Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 10075. Отображено 100.
13-03-2019 дата публикации

Установка частичного сжижения природного газа

Номер: RU0000187598U1

В предложенной установке для частичного сжижения природного газа, включающей источник газа высокого давления, блок осушки, расширительное устройство, выполненное в виде турбодетандера, в котором в качестве тормоза на одном валу установлен турбокомпрессор, блок очистки от СО 2 , теплообменник для предварительного охлаждения, основной теплообменник, сборник-сепаратор сжиженного газа. Осушенный поток разделяется на два - технологический и дополнительный, который направляется в блок очистки от СО 2 . После очистки от СО 2 из дополнительного потока выделяется продукционный поток, а оставшаяся часть подмешивается к технологическому потоку и понижает концентрацию СО 2 в сжимаемом потоке до значений, которые гарантируют невыпадение твердого СО 2 в проточной части турбинного модуля, что позволяет повысить надежность и эффективность работы всей установки сжижения природного газа. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 187 598 U1 (51) МПК F25J 1/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК F25J 1/0022 (2018.08) (21)(22) Заявка: 2017144255, 18.12.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: 13.03.2019 (45) Опубликовано: 13.03.2019 Бюл. № 8 Адрес для переписки: 115280, Москва, ул. Автозаводская, 25, ОАО "НПО "ГЕЛИЙМАШ" (73) Патентообладатель(и): Открытое акционерное общество "Научно-производственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") (RU) (56) Список документов, цитированных в отчете о поиске: RU 2541360 C1, 10.02.2015. RU предварительного охлаждения, основной теплообменник, сборник-сепаратор сжиженного газа. Осушенный поток разделяется на два технологический и дополнительный, который R U 1 8 7 5 9 8 (54) Установка частичного сжижения природного газа (57) Реферат: В предложенной установке для частичного сжижения природного газа, включающей источник газа высокого давления, блок осушки, расширительное устройство, выполненное в виде турбодетандера, в котором в качестве тормоза ...

Подробнее
23-02-2012 дата публикации

Lng facility with integrated ngl recovery for enhanced liquid recovery and product flexibility

Номер: US20120042690A1
Принадлежит: ConocoPhillips Co

Process for efficiently operating a natural gas liquefaction system with integrated heavies removal/natural gas liquids recovery to produce liquefied natural gas (LNG) and/or natural gas liquids (NGL) products with varying characteristics, such as, for example higher heating value (HHV) and/or propane content. Resulting LNG and/or NGL products are capable of meeting the significantly different specifications of two or more markets.

Подробнее
15-03-2012 дата публикации

Method for separating off nitrogen and hydrogen from natural gas

Номер: US20120060554A1
Автор: Hans Schmidt
Принадлежит: Linde GmbH

The invention relates to a method for separating off nitrogen and lighter components, in particular hydrogen, carbon monoxide, neon and argon, from a feed fraction (e.g., natural gas) that is to be liquefied containing at least methane, nitrogen and hydrogen. The cooling and liquefaction of the feed fraction proceeds against the refrigerant or mixed refrigerant of at least one refrigeration cycle. In the inventive method, the feed fraction ( 1 ) is partially condensed (E 1 ), and separated in at least one rectification column (T) into a methane-rich fraction ( 6 ) and a fraction ( 4 ) containing nitrogen and lighter components. The methane-rich fraction ( 6 ) is subcooled. Additionally, cooling of the top condenser (E 2 ) of the rectification column (T) proceeds via a refrigerant or mixed refrigerant or a substream of the refrigerant or mixed refrigerant of at least one, refrigeration cycle ( 20 - 24 ).

Подробнее
05-04-2012 дата публикации

Removal of hydrogen

Номер: US20120079849A1
Автор: Hans Schmidt
Принадлежит: Linde GmbH

The invention relates to a method for liquefying a hydrocarbon-rich fraction ( 1, 1′ ) which contains substantially methane, hydrogen and nitrogen. In the inventive method, before the liquefaction (V) of the hydrocarbon-rich fraction ( 1, 1′ ), the hydrogen ( 2 ) is removed (M) by permeation. This removal (M) of the hydrogen ( 2 ) by permeation is effected in a single-stage or multistage removal process.

Подробнее
19-04-2012 дата публикации

Configurations and Methods of Heating Value Control in LNG Liquefaction Plant

Номер: US20120090350A1
Автор: John Mak
Принадлежит: Fluor Technologies Corp

NGL recovery from natural gas is achieved by processing the natural gas in a scrub column that operates at high pressure. A C3+ depleted vapor stream is generated from the vapor portion of partially condensed scrub column overhead and expanded to provide refrigeration for the vapor portion to so form a second reflux stream and the C3+ depleted vapor stream. The C3+ depleted vapor stream is then combined with another vapor portion of partially condensed column overhead to produce a lean liquefaction feed stream.

Подробнее
26-04-2012 дата публикации

Process for separating and recovering NGLs from hydrocarbon streams

Номер: US20120096895A1
Принадлежит: Individual

This process comprises using unconventional processing of hydrocarbons, e.g. natural gas, for recovering C2+ and NGL hydrocarbons that meet pipeline specifications, without the core high capital cost requirement of a demethanizer column, which is central to and required by almost 100% of the world's current NGL recovery technologies. It can operate in Ethane Extraction or Ethane Rejection modes. The process uses only heat exchangers, compression and simple separation vessels to achieve specification ready NGL. The process utilizes cooling the natural gas, expansion cooling, separating the gas and liquid streams, recycling the cooled streams to exchange heat and recycling selective composition bearing streams to achieve selective extraction of hydrocarbons, in this instance being NGLs. The compactness and utility of this process makes it feasible in offshore applications as well as to implementation to retrofit/revamp or unload existing NGL facilities. Many disparate processes and derivatives are anticipated for its use.

Подробнее
17-05-2012 дата публикации

Process For The Production Of Hydrogen And Carbon Dioxide

Номер: US20120118011A1

The present invention provides a method to more efficiently recover hydrogen and carbon dioxide as well as a design for carbon dioxide capture from syngas that allows for the simultaneous production of medium to high amounts of hydrogen and the capture of at least 90% of the carbon dioxide in the syngas as a part of the production of hydrogen in a hydrogen generation plant. Through the use of a combination of hydrogen selective membranes and carbon dioxide selective membranes together with a carbon dioxide separation unit it is possible to increase recovery of hydrogen and carbon dioxide and improved process efficiency of the hydrogen generation plant.

Подробнее
17-05-2012 дата публикации

Separation of gases

Номер: US20120118012A1
Принадлежит: Individual

A process for separating a mixture of gases into a relatively condensable first component and a relatively non-condensable second component is provided. The first component comprises one or more gases selected from the group consisting of carbon dioxide, carbonyl sulphide and hydrogen sulphide and the second component one or more gases selected from the group consisting of hydrogen, methane, ethane, carbon monoxide, nitrogen, oxygen and synthesis gas. The process itself comprises the following steps: (a) compressing and cooling a mixture of said first and second components in at least one compressor and at least one heat exchanger to a temperature and elevated pressure at which the first components condense and a two-phase gas-liquid mixture is formed; (b) separating the two phase mixture so formed into separate liquid first and gaseous second component fractions in a fractionation unit; (c) extracting residual first component from the separated gaseous second component fraction by scrubbing the second component at elevated pressure with a solvent (e.g. methanol) in a scrubber. In examples, the method further includes one or more steps of warming and expanding the gaseous second component fraction using at least one heat exchanger to exchange heat with a process stream and at least one turbo-expander capable of recovering mechanical work. The process described is highly energy efficient and is especially useful in hydrogen power plants, Integrated Gasification Combined Cycles (IGCC) and for sweetening sour natural gas.

Подробнее
16-08-2012 дата публикации

Cryogenic system for removing acid gases from a hydrocarbon gas stream, with removal of hydrogen sulfide

Номер: US20120204599A1
Принадлежит: Individual

A system for removing acid gases from a raw gas stream includes an acid gas removal system (AGRS) and a sulfurous components removal system (SCRS). The acid gas removal system receives a sour gas stream and separates it into an overhead gas stream comprised primarily of methane, and a bottom acid gas stream comprised primarily of carbon dioxide. The sulfurous components removal system is placed either upstream or downstream of the acid gas removal system. The SCRS receives a gas stream and generally separates the gas stream into a first fluid stream comprising hydrogen sulfide, and a second fluid stream comprising carbon dioxide. Where the SCRS is upstream of the AGRS, the second fluid stream also includes primarily methane. Where the SCRS is downstream of the AGRS, the second fluid stream is principally carbon dioxide. Various types of sulfurous components removal systems may be utilized.

