Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 921. Отображено 188.
31-08-2020 дата публикации

Компрессор с приводом от установки для утилизации тепла с органическим циклом Ренкина и способ регулирования

Номер: RU2731144C2

FIELD: turbo-expanders. SUBSTANCE: described is an energy conversion system comprising off-heat source (17) and a Rankine organic cycle system (5). System with organic Rankine cycle, in its turn, contains at least turbine expander (21) containing adjustable inlet guide vanes (57A, 57B), at least rotating load (29), mechanically connected to turbo-expander (21) and driven thereby, and mechanical connection (31) with variable speed between turbo-expander (21) and rotating load (29). EFFECT: enabling start-up with gradual acceleration of the turbo-expander to the rate of warming-up, in order to ensure economical and safe heating of said turbo-expander due to gradual opening of start-up valve and change of rotation speed of mechanical connection as a result of action on said start-up valve and mechanical connection. 18 cl, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 731 144 C2 (51) МПК F01K 13/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК F01K 13/02 (2020.05) (21)(22) Заявка: 2017135363, 22.04.2016 (24) Дата начала отсчета срока действия патента: Дата регистрации: 31.08.2020 24.04.2015 IT FI2015A000120 (43) Дата публикации заявки: 24.05.2019 Бюл. № 15 (45) Опубликовано: 31.08.2020 Бюл. № 25 (56) Список документов, цитированных в отчете о поиске: US 8146360 B2, 03.04.2012. US 7028461 B2, 18.04.2006. EP 2390470 А1, 30.11.2011. EP 2644867, 02.10.2013. RU 2237815 C2, 10.10.2004. SU 377531 А, 17.04.1973. (85) Дата начала рассмотрения заявки PCT на национальной фазе: 24.11.2017 2 7 3 1 1 4 4 EP 2016/059096 (22.04.2016) C 2 C 2 (86) Заявка PCT: R U (73) Патентообладатель(и): НУОВО ПИНЬОНЕ ТЕКНОЛОДЖИ СРЛ (IT) 2 7 3 1 1 4 4 Приоритет(ы): (30) Конвенционный приоритет: R U 22.04.2016 (72) Автор(ы): КАМПРИНИ Маттео (IT), ДАЛЛЬ АРА Маттео (IT), ЧОНИНИ Филиппо (IT), МАННУЧЧИ Серджо (IT), РИЦЦЕЛЛИ Марко (IT), ДЕ ФРАНЧИШИС Серджо (IT), ПАЛЛАДИНО Марко (IT) (87) Публикация заявки PCT: WO 2016/170166 (27.10.2016) Адрес ...

Подробнее
06-09-2012 дата публикации

Dampfturbine insbesondere für solarthermische Kraftwerke

Номер: DE102011005122A1
Принадлежит:

Die Erfindung betrifft eine Dampfturbine, insbesondere für solarthermische Kraftwerke, umfassend eine Anzahl von Innenbauteilen, wobei die Anzahl von Innenbauteilen wenigstens, einen Rotor 1 mit einer Anzahl von am Rotor 1 angeordneten Laufschaufeln 2, sowie ein Leitschaufelträger 3 mit einer Anzahl von im Leitschaufelträger 3 angeordneten Leitschaufeln 4 umfasst. Die Innenbauteile der Dampfturbine sind mittels einer induktiven Beheizung 5 beheizbar. Des Weiteren umfasst die Erfindung ein Verfahren zum Betreiben einer solchen Dampfturbine.

Подробнее
15-03-1979 дата публикации

Номер: DE0002654837B2

Подробнее
25-05-2005 дата публикации

Verfahren und Vorrichtung zum Regeln eines Dampfturbineneinlassstroms, um die Wärmebelastung für Gehäuseschale und Rotor zu begrenzen

Номер: DE102004050519A1
Принадлежит:

In einem Verfahren zum Regeln eines Dampfstroms durch eine Dampfturbine, die einen Turbinenrotor aufweist, wird, basierend auf Berechnungen einer Wärmebelastung, in dem Turbinenrotor eine maximale Wärmeübertragungsrate (18) ermittelt. Eine maximale Dampfstromrate (20) lässt sich, basierend auf der maximalen Wärmeübertragungsrate, berechnen. Eine Ist-Dampfstromrate durch die Dampfturbine wird ermittelt, und ein Turbineneinlassventil (28) wird, basierend auf einer Differenz zwischen der Ist-Dampfstromrate und der maximalen Dampfstromrate, geregelt. Auf diese Weise lässt sich ein in die Dampfturbine eingespeister Dampfstrom geeignet regeln, so dass eine Wärmebelastung auf ein angemessenes Maß begrenzt wird, während Anlaufzeiten minimiert werden und die Betriebsbereitschaft optimiert wird.

Подробнее
09-02-1972 дата публикации

IMPROVEMENTS IN THE CONTROL OF THE TEMPERATURE OF STEAM SUPPLIED TO STEAM TURBINES

Номер: GB0001263004A
Принадлежит:

... 1,263,004. Automatic temperature control systems. ALLIS-CHALMERS MFG. CO. Dec.22, 1969, No.62223/69. Heading G3R. In a system for controlling the temperature of steam supplied to a turbine the turbine inlet steam temperature is measured and cooling water is injected into the steam supply to maintain the temperature within a range, the set point being manually set by an operator a determined value above or below a measured turbine metal temperature dependent on whether the turbine is to be heated or cooled. The set point may be progressively varied by a timing device having a number of selectable time/temperature schedules. A temperature sensitive device TT3 e.g. a thermocouple measures turbine metal temperature which is displayed on an indicator (not shown). For heating (cooling) an operator sets a control 406 at a point say 100‹ F. above (below) the observed figure. A steam temperature measuring sensor TT5 through an amplifier incorporating positional feedback causes rotation of a cam ...

Подробнее
30-10-2002 дата публикации

Controlling temperature in gas turbine apparatus during startup or shutdown

Номер: GB0002374904A
Принадлежит:

A micro turbine 10 has a recuperator 20. During startup, an alternator 26 acts as a motor to turn the turbine rotor 32 and compressor rotor 34 of gas turbine 40. The speed of the gas turbine 40 and a fuel control valve 42 are controlled in order to prevent the rate of change of temperature, sensed by a gas turbine exhaust sensor 74 and/ or a recuperator sensor, from exceeding a predetermined value in order to reduce thermal shock on the recuperator during startup. Reference is also made to preventing a temperature from exceeding a predetermined value during startup or shutdown, details of controlled startup and shutdown sequences also being provided, and to controlling shaft speed by means of the motor.

Подробнее
22-02-1984 дата публикации

METHOD AND APPARATUS FOR THERMAL STRESS CONTROLLED LOADING OF STEAM TURBINES

Номер: GB0002074757B
Автор:
Принадлежит: GEN ELECTRIC, GEC US

Подробнее
18-11-1970 дата публикации

IMPROVEMENTS RELATING TO CONTROL APPARATUS FOR STEAM TURBINES

Номер: GB0001213008A
Автор:
Принадлежит:

... 1,213,008. Automatic speed & acceleration control. GENERAL ELECTRIC CO. Dec.14, 1967 [Jan.3, 1967], No.56867/67. Heading G3R. [Also in Divisions G1 and G4] A control system for a turbine 1, Fig.1, includes an arrangement such as a digital calculator 29, or a thermal image and analogue calculator, Fig. 5 (not shown) which produces from the outputs of speed and temperature transducers 8, 28 on the turbine 1, signals representing the stresses at the bore and the surface of the rotor, comparing these with allowable stresses and selecting at 36 the smaller of the resultant error signals from 35,42, to control the turbine. This error signal is applied to the terminals 44 of a multiple switch in the first position of which (as shown) the turbine is run up to speed from rest. A speed signal from 8 is converted at 10 from frequency to amplitude variation, and compared at 13 with a speed reference from 12 to give a first control signal 14, and is also fed to a differentiator 15 whose acceleration-dependant ...

Подробнее
02-12-1970 дата публикации

SYSTEM FOR SUPERVISING STEAM TURBINE OPERATION

Номер: GB0001214424A
Автор:
Принадлежит:

... 1,214,424. Programmed control of turbines. WESTINGHOUSE ELECTRIC CORP. March 28, 1969 [April 19, 1968], No.16323/69. Heading G3N. [Also in Division F1] The operation of a steam turbine is supervised, to maintain the thermal strain of the rotor at a minimum, by determining the steam temperature in a region in heat transfer relation with a preselected turbine rotor portion, determining the thermal condition of the rotor portion and controlling the turbine steam conditions in the region under the constraint of limiting the rate of change of said steam temperature as a function of the thermal condition. A three-stage steam turbine is supplied from a constant delivery pressure steam-generating system and is controlled by the selective, and variable, actuation of hydraulic governor and throttle inlet valves by a computer control system responsive to impulse stage pressure, electrical generated power and turbine speed. Steam enters the high-pressure stage of the turbine, Fig. 3, through a plurality ...

Подробнее
11-09-2019 дата публикации

Exhaust gas temperature sensor

Номер: GB0201910613D0
Автор:
Принадлежит:

Подробнее
21-02-1979 дата публикации

Rotor-stress preestimating turbine control system

Номер: GB0002002543A
Принадлежит:

The present stress in the turbine rotor is estimated at each control period, from the steam temperature and pressure at the turbine inlet. In addition, the future turbine inlet steam temperature or pressure is preestimated once every nT control cycles, for a given speed or load changing rate, making use of data concerning the changing rate of the turbine steam inlet temperature or pressure in relation with the change of the speed or load, which has been obtained by a learning of the past turbine operating condition. This future steam temperature or pressure at the turbine inlet is used as a factor for preestimating the future stress expected to be caused in the turbine rotor. The preestimation of the rotor stress is performed for a plurality of assumed speed or load changing rates. The turbine is controlled at the maximum speed increase-rate or load changing rate which would not cause the future stress preestimated over a given preestimation time to exceed a limit stress. An observation ...

Подробнее
31-07-2014 дата публикации

Solar energy and external source steam complementary power generation apparatus

Номер: AP0201407777D0
Принадлежит:

Подробнее
29-01-2017 дата публикации

SOLAR ENERGY AND EXTERNAL SOURCE STEAM COMPLEMENTARY POWER GENERATION APPARATUS

Номер: AP0000004020A
Принадлежит:

Подробнее
31-07-2014 дата публикации

Solar energy and external source steam complementary power generation apparatus

Номер: AP2014007777A0
Принадлежит:

Подробнее
31-07-2014 дата публикации

Solar energy and external source steam complementary power generation apparatus

Номер: AP0201407777A0
Принадлежит:

Подробнее
15-01-2009 дата публикации

PROCEDURE AND DEVICE FOR THE ENTERPRISE OF A STEAM PLANT, IN PARTICULAR IN THE PARTIAL LOAD RANGE

Номер: AT0000420274T
Принадлежит:

Подробнее
10-03-1972 дата публикации

Mechanism for the reproduction of the thermal condition of turbomachine parts subjected with hot work media

Номер: AT0000297043B
Автор:
Принадлежит:

Подробнее
11-07-1966 дата публикации

Mechanism for the monitoring of the permissible changes of temperature in heat force plants

Номер: AT0000248148B
Автор:
Принадлежит:

Подробнее
03-07-2014 дата публикации

Solar energy and external source steam complementary power generation apparatus

Номер: AU2012350645A1
Принадлежит:

A solar energy and external source steam complementary power generation apparatus comprising a solar steam generation device, an external source steam regulator (15), a turboset (2) and a generator (1). A steam output end of the solar steam generation device is connected to a high-pressure steam inlet (3) of the turboset (2) through a first regulating valve (15); a steam output end of the external source steam regulator (15) is connected to the high-pressure steam inlet (3) of the turboset (2) through a second regulating valve (20) and a second switching valve (19). A low-pressure steam outlet (4) of the turboset (2) is connected to a circulating water input end of the solar steam generation device through a condenser (5), a deaerator (6), a water feed pump (7) and a first switching valve (16) in turn. An output end of the water feed pump (7) is connected to an external source steam water return bypass (11) through a fourth switching valve (23).

Подробнее
23-02-1988 дата публикации

ADAPTIVE TEMPERATURE CONTROL SYSTEM FOR THE SUPPLY OF STEAM TO A STEAM TURBINE

Номер: CA1233213A

ABSTRACT OF THE DISCLOSURE The invention relates to a combined heat recovery steam generator and steam turbine. An adaptive temperature controller establishes a target temperature for controlling the boiler temperature so that the steam admitted on the boiler follows a constant enthalpy when trying to match temperature of steam and rotor temperature.

Подробнее
13-12-2020 дата публикации

A FORCED AIR CONVECTION APPARATUS AND METHOD FOR COOLING A TURBOMACHINE

Номер: CA0003081702A1
Принадлежит: GOWLING WLG (CANADA) LLP

A forced air convection apparatus and method for cooling turbomachines is provided. The forced air convection apparatus for cooling a turbomachine, the apparatus comprising: a duct assembly having one or more outlets which are removably joinable to one or more corresponding air intakes of the turbomachine, and further having one or more inlets which are removably joinable to one or more corresponding exhausts of the turbomachine to enable closed loop recirculatory airflow through the turbomachine and the duct assembly and back to the turbomachine; and an air handling system having a blower arranged to blow air from the one or more inlets of the duct assembly to the one or more outlets of the duct assembly, and further having a heat exchanger configured to cool the air flowing through the duct assembly.

Подробнее
11-04-2006 дата публикации

GAS TURBINE AND OPERATION METHOD OF GAS TURBINE COMBINED ELECTRIC GENERATING PLANT, GAS TURBINE COMBINED ELECTRIC GENERATING PLANT, AND COMPUTER PRODUCT

Номер: CA0002402947C
Принадлежит: MITSUBISHI HEAVY INDUSTRIES, LTD.

A casing air temperature Ta and a steam temperature Ts are measured, and if an absolute value .DELTA.T of a difference between these two temperatures is within a predetermined temperature, the gas turbine is connected to the generator. After the connection is done, the load is gradually increased, and the coolant changeover signal is sent from a processor to a controller. The coolant is then changed to the steam, thereby completing the connection of the gas turbine with the generator and the changeover of the coolant.

Подробнее
25-02-2020 дата публикации

DEVICE AND METHOD FOR GAS TURBINE UNLOCKING AFTER SHUT DOWN

Номер: CA0002866610C
Принадлежит: NUOVO PIGNONE SRL

An aeroderivative gas turbine (102) is disclosed, comprising: an air intake plenum (103); a compressor with a compressor air intake in fluid communication with the air intake plenum(103); a combustor; a high pressure turbine; a power turbine. A forced air-stream generator (111) is arranged in fluid communication with the air intake plenum (103). A shutter arrangement (123) is provided in a combustion-air flow path (105), arranged and controlled to close the combustion-air flow path for pressurizing said air intake plenum by means of the forced air-stream generator (111) to a pressure sufficient to cause pressurized air to flow through the aeroderivative air turbine (102).

Подробнее
30-09-1971 дата публикации

Beschleunigungsregler für eine Gasturbine

Номер: CH0000513327A
Принадлежит: GEN ELECTRIC, GENERAL ELECTRIC COMPANY

Подробнее
30-06-1971 дата публикации

Regelvorrichtung für Dampfturbine

Номер: CH0000509502A

Подробнее
30-11-1977 дата публикации

Номер: CH0000593418A5
Автор:

Подробнее
30-12-1977 дата публикации

Номер: CH0000594129A5
Автор:

Подробнее
15-09-2014 дата публикации

flow case for the thermal control of a double-walled turbine casing and associated method.

Номер: CH0000707754A2
Принадлежит:

Ein Turbinengehäuse enthält zumindest eine Wand, die dazu eingerichtet ist, eine oder mehrere Turbinenstufen in einer Gasturbine zu umschliessen; einen Lufteinlass in der zumindest einen Wand; eine Strömungshülse (54), die an der Innenfläche der zumindest einen Wand angebracht ist, wobei die Strömungshülse (54) zumindest zwei gekrümmte Segmente aufweist. Jedes gekrümmte Segment enthält eine gekrümmte Basis (58), ein Paar von Seitenwänden (60, 62), die sich radial nach aussen von der Basis (58) erstrecken und dabei einen sich in Umfangsrichtung erstreckenden Strömungskanal bilden, der durch die Basis (58), die Seitenwände (60, 62) und die Innenfläche gebildet ist. Der Lufteinlass ist mit dem Strömungskanal ausgerichtet und die Strömungshülse (54) ist dazu eingerichtet, die in den Kanal strömende Luft in Bereiche benachbart zu einer oder zu mehreren Turbinenstufen in Umfangs-, Radial- und Axialrichtungen zu verteilen, einschliesslich entlang der Innenfläche von der zumindest einen Wand.

Подробнее
20-09-2006 дата публикации

Turbine starting controller and turbine starting control method

Номер: CN0001834408A
Принадлежит:

Подробнее
19-02-1988 дата публикации

PROCEDE DE DEMARRAGE A FROID D'UNE TURBINE A VAPEUR

Номер: FR0002602824A
Принадлежит:

L'INVENTION CONCERNE UN PROCEDE DE DEMARRAGE A FROID D'UNE TURBINE A VAPEUR COMPRENANT: LA MISE EN MARCHE DU VIREUR; LA CREATION DU VIDE DANS LE CONDENSEUR 5; LE CONTROLE DE L'ETANCHEITE DU SYSTEME A VIDE; LE CHAUFFAGE DES ROTORS ET DES CORPS CYLINDRES 2, 3. SELON L'INVENTION, APRES LA MISE EN MARCHE DU VIREUR MAIS AVANT LA CREATION DU VIDE DANS LE CONDENSEUR 5 ON EFFECTUE LE CHAUFFAGE DES ROTORS ET DES CORPS 2, 3 PAR DE LA VAPEUR PRODUITE PAR UN GENERATEUR EXTERIEUR SOUS UNE PRESSION COMPATIBLE AVEC LA RESISTANCE DU CONDENSEUR ET, EN MEME TEMPS, ON CONTROLE L'ETANCHEITE DU SYSTEME A VIDE, PUIS ON REALISE LE VIDE DANS LE CONDENSEUR 5 ET ON ELEVE LA VITESSE DE ROTATION DE LA LIGNE D'ARBRE 1 JUSQU'A LA VITESSE NOMINALE. L'INVENTION TROUVE NOTAMMENT APPLICATION DANS LA PRODUCTION D'ENERGIE.

Подробнее
06-11-1981 дата публикации

PROCEDE ET APPAREIL POUR ASSURER LA MISE EN CHARGE COMMANDEE D'UNE TURBINE A VAPEUR EN FONCTION DES CONTRAINTES THERMIQUES

Номер: FR0002481741A
Принадлежит:

L'APPAREIL COMPORTE UNE UNITE 58 DE COMMANDE DE CHARGE QUI COMMANDE DES SOUPAPES 22-28 D'ADMISSION DE LA TURBINE HAUTE PRESSION 10 POUR ADMETTRE LE DEBIT VOULU DE VAPEUR DANS LA TURBINE ET UN CHANGEUR 44 DE MODE D'ADMISSION QUI REGLE LES SOUPAPES ENTRE LESMODES D'ADMISSION "A ARCS TOTAUX" ET "A ARCS PARTIELS". LES TEMPERATURES DE PLUSIEURS ORGANES DE LA TURBINE ET DE LA VAPEUR, MESUREES PAR DES DETECTEURS 46 A 52 SONT APPLIQUEES A DES ELEMENTS DE CALCUL 54 A 62 QUI CALCULENT UN TAUX DE CHANGEMENT DE LA CHARGE POUR CHAQUE ORGANE, LE TAUX LE PLUS FAIBLE ETANT APPLIQUE A L'UNITE DE COMMANDE. SIMULTANEMENT, UNE VALEUR DE CONTRAINTE DE REFERENCE EST CALCULEE EN FONCTION D'UN TAUX DE MISE EN CHARGE INITIAL PREDETERMINE ET SOUSTRAITE DE LA CONTRAINTE EFFECTIVE LA PLUS ELEVEE DU ROTOR HAUTE PRESSION DE LA TURBINE, LA DIFFERENCE ETANT APPLIQUEE AU CHANGEUR DE MODE, POUR REGLER LES OUVERTURES RELATIVES DES SOUPAPES DANS UN SENS QUI REDUIT LA DIFFERENCE. APPLICATION AUX TURBINES A VAPEUR.

