composed of the panel region 84 of the ceiling portion 83 of the uninflatable region 70, and the rear panel section 27 is composed of the panel region 87 of the rear portion 86 of the uninflatable region 70. Mounting of the occupant protection device MP on a vehicle V is now described. Firstly, the airbag 15 is folded up and the inflator 10 is connected with the inlet ports 32 If the occupant protection device MP is actuated in response to an actuating signal when a collision or a potential collision is detected, the inflator body 11 feeds an inflation gas G into the airbag 15 via the diffuser 12 and inlet ports 32 The inflation and deployment of the panel inflatable region 52 is now described. In the front inflatable region 54 in the front panel section 17, since the inflation gas G flowing through the main stream inflatable regions 46L and 46R has a great inertia force, the gas G firstly flows towards the lower ends 40 As described above, with the occupant protection device MP, if the occupant M draws away from the backrest 3 of the seat 1 and moves towards a front direction FD in the event of a collision of the vehicle V, the extended panel region 19 of the front panel section 17 will firstly catch at least the upper region Cu of the thorax C of the occupant M and suppress a further forward movement of the occupant M, and then the main panel region 18 of the front panel section 17 will catch the occupant's head H, as shown in Therefore, the occupant protection device MP of the above-illustrated embodiment is capable of catching and protecting the occupant's head H with the airbag 15 in an adequate fashion when the head H moves forward in the event of a collision of the vehicle. Further, since the extended panel region 19 of the front panel section 17 is capable of catching the occupant's thorax C, it is also capable of preventing the occupant M from slipping out of the seatbelt. In the occupant protection device MP of the embodiment, the airbag 15 includes the left panel section 21 and right panel section 23 for covering left and right sides of the occupant's head H. The left and right panel sections 21 and 23 will catch the head H with the head arresting sections (i.e., the horizontal inflatable regions) 66 of the panel inflatable regions 52 (i.e., the side inflatable regions 60) if the head H moves towards the left or right in the event of a collision, as shown in In the foregoing embodiment, the airbag 15 is configured such that the extended panel region 19 of the front panel section 17 catches the occupant's thorax C before the main panel region 18 catches the head H. More specifically, when the head H moves forward, the airbag 15 will firstly catch the front surface Cf of the thorax C with the extended panel region 19 and decelerate the speed of forward movement of the occupant M, and in that state catch the head H with the main panel region 18. Thus the occupant protection device MP will further help reduce the damage which would otherwise be given to the neck N of the occupant M when catching the head H. If such an advantageous effect does not have to be considered, the airbag may be so configured that the main panel region 18 catches the occupant's head H at the same time as the extended panel region 19 catches the thorax C. Further alternatively, the airbag may be so configured that the extended panel region 19 catches the thorax C a little after the main panel region 18 catches the head H. In the occupant protection device MP of the foregoing embodiment, the airbag 15 includes the ceiling panel section 25 deployable above the occupant's head H. The ceiling panel section 25 will catch the top Ht of the occupant's head H in the event of a rollover of the vehicle V, and therefore, the airbag 15 is capable of protecting the occupant's head H in more collision patterns of a vehicle. Although the ceiling panel section 25 of the foregoing embodiment is composed of the uninflatable panel region 84, the configuration of the ceiling panel section 25 should not be limited threby. The uninflatable panel region 84 may be provided only partially. Alternatively, the ceiling panel section 25 may include, in addition to an uninflatable region 70, an inflatable region, like a top inflatable region 68 depicted in If the airbag 15 does not have to address a rollover of the vehicle V, it may be configured without the ceiling panel section 25. In the occupant protection device MP of the foregoing embodiment, the airbag 15 includes the primary inflatable region 32 which is inflatable in an initial stage of airbag inflation into an inverse U shape at the upper edge region 21 With this configuration, the primary inflatable region 32 will inflate with the inflation gas G in the order of the rear edge inflatable region 36, the ceiling edge inflatable region 38, and the front edge inflatable region 40 at the upper edge 21 In the foregoing embodiment, especially, the airbag 15 is connected with and held by the inflator 10 by the inlet ports 32 In the foregoing embodiment, moreover, the airbag 15 is so configured that the lower edge regions 21 This configuration will further help steady the deployment position of the airbag 15 relative to the occupant's head H, and accordingly help deploy the panel sections of the airbag 15 around the head H in an adequate fashion since the support regions 22 and 24 (i.e., the lower edge regions 21 The support regions 22 and 24 of the foregoing embodiment are each composed of the lower end regions 61 The airbag 15 may be formed without the support regions 22 and 24 at the