Подробнее
27-09-2012 дата публикации

Methanol to olefins process

Номер: US20120240615A1
Автор: Stephen De Haan
Принадлежит: Lummus Technology Inc

A process for chilling ethylene to required storage temperatures is disclosed, the process including: cooling an ethylene product from at least one of an ethylene production process and an ethylene recovery process via indirect heat exchange with a coolant at a temperature less than about −100° C. to decrease the temperature of the ethylene product; mixing a portion of the cooled ethylene product with methane to form the coolant; expanding at least one of the coolant, the methane, and the portion of the cooled ethylene to reduce a temperature of the coolant to less than −100° C. prior to the cooling; and feeding the heat exchanged coolant to at least one of the ethylene production process, the ethylene recovery process, and an open-loop refrigeration system.

Подробнее
27-09-2012 дата публикации

Method and device for treating a carbon-dioxide-containing gas flow, wherein the energy of the vent gas (work and cold due to expansion) is used

Номер: US20120240619A1
Принадлежит: Linde KCA Dresden GmbH

The invention relates to a method and a device for treating a carbon-dioxide-containing gas stream, in particular from a large-scale fired plant, e.g. from a power plant. The precompressed gas stream is separated in a carbon dioxide purification stage into a gas substream having an elevated carbon dioxide content (carbon dioxide product stream) and a gas substream having a decreased carbon dioxide content (vent gas stream). The carbon dioxide product stream is fed to further utilization and/or storage. In particular, by injecting the carbon dioxide underground, the emission of gases harmful to the climate can be reduced. For improving the energy efficiency, it is proposed that the vent gas stream is expanded in at least one expansion turbine and both the resultant kinetic energy and the resultant refrigeration are utilized for energy recovery. For utilizing the kinetic energy, the expansion turbine can be coupled to a compressor (booster) which compresses the crude gas stream and/or the carbon dioxide product stream. For utilizing the refrigeration generated in the expansion, the at least partially expanded vent gas stream can be brought into heat exchange with process streams which are to be cooled, e.g. the crude gas stream and/or the carbon dioxide product stream.

Подробнее
25-10-2012 дата публикации

Method for fractionating a stream of cracked gas to obtain an ethylene-rich cut and a stream of fuel, and related installation

Номер: US20120266630A1
Принадлежит: Technip France SAS

This method includes introducing a downstream stream ( 140 ) of cracked gas from a downstream heat exchanger ( 58 ) in a downstream separator ( 60 ) and recovering, at the head of the downstream separator ( 60 ), a high-pressure fuel gas stream ( 144 ). The method includes the passage of the stream ( 144 ) of fuel through the downstream exchanger ( 58 ) and an intermediate exchanger ( 50, 54 ) to form a reheated high-pressure fuel stream ( 146 ), the expansion of the reheated high-pressure fuel stream ( 146 ) in at least a first dynamic expander ( 68 ) and the passage of the partially expanded fuel stream ( 148 ) from the intermediate exchanger ( 50, 54 ) in a second dynamic expander ( 70 ) to form an expanded fuel stream ( 152 ). The expanded fuel stream ( 152 ) from the second dynamic expander ( 70 ) is reheated in the downstream heat exchanger ( 58 ) and in the intermediate heat exchanger ( 50, 54 ).

Подробнее
22-11-2012 дата публикации

Process For The Production Of Hydrogen And Carbon Dioxide

Номер: US20120291485A1

This present invention provides a method to more efficiently recover hydrogen and carbon dioxide, preferably at least 50%, even more preferably at least 75%, and most preferably at least 90% of the carbon dioxide. The present invention further provides the design for capture of at least 80%, carbon dioxide from syngas that allows for the simultaneous production of medium to high amounts of hydrogen in the syngas as a part of the production of hydrogen in a hydrogen generation plant. By using the process of the present invention, especially in terms of a hydrogen generation plant, it is possible to increase recovery of hydrogen and capture of the carbon dioxide in the syngas stream by balancing the recycle of the hydrogen rich permeate from the hydrogen membrane separation units to the process unit and/or the water gas shift as capacity allows when a carbon dioxide separation unit, a carbon dioxide membrane separation unit and two hydrogen membrane separation units are utilized.

Подробнее
09-05-2013 дата публикации

Rebalancing a main heat exchanger in a process for liquefying a tube side stream

Номер: US20130111947A1
Принадлежит: Linde GmbH

A process for liquefying a tube side stream in a main heat exchanger is described. The process comprises the steps of: a) providing a first mass flow to the warm end of a first subset of individual tubes, b) providing a second mass flow to the warm end of a second subset of individual tubes, c) evaporating a refrigerant stream on the shell side; d) measuring an exit temperature of the first mass flow; e) measuring an exit temperature of the second mass flow; and, f) comparing the exit temperature of the first mass flow measured in step d) to the exit temperature of the second mass flow measured in step e), the process characterized in that at least one of the first and second mass flows is adjusted to equalise the exit temperature of the first mass flow with the exit temperature of the second mass flow.

Подробнее
09-05-2013 дата публикации

Carbon Dioxide Purification

Номер: US20130111949A1
Принадлежит: Lummus Technology Inc

A process for the recovery of carbon dioxide from a gas mixture that includes pretreating a gas mixture comprising carbon dioxide, water vapor, and one or more light gases in a pretreating system to form a cooled gas mixture, fractionating the cooled gas mixture to recover a bottoms fraction comprising carbon dioxide and an overheads fraction comprising carbon dioxide and the light gases, passing the overheads fraction over a membrane selective to carbon dioxide to separate a carbon dioxide permeate from a residue gas comprising the light gases, recycling the carbon dioxide permeate to the pretreating system, and recovering at least a portion of the bottoms fraction as a purified carbon dioxide product stream is described.

Подробнее
23-05-2013 дата публикации

Expander and method for co2 separation

Номер: US20130125580A1
Автор: Douglas Carl Hofer
Принадлежит: General Electric Co

In one aspect an expander for separating carbon dioxide (CO 2 ) from a gas stream is presented. The expander includes (a) a housing; (b) at least one rotating component disposed within the housing; (c) at least one inlet disposed in the housing, wherein the inlet is configured to receive the gas stream;(d) at least one first outlet disposed in the housing, wherein the first outlet is configured to discharge a CO 2 rich stream; and (e) at least one second outlet disposed in the housing, wherein the second outlet is configured to discharge a CO 2 lean stream. The expander is configured to cool the gas stream such that a portion of CO 2 in the gas stream forms one or both of solid CO 2 and liquid CO 2 . The expander is further configured to separate at least a portion of one or both of solid CO 2 and liquid CO 2 from the gas stream to form the CO 2 rich stream and the CO 2 lean stream. System and method for separating carbon dioxide (CO 2 ) from a gas stream are also presented

Подробнее
30-05-2013 дата публикации

Apparatus and process for separating air by cryogenic distillation

Номер: US20130133364A1
Автор: Benoit Davidian

In a process for delivering pressurized gas from an apparatus for separating air by cryogenic distillation, a stream of oxygen-rich liquid or gas having a nominal flow rate is withdrawn from a low-pressure column, an oxygen-rich liquid purge stream is withdrawn as bottoms from the low-pressure column and the oxygen-rich liquid purge stream is sent to a storage tank, in the event of a reduction in the production by the column system or an increase in the demand by a customer, a back-up stream is withdrawn from the storage tank and vaporized in a back-up reboiler and only if the liquid level in the storage tank exceeds a given threshold, a liquid stream is withdrawn from the storage tank constituting at most 2% of the nominal production output of the oxygen-rich stream and is sent to the back-up reboiler.