Подробнее
03-09-1971 дата публикации

APPARATUS FOR CONTROLLING THE ACCELERATION OF A GAS TURBINE

Номер: FR0002069662A5
Автор:
Принадлежит:

Подробнее
25-01-2018 дата публикации

MULTI-ENGINE COORDINATION DURING GAS TURBINE ENGINE MOTORING

Номер: US20180023413A1
Принадлежит:

A system is provided for multi-engine coordination of gas turbine engine motoring in an aircraft. The system includes a controller operable to determine a motoring mode as a selection between a single engine dry motoring mode and a multi-engine dry motoring mode based on at least one temperature of a plurality of gas turbine engines and initiate dry motoring based on the motoring mode. 1. A system for multi-engine coordination of gas turbine engine motoring in an aircraft , the system comprising:a controller operable to determine a motoring mode as a selection between a single engine dry motoring mode and a multi-engine dry motoring mode based on at least one temperature of a plurality of gas turbine engines and initiate dry motoring based on the motoring mode.2. The system as in claim 1 , wherein the at least one temperature is a measured core engine temperature or an oil temperature.3. The system as in claim 1 , wherein dry motoring is inhibited when the aircraft is not on the ground.4. The system as in claim 1 , wherein the motoring mode is further determined based on a plurality of performance parameters that are based on one or more of: an ambient condition claim 1 , performance limitations of a compressed air source and each air turbine starter driven by the compressed air source claim 1 , engine drag claim 1 , and parasitic factors.5. The system as in claim 4 , wherein the performance parameters are determined based on one or more of: an ambient air temperature claim 4 , an ambient pressure claim 4 , and an oil temperature.6. The system as is claim 1 , wherein the compressed air source is an auxiliary power unit of the aircraft claim 1 , a ground cart claim 1 , or a cross engine bleed.7. The system as in claim 1 , wherein the controller is further operable to monitor a speed of each of the gas turbine engines when dry motoring is active and switch from the multi-engine dry motoring mode to the single engine dry motoring mode based on one or more of the gas ...

Подробнее
19-02-2019 дата публикации

Piezo-electric motor for bowed rotor mitigation

Номер: US0010208629B2
Принадлежит: THE BOEING COMPANY, BOEING CO, The Boeing Company

A piezoelectric motor comprising one or more concentric stator rings arranged to transfer energy and provide torque to an engine rotor or to an engine transmission. Such a piezo-electric motor improves spatial integration of an engine turning motor in a gas turbine engine.

Подробнее
05-03-2019 дата публикации

Speed control during motoring of a gas turbine engine

Номер: US10221774B2

A system is provided for speed control during motoring of a gas turbine engine of an aircraft. The system includes an air turbine starter, a starter air valve operable to deliver compressed air to the air turbine starter, and a controller. The controller is operable to adjust the starter air valve to control motoring of the gas turbine engine based on measured feedback with lead compensation to reject disturbances attributable to dual to single or single to dual engine starting transitions.

Подробнее
05-11-2008 дата публикации

Method of starting turbine engine from low engine speed

Номер: EP1988268A2
Принадлежит:

A method of starting a turbine engine at a first engine speed value (S1) which is lower than a second engine speed value (S2) designed for a normal engine starting operation, comprises varying a fuel flow (FF1) into a combustor of the engine to start the engine in repeatedly alternating speed acceleration and deceleration cycles in order to create an engine speed augmentation in each of the speed acceleration and deceleration cycles, thereby achieving the second engine speed value (S2) while preventing the engine from being overheated, and then beginning the normal engine starting operation.

Подробнее
14-09-2016 дата публикации

METHOD FOR STARTING A STEAM TURBINE PLANT

Номер: EP1957759B1
Принадлежит: Siemens Aktiengesellschaft

Подробнее
08-02-2023 дата публикации

LUBRICATION SYSTEM FOR A TURBINE ENGINE

Номер: EP4130442A1
Автор: GAUTHIER, Felix
Принадлежит:

A lubrication system (20) is provided for a turbine engine (130). A lubricant source (22) includes a source outlet (44). Feed circuits (23, 24) are fluidly coupled with the source outlet (44) in parallel. The feed circuits (23, 24) include a first feed circuit (24) and a second feed circuit (23). The second feed circuit (23) includes a pump (50) with a pump inlet (52) and a pump outlet (54). A bypass circuit (25) is fluidly coupled with the pump inlet (52) and the pump outlet (54). A bleed circuit (26) is fluidly coupled with the first feed circuit (24). A flow regulator (27) is configured to regulate flow through the bypass circuit (25) during a first mode of operation and a second mode of operation. The flow regulator (27) is configured to close the bleed circuit (26) during the second mode of operation. A sensor system (32) is configured to monitor fluid flow directed to the first feed circuit (24) and/or the second feed circuit (23).

Подробнее
27-11-2016 дата публикации

СПОСОБ ЗАПУСКА ТУРБОУСТРОЙСТВА ПРИ УМЕНЬШЕНИИ ТЕПЛОВОЙ НЕСБАЛАНСИРОВАННОСТИ

Номер: RU2603206C2
Принадлежит: ТУРБОМЕКА (FR)

Изобретение относится к энергетике. Способ запуска турбоустройства, содержащего газотурбинный двигатель, включающий в себя, по меньшей мере, один ротор и стартер, выполненный с возможностью привода ротора во вращение, выполняется электронным модулем. Способ запуска содержит: этап получения распоряжения на запуск турбоустройства и запуска в ответ на получение этого распоряжения; этап первичного ускорения, во время которого стартер работает для увеличения скорости вращения ротора; этап тепловой гомогенизации, во время которого стартер работает для поддержания постоянной скорости вращения ротора или уменьшения ее, пока не произойдет удовлетворение заданного условия; после выполнения заданного условия выполняется этап вторичного ускорения, во время которого стартер работает для увеличения скорости вращения ротора; и этап E6) зажигания, на котором поступает распоряжение на зажигание двигателя. Изобретение позволяет повысить эффективность запуска турбоустройства. 2 н. и 6 з.п. ф-лы, 6 ил.

Подробнее
26-03-2018 дата публикации

Соединение корпусов цилиндров и подшипников паровой турбины (варианты)

Номер: RU2648477C2

Изобретение относится к теплоэнергетике. Может использоваться для минимизации тепловых перемещений роторов относительно корпусов цилиндров за счет изменения длины соединения корпусов цилиндров и подшипников. Узлы переменной длины могут быть реализованы различными способами (винтовое соединение со встроенным гидроприводом). Предложенные соединения переменной длины имеют следующие преимущества: позволяют минимизировать относительные перемещения роторов относительно корпусов цилиндров; позволяют ускорить пуски и остановы турбин за счет управления относительными перемещениями; обеспечивают минимальные перемещения ротора на генератор. 1 з.п. ф-лы.

Подробнее
27-12-2014 дата публикации

РЕГУЛИРОВАНИЕ ЗАЗОРОВ НА ВЕРШИНЕ ЛОПАТОК ТУРБОМАШИНЫ

Номер: RU2537100C2
Принадлежит: СНЕКМА (FR)

FIELD: machine building. SUBSTANCE: turbomachine comprises units to regulate the gaps between the tips of the high-pressure turbine moving blades (16) and the outer casing (12) set around the said blades, units (48, 46) to cool the outer casing by the air taken from the high-pressure compressor of the turbomachine, the first units (60) for electric heating of the upper part of the outer casing (12) and second units for electric heating of the lower part of the outer casing (12), pulse control units (63) for air cooling units (48, 61, 46) and independent control units for electric heating units (60). EFFECT: independent operation of the units for electric heating of upper and lower parts of the casing helps to solve the problem of hot restart of a turbomachine, herewith heating of only lower part of the outer casing is controlled, hot air withdrawal line is eliminated, simplified design. 12 cl, 5 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК F01D 11/24 (11) (13) 2 537 100 C2 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2012113551/06, 07.09.2010 (24) Дата начала отсчета срока действия патента: 07.09.2010 (72) Автор(ы): ФИЛИППО Венсан (FR) (73) Патентообладатель(и): СНЕКМА (FR) Приоритет(ы): (30) Конвенционный приоритет: (43) Дата публикации заявки: 20.10.2013 Бюл. № 29 R U 08.09.2009 FR 09/04275 (45) Опубликовано: 27.12.2014 Бюл. № 36 C 2 2 5 3 7 1 0 0 R U (85) Дата начала рассмотрения заявки PCT на национальной фазе: 09.04.2012 (86) Заявка PCT: FR 2010/051855 (07.09.2010) (87) Публикация заявки PCT: WO 2011/030051 (17.03.2011) Адрес для переписки: 129090, Москва, ул. Б. Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) РЕГУЛИРОВАНИЕ ЗАЗОРОВ НА ВЕРШИНЕ ЛОПАТОК ТУРБОМАШИНЫ (57) Реферат: Турбомашина содержит средства из компрессора высокого давления турбомашины, регулирования зазоров между вершинами первые средства (60) электрического нагрева подвижных лопаток (16) турбины ...

Подробнее
10-10-2016 дата публикации

УСТРОЙСТВО ГЕНЕРАЦИИ СОЛНЕЧНОЙ ЭНЕРГИИ И ВНЕШНИЙ ПАРОВОЙ ИСТОЧНИК ДОПОЛНИТЕЛЬНОЙ ЭЛЕКТРОЭНЕРГИИ

Номер: RU2015109761A
Принадлежит:

... 1. Солнечная и внешняя паровая гибридная система генерации электроэнергии, содержащая солнечный парогенератор, внешний регулятор пара (15), турбоагрегат (2), и генератор (1) мощности, соединенный с турбоагрегатом (2), отличающаяся тем, что выходной конец солнечного парогенератора соединен с входом (3) пара высокого давления турбоагрегата (2) через первый регулирующий клапан (18); выходной конец для пара внешнего регулятора (15) пара также соединен с входом (3) пара высокого давления турбоагрегата (2) через второй регулирующий клапан (20) и второй переключающий клапан (19); выход (4) пара низкого давления турбоагрегата (2) соединен с входным концом конденсационного аппарата (5), а выходной конец конденсационного аппарата (5) соединен с входным концом деаэратора (6); выходной конец деаэратора (6) соединен с входным концом насоса (7) подачи воды; выходной конец насоса (7) подачи воды соединен с входным концом оборотной воды солнечного парогенератора через первый переключающий клапан (16); ...

Подробнее
28-12-1961 дата публикации

Improvements in or relating to steam turbine installations

Номер: GB0000885497A
Автор:
Принадлежит:

... 885,497. Correspondence control systems. SIEMENS-SCHUCKERTWERKE A.G. March 3, 1958 [March 2, 1957], No. 6818/58. Class 40 (1). [Also in Group XXVI] The rate of change of load on a steam turbine is limited to a maximum dependent upon the existing load on the turbine. In the arrangement shown, a manually operable switch 23 can be moved to a position L or position R and cause a motor 22 to open or close the turbine inlet valve. For the two directions of rotation, separate magnetic amplifiers 24, 25 come into effect. These magnetic amplifiers contain premagnetized chokes across which fall a part of the voltage applied to the motor 22. A tap 27 of a potentiometer 28 is adjusted by the motor 22 through a regulator 26 in accordance with the position of the turbine inlet valve or the oil pressure of the turbine regulator. The potentiometer 28, together with a further potentiometer 31 forms a Wheatstone bridge, the feed voltage of which is applied at points 29, 30. The potentiometer 31 has a tap ...

Подробнее
19-09-1979 дата публикации

STEAM TURBINE CONTROL SYSTEM AND METHOD

Номер: GB0001553059A
Автор:
Принадлежит:

Подробнее
27-05-1958 дата публикации

Starting pointer for steam and gas turbines

Номер: AT0000197839B
Автор:
Принадлежит:

Подробнее
15-03-2008 дата публикации

PROCEDURE AND MODULE FOR THE VORRAUSSCHAUENDEN STARTING STEAM TURBINES

Номер: AT0000389097T
Принадлежит:

Подробнее
01-05-1986 дата публикации

MATCHING STEAM AND TURBINE TEMPERATURE

Номер: AU0004847085A
Принадлежит:

Подробнее
10-10-2002 дата публикации

VAPOR TUBE STRUCTURE OF GAS TURBINE

Номер: CA0002381664A1
Автор: TANIOKA, TADATERU
Принадлежит:

A vapor tube structure in a gas turbine comprises first connecting tubes fixed to a casing, second connecting tubes fixed to a blade ring, a recovery ring and a cooling recovery ring, a bellows tube of the flexible structure, springs, a tube and a piston rings provided between the first connecting tubes and the second connecting tubes. As a result, it is possible to absorb and follow the thermal expansion/contraction difference and prevent leaking of vapor.

Подробнее
27-06-2020 дата публикации

PASSIVE BLADE TIP CLEARANCE CONTROL SYSTEM FOR GAS TURBINE ENGINE

Номер: CA0003055948A1
Принадлежит: SMART & BIGGAR LLP

The present disclosure relates to a gas turbine engine including a turbine wheel mounted for rotation about a central axis and a turbine shroud ring mounted radially outward from the turbine wheel. The turbine wheel includes a plurality of blades that are spaced apart radially from the turbine shroud ring to establish a blade tip clearance gap. The gas turbine engine further includes a blade tip clearance control system that passively controls the size of the clearance gap based on engine operation.

Подробнее
11-04-1978 дата публикации

SYSTEM AND METHOD FOR IMPROVED STEAM TURBINE CONTROL RESPONSIVE TO HEAT FLOW

Номер: CA0001029456A1
Автор: OSBORNE ROBERT L
Принадлежит:

Подробнее
13-06-1978 дата публикации

HTGR POWER PLANT HOT REHEAT STEAM PRESSURE CONTROL SYSTEM

Номер: CA0001033032A1
Принадлежит:

Подробнее
24-04-2012 дата публикации

TURBINE SYSTEM AND METHOD FOR STARTING-CONTROLLING TURBINE SYSTEM

Номер: CA0002666156C
Принадлежит: KABUSHIKI KAISHA TOSHIBA, TOSHIBA KK

The present invention provides a turbine system which can start a turbine, while controlling thermal stress generated in a turbine rotor and an expansion difference, due to thermal expansion, between a casing and the turbine rotor, to be lower than defined values, respectively. The turbine system (1) according to the present invention includes the turbine (4) having a casing (2) and the turbine rotor (3) rotatably attached to the casing (2), and a main steam pipe (5) connected to an upstream portion of the casing (2). A control valve (6) adapted for controlling a flow rate of steam discharging into the casing (2) is provided with the main steam pipe (5), and a power generator (7) is coupled with the turbine rotor (3). Additionally, a starting control system (10) is adapted for controlling the control valve (6), while obtaining an operational amount of the control valve (6).

Подробнее
31-07-2014 дата публикации

PROCESS FOR CONTROLLING A POWER TURBINE THROTTLE VALVE DURING A SUPERCRITICAL CARBON DIOXIDE RANKINE CYCLE

Номер: CA0002899163A1
Принадлежит:

Embodiments of the invention generally provide a heat engine system, a method for generating electricity, and an algorithm for controlling the heat engine system which are configured to efficiently transform thermal energy of a waste heat stream into electricity. In one embodiment, the heat engine system utilizes a working fluid (e.g., sc-CO2) within a working fluid circuit for absorbing the thermal energy that is transformed to mechanical energy by a turbine and electrical energy by a generator. The heat engine system further contains a control system operatively connected to the working fluid circuit and enabled to monitor and control parameters of the heat engine system by manipulating a power turbine throttle valve to adjust the flow of the working fluid. A control algorithm containing multiple system controllers may be utilized by the control system to adjust the power turbine throttle valve while maximizing efficiency of the heat engine system.

Подробнее
17-09-1985 дата публикации

STEAM TURBINE CONTROL APPARATUS

Номер: CA0001193452A1
Автор: IPSEN PETER G
Принадлежит:

Подробнее
30-06-2017 дата публикации

마스터 제어기로서 열적 응력 제어기를 포함하는 터빈 제어 유닛

Номер: KR1020170074979A
Принадлежит:

... 본 발명은 터빈(6, 8, 10)을 제어하기 위한, 특히 터빈(6, 8, 10)의 시동을 제어하기 위한 터빈 제어 유닛(1)에 관한 것으로서, 상기 유닛은 마스터 제어기(2) 및 내부 제어기(3)를 포함하는 캐스케이드 제어기로서 설계되고, 마스터 제어기는 열적 응력을 받는 구성요소의 온도를 위한 열적 응력 제어기(2)이다. 본 발명은 또한 연관된 방법에 관한 것이다.

Подробнее
21-04-2005 дата публикации

Method and apparatus for controlling steam turbine inlet flow to limit shell and rotor thermal stress

Номер: US20050085949A1
Автор: Darrin Kirchhof
Принадлежит: General Electric Company

In a method of controlling steam flow through a steam turbine having a turbine rotor, a maximum heat transfer rate is determined based on thermal stress calculations in the turbine rotor. A maximum steam flow rate can be calculated based on the maximum heat transfer rate. An actual steam flow rate through the steam turbine is determined, and a turbine inlet valve is controlled based on a difference between the actual steam flow rate and the maximum steam flow rate. In this manner, steam flow can be controlled to the steam turbine in such a way as to limit thermal stress to an acceptable level while minimizing start times and maximizing operability.

Подробнее
01-12-1981 дата публикации

Method of and system for controlling stress produced in steam turbine rotor

Номер: US0004303369A
Автор:
Принадлежит:

A stress controlling system for a rotor of a steam turbine determines thermal and rotational conditions of the rotor. Thermal and centrifugal stresses produced in the rotor during operation of the steam turbine are calculated from the thermal and rotational conditions, respectively, of the rotor. Also, brittle fracture toughness of the material of the rotor under the thermal condition determined is calculated. Operation of the steam turbine is controlled to prevent the calculated brittle fracture toughness from being exceeded by the combined stress of thermal and centrifugal stresses during operation of the steam turbine.