lower edge regions 21 It will be desirable, however, that the airbag 15 includes both the support regions 22 and 24 to be supported by the upper planes Su of the shoulders S and the horizontal inflatable region 56 to contact with and be supported by the upper part Cu of the thorax C, such that the airbag 15 will be supported in an even steadier fashion and the deployment position of the panel sections of the airbag 15 will be steadied. In the foregoing embodiment, the front edges 21 With this configuration, the left panel section 21, right panel section 23 and front panel section 17 will be deployed in a gapless, continuous fashion on the left side, right side and in the front of the occupant's head H at airbag deployment, and will suppress in combination subsequent movements of the head H after a part of the airbag 15 once catches the head H. As a consequence, the airbag 15 will be able to protect the head H quickly and with a sufficient reaction force. In the foregoing embodiment, especially, the rear panel section 27 connects the rear edges 21 If such an advantageous effect does not have to be considered, the left panel section 21 and right panel section 23 may be partially jointed with the front panel section 17 by the upper end regions only, or may even be separated from the front panel section 17. In the occupant protection device MP of the foregoing embodiment, each of the left panel section 21 and right panel section 23 includes a plurality of (three, in the illustrated embodiment) vertical inflatable regions 61 extending along an up and down direction such that the front edge 21 Such vertical inflatable regions 61 are contracted in dimension in a direction perpendicular to the axial direction when inflated. Accordingly, when the vertical inflatable regions 61 are fully inflated, the front edge 21 The occupant protection device MP of the illustrated embodiment has a following second characterizing advantageous effect. When the airbag 15 is inflated with an inflation gas G and fully deployed, the left panel section 21 and right panel section 23 will be deployed at a side of each of the left side Hl and right side Hr of the occupant's head H in a shape-retained fashion due to the main stream inflatable regions 46L and 46R of the frame inflatable region 34. The airbag 15 includes the tether 91 (i.e., the regulating member 90) that prevents the main stream inflatable regions 46L and 46R from moving in an outward direction in a left and right direction. With this configuration, if the occupant's head H moves towards a left direction LD and the left panel section 21 catches the head H, the left panel section 21 will be prevented from moving away from the right panel section 23, thus keeping a sufficient reaction force to arrest the head H, as shown in Therefore, the occupant protection device MP of the illustrated embodiment is capable of catching the head H of the occupant M seated in the seat 1 with the airbag 15 in a quick and adequate fashion when the head H moves towards the left or right in the event of a collision of the vehicle V. The regulating member 90 of the illustrated embodiment is so configured as to bring vicinities of the centers 38 As shown in In the illustrated embodiment, furthermore, the tether 91 serving as the regulating member 90 joins together the vicinities of the center regions 38 If such an advantageous effect does not have to be considered, the airbag may be configured without the tether 90, but with a top inflatable region 68 to form the panel inflatable region 52 of the ceiling panel section 25, as in an airbag 15B depicted in If the present invention is considered with a focus on the second characterizing advantageous effect (that the airbag 15 is capable of catching the occupant's head H in a quick and adequate fashion when the head H moves towards the left or right), the airbag 15 may be formed without an extended panel region 19 in the front panel section 17 for catching the thorax C. In such an instance, the airbag may be configured such that the horizontal inflatable region 56 is shifted upwardly so as to be disposed in an area of the main panel region 18 for catching the head H. Alternatively, the front panel section 17 may be configured without a horizontal inflatable region 56, and configured such that a vicinity of the lower end 40 When the occupant protection device is not provided with an extended panel region 19, the configuration of the device will be as follows: The airbag 15, 15A or 15B includes:
The airbag 15, 15A or 15B also includes, in the left panel section 21 and right panel section 23, the frame inflatable region 34 that is inflatable in an inverse-U shape at the upper edge 21 In order to enhance the second characterizing advantageous effect, the front panel section 17 of the airbag 15 of the occupant protection device MP of the illustrated embodiment includes a plurality of (two, in the illustrated embodiment) vertical inflatable regions 58 each extending in an up and down direction and disposed side by side. The vertical inflatable regions 58 will help bring the left and right edges 17 Such vertical inflatable regions 58 contract in dimension in a direction perpendicular to the axial direction when inflated. Accordingly, when the front panel section 17 is fully inflated, the left and right edges 17 If such an advantageous effect does not have to be considered, the front inflatable region 54 (i.e., the panel inflatable region 52) of the front panel section 17 may be provided with only one vertical inflatable region 58. Further