Подробнее
06-06-2013 дата публикации

Air separation method and apparatus

Номер: US20130139547A1
Принадлежит: Praxair Technology Inc

A method and apparatus to produce oxygen and nitrogen co-products in which a compressed a compressed and purified air stream is cooled, fully or partially condensed and then rectified in a main distillation column to form a nitrogen-rich vapor column overhead and crude liquid oxygen. A crude liquid oxygen stream is depressurized and then stripped in an auxiliary distillation column with a stripping gas to produce an oxygen-rich liquid. The nitrogen-rich vapor column overhead from the main distillation column is used to form a nitrogen product and the crude liquid oxygen is partially vaporized to produce the stripping gas, a residual oxygen-rich liquid and liquid nitrogen reflux to the main distillation column. The oxygen product is formed from the residual oxygen-rich liquid by either providing the heat exchange duty in condensing the compressed and purified air stream or by condensing nitrogen-rich vapor used in refluxing the main distillation column.

Подробнее
20-06-2013 дата публикации

Method To Produce Liquefied Natural Gas (LNG) At Midstream Natural Gas Liquids (NGLs) Recovery Plants

Номер: US20130152627A1
Принадлежит: Jose Lourenco, Mackenzie Millar

A method to recover natural gas liquids (NGLs) from natural gas streams at NGL recovery plants. The present disclosure relates to methods using liquid natural gas (LNG) as an external source of stored cold energy to reduce the energy and improve the operation of NGL distillation columns. More particularly, the present disclosure provides methods to efficiently and economically achieve higher recoveries of natural gas liquids at NGL recovery plants.

Подробнее
22-08-2013 дата публикации

Methods and apparatuses for processing natural gas

Номер: US20130213086A1
Автор: Gregory F. Maher
Принадлежит: UOP LLC

Methods and apparatuses for processing natural gas are provided. In a method for processing a natural gas stream, the natural gas stream is fractionated to form an overhead stream and a bottoms stream. The overhead stream is separated with a membrane to form a methane rich residual stream and a permeate stream.

Подробнее
26-09-2013 дата публикации

Method and apparatus for separating air by cryogenic distillation

Номер: US20130247611A1
Автор: Golo Zick
Принадлежит: Individual

A method and apparatus for the cryogenic distillation of air to produce gaseous oxygen with a purity between 75 and 95 mol % and a pressure lower than 5.5 bar abs using a triple column having a high-pressure column, a low-pressure column, and a medium-pressure column, wherein the medium-pressure column is at least partially thermally coupled with the low-pressure column and the high-pressure column is also at least partially thermally coupled with the low-pressure column.

Подробнее
14-11-2013 дата публикации

Method and device for condensing a first fluid rich in carbon dioxide using a second fluid

Номер: US20130298598A1

The present invention relates to a process and device for condensing a first fluid rich in carbon dioxide using a second fluid.

Подробнее
21-11-2013 дата публикации

Method and arrangement for expanding a gas stream comprising carbon dioxide

Номер: US20130305750A1
Автор: Olaf Stallmann
Принадлежит: Alstom Technology AG

The present disclosure relates to a method and an arrangement for expanding a gas stream comprising carbon dioxide, CO 2 . The method includes: removing CO 2 from a process gas to produce a CO 2 lean gas stream comprising residual CO 2 ; monitoring a temperature of the gas stream downstream of an expander; controlling a pressure of the gas stream downstream of the expander by means of a pressure controller; and overriding the pressure controller when the temperature downstream of the expander is below a predefined minimum temperature; whereby deposition of solid CO 2 from the residual CO 2 in the gas stream is avoided. The disclosure also relates to a gas cleaning system and a power plant, such as an oxy-combustion power plant, associated with the arrangement.

Подробнее
19-12-2013 дата публикации

Natural Gas Liquefaction Process to Extend Lifetime of Gas Wells

Номер: US20130333415A1
Автор: Hans E. Kimmel
Принадлежит: Ebara International Corp

A variable speed liquid LNG expander (X1) and a variable speed two-phase LNG expander (X2) in line, downstream from X1. The rotational speed of both expanders can be controlled and changed independent from each other. The speed of expander X1 and expander X2 is determined in such way that the amount of liquid LNG downstream from the PHS compared to the feed gas supply is maximized and the amount of vapor and boil-off downstream of X2 is minimized.

Подробнее
02-01-2014 дата публикации

Apparatus for storing hydrogen and magnetic energy and a method for the operation of said apparatus

Номер: US20140000288A1

An apparatus for storing hydrogen and magnetic energy includes a storage tank for liquefied hydrogen with an inlet line for compressed hydrogen and an outlet line for hydrogen at a relatively low pressure. The apparatus includes a superconducting magnetic energy store, which comprises a magnetic coil relative to which electrical energy can be supplied or withdrawn via power supply lines to the magnet coil, the energy being located in a cryogenic tank provided with a cooling device and being held at operating temperature. The storage tank for liquefied hydrogen includes cooling device, at least one regenerator, with a heat-absorbing and heat-emitting storage medium, a warm side and a cold side. From the warm side, the compressed hydrogen and, from the cold side, liquefied hydrogen can be supplied from the storage tank for liquefied hydrogen. A relief valve is located in the field region of the at least one magnet coil. The relief valve is connected to the cold side of the regenerator so the compressed hydrogen, having passed through the regenerator, can be fed into the relief valve and, owing to the pressure relief, can be supplied, at least partially as liquefied hydrogen to the storage tank for liquefied hydrogen.

Подробнее
27-02-2014 дата публикации

System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means

Номер: US20140053600A1

Provided is a fuel supply system for a high-pressure natural gas injection engine. The fuel supply system includes: a BOG compression unit configured to receive BOG, which is generated in a storage tank, from the storage tank and compress the received BOG to a pressure of 12 to 45 bara; a reliquefaction apparatus configured to receive and liquefy the BOG compressed by the BOG compression unit; a high-pressure pump configured to compress the BOG liquefied by the reliquefaction apparatus; a high-pressure gasifier configured to gasify the BOG compressed by the high-pressure pump and supply the gasified BOG to the high-pressure natural gas injection engine; and an excess BOG consumption unit configured to consume excess BOG corresponding to a difference between an amount of BOG generated in the storage tank and an amount of BOG required as fuel for the high-pressure natural gas injection engine.

Подробнее
27-02-2014 дата публикации

Method and Apparatus for Separating Air by Cryogenic Distillation

Номер: US20140053601A1

A method for separating air is provided, in which a flow of oxygen-rich liquid is sent to a top of a pure oxygen column, having a pure oxygen reboiler, in which said flow is purified in order to form a vessel liquid containing at least 98 mol % of oxygen and the vessel liquid is drawn off as a product. A supercharged airflow at a second pressure is sent to the pure oxygen reboiler and to a liquid oxygen vaporizer; a nitrogen-rich gas is drawn from the top of the medium-pressure column and sent to an intermediate reboiler of the low-pressure column and the condensed gas is sent to the top of the medium-pressure column; and a nitrogen-rich gas or air is sent to a vessel reboiler of the low-pressure column and the liquid that condenses therein is sent to the medium-pressure column.

Подробнее
03-04-2014 дата публикации

Cryocooler-based gas scrubber

Номер: US20140090404A1
Принадлежит: Quantum Design Inc

A cryocooler-based gas scrubber, or cryocooler-based gas purifier, utilizes the cooling power of a cryocooler to cool and condense cryogen gas forming coalesced impurities which are then filtered through a filter matrix, such as for example a fiberglass filter matrix. The scrubber may further comprise a counter-flow heat exchanger for warming the purified gas prior to dispensing at an outlet for storage or consumption.

Подробнее
07-01-2021 дата публикации

ALKALI-BASED REMOVAL OF CHEMICAL MOIETIES FROM GAS STREAMS WITH CHEMICAL CO-GENERATION

Номер: US20210001270A1
Принадлежит:

The present disclosure provides systems and methods useful in capture of one more moieties (e.g., carbon dioxide) from a gas stream (i.e., direct air capture). In various embodiments, the systems and methods can utilize at least a scrubbing unit, a regeneration unit, and an electrolysis unit whereby an alkali solution can be used to strip the moiety (e.g., carbon dioxide) from the gas stream, the removed moiety can be regenerated and optionally purified for capture or other use, and a formed salt can be subjected to electrolysis to recycle the alkali solution back to the scrubber for re-use with simultaneous production of one or more further chemicals. 1. A system for capture of carbon dioxide with co-generation or one or more chemicals , the system comprising:a compression unit configured to provide a compressed carbon dioxide containing gas discharge stream;a scrubbing unit configured for contacting the compressed carbon dioxide containing gas discharge stream with an alkali solution to form a carbonate solution and output a carbon dioxide lean gas stream;a regeneration unit configured for reacting the carbonate solution with a halogenated compound to form one or more metal salts and output a stream comprising carbon dioxide; andan electrolysis unit configured to react the one or more metal salts with water to regenerate the alkali solution and form one or more further chemicals.2. The system of claim 1 , wherein the compression unit is an air capture plant.3. The system of claim 1 , wherein the alkali solution comprises a solution of one or more metal salts claim 1 , the metal being chosen from alkali metals claim 1 , alkaline earth metals claim 1 , and combinations thereof.4. The system of claim 3 , wherein the alkali solution comprises a solution of sodium hydroxide.5. The system of claim 1 , further comprising a crystallization unit configured to receive at least a portion of the carbonate solution and output at least one or more solids.6. The system of claim ...