Подробнее
30-07-2020 дата публикации

METHOD OF STARTING A GAS TURBINE ENGINE

Номер: US20200240329A1
Принадлежит:

A gas turbine engine and method of starting, the gas turbine engine having a rotor comprising at least a shaft mounted compressor and turbine, with a casing surrounding the rotor. The method comprises an acceleration phase, a bowed-rotor cooling phase, during the acceleration, and a combustion phase. The bowed-rotor cooling phase comprises a time where the rotational speed of the rotor is maintained below a bowed-rotor threshold speed until a non-bowed condition is satisfied, wherein the air forced through the gas turbine engine cools the rotor. The combustion phase occurs after the bowed-rotor cooling phase and upon reaching the combustion speed, wherein fuel is supplied to the gas turbine engine is turned on. 1. A method of starting a gas turbine engine having a rotor comprising at least a shaft mounted compressor and turbine , with a casing surrounding the rotor , the method comprising:initiating a first acceleration phase where the rotational speed of the rotor is increased toward a combustion speed to force air through the gas turbine engine;sensing vibrations during the first acceleration phase while the rotational speed of the rotor is equal to or less than a critical speed of the rotor;sensing a first bowed rotor condition during the first acceleration phase;initiating a first bowed rotor cooling phase during the first acceleration phase, where the rotational speed of the rotor is maintained below a first bowed rotor threshold speed until a first non-bowed rotor condition is satisfied, wherein the air forced through the gas turbine engine cools the rotor;sensing the first non-bowed rotor condition;thereafter, initiating a second acceleration phase, wherein the rotor speed is increased from at least the critical speed of the rotor toward the combustion speed;sensing a second bowed rotor condition during the second acceleration phase;initiating a second bowed rotor cooling phase during the second acceleration phase, where the rotational speed of the rotor is ...

Подробнее
24-11-2020 дата публикации

Air turbine starter with turbine air exhaust outlet valve

Номер: US0010844740B2

A system includes an air turbine starter having an inlet, a turbine air exhaust outlet, an output shaft, and a turbine in fluid communication with the inlet and the turbine air exhaust outlet. The turbine is operably coupled to the output shaft. The system also includes an outlet valve assembly configured to adjust an exhaust area of the turbine air exhaust outlet.

Подробнее
06-06-2023 дата публикации

Start-up system and method for rotor bow mitigation

Номер: US0011668248B2
Автор: Dana Tomescu
Принадлежит: PRATT & WHITNEY CANADA CORP.

There is provided a rotor bow mitigation system and method for an aircraft engine. At least one value of at least one engine parameter prior to a shutdown of the engine is obtained, the at least one engine parameter comprising a first temperature internal to the engine. A second temperature external to the engine is measured and a motoring duration and a motoring interval for the engine are determined based on at least the first temperature and on the second temperature. Upon detecting a start indication for the engine, the engine is motored for the motoring duration and at the motoring interval.

Подробнее
03-12-2008 дата публикации

Turbine starting controller and turbine starting control method

Номер: EP1707757A3
Принадлежит:

A turbine starting controller (10) includes: an optimum starting control unit (17) for predicting, while taking as a variable a turbine acceleration rate/load increase rate as a directly manipulated variable, thermal stress generated in a turbine rotor over a prediction period from a current time to the future, calculating for each control cycle a manipulated variable optimum transition pattern in the prediction period which makes a turbine starting time shortest while keeping the predicted thermal stress equal to or lower than a prescribed value, and determining as an actual optimum manipulated value a value at the current time in the manipulated variable optimum transition pattern; and an rpm/load control unit (18) to which the optimum manipulated variable from the optimum starting control unit (17) is input, for controlling the drive of control valves (13).

Подробнее
28-11-1980 дата публикации

Номер: JP0055165904U
Автор:
Принадлежит:

Подробнее
20-11-2016 дата публикации

УСТРОЙСТВО ГЕНЕРАЦИИ СОЛНЕЧНОЙ ЭНЕРГИИ И ВНЕШНИЙ ПАРОВОЙ ИСТОЧНИК ДОПОЛНИТЕЛЬНОЙ ЭЛЕКТРОЭНЕРГИИ

Номер: RU2602708C2

FIELD: energy. SUBSTANCE: invention relates to electric energy generation system using ecologically clean energy-solar and external steam hybrid electric energy generation system. System comprises solar steam generator outlet end of which is connected to inlet (3) of high pressure steam of turbine (2) through first control valve (18), steam outlet end of external controller (15) of steam is connected to inlet (3) of high pressure steam of turbine (2) through second control valve (20) and second switching valve (19), outlet (4) of low pressure steam turbine unit (2) is connected to inlet end of condensation device (5), while its outlet end is connected to inlet end of deaerator (6), its outlet end is connected to inlet end of pump (7) for supply of water, its outlet end is connected to inlet end of return water of solar steam generator through first switching valve (16), and the outlet end of pump (7) is additionally connected with bypass (11) of return water of external steam through fourth switching valve (23). System further includes tank (9) for storage of soft water. EFFECT: invention enables using waste heat of industrial production for elimination of dependence on weather and unstable and intermittent concentration of heat solar radiation. 6 cl, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 602 708 C2 (51) МПК H02S 10/00 (2014.01) F01K 11/02 (2006.01) F03G 6/06 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2015109761/06, 18.10.2012 (24) Дата начала отсчета срока действия патента: 18.10.2012 Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): ЧЭНЬ Илун (CN), ЯН Цинпин (CN), ЧЖАН Яньфын (CN) 12.12.2011 CN 201110411979.8; 12.12.2011 CN 201120515674.7 R U (73) Патентообладатель(и): УХАНЬ КАЙДИ ИНДЖИНИРИНГ ТЕКНОЛОДЖИ РИСЕРЧ ИНСТИТЬЮТ КО., ЛТД. (CN) (43) Дата публикации заявки: 10.10.2016 Бюл. № 28 (56) Список документов, цитированных в отчете о поиске: CN 201827035 U, 11.05.2011 ;CN ...

Подробнее
27-11-2002 дата публикации

УСТРОЙСТВО УПРАВЛЕНИЯ ТУРБИНЫ И СПОСОБ РЕГУЛИРОВАНИЯ ЦИКЛА НАГРУЖЕНИЯ ТУРБИНЫ

Номер: RU2193671C2

Изобретение предназначено для управления турбины. Устройство управления турбины обеспечивает регулирование цикла изменения нагрузки турбины с использованием блока ограничения, на который подается величина для переменного задания интервала времени t v процесса изменения нагрузки и в котором определение регулировочного параметра VAR турбины для осуществления цикла изменения нагрузки производится на интервале времени t v с учетом максимально допустимого граничного значения. В блоке определения износа производится предварительное определение усталости материала для цикла изменения нагрузки, реализованного в соответствии с регулировочным параметром VAR турбины. Изобретение также относится к способу регулирования цикла изменения нагрузки турбины. Такое выполнение турбины и такой способ позволяет достигнуть гибкое, соответствующее эксплуатационным требованиям к выработке электрической энергии изменение рабочих условий турбины. 2 с. и 8 з.п.ф-лы, 2 ил. Гэсбтс пы сэ (19) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ ВИ "” 2 193 671. (51) МПК? 13) С2 Е ОТО 19/02, 21/12 12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ (21), (22) Заявка: 99112196/06, 07.11.1997 (24) Дата начала действия патента: 07.11.1997 (30) Приоритет: 08.11.1996 ОЕ 19646182.0 (43) Дата публикации заявки: 10.04.2001 (46) Дата публикации: 27.11.2002 (56) Ссылки: СВ 1546352 А, 23.05.1979. СН 390947 А, 31.08.1965. $Ц 1132032 А, 30.12.1984. 5Ц 1250663 АЛ, 15.08.1986. $Ц 1459336 АЛ, 10.09.1996. ОЕ 2605689 А, 04.08.1977. Ц$ 4228359 А, 14.10.1980. 4$ 4558227, 10.12.1385. (85) Дата перевода заявки РСТ на национальную фазу: 08.06.1999 (86) Заявка РСТ: ОЕ 97/02607 (07.11.1997) (87) Публикация РСТ: \М/О 98/21451 (22.05.1998) (98) Адрес для переписки: 129010, Москва, ул. Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", Ю.Д.Кузнецову, рег.№ 595 (71) Заявитель: СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (0Е) (72) Изобретатель: ГОБРЕХТ Эдвин (ОЕ), ЛАНГБАИН Рольф (ПЕ) (73) Патентообладатель: СИМЕНС ...

Подробнее
10-12-2000 дата публикации

СПОСОБ И УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ЧАСТИЧНОЙ ТУРБИНЫ НИЗКОГО ДАВЛЕНИЯ

Номер: RU2160368C2

В способе для охлаждения частичной турбины низкого давления, включенной в пароводяной контур (12) паровой турбины (1), теплоноситель (К') протекает через части (24) частичной турбины низкого давления (2), в частности в режиме холостого хода. Для особенно эффективного охлаждения с одновременным использованием полученного при этом тепла в качестве теплоносителя (К') используют отобранный от включенного после паровой турбины (1) конденсатора (4) конденсат (К), причем по меньшей мере один частичный поток теплоносителя (К') после протекания через частичную турбину низкого давления (2) вначале охлаждают путем отдачи тепла пароводяному контуру (12), а затем снова подводят тепло к последнему. Для этого частичная турбина низкого давления подключена к соединенному со стороной стока конденсатора (4) трубопроводу контура охлаждения, в котором расположен включенный в пароводяной контур (12) теплообменник. Изобретение повышает эффективность охлаждения частичной турбины низкого давления, в частности в ...

Подробнее
30-07-2019 дата публикации

Номер: RU2017135363A3
Автор:
Принадлежит:

Подробнее
13-03-2008 дата публикации

Anordung für Kühldampfleitungen für Gasturbinen

Номер: DE0060224746D1

Подробнее
20-06-2013 дата публикации

System and method for warming up a steam turbine

Номер: US20130152587A1
Принадлежит: General Electric Co

A system for warming up a steam turbine includes a gas turbine and a controller operably connected to the gas turbine. The controller is programmed to receive a plurality of measured input signals and control the gas turbine to produce an exhaust having a desired energy. A first measured input signal is reflective of a measured operating parameter of the gas turbine and a second measured input signal is reflective of an operating parameter of the steam turbine. A method for warming up a steam turbine includes sending a plurality of measured input signals to a controller, wherein a first measured input signal reflects a measured operating parameter of a gas turbine and a second measured input signal reflects an operating parameter of the steam turbine. The method further includes controlling the gas turbine based on the plurality of measured input signals and producing an exhaust from the gas turbine, wherein the exhaust has a desired energy.

Подробнее
07-11-2013 дата публикации

Motor

Номер: US20130294888A1
Принадлежит: HITACHI LTD

A motor is provided which can detect a rotor temperature with high precision with a simple configuration not taking an influence on a temperature caused by circulation of a cooling oil into account. In a motor including a rotor, a stator arranged around the rotor, and a temperature sensor, the rotor includes an oil reservoir unit that reserves an oil on a rotating shaft line in an interior thereof, and the temperature sensor detects a temperature of the oil reserved in the oil reservoir unit.

Подробнее
28-11-2013 дата публикации

Neural network-based turbine monitoring system

Номер: US20130318018A1
Принадлежит: General Electric Co

A neural network-based system for monitoring a turbine compressor. In various embodiments, the neural network-based system includes: at least one computing device configured to monitor a turbine compressor by performing actions including: comparing a monitoring output from a first artificial neural network (ANN) about the turbine compressor to a monitoring output from a second, distinct ANN about the turbine compressor; and predicting a probability of a malfunction in the turbine compressor based upon the comparison of the monitoring outputs from the first ANN and the second, distinct ANN.

Подробнее
09-01-2020 дата публикации

POWER PLANT METHODS AND APPARATUS

Номер: US20200011242A1
Принадлежит:

A hybrid power plant system including a gas turbine system and a coal fired boiler system inputs high oxygen content gas turbine flue gas into the coal fired boiler system, said gas turbine flue gas also including carbon dioxide that is desired to be captured rather than released to the atmosphere. Oxygen in the gas turbine flue gas is consumed in the coal fired boiler, resulting in relatively low oxygen content boiler flue gas stream to be processed. Carbon dioxide, originally included in the gas turbine flue gas, is subsequently captured by the post combustion capture apparatus of the coal fired boiler system, along with carbon diode generated by the burning of coal. The supply of gas turbine flue gas which is input into the boiler system is controlled using dampers and/or fans by a controller based on an oxygen sensor measurement and one or more flow rate measurements. 1. A power system comprising: a boiler;', 'an oxygen sensor; and', i) a gas turbine flue gas boiler hopper input of said boiler or', 'ii) a gas turbine flue gas mill air supply duct input which is included as part of a mill air supply duct which supplies air to a mill which provides fuel to said boiler;, 'one or more gas turbine flue gas inputs including at least one of], 'a boiler system includinga gas turbine system; anda controller for controlling the supply of gas turbine flue gas to said one or more gas turbine flue gas inputs of said boiler system based on an oxygen level measured by said oxygen sensor.2. The power system of claim 1 , wherein the boiler system includes:a burner; andat least said gas turbine flue gas boiler hopper input for receiving gas turbine flue gas and supplying said received gas turbine flue gas into said boiler at a location beneath the burner.3. The power system of claim 2 , wherein said boiler system further includes:a burner air supply duct which supplies air to a burner of said boiler, said burner air supply duct including a gas turbine flue gas burner air supply ...

Подробнее
03-02-2022 дата публикации

METHOD FOR MONITORING THE OPERATING STATE OF AN OVERPRESSURE VALVE

Номер: US20220034234A1
Принадлежит: SAFRAN AIRCRAFT ENGINES

The invention relates to a method for monitoring the operating state of an overpressure valve of a turbine engine, the turbine engine comprising a fluid circuit, at least one pressure sensor for the fluid in the fluid circuit, a temperature sensor for the fluid in the fluid circuit, said overpressure valve being configured to limit the maximum fluid pressures in the fluid circuit, and the method comprising the following steps:—(E) determining an opening or closing indicator of the overpressure valve on the basis of the change in the fluid pressure over time;—(E) determining an operating state of the valve as a function of a fluid threshold temperature and of the determined opening or closing indicator of the overpressure valve. 1. A method for monitoring the operating state of a turbomachine pressure relief valve , the turbomachine comprising a fluid circuit , at least one fluid pressure sensor in the fluid circuit , a fluid temperature sensor in the fluid circuit , said pressure relief valve being configured to limit the maximum fluid pressures in the fluid circuit and to open if the fluid temperature is smaller than a threshold fluid temperature , and the method comprising the following steps:{'b': '2', '(E) determining an indicator of opening or closing of the pressure relief valve from the temporal evolution of the fluid pressure;'}{'b': '3', '(E) determining an operating state of the valve as a function of a fluid temperature measured by the fluid sensor, of a fluid threshold temperature and of the determined indicator of opening or closing of the pressure relief valve.'}22. The method for monitoring the operating state of a turbomachine pressure relief valve according to the preceding claim , wherein the step (E) of determining an indicator of opening or closing of the pressure relief valve is carried out as a function of the derivative or of the second derivative of the fluid pressure as a function of time.32. The method for monitoring the operating state of ...

Подробнее
28-01-2021 дата публикации

METHOD FOR OPERATING A STEAM TURBINE

Номер: US20210028730A1
Принадлежит: SIEMENS AKTIENGESELLSCHAFT

A method for operating a steam turbine, wherein the pressure of the cooling medium in the generator is changed not only for cooling but also for increasing or decreasing the torque of the generator on the steam turbine, this being utilized for the purpose of the start-up or shut-down process. 1. A method for operating a steam turbine , wherein the steam turbine has a rotatably mounted steam turbine rotor and a housing which is arranged around the steam turbine rotor , wherein the rotor is coupled in terms of torque to a generator rotor of an electrical generator , the method comprising:cooling the generator with a cooling medium, wherein a cooling pressure of the cooling medium in the generator is set,exerting a torque by the generator rotor on the steam turbine rotor,changing the torque from the generator rotor to the steam turbine rotor by means of a change in the cooling pressure.2. The method as claimed in claim 1 ,wherein an increase in the cooling pressure leads to an increase in the torque from the generator rotor to the steam turbine rotor.3. The method as claimed in claim 1 ,wherein a reduction in the cooling pressure leads to a reduction in the torque from the generator rotor to the steam turbine rotor.4. The method as claimed in claim 1 ,wherein the cooling pressure is changed during a startup process of the steam turbine.5. The method as claimed in claim 1 ,wherein the cooling pressure is changed during the shutdown process of the steam turbine.6. The method as claimed in claim 1 ,wherein an automation system for regulating the cooling pressure is designed such that an increase in the pressure and/or in the mass flow of the steam into the steam turbine is realized within specific limits.7. The method as claimed in claim 6 ,wherein the automation system is furthermore designed such that a change, or a reduction, in the mass flow of the steam into the steam turbine is realized within specific limits.8. The method as claimed in claim 7 ,wherein the change ...

Подробнее
17-02-2022 дата публикации

TURBINE ENGINE AND METHOD OF COOLING

Номер: US20220049619A1
Принадлежит:

A method of mitigating thermal rotor bow in a rotor assembly of a turbine engine may include performing a plurality of motoring cycles. The plurality of motoring cycles may include receiving feedback on a temperature within a turbine engine in a post-shutdown state, actuating a starter motor when the temperature is greater than a predetermined threshold, operating the starter motor for a motoring time to exhaust some residual heat from the turbine engine, and shutting down the starter motor after the motoring time. 120-. (canceled)21. A method of mitigating thermal rotor bow in a rotor assembly of a turbine engine , the method comprising:performing a plurality of motoring cycles, the plurality of motoring cycles comprising:receiving feedback on a temperature within a turbine engine in a post-shutdown state;actuating a starter motor when the temperature is greater than a predetermined threshold;operating the starter motor for a motoring time to exhaust some residual heat from the turbine engine; andshutting down the starter motor after the motoring time.22. The method of claim 21 , wherein the motoring time comprises a predetermined duration.23. The method of claim 21 , wherein operating the starter motor for the motoring time comprises operating the starter motor until the temperature is reduced below a second predetermined threshold.24. The method of claim 21 , comprising:receiving feedback on a running time of the turbine engine; andperforming the plurality of motoring cycles if the running time of the turbine engine is greater than a predetermined running time-threshold.25. The method of claim 21 , wherein actuating the starter motor comprises:actuating the starter motor at a preset time after a full stop command corresponding to the post-shutdown state.26. The method of claim 25 , wherein the preset time allows some thermal rotor bow to form before actuating the starter motor.27. The method of claim 21 , comprising:allowing some thermal rotor bow to form when ...

Подробнее
06-02-2020 дата публикации

Gas Turbine Engine Heaters

Номер: US20200040762A1
Принадлежит:

An engine heater system for heating a diesel engine of a vehicle. The engine heater system including a gas turbine. A heat exchanger communicatively coupled to an exhaust of the gas turbine. An electric generator including connection members to couple to a battery of the vehicle, and a shaft rotatably attached between the gas turbine and the electric generator. The heat exchanger utilizes the exhaust of the gas turbine to keep the diesel engine of the vehicle within a desired temperature range, and the electric generator charges the battery when the gas turbine rotates the shaft. 1. An engine heater system for heating a diesel engine of a vehicle , the engine heater system comprising:a gas turbine;a heat exchanger communicatively coupled to an exhaust of the gas turbine;an electric generator including connection members to couple to a battery of the vehicle; anda shaft rotatably attached between the gas turbine and the electric generator;wherein the heat exchanger utilizes the exhaust of the gas turbine to keep the diesel engine of the vehicle within a desired temperature range, and the electric generator charges the battery when the gas turbine rotates the shaft.2. The engine heater system of claim 1 , wherein the engine heater system is onboard of the vehicle.3. The engine heater system of claim 1 , wherein the vehicle comprises a locomotive claim 1 , a ship claim 1 , or a truck.4. The engine heater system of claim 1 , wherein the electric generator further includes connection members to couple to an electric motor of a coolant pump.5. The engine heater system of claim 1 , wherein the heat exchanger utilizes the exhaust of the gas turbine to heat an engine oil of the diesel engine of the vehicle to keep the diesel engine within the desired temperature range.6. The engine heater system of claim 1 , wherein the heat exchanger utilizes the exhaust of the gas turbine to heat an engine coolant of the diesel engine of the vehicle to keep the diesel engine within the ...