alternatively, the front inflatable region 54 of the front panel section 17 may be composed of the horizontal inflatable region(s) 56 only and with no vertical inflatable region 58. Although the airbag 15 of the illustrated embodiment includes the rear panel section 27, the panel region 87 of the rear portion 86 (i.e., the uninflatable region 70) disposed in the rear panel section 27 may be provided only partially. Further alternatively, the airbag 15 may be formed without a rear portion 86 composed of a panel region 87. An airbag of an occupant protection device as fully deployed includes a front panel section deployable in front of the head of an occupant for catching the head when the head moves forward, a left panel section deployable on a left side of the head for catching the head when the head moves towards the left, and a right panel section deployable on a right side of the head for catching the head when the head moves towards the right. The front panel section includes a main panel region that is deployable in such a manner as to be opposed to a front face of the head and an extended panel region that extends downwardly from the main panel region so as to catch at least an upper part of a thorax of the occupant. 1-12. (canceled) 13. An occupant protection device mountable on a vehicle for catching a head of an occupant seated in a seat of the vehicle with an inflatable airbag when a collision or a potential collision is detected, the airbag comprising:
a front panel section inflatable and deployable in front of a backrest of the seat in such a manner as to be opposed to the backrest for catching the head when the head moves forward; a left panel section inflatable and deployable between a vicinity of a left edge of the backrest and a vicinity of a left edge of the front panel section for catching the head when the head moves towards the left; and a right panel section inflatable and deployable between a vicinity of a right edge of the backrest and a vicinity of a right edge of the front panel section for catching the head when the head moves towards the right, wherein: the left panel section and right panel section extend rearward from left and right edges of the front panel section such that the left panel section, front panel section and right panel section form a generally U shape as viewed from above at full deployment of the airbag; the airbag comprises, in each of the left panel section and right panel section, a frame inflatable region that is inflatable in an inverse-U shape at an upper edge region of each of the left panel section and right panel section, the frame inflatable region including a rear edge inflatable region deployable at a rear edge region of each of the left panel section and right panel section, a front edge inflatable region deployable at a front edge region of each of the left panel section and right panel section and a ceiling edge inflatable region deployable in such a manner as to connect upper ends of the rear edge inflatable region and front edge inflatable region and having gas communication with the rear edge inflatable region and front edge inflatable region; and the airbag further comprises a regulating member that prevents the frame inflatable regions of the left panel section and right panel section from moving in a separating direction at airbag deployment. 14. The occupant protection device according to 15. The occupant protection device according to 16. The occupant protection device according to a ceiling panel section that is disposed in such a manner as to fill a space between the left and right ceiling edge inflatable regions so as to be deployable above the head of the occupant; a rear upper edge inflatable region that provides gas communication between bent regions formed between the rear edge inflatable region and ceiling edge inflatable region of each of the left panel section and right panel section; a front upper edge inflatable region that provides gas communication between bent regions formed between the front edge inflatable region and ceiling edge inflatable region of each of the left panel section and right panel section; and a top inflatable region that is disposed in the ceiling panel section and is fed with the inflation gas from at least either one of the rear upper edge inflatable region and front upper edge inflatable region, the top inflatable region including a plurality of vertical inflatable regions that are disposed side by side in a left and right direction and each inflatable into a rod shape extending along a front and rear direction, the vertical inflatable regions constituting the regulating member by helping reduce a dimension in a left and right direction of the ceiling panel section at full airbag deployment in comparison with that before full inflation. 17. The occupant protection device according to 18. The occupant protection device according to CROSS REFERENCE TO RELATED APPLICATIONS
BACKGROUND OF THE INVENTION
1. Field of the Invention
2. Description of Related Art
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF DRAWINGS
DESCRIPTION OF PREFERRED EMBODIMENTS
![](/ipUS20180201221A1/0.png)
![](/ipUS20180201221A1/1.png)
![](/ipUS20180201221A1/2.png)
![](/ipUS20180201221A1/3.png)
![](/ipUS20180201221A1/4.png)
![](/ipUS20180201221A1/5.png)
![](/ipUS20180201221A1/6.png)
![](/ipUS20180201221A1/7.png)
![](/ipUS20180201221A1/8.png)
![](/ipUS20180201221A1/9.png)
![](/ipUS20180201221A1/10.png)
![](/ipUS20180201221A1/11.png)
![](/ipUS20180201221A1/12.png)
![](/ipUS20180201221A1/13.png)
![](/ipUS20180201221A1/14.png)