Подробнее
05-01-2017 дата публикации

PURIFYING CRYOGENIC FLUIDS

Номер: US20170003071A1
Принадлежит:

A cryogenic fluid purification device comprising: a first container defining an interior region; a second container defining an interior region in fluid communication with the interior region of the first container; and a cryogenic fluid in contact with an exterior of the second container. 1. A cryogenic fluid purification device comprising:a first container defining an interior region;a second container defining an interior region in fluid communication with the interior region of the first container; anda cryogenic fluid in contact with an exterior of the second container.2. The device of claim 1 , wherein the second container is sized and configured to be received at least partially in the interior region of the first container.3. The device of claim 2 , comprising a manifold extending from an outlet of the first container to an inlet of the second container.4. The device of claim 3 , the manifold comprising an oxygen rejecting filter.5. The device of claim 3 , the manifold comprising pressure relief6. The device of claim 2 , comprising a pump operable to reduce pressure in the interior region of the first container.7. The device of claim 1 , comprising a filter disposed in a path providing fluid communication between the interior region of the second container and the interior region of the first container.8. The device of claim 1 , wherein the first container comprises a spout configured to engage a port of the second container.9. The device of claim 8 , comprising a third container defining an interior region claim 8 , wherein the second container is sized and configured to be received at least partially in the interior region of the third container. This application claims priority to U.S. Provisional Patent Application No. 62/187,936, filed on Jul. 2, 2015, the entire contents of which is incorporated herein by reference.This disclosure relates to devices and methods for purifying cryogenic fluids.Nitrogen, as an element of great technical importance, can be ...

Подробнее
05-01-2017 дата публикации

Systems And Methods For Using Multiple Cryogenic Hydraulic Turbines

Номер: US20170003072A1
Принадлежит:

There is provided a system and method for producing liquefied natural gas (LNG). An exemplary method includes flowing a high-pressure stream of LNG through a first series of liquid turbines. The exemplary method also includes generating electricity by reducing the pressure of the high-pressure stream of LNG to form a low-pressure stream of LNG. The exemplary method additionally includes bypassing any one the liquid turbines that has a failure while continuing to produce electricity from the first series. 1. A method for generating electricity from liquid turbines , comprising:{'sup': 'st', 'flowing a high-pressure liquid stream through a first plurality of n liquid turbines coupled in a first series, wherein, after a first turbine in the series, an inlet of each of the second through the n-1liquid turbines is coupled to an outlet of a proceeding liquid turbine;'}generating electricity from the first series by removing energy from the high-pressure liquid stream to form a low-pressure liquid stream;bypassing any one of the first plurality of liquid turbines that has a failure while continuing to produce electricity with the remaining turbines of the first series; andoperating the first plurality of liquid turbines in the first series that are not bypassed to maintain a pressure and flow rate of the low-pressure liquid stream.2. The method of claim 1 , further comprising:maintaining the total electrical output from the first series as a constant value when a liquid turbine is bypassed.3. The method of claim 1 , further comprising:maintaining the temperature of the low-pressure liquid stream from the first series when a liquid turbine is bypassed.4. The method of claim 1 , further comprising:removing a portion of the high-pressure liquid stream prior to the first series;{'sup': 'st', 'flowing the portion through a second plurality of n liquid turbines coupled in a second series, wherein, after a first turbine in the series, an inlet of each of the second through the n- ...

Подробнее
07-01-2016 дата публикации

SYSTEM AND METHOD FOR STORAGE AND DELIVERY OF CRYOGENIC LIQUID AIR

Номер: US20160003524A1
Автор: Blalock Clayton E.
Принадлежит:

One aspect of the disclosure provides a system for storing a cryogenic mixture of liquid air and providing a source of breathable air. In an embodiment, the system comprises an insulated storage vessel, a cryocooler, and a vaporizing unit. The insulated storage vessel contains a cryogenic mixture of liquid air comprising liquid nitrogen (LN) and liquid oxygen (LO) The cryocooler is mounted to an exterior of the storage vessel to condense liquid air that vaporizes within the storage vessel, thereby returning the vaporized liquid air to a liquid phase such that concentrations of the LNand LOin the cryogenic mixture remain approximately constant. The vaporizing unit is external of the storage vessel and is in fluid communication with an interior of the storage vessel. Liquid air from the interior of the storage vessel passes through, vaporizes, and exits the vaporizing unit as the breathable air. 1. A system for storing a cryogenic mixture of liquid air and providing a source of breathable air , comprising:{'sub': 2', '2, 'an insulted storage vessel containing a cryogenic mixture of liquid air comprising liquid nitrogen (LN) and liquid oxygen (LO);'}{'sub': 2', '2, 'a cryocooler mounted to an exterior of said storage vessel to condense liquid air that vaporizes within said storage vessel thereby returning said vaporized liquid air to a liquid phase such that concentrations of said LNand LOin the cryogenic mixture remain approximately constant, said returning said vaporized liquid air to said liquid phase also reducing pressure in said storage vessel within a predetermined pressure range; and'}a vaporizing unit, external of said storage vessel in fluid communication with an interior of said storage vessel, and in which said liquid air from said interior of said storage vessel passes through, vaporizes, and exits said vaporizing unit as said breathable air.2. The system of claim 1 , wherein said cryogenic mixture of said liquid air may comprise about 79% of said LNand ...

Подробнее
07-01-2016 дата публикации

METHOD AND DEVICE FOR PRODUCING GASEOUS COMPRESSED OXYGEN HAVING VARIABLE POWER CONSUMPTION

Номер: US20160003536A1
Автор: Goloubev Dimitri
Принадлежит:

Variable production of compressed oxygen by means of low-temperature separation of air in a distillation column system having a high-pressure column and a low-pressure column. In a first operating mode, a first total air quantity is cooled in the main heat exchanger, and a first turbine amount is fed to the expansion to perform work. In a second operating mode, a second oxygen stream from an external source outside the distillation column system is introduced into the low-pressure column in a liquid state. There is less total air cooled in the main heat exchanger, and less air is fed to the expansion to perform work than in the first, operating mode. 1. A method for producing gaseous compressed oxygen having variable power consumption by low temperature separation of air in a distillation column system that has a high-pressure column and a low-pressure column , in whichfeed air in the form of a total air stream is cooled in a main heat exchanger,at least a part, of the cooled feed air is introduced into the high-pressure column,a first oxygen stream from the low-pressure column is pressurized in the liquid state,the pressurized first oxygen stream is vaporized or pseudo-vaporized and warmed in the main heat exchanger,the warmed first oxygen stream is obtained as a gaseous compressed oxygen product,a first substream of the feed air, before entry thereof into the main heat exchanger, is brought to a first high pressure which is at least 4 bar higher than the operating pressure of the high-pressure column,the first substream is liquefied or pseudo-liquefied at the first high pressure in the main heat exchanger and subsequently introduced into the distillation column system,a second substream of the feed air is brought to a second high pressure that is at least 4 bar higher than the operating pressure of the high-pressure column,the second substream is cooled in the main heat exchanger only to an intermediate temperature,the second substream that is cooled to the ...