Подробнее
06-02-2020 дата публикации

Combustor Systems

Номер: US20200041130A1
Принадлежит: Hotstart Inc

An engine heater system for heating a diesel engine of a vehicle. The engine heater system including a gas turbine. A heat exchanger communicatively coupled to an exhaust of the gas turbine. An electric generator including connection members to couple to a battery of the vehicle, and a shaft rotatably attached between the gas turbine and the electric generator. The heat exchanger utilizes the exhaust of the gas turbine to keep the diesel engine of the vehicle within a desired temperature range, and the electric generator charges the battery when the gas turbine rotates the shaft.

Подробнее
01-03-2018 дата публикации

Advanced Startup Counter Module For A Valve And Actuator Monitoring System

Номер: US20180058248A1
Автор: REIGL Martin
Принадлежит:

The present application provides a method of evaluating fatigue damage in a turbine by a data acquisition system. The method may include the steps of receiving a number of operating parameters from a number of sensors and based upon the operating parameters, determining: a run time from start-up until the turbine reaches X percent load and a start-up temperature transient from start-up until the turbine reaches X percent load, and calculating: a run time ratio of the determined run time until the turbine reaches X percent load to a predetermined run time, a start-up temperature ratio of the determined start-up temperature transient to a predetermined start-up temperature transient, and a fatigue severity factor by averaging the run time ratio and the start-up temperature ratio. Based upon the determined fatigue severity factor, altering one or more of the operating parameters and/or initiating repair procedures. 1. A method of evaluating fatigue damage in a turbine by a data acquisition system , comprising:receiving a plurality of operating parameters from a plurality of sensors; a run time from start-up until the turbine reaches X percent load; and', 'a start-up temperature transient from start-up until the turbine reaches X percent load;, 'based upon the plurality of operating parameters, determining a run time ratio of the determined run time until the turbine reaches X percent load to a predetermined run time;', 'a start-up temperature ratio of the determined start-up temperature transient to a predetermined start-up temperature transient; and', 'a fatigue severity factor by averaging the run time ratio and the start-up temperature ratio; and, 'calculatingbased upon the determined fatigue severity factor, altering one or more of the plurality of operating parameters and/or initiating repair procedures.2. The method of claim 1 , wherein the determining step further comprises determining a stand-still time from shut-down to start-up.3. The method of claim 2 , ...

Подробнее
20-02-2020 дата публикации

AIR TURBINE START SYSTEM

Номер: US20200056547A1
Принадлежит:

An air turbine starter device includes a gear assembly, a rotor arranged in a cavity of a housing and operably connected the gear assembly, a first manifold having a cavity with a first manifold port operative to direct compressed air to the rotor, and a second manifold having a cavity with a second manifold port operative to direct compressed air to the rotor. The first manifold is larger than the second manifold, the second manifold is fluidly connected in parallel with the first manifold, and the first manifold port and the second manifold port are operative to drive the rotor in a common direction for starting a gas turbine connected to the gear assembly. Air turbine starter systems and methods of starting gas turbine engines are also described. 1. An air turbine starter device comprising:a gear assembly;a rotor arranged in a cavity of a housing, wherein the rotor is operably connected the gear assembly;a first manifold having a cavity with a first manifold port operative to direct compressed air to the rotor; anda second manifold having a cavity with a second manifold port operative to direct compressed air to the rotor,wherein the first manifold is larger than the second manifold, wherein the second manifold is fluidly connected in parallel with the first manifold, and wherein the first manifold port and the second manifold port are operative to drive the rotor in a common direction.2. The device of claim 1 , wherein the first manifold includes a greater number of ports than a number of ports in the second manifold.3. The device of claim 1 , wherein the cavity of the first manifold defines a first compressed air flow path that flows through the cavity of the first manifold claim 1 , through the port of the first manifold claim 1 , and through a nozzle that is communicative with the cavity of the housing.4. The device of claim 1 , wherein the cavity of the second manifold defines a second compressed air flow path that flows through the cavity of the second ...

Подробнее
12-03-2015 дата публикации

System for inductive heating of turbine rotor disks

Номер: US20150068216A1
Принадлежит: SIEMENS AG

A turbine rotor with at least one rotor disk is provided. The turbine rotor includes a heating arrangement for heating at least a part of the rotor disk. The heating arrangement has a conductor for conducting electric current. The conductor is positioned such that in presence of the electric current in the conductor, Eddy current is generated in the part of the rotor disk. The electric current is an alternating current. The Eddy currents so generated in the part of the rotor disk result in inductive heating of the part of the rotor disk.

Подробнее
11-03-2021 дата публикации

METHOD FOR DETECTING THE IGNITION OF A TURBINE ENGINE

Номер: US20210071582A1
Принадлежит: SAFRAN AIRCRAFT ENGINES

The invention relates to a method (E) for detecting the ignition of a turbine engine combustion chamber, the method (E) comprising the steps of: receiving (E) a first measurement of the exhaust gas temperature downstream from the combustion chamber, before an attempt to ignite said combustion chamber; receiving (E) a temperature threshold; receiving (E) a secondary detection criterion; updating (E) the received temperature threshold as a function of the secondary detection criterion received; receiving (E) a second measurement of the exhaust gas temperature, after the attempt to ignite the combustion chamber; comparing (E) the updated temperature threshold with the difference between the first and second exhaust gas temperature measurements; and determining (E) the state of ignition of the combustion chamber. 1. A method comprising:before an attempt to ignite a combustion chamber of a turbine engine, receiving a first measurement of exhaust gas temperature downstream of the combustion chamber;receiving a temperature threshold anda secondary detection criterion;updating the temperature threshold depending on the secondary detection criterion;after the attempt to ignite the combustion chamber, receiving a second measurement of the exhaust gas temperature; andcomparing the updated temperature threshold and the difference between the first measurement and the second measurement of the exhaust gas temperature anddetermining an ignition state of the combustion chamber corresponding to a success or to a failure of the ignition attempt.2. The method according to claim 1 , wherein receiving a first measurement of the exhaust gas temperature is implemented at an end of a phase of initiation of a starting sequence of the turbine engine claim 1 , when the exhaust gas temperature is minimal.3. The method according to claim 1 , wherein updating of the temperature threshold consists of a reduction of a value of the threshold if the secondary criterion is validated claim 1 , and of ...

Подробнее
31-03-2022 дата публикации

CONTROL OF ROTOR STRESS WITHIN TURBOMACHINE DURING STARTUP OPERATION

Номер: US20220098996A1
Принадлежит:

Embodiments of the disclosure provide a method for controlling steam pressure within a turbine component. The method includes calculating a predicted stress on a rotor of the turbine component based on a predicted steam flow with the inlet valve in a minimum load position, a rotor surface temperature, and an inlet steam temperature, and determining whether the predicted stress exceeds a threshold. If the predicted stress exceeds the threshold, the inlet valve adjusts to a warming position. When steam in the discharge passage reaches a target pressure, the exhaust valve partially closes while maintaining the warming position of the inlet valve. If a safety parameter of the turbine component violates a boundary, the exhaust valve partially opens while maintaining the warming position of the inlet valve. When the predicted stress does not exceed the threshold, the inlet valve opens to at least the minimum load position. 1. A method for controlling steam pressure within a turbine component during a startup operation , the turbine component being fluidly coupled between an inlet having an inlet valve for controlling steam flow into the turbine component and an exhaust having an exhaust valve for controlling steam flow to a discharge passage , the method comprising:adjusting the exhaust valve to a fully open position and the inlet valve to a fully closed position;calculating a predicted stress on a rotor of the turbine component based on a predicted steam flow with the inlet valve in a minimum load position, a rotor surface temperature, and an inlet steam temperature;determining whether the predicted stress exceeds a threshold;in response to the predicted stress exceeding the threshold, adjusting the inlet valve to a warming position that is less open than the minimum load position, such that a steam flow through the turbine component pressurizes the discharge passage;in response to steam in the discharge passage reaching a target pressure, partially closing the exhaust ...

Подробнее
05-04-2018 дата публикации

DEVICE AND METHOD FOR GAS TURBINE UNLOCKING

Номер: US20180094585A1
Принадлежит:

An aeroderivative gas turbine including an air intake plenum; a compressor with a compressor air intake in fluid communication with the air intake plenum; a combustor; a high pressure turbine; a power turbine. A forced air-stream generator is arranged in fluid communication with the air intake plenum. A shutter arrangement is provided in a combustion-air flow path, arranged and controlled to close the combustion-air flow path for pressurizing said air intake plenum by means of the forced air-stream generator to a pressure sufficient to cause pressurized air to flow through the aeroderivative air turbine. 1. A method for unlocking a rotor in an aeroderivative gas turbine following shutdown of the aeroderivative gas turbine , the method comprising:arranging an air intake plenum of the aeroderivative gas turbine in fluid communication with a combustion-air flow path of the aeroderivative gas turbine, a compressor air intake, and a forced air-stream generator;arranging and controlling a shutter arrangement to selectively open and close the combustion-air flow path, wherein the shutter arrangement is in the combustion-air flow path through which air enters the air intake plenum;selectively opening and closing, by at least one shutter in the shutter arrangement, a plurality of air passageway defined between respective pairs of adjacent parallel arranged silencer panels, each air passageway having an air outlet aperture; andcooling the rotor when the rotor is locked following shut down of the aeroderivative gas turbine, by closing the shutters of the shutter arrangement and generating an overpressure in the air intake plenum by using the forced air-stream generator, the overpressure being sufficient to force pressurized air through the locked rotor of the aeroderivative gas turbine.2. The method according to claim 1 , wherein the overpressure ranges between 0.05 and 0.3 Bar above ambient pressure.3. The method according to claim 1 , wherein the overpressure ranges between ...

Подробнее
12-05-2022 дата публикации

Method for starting a turbine engine in cold weather and system for starting a turbine engine

Номер: US20220145804A1
Принадлежит: Safran Aircraft Engines SAS

A method for starting a turbine engine in cold weather, including a starting system intended for rotating a drive shaft of the turbine engine. The method includes the following steps: a pre-starting step in which a first starting signal is generated to control the drive shaft in a first direction of rotation about a longitudinal axis and in a second opposite direction of rotation in an alternating manner; and a starting step in which a second starting signal is transmitted to the starting system in order for the latter to drive the drive shaft of the turbine engine in a normal direction of rotation and in which the drive shaft is rotated until a rotation speed that causes the turbine engine to start.

Подробнее
07-05-2015 дата публикации

ACTIVATION CONTROL DEVICE

Номер: US20150121874A1
Принадлежит:

Provided is a steam turbine plant activation control device that can flexibly handle an initial state amount of a steam turbine plant and activate a steam turbine at a high speed. The activation control device for the steam turbine plant includes a heat source device configured to heat a low-temperature fluid using a heat source medium and generate a high-temperature fluid, a steam generator for generating steam by thermal exchange with the high-temperature fluid, a steam turbine to be driven by the steam, and adjusters configured to adjust operation amounts of the plant. 1. An activation control device for a steam turbine plant , the steam turbine plant includinga heat source device configured to heat a low-temperature fluid using a heat source medium to generate a high-temperature fluid,a steam generator for generating steam by thermal exchange with the high-temperature fluid,a steam turbine to be driven by the steam, andan adjuster for adjusting a plant operation amount,the activation control device comprising:a predicting unit for calculating a predicted value for at least one constraint to be used to control the activation of the steam turbine;an activation control parameter setting unit configured to calculate, based on an initial value of a plant state amount, an activation control parameter to be used to control the activation of the steam turbine; anda plant operation amount calculator configured to determine the plant operation amount, based on the predicted value for a constraint, the predicted value being calculated by the predicting unit, and on the activation control parameter calculated by the activation control parameter setting unit, so that the constraint does not exceed a predetermined limit.2. The activation control device according to claim 1 ,wherein the adjuster includes a heat source medium amount adjusting unit configured to adjust the amount of a heat source medium to be supplied to the heat source device and adjust the amount of heat held ...

Подробнее
04-05-2017 дата публикации

Warming arrangement for a power plant

Номер: US20170122130A1
Принадлежит: General Electric Technology GmbH

The present disclosure relates generally to power plants and more specifically to warming systems for steam turbine plants that prepare the steam plant for either start-up or stand-by operation.

Подробнее
02-05-2019 дата публикации

PNEUMATIC STARTER SUPPLEMENTAL LUBRICATION SYSTEM

Номер: US20190128141A1
Принадлежит:

A starter supplemental lubrication system for a gas turbine engine is provided. The starter supplemental lubrication system includes a pneumatic starter operable to drive rotation of a rotor shaft of a gas turbine engine through an accessory gearbox. The pneumatic starter is configured to receive a primary lubricant flow at a first rotational speed range and receive a supplemental lubricant flow at a second rotational speed range that is less than the first rotational speed range. The starter supplemental lubrication system also includes a supplemental lubricant pump operable to supply the supplemental lubricant flow at the second rotational speed range. 1. A starter supplemental lubrication system for a gas turbine engine , the starter supplemental lubrication system comprising:a pneumatic starter operable to drive rotation of a rotor shaft of a gas turbine engine through an accessory gearbox, the pneumatic starter configured to receive a primary lubricant flow at a first rotational speed range and receive a supplemental lubricant flow at a second rotational speed range that is less than the first rotational speed range; anda supplemental lubricant pump operable to supply the supplemental lubricant flow at the second rotational speed range.2. The starter supplemental lubrication system of claim 1 , wherein the primary lubricant flow is received from an engine lubrication system and the second rotational speed range provides insufficient lubrication from the engine lubrication system to the pneumatic starter.3. The starter supplemental lubrication system of claim 2 , further comprising:a clutch connected to a drive input of the supplemental lubricant pump and operable to selectively disengage rotation of the drive input above the second rotational speed range.4. The starter supplemental lubrication system of claim 2 , further comprising:a diverter valve operable to divert the supplemental lubricant flow from the pneumatic starter.5. The starter supplemental ...

Подробнее
24-05-2018 дата публикации

COMPRESSOR DRIVEN BY ORC WASTE HEAT RECOVERY UNIT AND CONTROL METHOD

Номер: US20180142579A1
Принадлежит:

A power converting system is described, comprising a source of waste heat and an organic Rankine cycle system. The organic Rankine cycle system in turn comprises at least a turboexpander, at least a rotating load mechanically coupled to the turboexpander and driven thereby, and a variable-speed mechanical coupling between the turboexpander and the rotating load. 1. A power converting system , the power converting system comprising:a source of waste heat;an organic Rankine cycle system, comprised of: at least a turboexpander comprising variable inlet guide vanes, at least a rotating load mechanically coupled to the turboexpander and driven thereby, and a variable-speed mechanical coupling between the turboexpander and the rotating load.2. The system of claim 1 , further comprising:a gas turbine system comprised of at least one gas turbine engine and at least a further rotating load driven by said at least one gas turbine engine; anda heat exchange system for transferring waste heat from the gas turbine system to the organic Rankine cycle system; wherein said waste heat source comprises exhaust gas from the gas turbine system.3. The system of claim 1 , wherein the further rotating load comprises at least one further turbomachine.4. The system of claim 1 , wherein the rotating load comprises at least one turbomachine.5. The system of claim 1 , wherein the organic Rankine cycle system comprises a turboexpander inlet collector and at least an inlet pressure controller arranged and configured to maintain the pressure in the turboexpander inlet collector at a steady-state turboexpander inlet pressure.6. The system of claim 5 , further comprising a further inlet pressure controller claim 5 , arranged and configured to control a by-pass valve claim 5 , connecting the turboexpander inlet collector to a low-pressure side of the organic Rankine cycle system claim 5 , the further inlet pressure controller having a pressure set-point higher than the steady-state turboexpander ...

Подробнее
09-06-2016 дата публикации

METHOD FOR STARTING A STEAM TURBINE

Номер: US20160160692A1
Принадлежит:

The invention relates to a method for starting a steam turbine. The method involves pre-warming the steam turbine with a steam in which 65% of an energy used to pre-warming the steam turbine is derived from a latent heat energy of the steam. 1. A method for starting a steam turbine comprising pre-warming the steam turbine with a steam wherein at least 65% of an energy used to pre-warming the steam turbine is derived from a latent heat energy of the steam.2. The method of wherein the pre-warming includes filling the steam turbine with the steam.3. The method of wherein filing the steam turbine with the steam involves flowing the steam at a rate such that a steam turbine parameter is not exceed claim 2 , wherein the steam turbine parameter is at least one of a selection of calculated stress claim 2 , measured temperature and/or a speed of a rotor of the steam turbine.4. The method of wherein filling the steam turbine with the steam involves flowing the steam with an increasing pressure gradient through the steam turbine.5. The method of wherein filling the steam turbine with the steam involves:a) filling the steam turbine at a first pressure;b) allowing a pressure decay resulting from condensing steam to a second pressure lower than the first pressure; andc) repeating steps a) and b) with a stepwise increase in the first pressure and second pressure until a predefined temperature of the steam turbine is achieved.6. The method of claim 5 , wherein the stepwise pressure increase corresponds to steam pressures of 4 barg claim 5 , 10 barg claim 5 , 16 barg and 22 barg respectively.7. The method of wherein filling the steam turbine with the steam involves:a) flowing the steam at a first pressure until a steam turbine parameter is reached; andb) repeating step a) with a stepwise increase in the pressure until a predefined temperature of the steam turbine is achieved.8. The method of claim 7 , wherein the stepwise pressure increase corresponds to steam pressures of 4 barg ...

Подробнее
06-06-2019 дата публикации

COMPONENTS AND SYSTEMS FOR REDUCING THERMAL STRESS OF HEAT RECOVERY STEAM GENERATORS IN COMBINED CYCLE POWER PLANT SYSTEMS

Номер: US20190170022A1
Принадлежит:

Heat recovery steam generators (HRSGs) including components and systems for reducing thermal stress experienced by manifolds within the HRSGs are disclosed. The HRSG may include a manifold receiving a working fluid of the HRSG, a plurality of piping links in fluid communication with the manifold, and an enclosure surrounding the manifold and the plurality of piping links. The HRSG may also include at least one thermal element positioned within the enclosure. The thermal element(s) may surround the manifold. Additionally, or alternatively, the HRSG may include a supplemental heating system in fluid communication with an interior of the enclosure. The supplemental heating system may include a heater for heating fluid (e.g., air), and an inlet conduit in fluid communication with and positioned downstream of the heater. The inlet conduit may be formed through the enclosure to provide the heated fluid to the interior of the enclosure. 1. A heat recover steam generator (HRSG) comprising:a manifold receiving a working fluid of the HRSG;a plurality of piping links in fluid communication with the manifold;an enclosure surrounding the manifold and at least a portion of the plurality of piping links; andat least one thermal element positioned within the enclosure, the at least one thermal element surrounding the manifold.2. The HRSG of claim 1 , wherein the at least one thermal element includes:a heat storage component positioned within a casing, the heat storage component directly contacting and surrounding the manifold.3. The HRSG of claim 2 , wherein the at least one thermal element further includes:a thermally insulative shell surrounds the casing containing the heat storage component.4. The HRSG of claim 2 , further comprising:a heating component positioned within the casing containing the heat storage component, the heating component immersed within the heat storage component and at least partially surrounding the manifold; anda control system operably coupled to the ...

Подробнее
13-06-2019 дата публикации

System and method for rotor bow mitigation

Номер: US20190178165A1
Принадлежит: Pratt and Whitney Canada Corp

A system and method for rotor bow mitigation for a gas turbine engine are provided. An elapsed time since a shutdown of the engine and an idle operation time of the engine prior to the shutdown are determined. A rotor bow mitigation period is determined based on the elapsed time and the idle operation time and, prior to initiating a start sequence of the engine, the engine is motored for a duration of the rotor bow mitigation period.

Подробнее
20-06-2019 дата публикации

Method and System for Mitigating Bowed Rotor Operation of Gas Turbine Engine

Номер: US20190186284A1
Принадлежит:

Embodiments of systems and methods for operating a gas turbine engine defining a bowed rotor condition are generally provided. The systems and methods include rotating a rotor assembly defining a bowed rotor condition from approximately zero revolutions per minute (RPM) to within a bowed rotor mitigation speed range, in which the bowed rotor mitigation speed range is defined by a lower speed limit greater than zero RPM and an upper speed limit less than or equal to an idle speed condition of the gas turbine engine; applying a load at the rotor assembly via an energy storage device; adjusting the load to limit rotational speed or acceleration of the rotor assembly to within the bowed rotor mitigation speed range for a period of time; and removing the load to enable rotation of the rotor assembly to the idle speed condition following the period of time. 1. A method of operating a gas turbine engine with bowed rotor , the method comprising:rotating a rotor assembly defining a bowed rotor condition from approximately zero revolutions per minute (RPM) to within a bowed rotor mitigation speed range, wherein the bowed rotor mitigation speed range is defined by a lower speed limit greater than zero RPM and an upper speed limit less than or equal to an idle speed condition of the gas turbine engine;applying a load at the rotor assembly via an energy storage device;adjusting the load to limit rotational speed or acceleration of the rotor assembly to within the bowed rotor mitigation speed range for a period of time; andremoving the load to enable rotation of the rotor assembly to the idle speed condition following the period of time.2. The method of claim 1 , wherein applying a load at the rotor assembly further comprises:engaging the energy storage device via a clutch mechanism to couple the rotor assembly to the energy storage device when the rotor assembly rotates to the lower speed limit of the bowed rotor mitigation speed range.3. The method of claim 2 , wherein engaging ...

Подробнее
20-06-2019 дата публикации

Rotor bow management

Номер: US20190186359A1
Автор: Andrew Stevenson
Принадлежит: Rolls Royce PLC

A method of reducing rotor bow in a high pressure rotor of a gas turbine engine that has in axial flow a low pressure rotor and a high pressure rotor. The method involves storing bleed air from the gas turbine engine when the engine is running to provide stored pneumatic energy; and using that stored pneumatic energy after the engine has been shut-down to rotate the high pressure rotor at a speed and for a duration that reduces rotor bow. A gas turbine engine wherein rotor bow in the high pressure rotor after engine shut-down has been reduced by carrying out the aforesaid method is also disclosed.

Подробнее
02-10-2014 дата публикации

Solar and steam hybrid power generation system

Номер: US20140290246A1

Solar and steam hybrid power generation system including a solar steam generator, an external steam regulator, a turboset, and a power generator. A steam outlet end of the solar steam generator is connected to a steam inlet of the turboset. A steam outlet end of the external steam regulator is connected to the steam inlet of the turboset. A steam outlet of the turboset is connected to the input end of a condenser, and the output end of the condenser is connected to the input end of a deaerator. The output end of the deaerator is connected to the input end of a water feed pump. The output end of the water feed pump is connected to a circulating water input end of the solar steam generator. The output end of the water feed pump is connected to a water-return bypass of the external steam.

Подробнее
02-10-2014 дата публикации

Steam Turbine Power Plant

Номер: US20140290249A1
Принадлежит: Hitachi, Ltd.

Disclosed is a steam turbine power plant adapted to start operating safely even if prediction accuracy of its startup constraints cannot be obtained. The system calculates predictive values and current values of startup constraints of a steam turbine from process variables of plant physical quantities, next calculates in parallel both a first control input variable for a heat medium flow controller based on predictive values, and a second control input variable for a main steam control valve based on the current values, and while preferentially selecting the first control input variable, if the first control input variable is not calculated, selects the second control input variable instead. After the selection of at least one of the first and second control input variables, the system outputs an appropriate command value to the heat medium flow controller and the main steam control valve according to the kind of selected control input variable. 1. A steam turbine power plant , comprising:heat source equipment that heats a low-temperature flow by applying a heat medium and thus generates a high-temperature flow;a steam generator that generates steam using the high-temperature flow generated by the heat source equipment;a steam turbine driven by the steam generated by the steam generator;an electric generator that converts rotational motive power of the steam turbine into electric power;a controller that controls a load of a plant;a measuring instrument that measures a physical quantity of the plant;a predictive value calculating device that calculates a predictive value of a startup constraint of the steam turbine from a value measured by the measuring instrument;a first control input variable calculating device that calculates a first control input variable for the controller based upon the predictive value;a current value calculating device that calculates a current value of the startup constraint of the steam turbine based upon the value measured by the measuring ...

Подробнее
02-10-2014 дата публикации

Steam Turbine Power Plant

Номер: US20140290250A1
Принадлежит: Hitachi, Ltd.

Disclosed is a steam turbine power plant adapted to start operating very efficiently by highly accurate look-ahead control of a plurality of its startup constraints. The power plant includes a fundamental startup constraint prediction device that calculates from a control input variable of the controller a prediction period about a fundamental startup constraint which is short in response time, a reference control input variables calculating device that calculates such a reference control input variable of the controller as the value predicted and calculated by the fundamental startup constraint prediction device will not exceed a limit value, other startup constraint prediction devices each calculating a corresponding prediction period of data about desired one of other startup constraints from the prediction period of reference control input variables data, other control input variable calculating devices each calculating corresponding other control input variables of the controller from the value predicted and calculated by the other startup constraint prediction device , and a control signal output device or that outputs a command value to the controller in accordance with a value selected from the reference control input variable and the other control input variable. 1. A steam turbine power plant , comprising:a heat source equipment that heats a low-temperature flow by applying a heat medium and thus generates a high-temperature flow;a steam generator that generates steam using the high-temperature flow generated by the heat source equipment;a steam turbine driven by the steam generated by the steam generator;an electric generator that converts rotational motive power of the steam turbine into electric power;a controller that controls a plant load; anda steam turbine starting control device that predicts a value of a startup constraint due to a change in physical quantities of the steam in the steam turbine, and controls the controller according to the ...

Подробнее
04-07-2019 дата публикации

Combustor Assembly for a Turbine Engine

Номер: US20190203611A1
Принадлежит:

A combustor assembly for a gas turbine engine includes a dome defining a slot. The combustor assembly also includes a liner at least partially defining a combustion chamber and extending between an aft end and a forward end. At least a portion of the forward end is received within the slot of the dome. The forward end of the liner defines a plurality of warming holes that allow for a warming airflow to flow therethrough to warm the forward end at a faster rate during transient operating conditions of the engine thereby reducing transient stresses and increasing liner durability. 1. A combustor assembly for a gas turbine engine defining an axial direction , a radial direction , and a circumferential direction , the combustor assembly comprising:a liner at least partially defining a combustion chamber and extending between an aft end and a forward end, the liner comprising an outer surface and an opposing inner surface, wherein the forward end of the liner defines a plurality of mounting openings spaced along the circumferential direction and a plurality of warming openings extending between the outer surface and the inner surface of the forward end.2. The combustor assembly of claim 1 , wherein the forward end of the liner defines a plurality of warming regions positioned between the plurality of mounting openings claim 1 , and wherein the forward end of the liner defines one or more of the plurality of warming openings within each of the plurality of warming regions.3. The combustor assembly of claim 1 , wherein the forward end of the liner defines one or more of the plurality of warming openings adjacent each of the plurality of mounting openings.4. The combustor assembly of claim 1 , wherein the plurality of warming openings each have a diameter between about 0.020 and about 0.080 inches.5. The combustor assembly of claim 1 , wherein the forward end defines a row of warming openings spaced along the axial direction a distance greater than a diameter of one of the ...

Подробнее
04-07-2019 дата публикации

System and Method for Removing Rotor Bow in a Gas Turbine Engine

Номер: US20190203646A1
Принадлежит:

The present disclosure is directed to a gas turbine engine structure and method for reducing or mitigating bowed rotor. The method includes coupling a rotor assembly to a mechanical energy storage device via a clutch mechanism when the rotor assembly is at or below a speed limit below an idle speed condition; storing mechanical energy at the mechanical energy storage device via rotation of the rotor assembly at or below the speed limit; releasing mechanical energy from the mechanical energy storage device to rotate the rotor assembly following shutdown of the gas turbine engine; and rotating the rotor assembly via the mechanical energy from the mechanical energy storage device. 1. A gas turbine engine , comprising:a rotor assembly comprising a driveshaft extended along a longitudinal direction and a rotor extended along a radial direction from the driveshaft; anda mechanical energy storage device selectively coupled to a clutch mechanism, wherein the clutch mechanism is coupled to the rotor assembly and the mechanical energy storage device when the rotor assembly is at or below a speed limit defined below an idle speed condition, and wherein the clutch mechanism is decoupled from at least one of the rotor assembly or the mechanical energy storage device when the rotor assembly is above the speed limit.2. The gas turbine engine of claim 1 , wherein the mechanical energy storage device defines claim 1 , at least in part claim 1 , a mechanical energy displacement device claim 1 , wherein displacement of the mechanical energy displacement device rotates the rotor assembly.3. The gas turbine engine of claim 2 , wherein the mechanical energy displacement device defines claim 2 , at least in part claim 2 , a spring coupled to the clutch mechanism claim 2 , wherein compression or tension of the spring induces rotation of the rotor assembly.4. The gas turbine engine of claim 1 , wherein the mechanical energy storage device further comprises a timing mechanism claim 1 , ...

Подробнее
02-07-2020 дата публикации

PASSIVE BLADE TIP CLEARANCE CONTROL SYSTEM FOR GAS TURBINE ENGINE

Номер: US20200208533A1
Принадлежит:

The present disclosure relates to a gas turbine engine including a turbine wheel mounted for rotation about a central axis and a turbine shroud ring mounted radially outward from the turbine wheel. The turbine wheel includes a plurality of blades that are spaced apart radially from the turbine shroud ring to establish a blade tip clearance gap. The gas turbine engine further includes a blade tip clearance control system that passively controls the size of the clearance gap based on engine operation. 1. A gas turbine engine comprisinga compressor configured to pressurize air moving along a primary gas path of the gas turbine engine,a combustor fluidly coupled to the compressor to receive pressurized air discharged from the compressor and configured to ignite fuel mixed with the pressurized air, anda turbine including (i) a high-pressure section fluidly coupled to the combustor to receive combustion gases generated by fuel burned in the combustor and (ii) a low-pressure section fluidly coupled to receive the combustion gasses exiting the high-pressure section,wherein the high-pressure section includes a turbine wheel mounted for rotation about a central reference axis, a variable-diameter turbine shroud ring that extends around the turbine wheel, and a passive blade-tip clearance control system including a shroud-ring support coupled to the variable-diameter turbine shroud ring that is configured to drive motion of the turbine shroud ring radially inward or outward based on temperature of the shroud-ring support and defining at least in part a cavity located radially outward of the variable-diameter turbine shroud ring, andwherein the cavity is fluidly coupled to a bleed-air passageway that extends from the compressor to the cavity without interruption from a valve and a a cooling-air passageway that extends from the cavity to the low pressure section such that pressurized bleed air from the compressor is conducted to the cavity of the passive blade tip clearance ...

Подробнее
18-07-2019 дата публикации

GAS TURBINE ENGINE MOTORING SYSTEM FOR BOWED ROTOR ENGINE STARTS

Номер: US20190219021A1
Принадлежит:

A system for a gas turbine engine is provided. The system comprising: a gas turbine engine including rotational components comprising an engine compressor, an engine turbine, and a rotor shaft operably connecting the engine turbine to the engine compressor, wherein each rotational component is configured to rotate when any one of the rotational components is rotated; a permanent magnet alternator operably connected to at least one of the rotational components, the permanent magnet alternator being configured to rotate the rotational components; and a motor controller in electronic communication with the permanent magnet alternator, the motor controller being configured to command the permanent magnet alternator to rotate the rotational components at a selected angular velocity for a selected period of time. 1. A system for cooling a gas turbine engine , the system comprising:a gas turbine engine including rotational components comprising an engine compressor, an engine turbine, and a rotor shaft operably connecting the engine turbine to the engine compressor, wherein each rotational component is configured to rotate when any one of the rotational components is rotated;a permanent magnet alternator operably connected to at least one of the rotational components, the permanent magnet alternator being configured to rotate the rotational components; anda motor controller in electronic communication with the permanent magnet alternator, the motor controller being configured to command the permanent magnet alternator to rotate the rotational components at a selected angular velocity for a selected period of time.2. The system of claim 1 , further comprising:an accessory gearbox operably connecting the permanent magnet alternator to at least one of the rotational components.3. The system of claim 1 , wherein:the permanent magnet alternator is configured to generate electricity when the rotational components are rotating under power of the gas turbine engine.4. The system ...

Подробнее
09-07-2020 дата публикации

THRUST EFFICIENT TURBOFAN ENGINE

Номер: US20200217274A1
Автор: Sabnis Jayant
Принадлежит:

A disclosed turbofan engine includes a gas generator section for generating a gas stream flow and a propulsor section for generating propulsive thrust as a mass flow rate of air through a bypass flow path. The propulsor section includes a fan driven by a power turbine through a speed reduction device at a second rotational speed lower than a first rotational speed of the power turbine. An Engine Unit Thrust Parameter (“EUTP”) defined as net engine thrust divided by a product of the mass flow rate of air through the bypass flow path, a tip diameter of the fan and the first rotational speed of the power turbine is between 0.05 and 0.13 during operation of the turbofan engine. 1. A turbofan engine comprising:a propulsor section including a fan and a bypass flow path, wherein the fan includes a number of fan blades that each have a fan tip diameter greater than 50 inches and less than 160 inches;a compressor section including a low pressure compressor and a high pressure compressor;a turbine section including a high pressure turbine coupled to the high pressure compressor and a power turbine coupled to the low pressure compressor, wherein the power turbine rotates at a first rotational speed between 8,416 rpm and 11,835 rpm during engine operation;a geared architecture defining a driving connection between the power turbine and the fan; andan Engine Unit Thrust Parameter (“EUTP”) defined as net engine thrust divided by a product of a mass flow rate of air through the bypass flow path, the fan tip diameter of the fan and the first rotational speed of the power turbine in operation is between 0.05 and 0.13.2. The turbofan engine as recited in claim 1 , wherein a speed reduction ratio provided by the geared architecture between the fan and the power turbine is between 1.8 and 4.5.3. The turbofan engine as recited in claim 2 , wherein the speed reduction ratio is between 2.3 and 2.8.4. The turbofan engine as recited in claim 2 , further comprising a low fan pressure ratio ...

Подробнее
17-08-2017 дата публикации

Bowed rotor start response damping system

Номер: US20170234158A1
Автор: Gregory M. SAVELA
Принадлежит: United Technologies Corp

A method of bowed rotor start response damping for a gas turbine engine is provided. A spring rate and a damping characteristic of one or more bearing supports in the gas turbine engine are selectively modified while a shaft of the gas turbine engine rotates below a speed which is adversely affected by a bowed rotor condition of the gas turbine engine.

Подробнее
03-09-2015 дата публикации

ROTOR TIP CLEARANCE

Номер: US20150247417A1
Автор: BACIC Marko, TOOKE James
Принадлежит:

A method of controlling a rotor tip clearance arrangement of a gas turbine engine and a control system configured to control rotor tip clearance. Steps include measuring at least one engine parameter; determining engine power demand from the at least one engine parameter; and calculating rotor tip clearance given the determined engine power demand. The rotor tip clearance arrangement is controlled to increase or decrease the rotor tip clearance based on the difference between the calculated clearance and a predefined target clearance. 1. A method of controlling a rotor tip clearance arrangement of a gas turbine engine , the method comprising:a) measuring at least one engine parameter;b) determining engine power demand from the at least one engine parameter;c) calculating rotor tip clearance given the determined engine power demand; andd) controlling the rotor tip clearance arrangement to increase or decrease the rotor tip clearance based on the difference between the calculated clearance and a predefined target clearance.2. A method as claimed in wherein step 1.b) is performed by an auto-throttle arrangement or a step climb alleviation arrangement.3. A method as claimed in wherein the at least one measured engine parameter comprises at least one of a shaft speed claim 1 , an engine inlet pressure claim 1 , a compressor pressure claim 1 , and a turbine pressure.4. A method as claimed in wherein step 1.b) comprises determining the engine power demand from two or more of the measured engine parameters.5. A method as claimed in comprising a step between steps 1.b) and 1.c) to calculate at least one parameter that affects clearance from the determined engine power demand.6. A method as claimed in wherein the at least one parameter comprises an engine temperature claim 5 , a shaft speed claim 5 , a compressor stage temperature claim 5 , a compressor exit temperature claim 5 , high pressure shaft speed claim 5 , intermediate pressure shaft speed claim 5 , low pressure ...

Подробнее
25-08-2016 дата публикации

POWER GENERATION PLANNING SUPPORT APPARATUS AND POWER GENERATION PLANNING SUPPORT METHOD

Номер: US20160247074A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

In one embodiment, a power generation planning support apparatus includes an acquiring module configured to acquire a physical quantity that represents a startup condition of a turbine. The apparatus further includes a first storage module configured to store first information that represents a relationship between a startup schedule of the turbine and the physical quantity. The apparatus further includes a predicting module configured to predict the startup schedule of the turbine, based on the physical quantity acquired by the acquiring module and the first information stored in the first storage module. The apparatus further includes an outputting module configured to output the startup schedule predicted by the predicting module. 1. A power generation planning support apparatus comprising:an acquiring module configured to acquire a physical quantity that represents a startup condition of a turbine;a first storage module configured to store first information that represents a relationship between a startup schedule of the turbine and the physical quantity;a predicting module configured to predict the startup schedule of the turbine, based on the physical quantity acquired by the acquiring module and the first information stored in the first storage module; andan outputting module configured to output the startup schedule predicted by the predicting module.2. The apparatus of claim 1 , wherein the acquiring module acquires claim 1 , as the physical quantity claim 1 , a temperature of a predetermined portion of the turbine.3. The apparatus of claim 1 , wherein the acquiring module acquires claim 1 , as the physical quantity claim 1 , an ambient temperature of the turbine.4. The apparatus of claim 1 , wherein the predicting module predicts claim 1 , as the startup schedule claim 1 , startup time that is taken for a startup of the turbine.5. The apparatus of claim 1 , wherein the predicting module predicts claim 1 , as the startup schedule claim 1 , event time that ...