Подробнее
07-01-2016 дата публикации

AIR SEPARATION METHOD AND AIR SEPARATION APPARATUS

Номер: US20160003537A1
Автор: TACHIBANA Hiroshi
Принадлежит:

One object of the present invention is to provide an air separation method and an air separation apparatus which can collect a larger amount of nitrogen gas, liquefied oxygen, and liquefied nitrogen which have higher pressure than the operating pressure in the low-pressure column while inhibiting a decrease of the argon recovery, and the present invention provides an air separation method comprising a step in which the low-pressure liquefied oxygen at the bottom part of the low-pressure column is reboiled by the argon gas at the top part of the argon column and the middle-pressure nitrogen gas at the top part of the middle-pressure column, and a step in which the middle-pressure liquefied oxygen at the bottom part of the argon column is reboiled by the high-pressure nitrogen gas at the top part of the high-pressure column. 1. An air separation method comprising:a low-pressure oxygen separation step in which a mixed fluid containing oxygen, nitrogen, and argon, which is a low-pressure feed supplied into a low-pressure column, is distilled at low temperatures, and the mixed fluid is separated into low-pressure nitrogen gas, low-pressure liquefied oxygen, and liquefied feed argon;an argon separation step in which the liquefied feed argon is distilled at low temperatures, and separated into argon gas and middle-pressure liquefied oxygen:a first indirect heat exchange step in which, by indirect heat exchange between the argon gas and the low-pressure liquefied oxygen, the argon gas is liquefied, and liquefied argon is produced while a part of the low-pressure liquefied oxygen is vaporized, and low-pressure oxygen gas is produced;a second indirect heat exchange step in which, by indirect heat exchange between middle-pressure nitrogen gas supplied from a middle-pressure column and the low-pressure liquefied oxygen, the middle-pressure nitrogen gas is liquefied and middle-pressure liquefied nitrogen is produced while a part of the low-pressure liquefied oxygen is vaporized, ...

Подробнее
02-01-2020 дата публикации

RAW MATERIAL GAS LIQUEFYING DEVICE AND METHOD OF CONTROLLING THIS RAW MATERIAL GAS LIQUEFYING DEVICE

Номер: US20200003070A1
Принадлежит: KAWASAKI JUKOGYO KABUSHIKI KAISHA

A raw material gas liquefying device includes a feed line which feeds a raw material gas, a refrigerant circulation line which circulates a refrigerant, the refrigerant circulation line including an expansion unit of a turbine type which expands the refrigerant to generate cryogenic energy, and an expansion unit entrance valve provided at an entrance side of the expansion unit, a heat exchanger which exchanges heat between the raw material gas and the refrigerant, a cooler which performs initial cooling of the raw material gas and the refrigerant by heat exchange with liquid nitrogen, and a controller which manipulates the opening rate of the expansion unit entrance value and performs a feedback control so that the rotation speed of the expansion unit reaches a predetermined target value, and outputs the opening rate command to the expansion unit entrance valve, at start-up and stop of the expansion unit. 1. raw material gas liquefying device comprising:a feed line which feeds a raw material gas whose boiling temperature is lower than a boiling temperature of nitrogen;a refrigerant circulation line which circulates a refrigerant for cooling the raw material gas, the refrigerant circulation line including an expansion unit of a turbine type which expands the refrigerant to generate cryogenic energy, and an expansion unit entrance valve provided at an entrance side of the expansion unit;a heat exchanger which exchanges heat between the raw material gas and the refrigerant;a cooler which performs initial cooling of the raw material gas and the refrigerant by heat exchange with liquid nitrogen;an expansion unit rotation speed sensor which detects a rotation speed of the expansion unit; anda controller which generates an opening rate command for the expansion unit entrance valve by performing a feedback control so that the rotation speed of the expansion unit reaches a predetermined target value, and outputs the opening rate command to the expansion unit entrance valve, ...

Подробнее
04-01-2018 дата публикации

CONFIGURATIONS AND METHODS FOR SMALL SCALE LNG PRODUCTION

Номер: US20180003429A1
Автор: Mak John
Принадлежит:

An LNG plant comprises a cold box and a refrigeration unit fluidly coupled with a plurality of heat exchanger passes in the cold box. The refrigeration unit is configured to provide a first refrigerant stream to a first heat exchanger pass of the plurality of heat exchanger passes at a first pressure, a second refrigerant stream to a second heat exchanger pass at a second pressure, and a third refrigerant stream to a third heat exchanger pass at a third pressure. The second refrigerant stream comprises a first portion of the first refrigerant stream, and the third refrigerant stream comprises a second portion of the first refrigerant stream. The second pressure and the third pressure are both below the first pressure. The cold box is configured to produce LNG from a natural gas feed stream to the cold box using a refrigeration content from the refrigeration unit. 1. An LNG plant comprising:a cold box comprising a plurality of heat exchanger passes; and a first compressor unit configured to compress a refrigerant to produce a compressed refrigerant at a first pressure;', 'a first heat exchanger pass of the plurality of heat exchanger passes, wherein the first heat exchanger pass is configured to pass the compressed refrigerant through the cold box to cool the compressed refrigerant;', 'a splitter configured to separate the cooled, compressed refrigerant into a first portion and a second portion;', 'a first expander configured to receive the first portion from the splitter and expand the first portion to a second pressure, wherein the second pressure is less than the first pressure;', 'a second expander configured to receive the second portion from the splitter and expand the second portion to a third pressure, wherein the third pressure is less than the second pressure;', 'a second heat exchanger pass of the plurality of heat exchanger passes configured to pass the first portion at the second pressure through the cold box;', 'a third heat exchanger pass of the ...

Подробнее
04-01-2018 дата публикации

Mixed Refrigerant Liquefaction System and Method

Номер: US20180003430A1
Принадлежит:

A system for liquefying a gas includes a liquefaction heat exchanger having a feed gas inlet adapted to receive a feed gas and a liquefied gas outlet through which the liquefied gas exits after the gas is liquefied in the liquefying passage of the heat exchanger by heat exchange with a primary refrigeration passage. A mixed refrigerant compressor system is configured to provide refrigerant to the primary refrigeration passage. An expander separator is in communication with the liquefied gas outlet of the liquefaction heat exchanger, and a cold gas line is in fluid communication with the expander separator. A cold recovery heat exchanger receives cold vapor from the cold gas line and liquid refrigerant from the mixed refrigerant compressor system so that the refrigerant is cooled using the cold vapor. 1. A system for removing freezing components from a feed gas comprising:a. a feed gas line having an inlet adapted to communicate with a source of feed gas and an outlet;b. an expander having an inlet in communication with the outlet of the feed gas line and an outlet, said expander operatively connected to a loading device;c. a heavy hydrocarbon removal heat exchanger having a feed gas cooling passage with an inlet adapted to communicate with the outlet of the expander, a return vapor passage and a reflux cooling passage; i) a feed gas inlet in communication with an outlet of the feed gas cooling passage of the heat exchanger;', 'ii) a return vapor outlet in communication with an inlet of the return vapor passage of the heat exchanger;', 'iii) a reflux vapor outlet in communication with an inlet of the reflux cooling passage of the heat exchanger;', 'iv) a reflux mixed phase inlet in communication with an outlet of the reflux cooling passage of the heat exchanger;, 'd. a scrub device havinge. a reflux liquid component passage having an inlet and an outlet in communication with the scrub device;f. said scrub device configured to vaporize a reflux liquid component stream ...

Подробнее
04-01-2018 дата публикации

METHOD FOR THE PRODUCTION OF AIR GASES BY THE CRYOGENIC SEPARATION OF AIR

Номер: US20180003433A1

A method for the production of air gases by the cryogenic separation of air can include the steps of sending a purified and compressed air stream to a cold box under conditions effective for cryogenically separating the air stream into an oxygen product and nitrogen using a system of columns, wherein the purified and compressed air stream is at a feed pressure when entering the system of columns; withdrawing the oxygen product at a product pressure; delivering the oxygen product at a delivery pressure to an oxygen pipeline, wherein the oxygen pipeline has a pipeline pressure; wherein during the second mode of operation, the method can include monitoring the pipeline pressure; and reducing the difference between the pipeline pressure and the delivery pressure. By operating the method in a dynamic fashion, a power savings can be realized in instances in which the pipeline pressure deviates from its highest value. 1. A method for the production of air gases by the cryogenic separation of air , the method comprising the steps of:{'sub': 'o', 'a) compressing air to a pressure suitable for the cryogenic rectification of air to produce a compressed humid air stream, the compressed humid air stream having a first pressure P;'}b) purifying the compressed humid air stream of water and carbon dioxide within a front end purification system to produce a dry air stream having reduced amounts of water and carbon dioxide as compared to the compressed humid air stream;{'sub': 'B1', 'c) compressing a first portion of the dry air stream in a booster compressor to form a boosted air stream, the boosted air stream having a first boosted pressure P;'}d) introducing a second portion of the dry air stream and the boosted air stream to a cold box under conditions effective to separate air to form an air gas product, wherein the air gas product is selected from the group consisting of oxygen, nitrogen, and combinations thereof;{'sub': 'P1', 'e) withdrawing the air gas product from the cold ...