Подробнее
24-08-2017 дата публикации

TURBINE CONTROL UNIT COMPRISING A THERMAL STRESS CONTROLLER AS A MASTER CONTROLLER

Номер: US20170241285A1
Принадлежит: SIEMENS AKTIENGESELLSCHAFT

A turbine control unit and method for controlling a turbine, in particular for controlling the start-up of a turbine, the unit being designed as a cascade controller having a master controller and an inner controller, the master controller being a thermal stress controller for the components subjected to thermal stress. 1. A turbine control unit for controlling a turbine , comprising:a cascade controller having a master controller and an inner controller,wherein the master controller is a thermal stress controller for the temperature of components which are subjected to thermal stress.2. The turbine control unit as claimed in claim 1 ,wherein the inner controller comprises a turbine controller that controls the turbine power level.3. The turbine control unit as claimed in claim 1 , further comprising:a thermal stress calculation unit that predefines at least one setpoint value to the thermal stress controller.4. The turbine control unit as claimed in claim 1 ,wherein the thermal stress controller is designed to ensure for such control of the turbine that a desired rise in temperature over time is not exceeded.5. The turbine control unit as claimed in claim 1 ,wherein the thermal stress controller is designed to avoid thermal stress which is caused by temperature differences.6. The turbine control unit as claimed in claim 2 ,wherein the turbine controller that controls the turbine power level is designed to generate setpoint values for position controllers which can control the position of actuating valves.7. The turbine control unit as claimed in claim 1 ,wherein the turbine control unit is designed to control partial turbines separately.8. The turbine control unit as claimed in claim 1 , further comprising:temperature sensors mounted at various locations on the turbine.9. A method for controlling a turbine having a cascade controller comprising a master controller and an inner controller claim 1 , the method comprising:sensing by the master controller thermal ...

Подробнее
09-09-2021 дата публикации

METHODS AND SYSTEMS FOR STARTING AN ENGINE

Номер: US20210277793A1
Принадлежит:

Methods and systems for starting an engine are provided. A cold-start request to start the engine in a first operating condition associated with a predetermined engine temperature range is obtained. In response to obtaining the cold-start request, an amount of boost fuel to provide to the engine is determined, based on at least one second operating condition of the engine. The engine is started by supplementing a baseline fuel flow to the engine with the amount of boost fuel. 1. A method for starting an engine , comprising:obtaining a cold-start request to start the engine in a first operating condition associated with a predetermined engine temperature range;in response to obtaining the cold-start request, determining an amount of boost fuel to provide to the engine based on at least one second operating condition of the engine; andstarting the engine by supplementing a baseline fuel flow to the engine with the amount of boost fuel.2. The method of claim 1 , wherein obtaining the cold-start request comprises:obtaining a request to start the engine;obtaining a temperature reading indicative of a temperature associated with the engine;comparing the temperature reading to the predetermined engine temperature range; andwhen the temperature reading is within the predetermined engine temperature range, modifying the request to produce the cold-start request.3. The method of claim 2 , wherein the temperature associated with the engine is a main oil temperature for the engine.4. The method of claim 2 , wherein the temperature associated with the engine is an inlet temperature for the engine.5. The method of claim 2 , wherein the temperature associated with the engine is a fuel temperature for fuel provided to the engine.6. The method of claim 2 , wherein the predetermined temperature range is a range of below-freezing temperatures.7. The method of claim 1 , further comprising:obtaining an indication of the engine being ignited; andresponsive to obtaining the indication, ...

Подробнее
20-11-2014 дата публикации

FLOW SLEEVE FOR THERMAL CONTROL OF A DOUBLE-WALL TURBINE SHELL AND RELATED METHOD

Номер: US20140341702A1
Принадлежит: GENERAL ELECTRIC COMPANY

A turbine casing includes at least one shell adapted to enclose one or more turbine stages in a gas turbine engine; an air inlet in the at least one shell; a flow sleeve secured to an inside surface of the at least one shell, the flow sleeve comprising at least two arcuate segments. Each arcuate segment includes an arcuate base, a pair of sidewalls extending radially outwardly of the base thereby forming a circumferentially-extending flow channel defined by the base, the sidewalls and the inside surface. The air inlet is aligned with the flow channel and the sleeve is configured to distribute air flowing in the channel into spaces proximate the one or more turbine stages in circumferential, radial and axial directions, including along the inside surface of the at least one shell. 1. A flow sleeve adapted for securement to an inside surface of a casing , the flow sleeve comprising:at least two arcuate segments, each arcuate segment comprising a base, a pair of sidewalls extending radially outwardly of the base thereby forming a circumferentially-extending flow channel between said sidewalls for directing air supplied to said sleeve in circumferential directions; and plural flow openings in said base for directing air in a radially inward direction.2. The flow sleeve of wherein at least one circumferentially-extending fin is provided proximate opposite ends of said base to at least partially form flow passages at said opposite ends of said base.3. The flow sleeve of wherein plural fins are arranged proximate opposite ends of said base claim 1 , thereby creating plural flow passages claim 1 , each flow passage adapted to direct air toward at least one respective claim 1 , radially-oriented aperture in said base.4. The flow sleeve of and further comprising at least one defined flow passage along said base claim 1 , and a surface feature on said base within said flow passage for capturing and diverting air in said at least one defined flow passage into a radially- ...

Подробнее
08-08-2019 дата публикации

STARTER AIR VALVE SYSTEMS CONFIGURED FOR LOW SPEED MOTORING

Номер: US20190242269A1
Принадлежит:

A starter air valve (SAV) system can include a pressure actuated SAV actuator configured to be operatively connected to a SAV and a first pressure valve configured to selectively allow pressure from a pressure source to the SAV actuator when in fluid communication with the SAV actuator. The first pressure valve can be a pulse-width modulation solenoid valve configured to provide a duty cycle of pressure from the pressure source to the SAV actuator. 1. A starter air valve (SAV) system comprising:a pressure actuated SAV actuator configured to be operatively connected to a SAV; anda first pressure valve configured to selectively allow pressure from a pressure source to the SAV actuator when in fluid communication with the SAV actuator;wherein the first pressure valve is a pulse-width modulation solenoid valve configured to provide a duty cycle of pressure from the pressure source to the SAV actuator.2. The system of claim 1 , wherein the SAV includes at least one of a butterfly valve or an inline valve.3. The system of claim 1 , further comprising a first controller in operable communication with at least the first pressure valve and configured to control the first pressure valve.4. The system of claim 3 , wherein the first controller is an engine computer.5. The system of claim 3 , further comprising a second pressure valve configured to selectively allow pressure from the pressure source to the SAV actuator when in fluid communication with the SAV actuator.6. The system of claim 5 , further comprising a second controller in operable communication with at least the second pressure valve and configured to control the second pressure valve.7. The system of claim 6 , a manual override (MOR) valve selector disposed between the first pressure valve claim 6 , the second pressure valve claim 6 , and the SAV actuator claim 6 , the MOR valve selector configured to selectively fluidly connect the first pressure valve and the SAV actuator in a first position and to fluidly ...

Подробнее
30-07-2020 дата публикации

Alternating starter use during multi-engine motoring

Номер: US20200239151A1
Принадлежит: Raytheon Technologies Corp

A system is provided for alternating starter use during multi-engine motoring in an aircraft. The system includes a first engine starting system of a first engine. A first controller is in communication with a second controller that controls a second engine starting system of a second engine, the first controller being configured to intermittently direct power to the first engine starting system to alternately accelerate and decelerate the first engine during motoring with respect to the second engine.

Подробнее
30-09-2021 дата публикации

SYSTEM AND METHOD FOR DYNAMIC ENGINE MOTORING

Номер: US20210301677A1
Автор: Tomescu Dana
Принадлежит:

There is provided a dynamic motoring system and method for an aircraft engine. Motoring of the engine is initiated for an initial motoring duration and at an initial motoring interval. At least one engine parameter is measured in real-time during the motoring, the at least one engine parameter comprising a temperature of the engine. The initial motoring duration and the initial motoring interval are modified in real-time, based on a value of the at least one engine parameter during the motoring, to obtain a modified motoring duration and a modified motoring interval. The motoring continues for the modified motoring duration and at the modified motoring interval, with a speed of rotation of the engine being controlled using the modified motoring interval.

Подробнее
04-10-2018 дата публикации

Device for additive manufacturing of a turbomachinery part by direct metal deposition onto a substrate

Номер: US20180281115A1
Принадлежит: Safran Aircraft Engines SAS

A device for the additive manufacturing of a turbomachinery part by direct metal deposition onto a substrate comprising: a source of metallic material; a source of energy configured to produce molten metal from the metallic material produced from the source of metallic material; a substrate; a mold arranged on the substrate and equipped with at least one opening, in order to allow a localized deposition of molten metal onto the substrate, the mold comprising a magnetic material; and a substrate support arranged under the substrate, the support being configured to generate an electromagnetic force allowing the mold to be drawn towards the substrate.

Подробнее
27-08-2020 дата публикации

Method and System for Engine Operation

Номер: US20200271011A1
Принадлежит: General Electric Co

A method for operating a turbine engine is provided. The method includes receiving operating data comprising at least an engine operation parameter, an environmental parameter, a location parameter, and a time parameter; operating the turbine engine based on a baseline ground operation schedule; generating an adjusted ground operation schedule based on the operating data and the baseline ground operation schedule, wherein generating the adjusted ground operation schedule is based on a machine learning algorithm; and operating the engine based on the adjusted ground operation schedule.

Подробнее
04-10-2018 дата публикации

PIEZO-ELECTRIC MOTOR FOR BOWED ROTOR MITIGATION

Номер: US20180283219A1
Принадлежит: The Boeing Company

A piezoelectric motor comprising one or more concentric stator rings arranged to transfer energy and provide torque to an engine rotor or to an engine transmission. Such a piezo-electric motor improves spatial integration of an engine turning motor in a gas turbine engine. 1. An aircraft engine assembly , comprising:a gas turbine engine including a rotor shaft, the rotor shaft having a longitudinal axis;a nacelle housing the rotor shaft and comprising trapped air creating a temperature gradient perpendicular to the longitudinal axis; andmeans for rotating the rotor shaft using a piezoelectric motor, the rotating reducing or preventing thermal bowing of the rotor shaft in the temperature gradient.2. The aircraft engine assembly of claim 1 , wherein the means further comprises:the piezoelectric motor comprising one or more stators and one or more rotor members disposed around at least one shaft selected from a rotor shaft and a drive shaft in a transmission connected to the rotor shaft, wherein the rotor members are connected to the at least one shaft; anda circuit connected to the one or more stators, wherein the rotor rotates when the one or more stators press against the one or more rotor members in response to one or more electric fields applied by the circuit onto the one or more stators.3. The aircraft engine assembly of claim 2 , wherein:the electric fields generate one or more traveling waves in the stators, andthe traveling waves press against the one or more rotor members, thereby rotating the one or more rotor members and the rotor shaft connected to the one or more rotor members.4. The aircraft engine assembly of claim 2 , further comprising a plurality of the stators and a plurality of the rotor members alternately disposed in a stack.5. The aircraft engine assembly of claim 2 , further comprising a plurality of the stators paired with a surface of one of the rotor members claim 2 , wherein the plurality of the stators press against different radial ...

Подробнее
17-09-2020 дата публикации

BOWED ROTOR START MITIGATION IN A GAS TURBINE ENGINE USING AIRCRAFT-DERIVED PARAMETERS

Номер: US20200291860A1
Принадлежит:

A bowed rotor start mitigation system for a gas turbine engine of an aircraft is provided. The bowed rotor start mitigation system includes a motoring system and a controller coupled to the motoring system and an aircraft communication bus. The controller is configured to determine at least one inferred engine operating thermal parameter based on at least one aircraft-based parameter received on the aircraft communication bus, where the at least one inferred engine operating thermal parameter is based on data describing a history of the aircraft before an engine shutdown. The motoring system is controlled to drive rotation of a starting spool of the gas turbine engine below an engine idle speed based on determining that the at least one inferred engine operating thermal parameter is within a preselected range.

Подробнее
23-11-2017 дата публикации

SYSTEMS AND METHODS FOR DETERMINING TURBOMACHINE ENGINE SAFE START CLEARANCES FOLLOWING A SHUTDOWN OF THE TURBOMACHINE ENGINE

Номер: US20170335714A1
Принадлежит:

System and methods for predicting a turbomachine engine safe start clearance following a shutdown of the turbomachine engine is provided. The system includes a controller operatively connected to a plurality of temperature detecting means (TDM). The TDMs are arranged at an upper and lower part of the engine casing, and are configured to sense parameters of the engine and to transmit the sensed parameters to the controller. The controller is configured to receive the sensed parameters and to determine, via a control application of the controller, whether components of the engine have sufficient clearance. The controller is further configured to transmit the clearance information, e.g., to a user. Based on the clearance information, the turbomachine engine is restarted. 1. A method in a controller operably connected to a plurality of sensors selectively arranged on a turbomachine engine for determining a safe start clearance for the turbomachine engine following a shutdown , comprising:monitoring parameters of the turbomachine engine, via the plurality of sensors;identifying an upper casing temperature and a lower casing temperature from the monitored parameters;determining whether one or more components of the turbomachine engine are above a minimum clearance value for the turbomachine engine based in part on the identified casing temperatures; andinitiating a restart of the turbomachine engine upon determining that the components are above the minimum clearance value.2. The method of claim 1 , wherein initiating a restart of the turbomachine engine comprises:generating a message indicative of the components being above the minimum clearance and transmitting the message to an operator.3. The method of claim 1 , wherein initiating a restart of the turbomachine engine comprises:generating a restart signal and transmitting the signal to the turbomachine engine to restart the turbomachine engine while operating on turning gear.4. The method of claim 1 , wherein the ...

Подробнее
01-12-2016 дата публикации

FLOW SLEEVE FOR THERMAL CONTROL OF A DOUBLE-WALLED TURBINE SHELL AND RELATED METHOD

Номер: US20160348534A1
Принадлежит:

A turbine casing includes at least one shell adapted to enclose one or more turbine stages in a gas turbine engine; an air inlet in the at least one shell; a flow sleeve secured to an inside surface of the at least one shell, the flow sleeve comprising at least two arcuate segments. Each arcuate segment includes an arcuate base, a pair of sidewalls extending radially outwardly of the base thereby forming a circumferentially-extending flow channel defined by the base, the sidewalls and the inside surface. The air inlet is aligned with the flow channel and the sleeve is configured to distribute air flowing in the channel into spaces proximate the one or more turbine stages in circumferential, radial and axial directions, including along the inside surface of the at least one shell. 1. A flow sleeve adapted for securement to an inside surface of a casing , the flow sleeve comprising:arcuate segments each including a base, a pair of sidewalls extending radially outwardly of the base thereby forming a circumferentially-extending flow channel between the pair of sidewalls for directing air supplied to the sleeve in circumferential directions; andflow openings in the base configured to direct air in a radially inward direction,wherein each of the arcuate segments is configured to be aligned with a respective one of compressor discharge air inlets on the casing.2. The flow sleeve of wherein the arcuate segments each include fins extending from the base towards the inside surface of the casing claim 1 , and the fins are proximate each of opposite ends of the base.3. The flow sleeve of wherein the arcuate segments each include fins are arranged proximate opposite ends of said base claim 1 , thereby creating plural flow passages claim 1 , each flow passage adapted to direct air toward at least one respective claim 1 , radially-oriented aperture in said base.4. The flow sleeve of and further comprising at least one defined flow passage along said base claim 1 , and a surface ...

Подробнее
30-11-2017 дата публикации

TURBINE ENGINE AND METHOD OF COOLING

Номер: US20170342855A1
Принадлежит:

A method of operating a turbine engine that includes shutting down the turbine engine such that a rotational speed of the turbine engine decreases, and actuating a starter motor of the turbine engine at one of as the rotational speed of the turbine engine decreases or at a preset time after the turbine engine receives a full stop command such that residual heat is exhausted from the turbine engine.

Подробнее
29-11-2018 дата публикации

BOWED ROTOR MOTORING CONTROL

Номер: US20180340475A1
Принадлежит:

A method of motoring a gas turbine engine is provided. The method comprises: determining a first speed to motor a gas turbine engine for cooling; motoring a gas turbine engine at the first speed; detecting a gap parameter of a gas turbine engine; detecting a speed parameter of the gas turbine engine; detecting a vibration parameter of the gas turbine engine; and motoring the gas turbine at a second speed in response to at least one gap parameter, speed parameter, and vibration parameter. 1. A method of motoring a gas turbine engine , the method comprising:determining a first speed to motor a gas turbine engine for cooling;motoring a gas turbine engine at the first speed;detecting a gap parameter of a gas turbine engine;detecting a speed parameter of the gas turbine engine;detecting a vibration parameter of the gas turbine engine; andmotoring the gas turbine at a second speed in response to at least one gap parameter, speed parameter, and vibration parameter.2. The method of claim 1 , wherein:the second speed is greater than the first speed.3. The method of claim 1 , wherein determining further comprises:determining a first time period to motor the gas turbine engine at the first speed.4. The method of claim 3 , further comprising:determining a second time period to motor the gas turbine engine at the second speed.5. The method of claim 4 , wherein:the second time period is less than the first time period.6. The method of claim 1 , wherein:the engine is motored using an air turbine starter.7. The method of claim 6 , further comprising:regulating airflow to the air turbine starter using a starter air valve.8. The method of claim 7 , further comprising:regulating airflow through the air turbine starter using at least one of a starter air valve and the air turbine starter.9. The method of claim 1 , wherein:the engine is motored using an electric starter.10. The method of claim 1 , wherein:at least one gap clearance sensor detects both the gap parameter and the speed ...

Подробнее
05-11-2020 дата публикации

Method and System for Mitigating Bowed Rotor Operation of Gas Turbine Engine

Номер: US20200347746A1
Принадлежит:

Embodiments of systems and methods for operating a gas turbine engine defining a bowed rotor condition are generally provided. The systems and methods include rotating a rotor assembly defining a bowed rotor condition from approximately zero revolutions per minute (RPM) to within a bowed rotor mitigation speed range, in which the bowed rotor mitigation speed range is defined by a lower speed limit greater than zero RPM and an upper speed limit less than or equal to an idle speed condition of the gas turbine engine; applying a load at the rotor assembly via an energy storage device; adjusting the load to limit rotational speed or acceleration of the rotor assembly to within the bowed rotor mitigation speed range for a period of time; and removing the load to enable rotation of the rotor assembly to the idle speed condition following the period of time. 113.-. (canceled)14. A gas turbine engine , comprising:a rotor assembly comprising a driveshaft; andan energy storage device selectively coupled to the rotor assembly via a clutch mechanism,wherein the clutch mechanism engages the energy storage device to couple the rotor assembly to the energy storage device when the rotor assembly rotates to a lower speed limit defined below an idle speed condition, andwherein the clutch mechanism disengages the energy storage device to decouple the rotor assembly from the energy storage device when the rotor assembly rotates to an upper speed limit defined at or below the idle speed condition.15. The gas turbine engine of claim 14 , wherein the clutch mechanism further comprises:a first centrifugal clutch coupled to the rotor assembly;a second centrifugal clutch coupled to the energy storage device; anda clutch shaft selectively coupled to at least one of the first centrifugal clutch or the second centrifugal clutch,wherein the first centrifugal clutch engages the clutch shaft at or above the lower speed limit, andwherein the second centrifugal clutch is coupled to the clutch shaft ...

Подробнее
31-12-2015 дата публикации

Method and system for startup of gas turbine system drive trains with exhaust gas recirculation

Номер: US20150377140A1

In one embodiment, a system includes a drive train starter system. The drive train starter system includes a generator mechanically coupled to a drive train of a gas turbine system and an exciter system electrically coupled to the generator and configured to provide a magnetic field. The drive train starter system additionally includes a load commutated inverter (LCI) electrically coupled to the generator and configured to provide electrical power to the generator and a controller communicatively coupled to the generator, the exciter system, and the LCI. The controller is configured to start up the drive train via the LCI and the generator up to less than a drive train operating speed, wherein the generator is converting electricity into mechanical motion; drive the drive train via a gas turbine up to the drive train operating speed; and to drive the drive train via the generator at the drive train operating speed.