Подробнее
04-01-2018 дата публикации

APPARATUS FOR THE PRODUCTION OF AIR GASES BY THE CRYOGENIC SEPARATION OF AIR

Номер: US20180003434A1

An apparatus for the production of air gases by the cryogenic separation of air can include a cold box having a heat exchanger, and a system of columns; a pressure monitoring device; and a controller. The cold box can be configured to receive a purified and compressed air stream under conditions effective for cryogenically separating the air stream to form an air gas product. The apparatus may also include means for transferring the air gas product from the cold box to an air gas pipeline. The pressure monitoring device is configured to monitor the pipeline pressure, and the controller is configured to adjust the product pressure of the air gas product coming out of the cold box based upon the pipeline pressure. 1. An apparatus for the production of air gases by the cryogenic separation of air , the apparatus comprising:{'sub': 'o', 'a) a main air compressor configured to compress air to a pressure suitable for the cryogenic rectification of air to produce a compressed humid air stream, the compressed humid air stream having a first pressure P;'}b) a front end purification system configured to purify the compressed humid air stream of water and carbon dioxide to produce a dry air stream having reduced amounts of water and carbon dioxide as compared to the compressed humid air stream;{'sub': 'B1', 'c) a booster compressor in fluid communication with the front end purification system, wherein the booster compressor is configured to compress a first portion of the dry air stream to form a boosted air stream, the boosted air stream having a first boosted pressure P;'}d) a cold box comprising a main heat exchanger, a system of columns having a double column composed of a lower pressure column and a higher pressure column, a condenser disposed at a bottom portion of the lower pressure column, and a liquid oxygen pump, wherein the cold box is configured to receive the boosted air stream and a second portion of the dry air stream under conditions effective to separate air ...

Подробнее
04-01-2018 дата публикации

APPARATUS FOR OPERATING AN AIR SEPARATION PLANT

Номер: US20180003435A1

An apparatus for the production of air gases with variable liquid production by the cryogenic separation of air can include a cold box having a heat exchanger, and a system of columns; a pressure monitoring device; and a controller. The cold box can be configured to receive a purified and compressed air stream under conditions effective for cryogenically separating the air stream to form an air gas product. The apparatus may also include means for transferring the air gas product from the cold box to an air gas pipeline. The pressure monitoring device is configured to monitor the pipeline pressure, and the controller is configured to adjust the product pressure of the air gas product coming out of the cold box based upon the pipeline pressure and to further adjust liquid production from the cold box based on the adjusted product pressure. 1. An apparatus for the production of air gases by the cryogenic separation of air , the apparatus comprising:{'sub': 'o', 'a) a main air compressor configured to compress air to a pressure suitable for the cryogenic rectification of air to produce a compressed humid air stream, the compressed humid air stream having a first pressure P;'}b) a front end purification system configured to purify the compressed humid air stream of water and carbon dioxide to produce a dry air stream having reduced amounts of water and carbon dioxide as compared to the compressed humid air stream;{'sub': 'B1', 'c) a booster compressor in fluid communication with the front end purification system, wherein the booster compressor is configured to compress a first portion of the dry air stream to form a boosted air stream, the boosted air stream having a first boosted pressure P;'}d) a cold box comprising a main heat exchanger, a system of columns having a double column composed of a lower pressure column and a higher pressure column, a condenser disposed at a bottom portion of the lower pressure column, and a liquid oxygen pump, wherein the cold box is ...

Подробнее
04-01-2018 дата публикации

METHOD FOR THE PRODUCTION OF AIR GASES BY THE CRYOGENIC SEPARATION OF AIR WITH VARIABLE LIQUID PRODUCTION AND POWER USAGE

Номер: US20180003436A1
Принадлежит:

A method for the production of air gases by the cryogenic separation of air can include the steps of sending a purified and compressed air stream to a cold box under conditions effective for cryogenically separating the air stream into oxygen and nitrogen using a system of columns, wherein the purified and compressed air stream is at a feed pressure when entering the system of columns; withdrawing the oxygen at a product pressure; delivering the oxygen at a delivery pressure to an oxygen pipeline, wherein the oxygen pipeline has a pipeline pressure; and monitoring the pipeline pressure. The method can also include a controller configured to determine whether to operate in a power savings mode or a variable liquid production mode. By operating the method in a dynamic fashion, a power savings and/or additional high value cryogenic liquids can be realized in instances in which the pipeline pressure deviates from its highest value. 1. A method for the production of air gases by the cryogenic separation of air , the method comprising the steps of:{'sub': 'o', 'a) compressing air to a pressure suitable for the cryogenic rectification of air to produce a compressed humid air stream, the compressed humid air stream having a first pressure P;'}b) purifying the compressed humid air stream of water and carbon dioxide within a front end purification system to produce a dry air stream having reduced amounts of water and carbon dioxide as compared to the compressed humid air stream;{'sub': 'B1', 'c) compressing a first portion of the dry air stream in a booster compressor to form a boosted air stream, the boosted air stream having a first boosted pressure P;'}d) introducing a second portion of the dry air stream and the boosted air stream to a cold box under conditions effective to separate air to form an air gas product, wherein the air gas product is selected from the group consisting of oxygen, nitrogen, and combinations thereof;{'sub': 'P1', 'e) withdrawing the air gas ...

Подробнее
04-01-2018 дата публикации

METHOD FOR OPERATING AN AIR SEPARATION PLANT

Номер: US20180003437A1

A method for the production of air gases with variable liquid production by the cryogenic separation of air can include the steps of sending a purified and compressed air stream to a cold box under conditions effective for cryogenically separating the air stream into an oxygen product and nitrogen using a system of columns, wherein the purified and compressed air stream is at a feed pressure when entering the system of columns; withdrawing the oxygen product at a product pressure; delivering the oxygen product at a delivery pressure to an oxygen pipeline, wherein the oxygen pipeline has a pipeline pressure; wherein during the second mode of operation, the method can include monitoring the pipeline pressure; reducing the difference between the pipeline pressure and the delivery pressure; and adjusting liquid production from the cold box. By operating the method in a dynamic fashion, additional liquid production can be realized in instances in which the pipeline pressure deviates from its highest value. 1. A method for the production of air gases with variable liquid production by the cryogenic separation of air , the method comprising the steps of:{'sub': 'o', 'a) compressing air to a pressure suitable for the cryogenic rectification of air to produce a compressed humid air stream, the compressed humid air stream having a first pressure P;'}b) purifying the compressed humid air stream of water and carbon dioxide within a front end purification system to produce a dry air stream having reduced amounts of water and carbon dioxide as compared to the compressed humid air stream;{'sub': 'B1', 'c) compressing a first portion of the dry air stream in a booster compressor to form a boosted air stream, the boosted air stream having a first boosted pressure P;'}d) introducing a second portion of the dry air stream and the boosted air stream to a cold box under conditions effective to separate air to form an air gas product, wherein the air gas product is selected from the ...

Подробнее
02-01-2020 дата публикации

DEVICE AND METHOD FOR LIQUEFYING A NATURAL GAS AND SHIP COMPRISING SUCH A DEVICE

Номер: US20200003488A1
Автор: GUEDACHA Hicham
Принадлежит:

The device () for liquefying a natural gas comprises: —a first centrifugal compressor (), —a fractionating means (), —a second centrifugal compressor (), —a first heat exchange body (), —a second heat exchange body () and —a return conduit () leading to the first compressor, —upstream of an inlet () in the first exchange body, a third heat exchange body (), —a third centrifugal compressor (), the first and third centrifugal compressors being actuated by a single common turbine (), —a casing () common to the first compressor and the third compressor, —a cooling means () and —a transfer conduit () leading to the third exchange body. 2. A device according to claim 1 , wherein the turbine actuating the first and third compressors are coupled mechanically.3. A device according to claim 2 , wherein the turbines are combined.4. A device according to claim 1 , which comprises:a separator of a gas fraction and a liquid fraction of the compressed light phase, the fourth compressor compressing the separated gas fraction,a regulator for the liquid fraction of the light phase heated in the second exchange body,the turbine of the fourth compressor being actuated by the expansion energy.5. A device according to claim 1 , wherein the second chemical compound comprises a pure substance comprising nitrogen claim 1 , propane and/or ammonia.6. A device according to claim 1 , wherein the first cooling mixture comprises nitrogen and methane and at least one compound amongst:ethylene;ethane;propane; and/orbutane.7. A device according to claim 1 , which comprises:a regulator for the liquefied natural gas,a collector for the evaporation gas produced during the expansion of the gas in the regulator, anda conduit for injecting the evaporation gas at the inlet of the second exchange body.8. A device according to claim 1 , wherein the means for cooling the second compound comprises an outlet for the second compound claim 1 , the device comprising claim 1 , between said outlet and the third ...

Подробнее
02-01-2020 дата публикации

Mixing and Heat Integration of Melt Tray Liquids in a Cryogenic Distillation Tower

Номер: US20200003490A1
Принадлежит:

A cryogenic distillation tower for separating a feed stream. The tower includes a distillation section. A controlled freeze zone section is situated above the distillation section and forms a solid from the feed stream. The controlled freeze zone section includes a spray assembly in an upper section and a melt tray assembly in a lower section. The melt tray assembly includes at least one vapor stream riser that directs the vapor from the distillation section into liquid retained by the melt tray assembly, and one or more draw-off openings positioned to permit a portion of the liquid to exit the controlled freeze zone section. The portion of the liquid indirectly exchanges heat with a heating fluid. One or more return inlets return the portion of the liquid to the melt tray assembly after it has been heated in the heat exchanger. 1. A cryogenic distillation tower for separating a feed stream , the distillation tower comprising:a distillation section permitting vapor to rise upwardly therefrom;one or more lines for directing the feed stream into the distillation tower; a spray assembly in an upper section of the controlled freeze zone, and', at least one vapor stream riser that directs the vapor from the distillation section into liquid retained by the melt tray assembly, and', 'one or more draw-off openings positioned to permit a portion of the liquid retained by the melt tray assembly to exit the controlled freeze zone section;, 'a melt tray assembly in a lower section of the controlled freeze zone, wherein the melt tray assembly includes'}], 'a controlled freeze zone section situated above the distillation section, the controlled freeze zone constructed and arranged to form a solid from the feed stream, the controlled freeze zone section including'}a heat exchanger arranged to heat the portion of the liquid through indirect heat exchange with a heating fluid; andone or more return inlets that return the portion of the liquid to the melt tray assembly after the ...

Подробнее
13-01-2022 дата публикации

METHOD FOR TREATING A FEED GAS STREAM AND ASSOCIATED INSTALLATION

Номер: US20220010225A1
Принадлежит:

The method includes cooling and liquefying a feed gas stream, separating a stream obtained from the feed gas stream, and recovering a treated gas stream and a natural gas liquid stream. The method further includes compressing the treated gas stream in order to form a compressed treated gas stream, and fractionating the natural gas liquid stream into a plurality of hydrocarbon fractions (). The method additionally includes withdrawing from the compressed treated gas stream, of a recycle stream, and reintroducing the recycle stream without cooling into the feed gas stream, into the cooled feed gas stream, or into a stream obtained from the cooled feed gas stream upstream of an expander. 1. A feed gas treating method comprising:supplying a feed gas stream and conveying the feed gas stream into a natural gas liquids extractor; cooling the feed gas stream,', 'expanding in an expander the cooled feed gas stream,', 'separating, in a separation column, at least one stream obtained from the cooled feed gas stream, and', 'recovering after separation, a treated gas stream and a natural gas liquid stream;, 'within the extractor'}compressing the treated gas stream in at least one compressor to form a compressed treated gas stream;fractionating, in a fractionator, the natural gas liquid stream into a plurality of hydrocarbon cuts;withdrawing a recycle stream in the compressed treated gas stream; the feed gas stream upstream of the extraction unit,', 'the cooled feed gas stream, or', 'a stream obtained from the cooled feed gas stream, upstream of the expander., 'reintroducing without cooling the recycle stream into at least one of2. The method according to claim 1 , comprising adjusting a flow rate of the reintroduced recycle stream as a function of the natural gas liquid content in the feed gas stream.3. The method according to claim 1 , wherein the molar flow rate of the reintroduced recycle stream is greater than 10% of the molar flow rate of the feed gas stream prior to the ...

Подробнее
14-01-2016 дата публикации

Methanol to olefins process

Номер: US20160009609A1
Автор: Stephen De Haan
Принадлежит: Lummus Technology Inc

A process for chilling ethylene to required storage temperatures is disclosed, the process including: cooling an ethylene product from at least one of an ethylene production process and an ethylene recovery process via indirect heat exchange with a coolant at a temperature less than about −100° C. to decrease the temperature of the ethylene product; mixing a portion of the cooled ethylene product with methane to form the coolant; expanding at least one of the coolant, the methane, and the portion of the cooled ethylene to reduce a temperature of the coolant to less than −100° C. prior to the cooling; and feeding the heat exchanged coolant to at least one of the ethylene production process, the ethylene recovery process, and an open-loop refrigeration system.

Подробнее
12-01-2017 дата публикации

INSULATED CHAMBER AND METHOD FOR FLUSHING SUCH A CHAMBER

Номер: US20170009940A1

The invention relates to an insulated chamber comprising at least one element that may operate at sub-ambient temperature, the space around the element(s) being filled with solid insulation and means for injecting a gas containing at least 95 mol-% nitrogen into the insulation, at least some of the gas-injection means opening at a position vertically above at least one element to insulate. 115-. (canceled)16. An insulated chamber comprising:at least one element to be insulated which is configured to operate at a cryogenic temperature, wherein the at least one element being selected from the group consisting of a storage facility, a distillation column, a scrubbing column containing means allowing an exchange of heat and of matter, a heat exchanger, a vaporizer-condenser, a metal pipe, a filter and combinations thereof, wherein the space around the element or the elements is filled with solid insulation, andmeans for injecting a gas containing at least 95 mol % nitrogen into the insulation, in which at least some of the means for injecting the gas into the insulation open into the insulation and are arranged at a position vertically above at least one element that is to be insulated, so that the gas can seep out to a location vertically above the at least one element that is to be insulated.17. The chamber as claimed in claim 16 , wherein the means for injecting the gas run along the inside of at least one vertical wall of the chamber.18. The chamber as claimed in claim 16 , wherein the means for injecting a gas consists of at least one rigid perforated pipe.19. The chamber as claimed in claim 16 , wherein at least some of the means for injecting the gas consist of at least one porous pipe positioned vertically inside the chamber claim 16 , the porous pipe having a length equal to at least half the height of the chamber claim 16 , wherein the porous pipe is perforated.20. The chamber as claimed in claim 19 , wherein any porous pipe is disposed only in part of the ...

Подробнее
12-01-2017 дата публикации

Systems and Methods for the Production of Liquefied Natural Gas Using Liquefied Natural Gas

Номер: US20170010041A1
Принадлежит:

Described herein are systems and processes to produce liquefied nitrogen (LIN) using liquefied natural gas (LNG) as the refrigerant. The LIN may be produced by indirect heat exchange of at least one nitrogen gas stream with at least two LNG streams within at least one heat exchanger where the LNG streams are at different pressures. 1. A method for producing a liquefied first gas stream at a gas processing facility comprising:(a) providing a first gas stream;(b) providing a liquefied second gas stream, where the second gas is different than the first gas and where the liquefied second gas stream is produced from the liquefaction of a second gas stream at a location that is different from the gas processing facility;(c) splitting the liquefied second gas stream into at least a first liquefied second gas stream and a second liquefied second gas stream;(d) reducing the pressure of the first liquefied second gas stream such that the pressure of the first liquefied second gas stream is less than that of the second liquefied second gas stream;(e) liquefying the first gas stream to form a liquefied first gas stream by indirect heat exchange of the first gas stream with the first liquefied second gas stream and the second liquefied second gas stream;(f) vaporizing at least a portion of the first liquefied second gas stream to form a first second gas stream;(g) vaporizing at least a portion of the second liquefied second gas stream to form a second second gas stream;(h) compressing at least one of the first second gas stream and the second second gas stream to form a compressed second gas stream.2. A method for producing a liquefied nitrogen gas (LIN) stream at a liquid natural gas (LNG) regasification facility comprising:(a) providing a nitrogen gas stream;(b) providing at least two LNG streams where the pressures of each LNG stream are independent and different from each other;(c) liquefying the nitrogen gas stream by indirect heat exchange of the nitrogen gas stream with ...