Подробнее
31-12-2020 дата публикации

SYSTEM AND METHOD FOR CONTROLLING DUAL STARTER AIR VALVE

Номер: US20200408104A1
Принадлежит: Raytheon Technologies Corporation

A system may comprise a sensor configured to measure a characteristic of an engine component. A valve assembly may have an airflow outlet in fluid communication with the engine component. The valve assembly may include a first valve. A first valve control device may be coupled to the first valve and configured to control the first valve based on a measurement by the sensor. A second valve may be in fluidic series with the first valve. A second valve control device may be coupled to the second valve and configured to control the second valve based on the measurement by the sensor. 1. A method of controlling a rotational speed of a gas turbine engine during start-up , comprising:receiving, by a valve assembly, an input airflow having an input pressure, the valve assembly including a first valve and a second valve;measuring the rotational speed of the gas turbine engine;controlling, by a full authority digital engine control (FADEC), an output pressure of an output airflow by controlling a position at least one of the first valve and the second valve based on the rotational speed of the gas turbine engine; anddelivering the output airflow to an air turbine starter coupled to the gas turbine engine.2. The method of claim 1 , wherein the first valve comprises a torque motor servovalve and wherein the positioning the at least one of the first valve and the second valve further comprises delivering a current to the torque motor servovalve to adjust the position of the first valve.3. The method of claim 2 , wherein the positioning the at least one of the first valve and the second valve further comprises locking the second valve in an open position while adjusting the position of the first valve.4. The method of claim 1 , wherein the second valve comprises a solenoid and wherein the positioning the at least one of the first valve and the second valve further comprises pulse width modulating the solenoid between an on state and an off state.5. The method of claim 4 , wherein ...

Подробнее
31-12-2020 дата публикации

CONTROL OF POWER GENERATION SYSTEM BY VISUALLY MONITORING COMPONENT DURING OPERATION

Номер: US20200408105A1
Принадлежит:

Embodiments of the present disclosure include a method for controlling a power generation system, the method including: detecting a heat distribution across a component of a power generation system from a thermal output of the component, during operation of the power generation system; calculating a projected heat distribution across the component based on a library of modeling data for the power generation system; calculating whether a difference between the heat distribution and the projected heat distribution exceeds a thermal threshold; adjusting the power generation system in response to the difference exceeding the predetermined threshold, wherein the adjusting includes modifying an operating setting of the power generation system. 1. A method for controlling a power generation system , the method comprising:detecting a heat distribution across a component of a power generation system from a thermal output of the component, during operation of the power generation system;calculating a projected heat distribution across the component based on a library of modeling data for the power generation system;calculating whether a difference between the heat distribution and the projected heat distribution exceeds a thermal threshold;adjusting the power generation system in response to the difference exceeding the predetermined threshold, wherein the adjusting includes modifying an operating setting of the power generation system.2. The method of claim 1 , wherein the library of modeling data includes at least one of operating data of the power generation system claim 1 , or operating data of a different power generation system.3. The method of claim 1 , wherein the library of modeling data includes at least one of projected operating data of the power generation system or a different power generation system.4. The method of claim 1 , wherein visually monitoring the gauge of the power generation system includes causing an infrared camera to capture an image of the ...

Подробнее
10-11-2022 дата публикации

Hybrid electric idle and braking for an aircraft

Номер: US20220356849A1
Принадлежит: Raytheon Technologies Corp

An engine system of an aircraft includes an energy storage system, a gas turbine engine, and a controller. The gas turbine engine includes a low spool, a high spool, a low-spool generator operably coupled to the low spool, and a high-spool electric motor operably coupled to the high spool. The controller is configured to detect a braking condition of the aircraft, transfer power from the low-spool generator to the energy storage system based on the storage capacity state of the energy storage system, and transfer power to the high spool through the high-spool electric motor to support combustion in the gas turbine engine while a rotational speed of the low spool is reduced responsive to the low-spool generator extracting energy from the low spool.

Подробнее
05-03-1983 дата публикации

タ−ビン起動制御装置

Номер: JPS5838304A
Принадлежит: HITACHI LTD

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
01-05-1986 дата публикации

Warming apparatus for high pressure turbine

Номер: JPS6185508A
Принадлежит: HITACHI LTD

(57)【要約】本公報は電子出願前の出願データであるた め要約のデータは記録されません。

Подробнее
11-10-2018 дата публикации

Turbine control unit with thermal load regulator as the main regulator

Номер: RU2669537C1

FIELD: turbines or turbomachines. SUBSTANCE: invention relates to turbine adjusting unit (1) for adjusting turbine (6, 8, 10), in particular for adjusting the start of turbine (6, 8, 10), implemented as a cascade regulator with main regulator (2) and internal regulator (3), at that the main regulator is thermal load regulator (2) for the temperature of the structural elements undergoing thermal stress. At that said turbine adjusting unit (1) is designed to separately control individual turbines, in particular high pressure turbine (6), medium pressure turbine (8), and low pressure turbine (10). Invention also relates to a corresponding method. EFFECT: invention makes it possible to reduce the delays at the start of the turbine, while at the same time preventing the damage of the structural elements. 9 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 669 537 C1 (51) МПК F01D 19/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК F01D 19/02 (2018.05) (21)(22) Заявка: 2017118233, 05.10.2015 (24) Дата начала отсчета срока действия патента: Дата регистрации: 11.10.2018 (73) Патентообладатель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) (56) Список документов, цитированных в отчете о поиске: JP 3673017 B2, 20.07.2005. GB 27.10.2014 EP 14190471.4 2074757 A, 04.11.1981. RU 2012122725 A, 10.01.2014. (45) Опубликовано: 11.10.2018 Бюл. № 29 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 29.05.2017 (86) Заявка PCT: 2 6 6 9 5 3 7 (87) Публикация заявки PCT: WO 2016/066376 (06.05.2016) C 1 C 1 EP 2015/072926 (05.10.2015) 2 6 6 9 5 3 7 Приоритет(ы): (30) Конвенционный приоритет: R U R U 05.10.2015 (72) Автор(ы): БЕННАУЭР Мартин (DE), ХОЕ Маттиас (DE), ОФЕЙ Мартин (DE), ШИНДЛЕР Кристоф (DE) Адрес для переписки: 109012, Москва, ул. Ильинка, 5/2, ООО "Союзпатент" (54) ТУРБИННЫЙ РЕГУЛИРОВОЧНЫЙ БЛОК С РЕГУЛЯТОРОМ ТЕРМИЧЕСКОЙ НАГРУЗКИ В КАЧЕСТВЕ ОСНОВНОГО РЕГУЛЯТОРА (57) Реферат: Изобретение относится к турбинному ...

Подробнее
19-05-2020 дата публикации

Method and system for startup of gas turbine system drive trains with exhaust gas recirculation

Номер: US10655542B2

In one embodiment, a system includes a drive train starter system. The drive train starter system includes a generator mechanically coupled to a drive train of a gas turbine system and an exciter system electrically coupled to the generator and configured to provide a magnetic field. The drive train starter system additionally includes a load commutated inverter (LCI) electrically coupled to the generator and configured to provide electrical power to the generator and a controller communicatively coupled to the generator, the exciter system, and the LCI. The controller is configured to start up the drive train via the LCI and the generator up to less than a drive train operating speed, wherein the generator is converting electricity into mechanical motion; drive the drive train via a gas turbine up to the drive train operating speed; and to drive the drive train via the generator at the drive train operating speed.

Подробнее
20-10-2009 дата публикации

Method to start steam turbine plant

Номер: RU2370653C1

FIELD: machine building. SUBSTANCE: steam turbine plant comprises at least one steam turbine and at least one steam generator to generate steam to actuate steam turbine. Steam turbine plant incorporates at least one bearing structural component that features starting temperature exceeding 250°C. Temperature of steam and aforesaid structural component is continuously measured. Steam is fed into aforesaid structural component after starting the turbine. Steam starting temperature is lower than that of structural component, steam temperature being increased with respect to initial transition value. Starting and initial transition temperatures are selected so that structural component temperature change per unit time is lower than preset limiting value. Structural component temperature is, first, decreased to minimum, then it goes up. EFFECT: fast preparation for starting, reduced thermal structural strain. 12 cl, 3 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2 370 653 (13) C1 (51) МПК F01K 13/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21), (22) Заявка: 2008105549/06, 13.06.2006 (24) Дата начала отсчета срока действия патента: 13.06.2006 (72) Автор(ы): ГОДЕБРЕХТ Эдвин (DE), КВИНКЕРЦ Райнер (DE) (45) Опубликовано: 20.10.2009 Бюл. № 29 2 3 7 0 6 5 3 (56) Список документов, цитированных в отчете о поиске: US 3532079 A1, 06.11.1970. SU 1079860 A1, 15.03.1984. SU 613160 A1, 30.06.1978. JP 58047105, 18.03.1983. US 4208882 A1, 24.06.1980. US 4589255 A1, 20.05.1986. (85) Дата перевода заявки PCT на национальную фазу: 14.02.2008 2 3 7 0 6 5 3 R U (87) Публикация PCT: WO 2007/006617 (18.01.2007) C 1 C 1 (86) Заявка PCT: EP 2006/063135 (13.06.2006) Адрес для переписки: 129090, Москва, ул.Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", пат.пов. А.В.Мицу, рег.№ 364 (54) СПОСОБ ЗАПУСКА ПАРОТУРБИННОЙ УСТАНОВКИ (57) Реферат: Изобретение относится к способу запуска паротурбинной ...

Подробнее
27-06-2012 дата публикации

STEAM TURBINE STARTING METHOD

Номер: RU2010152280A

1. Способ (300, 400) запуска энергоустановки, включающий ! использование паровой турбины (100), выполненной с возможностью преобразования энергии пара в механический вращающий момент и содержащей секцию (120) высокого давления (ВД), и ! повышение давления пара перед впускным клапаном (115), расположенным перед секцией (120) ВД, до соответственного диапазона (315) давлений, ! причем при указанном повышении давления пара (115) снижается температура пара перед его впуском в секцию (120) ВД. ! 2. Способ (300, 400) по п.1, в котором инициируют запуск паровой турбины (330), если удовлетворено (325) разрешение на запуск. ! 3. Способ (300, 400) по п.2, в котором открывают впускной клапан (115) для обеспечения поступления пара в секцию (345) ВД. ! 4. Способ (300, 400) по п.2, в котором определяют, находится ли напряжение в роторе в допустимом диапазоне (350). ! 5. Способ (300, 400) по п.4, в котором поддерживают действующую нагрузку на паровую турбину до тех пор, пока напряжение в роторе не окажется в допустимом диапазоне (335). ! 6. Способ (300, 400) по п.5, в котором уменьшают давление пара перед впускным клапаном (115, 360). ! 7. Способ (300, 400) по п.6, в котором повышают температуру пара в зоне (125) входного раструба ВД секции (365) ВД. ! 8. Способ (300, 400) по п.5, в котором повышают температуру пара в зоне (125) входного раструба ВД секции (460) ВД. ! 9. Способ (300, 400) по п.8, в котором уменьшают давление пара перед впускным клапаном (115, 465). ! 10. Способ (300, 400) запуска энергоустановки, содержащей паровую турбину (100), включающий ! использование паровой турбины (100), выполненной с возможностью преобразования энергии пара в механический вращающий момент и содержащей секцию (120) высокого давления (ВД) и перепускное устройство (110), ! РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2010 152 280 (13) A (51) МПК F02B 53/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2010152280/06, 21.12.2010 (71) Заявитель(и ...

Подробнее
02-06-2017 дата публикации

TURBINE ENGINE STOP TEMPERATURE CONTROL SYSTEM

Номер: RU2015145806A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2015 145 806 A (51) МПК F01D 19/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015145806, 16.04.2014 (71) Заявитель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) Приоритет(ы): (30) Конвенционный приоритет: 26.04.2013 US 13/871,080 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 26.11.2015 R U (43) Дата публикации заявки: 02.06.2017 Бюл. № 16 (72) Автор(ы): РОДРИГЕС Хосе Л. (US), ЛИТТЛ Дэвид А. (US), ЧЖАН Цзипин (US), ПИЛАПИЛ Патрик М. (US) (86) Заявка PCT: (87) Публикация заявки PCT: WO 2014/176085 (30.10.2014) R U (54) СИСТЕМА УПРАВЛЕНИЯ ТЕМПЕРАТУРОЙ ОСТАНОВА ТУРБИННОГО ДВИГАТЕЛЯ (57) Формула изобретения 1. Система (10) управления температурой останова турбинного двигателя, отличающаяся тем, что содержит компонент (38) турбинного двигателя, расположенный внутри корпуса (34) турбины таким образом, что между ними имеется полость (12); по меньшей мере, один воздушный усилитель (24), имеющий полую камеру, причем упомянутый, по меньшей мере, один воздушный усилитель (24) простирается в полость (12) и имеет продольную ось (30), которая не параллельна продольной оси (32) корпуса (34) турбины, причем выхлопное отверстие (26) упомянутого, по меньшей мере, одного воздушного усилителя (24) направлено с возможностью выхлопа воздуха в направлении, которое не параллельно продольной оси (32) корпуса (34) турбины; и при этом упомянутый, по меньшей мере, один воздушный усилитель (24) сообщается по текучей среде с источником (36) снабжения воздухом, допуская выхлоп воздуха из упомянутого, по меньшей мере, одного воздушного усилителя (24) в упомянутый, по меньшей мере, один воздушный усилитель (24). 2. Система (10) управления температурой останова турбинного двигателя по п. 1, отличающаяся тем, что корпус (34) турбины представляет собой выхлопной патрубок (42) турбины, образующий переднюю полость (44) у наружного диаметра. 3. Система (10) управления температурой останова ...

Подробнее
28-08-2020 дата публикации

PROCESS FOR MONITORING THE STATE OF OPERATION OF A PRESSURE VALVE

Номер: FR3086002B1
Принадлежит: Safran Aircraft Engines SAS

L'invention concerne un procédé de surveillance de l'état de fonctionnement d'une vanne de surpression de turbomachine, la turbomachine comprenant un circuit de fluide, au moins un capteur de pression du fluide dans le circuit de fluide, un capteur de température du fluide dans le circuit de fluide, ladite vanne de surpression étant configurée pour limiter les pressions de fluide maximales dans le circuit de fluide, et le procédé comprenant les étapes suivantes : - (E2) détermination d'un indicateur d'ouverture ou de fermeture de la vanne de surpression à partir de l'évolution temporelle de la pression de fluide ; - (E3) détermination d'un état de fonctionnement de la vanne en fonction d'une température seuil de fluide et de l'indicateur d'ouverture ou de fermeture de la vanne de surpression déterminé.

Подробнее
17-04-2009 дата публикации

Method and apparatus for controlling steam turbine inlet flow to limit shell and rotor thermal stress

Номер: KR100893422B1
Принадлежит: 제너럴 일렉트릭 캄파니

터빈 로터를 갖는 증기 터빈을 통과하는 증기 유동을 제어하는 방법에 있어서, 터빈 로터에서의 열응력을 계산한 것을 근거로 최대 열전달률(18)이 결정된다. 최대 열전달률을 근거로 최대 증기 유량(20)이 계산될 수 있다. 증기 터빈을 통과하는 실제 증기 유량이 결정되고, 실제 증기 유량과 최대 증기 유량 사이의 차이를 근거로 터빈 흡입 밸브(28)가 제어된다. 이러한 방법에서는, 시동 시간을 최소화하고 가동성을 최대화하면서 열응력을 허용 가능 수준으로 제한하는 방식으로, 증기 터빈으로의 증기 유동이 제어될 수 있다. In the method of controlling the steam flow through a steam turbine having a turbine rotor, the maximum heat transfer rate 18 is determined based on the calculation of the thermal stress in the turbine rotor. The maximum steam flow rate 20 can be calculated based on the maximum heat transfer rate. The actual steam flow rate through the steam turbine is determined, and the turbine intake valve 28 is controlled based on the difference between the actual steam flow rate and the maximum steam flow rate. In this method, the steam flow to the steam turbine can be controlled in a manner that limits thermal stress to an acceptable level while minimizing start-up time and maximizing operability.

Подробнее
10-01-1983 дата публикации

Patent JPS581243B2

Номер: JPS581243B2
Принадлежит: HITACHI LTD

Подробнее
02-11-2018 дата публикации

Turbine control unit comprising a thermal stress controller as a master controller

Номер: KR101914889B1
Принадлежит: 지멘스 악티엔게젤샤프트

본 발명은 터빈(6, 8, 10)을 제어하기 위한, 특히 터빈(6, 8, 10)의 시동을 제어하기 위한 터빈 제어 유닛(1)에 관한 것으로서, 상기 유닛은 마스터 제어기(2) 및 내부 제어기(3)를 포함하는 캐스케이드 제어기로서 설계되고, 마스터 제어기는 열적 응력을 받는 구성요소의 온도를 위한 열적 응력 제어기(2)이다. 본 발명은 또한 연관된 방법에 관한 것이다. The present invention relates to a turbine control unit (1) for controlling a turbine (6, 8, 10), in particular for starting a turbine (6, 8, 10), said unit comprising a master controller Is designed as a cascade controller comprising an internal controller (3), and the master controller is a thermal stress controller (2) for the temperature of the component subjected to thermal stress. The invention also relates to an associated method.

Подробнее
14-06-2017 дата публикации

Device and method of gas turbine unblocking after its stop

Номер: RU2622356C2
Принадлежит: Нуово Пиньоне СРЛ

FIELD: power industry. SUBSTANCE: gas turbine based on an aircraft engine contains an air intake chamber, a compressor comprising an air intake device communicating with the noted chamber, a combustion chamber, a high pressure turbine and a power turbine. The forced air flow generator communicates with the air intake chamber. In the channel for air entering the combustion zone, an overlapping device is disposed and is adjusted to provide the noted channel closure and injecting pressure in the noted air intake chamber with a forced air flow generator to a value sufficient for forced pressurized air flow through the noted turbine. EFFECT: invention improves the gas turbine restarting efficiency. 24 cl, 7 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 622 356 C2 (51) МПК F02C 7/18 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 2014134637, 06.03.2013 (24) Дата начала отсчета срока действия патента: 06.03.2013 Дата регистрации: Приоритет(ы): (30) Конвенционный приоритет: 08.03.2012 IT FI2012A000046 (73) Патентообладатель(и): Нуово Пиньоне СРЛ (IT) (56) Список документов, цитированных в отчете о поиске: US 4249371 A, 10.02.1981. (45) Опубликовано: 14.06.2017 Бюл. № 17 АРСЕНЬЕВ Л.В. и др. Газотурбинные установки. Л.: Машиностроение, 1978, с.194, рис. IX 3г. US 4003200 A, 18.01.1977. US 4249371 A, 10.02.1981. US 3903691 A, 09.09.1977. RU 2105177 C1, 20.02.1998. (85) Дата начала рассмотрения заявки PCT на национальной фазе: 08.10.2014 (86) Заявка PCT: EP 2013/054525 (06.03.2013) (87) Публикация заявки PCT: 2 6 2 2 3 5 6 (43) Дата публикации заявки: 27.04.2016 Бюл. № 12 R U 14.06.2017 (72) Автор(ы): БЕТТИ Томмазо (IT), БАЛЬДАССАРРЕ Антонио (IT), ВИТИ Филиппо (IT), МЕУЧЧИ Стефано (IT), ЛАЦЦЕРИ Марко (IT), МЕРЛО Роберто (IT), МАРКУЧЧИ Даниэле (IT) 2 6 2 2 3 5 6 R U Адрес для переписки: 191036, Санкт-Петербург, а/я 24, "НЕВИНПАТ" (54) УСТРОЙСТВО И СПОСОБ РАЗБЛОКИРОВКИ ГАЗОВОЙ ТУРБИНЫ ПОСЛЕ ЕЕ ...

Подробнее
16-10-2013 дата публикации

Worming-up system and control method for ship propulsion main turbine

Номер: KR101318193B1
Автор: 배성익
Принадлежит: 대우조선해양 주식회사

PURPOSE: A warming-up system of a main turbine for a ship and a control method thereof are provided to reduce malfunction risks by quickly and stably warming up the main turbine when the initial steam operation of the main turbine is operated by an integrated automatic controller. CONSTITUTION: A warming-up system of a main turbine (20) for a ship comprises a preheating valve (16), a main turbine operator (30), and an integrated automatic controller (40). The preheating valve is installed in a passage through which steam for preheating a main boiler (11) is transferred to the main turbine. The main turbine operator generates signals when the speed of the main turbine and the pressure of the preheating steam are reached to a set value. The integrated automatic controller opens the preheating valve while the main turbine is operated in a set condition. The main turbine operator generates the signals to stop warming up if satisfying one of the excessive pressures of the preheating steam, the normal operation of the main turbine, and the stopping of the main turbine. The normal operation of the main turbine is determined by a T/G-engagement switch (23) for detecting the engagement of a turning gear (15) and a speed switch (35) for detecting whether or not the main turbine is reached at the set speed. [Reference numerals] (21) Temperature sensing unit; (31) Pressure switch; (35) Speed switch; (41) First determining unit; (42) Second sensing unit; (43) Third determining unit; (45) Blackout detecting unit; (47) Manual operation unit

Подробнее
28-09-1999 дата публикации

Method and apparatus for cooling low pressure turbine section of steam turbine

Номер: JPH11511222A
Принадлежит: SIEMENS AG

(57)【要約】 水・蒸気循環路(12)に接続されている蒸気タービン(1)の低圧タービン部(2)を冷却する方法において、特に無負荷運転の際に冷却材(K′)が低圧タービン部(2)の一部(24)を貫流する。その際に回収される熱を同時に利用して特に効果的に冷却するために、冷却材(K′)として蒸気タービン(1)に後置接続されている復水器(4)から取り出された復水(K)が利用され、これは冷却の際に吸収した熱を水・蒸気循環路(12)に放出する。このために低圧タービン部(2)は復水器(4)の流出側に接続されている冷却材配管(22、22′)に接続され、この冷却材配管(22、22′)に水・蒸気循環路(12)に接続されている熱交換器(16、16′)が置かれている。

Подробнее
09-11-2021 дата публикации

Steam turbine high-pressure cylinder warming and cylinder switching control optimization method

Номер: CN113623026A

本发明提出了一种汽轮机高压缸暖缸及缸切换控制优化方法,包括:第一步:选择合理的汽源接入到高压缸内;第二步:倒暖逻辑系统判断是否进行倒暖,若需要进行倒暖则高压缸倒暖自动投入,若不需要进行倒暖,则高压缸倒暖不投入;第三步:正暖逻辑系统判断是否进行正暖,若需要进行正暖则高压缸正暖自动投入,若不需要进行正暖,则高压缸正暖不投入;第四步:判断缸切换条件是否具备,若具备则自动投入缸切换,若不具备则待缸切换条件具备时投入缸切换,借此,本发明具有对高压缸暖缸汽源进行改造,缩短启动时间;对倒暖缸体设定温度、正暖逻辑优化,提高高压缸金属温度;对缸切换逻辑进行优化,实现自动缸切换的优点。

Подробнее
16-12-2020 дата публикации

A forced air convection apparatus and method for cooling a turbomachine

Номер: GB2584712A
Автор: LARICCIA Michael
Принадлежит: Rolls Royce PLC

A forced air convection apparatus for cooling turbomachines such as a gas turbine engine comprises: a duct assembly 41 having one or more outlets 45, 46 which are removably joinable to corresponding air intakes 11, 30 of the turbomachine, and one or more inlets 47, 48 which are removably joinable to exhausts 23, 31 of the turbomachine to enable closed loop recirculatory airflow through the turbomachine and the duct assembly. The apparatus includes an air handling system 42 with a blower 43 to blow air from the one or more inlets of the duct assembly to the one or more outlets of the duct assembly, and a heat exchanger 44 to cool the air flow. The apparatus can supply cold air to cool a gas turbine engine and nacelle chamber e.g. for cold start tests.

Подробнее
01-01-2010 дата публикации

Ring fixing support for bypass turbojet engine in airplane, has control system individually controlling heating circuits and homogenizing thermal deformation of support in case of stopping of gas turbine at hot restarting of engine

Номер: FR2933131A1
Автор: Vincent Philippot
Принадлежит: SNECMA SAS

The support (20) has a circumferential wall (22) coaxially surrounding a ring (30), and electrical heating circuits (22e) placed on an external face of the wall and positioned at different determined circumferential positions. The heating circuits are associated to temperature sensors and cold at a lower part of the support. A control system individually controls the electrical heating circuits and homogenizes thermal deformation of the support on the circumference of the support in case of stopping of a gas turbine at hot restarting of a bypass turbojet engine.

Подробнее
20-03-2020 дата публикации

METHOD FOR MONITORING THE OPERATING STATE OF A PRESSURE VALVE

Номер: FR3086002A1
Принадлежит: Safran Aircraft Engines SAS

L'invention concerne un procédé de surveillance de l'état de fonctionnement d'une vanne de surpression de turbomachine, la turbomachine comprenant un circuit de fluide, au moins un capteur de pression du fluide dans le circuit de fluide, un capteur de température du fluide dans le circuit de fluide, ladite vanne de surpression étant configurée pour limiter les pressions de fluide maximales dans le circuit de fluide, et le procédé comprenant les étapes suivantes : - (E2) détermination d'un indicateur d'ouverture ou de fermeture de la vanne de surpression à partir de l'évolution temporelle de la pression de fluide ; - (E3) détermination d'un état de fonctionnement de la vanne en fonction d'une température seuil de fluide et de l'indicateur d'ouverture ou de fermeture de la vanne de surpression déterminé. The invention relates to a method for monitoring the operating state of a turbomachine pressure relief valve, the turbomachine comprising a fluid circuit, at least one fluid pressure sensor in the fluid circuit, a temperature sensor of the fluid in the fluid circuit, said pressure relief valve being configured to limit the maximum fluid pressures in the fluid circuit, and the method comprising the following steps: - (E2) determination of an opening or closing indicator of the pressure relief valve from the time evolution of the fluid pressure; - (E3) determination of an operating state of the valve as a function of a threshold fluid temperature and of the opening or closing indicator of the pressure relief valve determined.

Подробнее
05-10-2018 дата публикации

DEVICE FOR ADDITIVE MANUFACTURING OF TURBOMACHINE PIECE BY DIRECT DEPOSITION OF METAL ON A SUBSTRATE

Номер: FR3064509A1
Принадлежит: Safran Aircraft Engines SAS

Dispositif (1) de fabrication additive d'une pièce de turbomachine par dépôt direct de métal sur un substrat (2), caractérisé en ce que le dispositif comprend : - une source de matériau métallique (4), - une source d'énergie (3), apte à produire du métal en fusion à partir du matériau métallique issu de la source de matériau métallique (4), - un substrat (2), - un masque (6), disposé sur le substrat (2), et muni d'au moins une ouverture (8), de manière à permettre un dépôt localisé (21) de métal en fusion sur le substrat (2), ledit masque (6) comprenant un matériau magnétique, et - un support (5) de substrat, disposé sous le substrat (2), ledit support (5) étant apte à générer une force électromagnétique permettant d'attirer le masque (6) vers le substrat (2). Device (1) for additive manufacturing of a turbomachine part by direct deposition of metal on a substrate (2), characterized in that the device comprises: - a source of metallic material (4), - a source of energy ( 3), adapted to produce molten metal from the metallic material from the source of metallic material (4), - a substrate (2), - a mask (6), disposed on the substrate (2), and provided with at least one opening (8), so as to allow localized deposition (21) of molten metal on the substrate (2), said mask (6) comprising a magnetic material, and - a substrate support (5) disposed under the substrate (2), said support (5) being adapted to generate an electromagnetic force for attracting the mask (6) to the substrate (2).

Подробнее
18-01-2013 дата публикации

METHOD FOR STARTING A TURBOMACHINE REDUCING THERMAL BALANCE

Номер: FR2977915A1
Принадлежит: Turbomeca SA

L'invention propose un procédé de démarrage d'une turbomachine, mis en œuvre par une unité électronique, la turbomachine comprenant un moteur à turbine à gaz incluant au moins un rotor et un démarreur apte à entraîner le rotor en rotation, le procédé de démarrage comprenant : - une étape (E1) de réception d'un ordre de démarrage de la turbomachine, et, en réponse à la réception de l'ordre de démarrage : - une étape (E2, E3) d'accélération primaire dans laquelle on commande le démarreur pour augmenter la vitesse de rotation (N) du rotor, - une étape (E4, E5) d'homogénéisation thermique dans laquelle on commande le démarreur pour maintenir constante ou diminuer la vitesse de rotation (N) du rotor, jusqu'à la vérification d'une condition prédéterminée, - après vérification de la condition prédéterminée, une étape (E6) d'accélération secondaire dans laquelle on commande le démarreur pour augmenter la vitesse de rotation (N) du rotor, et - une étape (E6) d'allumage dans laquelle on commande l'allumage du moteur. The invention proposes a method for starting a turbomachine, implemented by an electronic unit, the turbomachine comprising a gas turbine engine including at least one rotor and a starter adapted to drive the rotor in rotation, the starting method comprising: - a step (E1) for receiving a start command of the turbomachine, and, in response to receiving the start command: - a step (E2, E3) of primary acceleration in which one controls the starter for increasing the rotational speed (N) of the rotor, - a step (E4, E5) of thermal homogenization in which the starter is controlled to maintain constant or decrease the rotational speed (N) of the rotor, up to checking a predetermined condition, - after checking the predetermined condition, a step (E6) of secondary acceleration in which the starter is controlled to increase the rotational speed (N) of the rotor, and - a step pe (E6) ignition in which it controls the ignition of ...

Подробнее
15-11-2019 дата публикации

METHOD FOR DETECTION OF TURBOMACHINE IGNITION

Номер: FR3074836B1
Принадлежит: Safran Aircraft Engines SAS

L'invention porte sur un procédé de détection (E) d'allumage d'une chambre de combustion de turbomachine, le procédé (E) comprenant les étapes de : • réception (E11) d'une première mesure de la température de gaz d'échappement en aval de la chambre de combustion, avant une tentative d'allumage de ladite chambre de combustion, • réception (E12) d'un seuil de température, • réception (E13) d'un critère secondaire de détection, • actualisation (E14) du seuil de température reçu en fonction du critère secondaire de détection reçu, • réception (E15) d'une deuxième mesure de la température des gaz d'échappement, après la tentative d'allumage de la chambre de combustion, • comparaison (E16) entre le seuil de température actualisé et la différence entre la première et la deuxième mesure de température des gaz d'échappement, et • détermination (E17) de l'état d'allumage de la chambre de combustion.

Подробнее
28-07-2016 дата публикации

Method of starting a gas turbine engine

Номер: CA2917560A1
Принадлежит: General Electric Co

A method of starting a gas turbine engine having a rotor comprising at least a shaft mounted compressor and turbine, with a casing surrounding the rotor.

Подробнее
10-12-1965 дата публикации

Device for automatically increasing the rotational speed of the rotor of a steam turbine

Номер: FR1420814A
Автор:
Принадлежит: INST AVTOMATIKI

Подробнее
27-05-2022 дата публикации

Structure and method for mitigating rotor bow in a turbine engine

Номер: CN109958484B
Принадлежит: General Electric Co

一种燃气涡轮发动机包括:第一转子组件,所述第一转子组件包括:第一驱动轴,所述第一驱动轴沿着纵向方向延伸;外壳,所述外壳连接到所述第一转子组件以提供所述第一转子组件环绕轴向中心线的旋转;第一辅助组件,其中所述第一辅助组件将能量发送到所述第一转子组件和/或从所述第一转子组件提取能量;以及第一离合器组件,所述第一离合器组件设置在所述第一转子组件与所述第一辅助组件之间。所述第一离合器组件将所述第一转子组件接合到所述第一辅助组件且使所述第一转子组件从所述第一辅助组件脱离。

Подробнее
07-01-2022 дата публикации

METHOD AND CONTROL UNIT FOR CONTROLLING THE GAME OF A HIGH PRESSURE TURBINE FOR REDUCING THE EGT OVERRIDE EFFECT

Номер: FR3105980B1
Принадлежит: Safran Aircraft Engines SAS

PROCEDE ET UNITE DE COMMANDE POUR LE PILOTAGE DU JEU D’UNE TURBINE HAUTE PRESSION POUR LA REDUCTION DE L’EFFET DE DEPASSEMENT EGT Procédé de pilotage d’un jeu entre des sommets d’aubes d’un rotor d’une turbine de moteur d’avion et un anneau de turbine, comprenant l’estimation du jeu à piloter et la commande d’une vanne délivrant un flux d’air dirigé vers l’anneau de turbine en fonction du jeu ainsi estimé, ce procédé comprenant : la détection (100) d’une phase transitoire d’accélération à partir d’au moins un paramètre représentatif du moteur ; la réception (102) d’une donnée relative à l’altitude de l’avion ; la détermination (104) de données représentatives de la température du rotor pendant la phase transitoire d’accélération et en régime stabilisé et le calcul d’un écart relatif de températures ; si la phase transitoire d’accélération est détectée et si l’écart relatif de températures est supérieur à un écart de température minimal prédéterminé, la définition d’un niveau d’ouverture et d’un temps d’ouverture de la vanne par une table de correspondance altitude/écart relatif de températures prédéfinie ; et la commande (114) de l’ouverture de la vanne pour délivrer le flux d’air à l’anneau de turbine. Figure pour l’abrégé : Fig. 3. METHOD AND CONTROL UNIT FOR CONTROLLING THE CLEARANCE OF A HIGH PRESSURE TURBINE FOR REDUCING THE EGT OVERRIDE EFFECT Method for controlling a clearance between the blade tips of a rotor of an engine turbine aircraft and a turbine ring, comprising estimating the clearance to be piloted and controlling a valve delivering an air flow directed towards the turbine ring as a function of the clearance thus estimated, this method comprising: detecting ( 100) of a transitional acceleration phase from at least one parameter representative of the engine; receiving (102) data relating to the altitude of the aircraft; the determination (104) of data representative of the temperature of the rotor during the transient acceleration phase and in steady ...

Подробнее
19-02-1988 дата публикации

METHOD FOR COLD STARTING A STEAM TURBINE

Номер: FR2602824A1
Принадлежит: PROIZV OB TUR

L'INVENTION CONCERNE UN PROCEDE DE DEMARRAGE A FROID D'UNE TURBINE A VAPEUR COMPRENANT: LA MISE EN MARCHE DU VIREUR; LA CREATION DU VIDE DANS LE CONDENSEUR 5; LE CONTROLE DE L'ETANCHEITE DU SYSTEME A VIDE; LE CHAUFFAGE DES ROTORS ET DES CORPS CYLINDRES 2, 3. SELON L'INVENTION, APRES LA MISE EN MARCHE DU VIREUR MAIS AVANT LA CREATION DU VIDE DANS LE CONDENSEUR 5 ON EFFECTUE LE CHAUFFAGE DES ROTORS ET DES CORPS 2, 3 PAR DE LA VAPEUR PRODUITE PAR UN GENERATEUR EXTERIEUR SOUS UNE PRESSION COMPATIBLE AVEC LA RESISTANCE DU CONDENSEUR ET, EN MEME TEMPS, ON CONTROLE L'ETANCHEITE DU SYSTEME A VIDE, PUIS ON REALISE LE VIDE DANS LE CONDENSEUR 5 ET ON ELEVE LA VITESSE DE ROTATION DE LA LIGNE D'ARBRE 1 JUSQU'A LA VITESSE NOMINALE. L'INVENTION TROUVE NOTAMMENT APPLICATION DANS LA PRODUCTION D'ENERGIE.

Подробнее
22-08-2014 дата публикации

AVIONIC DEVICE FOR MONITORING A TURBOMACHINE

Номер: FR3002273A1
Принадлежит: SNECMA SAS

Dispositif avionique pour la surveillance d'une turbomachine L'invention consiste en un dispositif avionique (1000) pour la surveillance d'une turbomachine (1200) pour aéronef, comprenant des moyens de reconnaissance d'au moins une condition de présence d'un balourd thermique sur un rotor de la turbomachine après l'arrêt de celle-ci, pour un éventuel processus de redémarrage. The invention consists of an avionic device (1000) for monitoring a turbomachine (1200) for an aircraft, comprising means for recognizing at least one condition of presence of an unbalance thermal on a rotor of the turbomachine after stopping thereof, for a possible restart process.

Подробнее
27-09-2021 дата публикации

System and method for dynamic engine motoring

Номер: CA3112111A1
Автор: Dana TOMESCU
Принадлежит: Pratt and Whitney Canada Corp

There is provided a dynamic motoring system and method for an aircraft engine. Motoring of the engine is initiated for an initial motoring duration and at an initial motoring interval. At least one engine parameter is measured in real-time during the motoring, the at least one engine parameter comprising a temperature of the engine. The initial motoring duration and the initial motoring interval are modified in real-time, based on a value of the at least one engine parameter during the motoring, to obtain a modified motoring duration and a modified motoring interval. The motoring continues for the modified motoring duration and at the modified motoring interval, with a speed of rotation of the engine being controlled using the modified motoring interval.

Подробнее
31-07-2020 дата публикации

Improved turbomachine comprising an inertial system.

Номер: FR3092140A1
Принадлежит: Safran Aircraft Engines SAS

Turbomachine améliorée comprenant un système in er tiel . Turbomachine (1) comprenant un carter fixe, une chambre de combustion (4) fixe et un arbre haute pression (20) mobile en rotation par rapport au carter, la turbomachine (1) étant caractérisée en ce qu’elle comprend un système inertiel comprenant une masse mobile en rotation, un réducteur et un embrayage, l’embrayage étant configuré pour sélectivement coupler la masse mobile en rotation à l’arbre (2) de turbomachine (1) via le réducteur, de manière à entrainer l’arbre haute pression (20) en rotation à une vitesse de rotation comprise entre 0,1 et 50 tours par minute. Figure pour l’abrégé : Fig. 1. Improved turbomachine including an in er tial system. Turbomachine (1) comprising a fixed casing, a fixed combustion chamber (4) and a high pressure shaft (20) movable in rotation with respect to the casing, the turbomachine (1) being characterized in that it comprises an inertial system comprising a rotating mass, a reduction gear and a clutch, the clutch being configured to selectively couple the rotating mass to the shaft (2) of the turbomachine (1) via the reducer, so as to drive the high pressure shaft (20) rotating at a rotational speed between 0.1 and 50 revolutions per minute. Figure for the abstract: Fig. 1.

Подробнее