Подробнее
12-01-2017 дата публикации

System and Method for the Production of Liquefied Natural Gas

Номер: US20170010042A1
Автор: Kerth Jason M.
Принадлежит: DRESSER-RAND COMPANY

A method for producing liquefied natural gas (LNG) is provided. The method may include feeding natural gas from a high-pressure natural gas source to a separator and removing a non-hydrocarbon from the natural gas. A portion of the natural gas from the separator may be precooled, and the precooled natural gas may be cooled in a first heat exchanger with a first refrigeration stream. A first portion of the cooled natural gas may be expanded in a turbo-expander to generate the first refrigeration stream. A second portion of the cooled natural gas may be cooled in a second heat exchanger with the first refrigeration stream and expanded in an expansion valve to produce a two-phase fluid containing the LNG and a vapor phase. The LNG may be separated from the vapor phase in a liquid separator and stored in a storage tank. 1. A method for producing liquefied natural gas from a high-pressure natural gas source , comprising:feeding natural gas from the high-pressure natural gas source to a separator;removing a non-hydrocarbon from the natural gas in the separator;precooling a portion of the natural gas from the separator in a cooling assembly;cooling the precooled natural gas from the cooling assembly in a first heat exchanger with a first refrigeration stream;expanding a first portion of the cooled natural gas from the first heat exchanger in a turbo-expander to generate the first refrigeration stream;cooling a second portion of the cooled natural gas from the first heat exchanger in a second heat exchanger with the first refrigeration stream;expanding the second portion of the cooled natural gas from the second heat exchanger in an expansion valve to produce a two-phase fluid containing the liquefied natural gas and a vapor phase;separating the liquefied natural gas from the vapor phase in a liquid separator; andstoring the liquefied natural gas in a storage tank.2. The method of claim 1 , further comprising at least partially separating natural gas liquids from the first ...

Подробнее
10-01-2019 дата публикации

Boil-off gas supply device

Номер: US20190011179A1
Принадлежит: Kobe Steel Ltd

A boil-off gas supply device is provided with: a storage tank configured to store a liquefied gas; a first compression mechanism configured to suck in the boil-off gas of the liquefied gas stored in the storage tank and compress the sucked boil-off gas; a second compression mechanism configured to compress the boil-off gas after being compressed by the first compression mechanism; a discharge path in which the boil-off gas discharged from the second compression mechanism flows; a first drive source configured to drive the first compression mechanism; and a second drive source that is different from the first drive source and configured to drive the second compression mechanism.

Подробнее
19-01-2017 дата публикации

Liquid Air Energy Storage Systems, Devices, and Methods

Номер: US20170016577A1
Принадлежит: MADA ENERGIE LLC

Liquid air energy storage (LAES) systems with increased efficiency and operating profit obtained through rational selection and configuration of the equipment used and optimization of the configuration/parameters of such equipment. In various embodiments, the LAES system is intended for operation preferably in an environmentally-friendly stand-alone regime with recovery of hot thermal energy extracted from compressed charging air and cold thermal energy extracted from discharged air.

Подробнее
19-01-2017 дата публикации

Liquefied Natural Gas Production System and Method With Greenhouse Gas Removal

Номер: US20170016667A1
Принадлежит: Individual

Described herein are systems and processes to produce liquefied natural gas (LNG) using liquefied nitrogen (LIN) as the refrigerant. Greenhouse gas contaminants are removed from the LIN using a greenhouse gas removal unit.

Подробнее
19-01-2017 дата публикации

Increasing Efficiency In An LNG Production System By Pre-Cooling A Natural Gas Feed Stream

Номер: US20170016668A1
Принадлежит:

Described herein are systems and processes to produce liquefied natural gas (LNG) using liquefied nitrogen (LIN) as the refrigerant. Greenhouse gas contaminants are removed from the LIN using a greenhouse gas removal unit. The LNG is compressed prior to being cooled by the LIN. 1. A liquefied natural gas production system , the system comprising:a natural gas stream from a supply of natural gas;a refrigerant stream from a refrigerant supply;at least one heat exchanger that exchanges heat between the refrigerant stream and the natural gas stream to at least partially vaporize the refrigerant stream and at least partially condense the natural gas stream;a natural gas compressor that compresses the natural gas stream to a pressure of at least to 135 bara to form a compressed natural gas stream;a natural gas cooler that cools the compressed natural gas stream after being compressed by the natural gas compressor; anda natural gas expander that expands the compressed natural gas to a pressure less than 200 bara, but no greater than the pressure to which the natural gas compressor compresses the natural gas stream, after being cooled by the natural gas cooler;wherein the natural gas expander is connected to the at least one heat exchanger to supply natural gas thereto.2. The liquefied natural gas production system of claim 1 , wherein the natural gas compressor compresses the natural gas stream to a pressure greater than 200 bara.3. The liquefied natural gas production system of claim 1 , wherein the natural gas expander expands the compressed natural gas stream to a pressure less than 135 bara.4. The liquefied natural gas production system of claim 1 , wherein the at least one heat exchanger comprises a first heat exchanger claim 1 , and further comprising a second heat exchanger that cools the natural gas stream prior to the natural gas stream being compressed in the natural gas compressor.5. The liquefied natural gas production system of claim 4 , wherein the ...

Подробнее
17-01-2019 дата публикации

METHOD AND PROCESS FOR CONVERTING THE ETHYLENE PRESENT IN THE OVERHEAD EFFLUENT FROM A FCC IN A MANNER SUCH AS TO INCREASE THE PROPYLENE PRODUCTION

Номер: US20190016648A1
Принадлежит: IFP ENERGIES NOUVELLES

The present invention describes a process for fractionating the gaseous fraction leaving overhead from the fractionation column of a catalytic cracking unit (FCC) using a unit for the conversion of ethylene into propylene, in order to upgrade the ethylene contained in the fuel gas. 1. A device for fractionating the gaseous fraction leaving the head of the fractionation column of a catalytic cracking unit , the fraction containing LPG , light gasoline , and a residual gas termed “fuel gas” which itself contains a certain quantity of ethylene , the device comprising:{'b': 6', '15', '10, 'a first absorption section () which can be used to separate the fuel gas () and the light gasoline and LPG stream (), said section being present in an existing catalytic cracking unit,'}{'b': 22', '15, 'a unit () for the catalytic conversion of ethylene into propylene and other products of interest, wherein the feed is constituted by the fuel gas (), in which a large portion of the ethylene is essentially converted into propylene and also into aromatics and other products of interest, in the presence of a catalyst based on zeolite,'}{'b': 31', '22', '31', '11, 'a novel absorption section () which admits the effluents from the conversion unit () after recompression, the propylene, butene and the gasoline fractions contained in said effluents being recovered in said novel absorption section (), by using the gasoline arriving from the existing debutanizer (),'}{'b': 16', '33', '31, 'a second absorption section (), which admits the gas () obtained from the novel absorption section (),'}{'b': 35', '34', '31', '36', '37, 'a debutanization section () which admits the LPG and gasoline fractions () obtained from the novel absorption section () and which produces a stabilized gasoline () and a light LPG fraction ().'}222223227224223227225227228. The device for fractionating the gaseous fraction leaving the head of the fractionation column of a catalytic cracking unit as claimed in claim 1 , in ...

Подробнее
21-01-2016 дата публикации

ALKALINITY CONTROL AGENT SUPPLY METHOD AND APPARATUS FOR COMPRESSOR IMPURITY SEPARATION MECHANISM

Номер: US20160018159A1
Автор: NAITO Toshiyuki
Принадлежит: IHI CORPORATION

Exhaust gas from which impurities have been removed through pressurization and cooling by a compressor-based impurity separation mechanism is further cooled by a refrigerator-type heat exchanger. Drain produced from the cooling by the refrigerator-type heat exchanger is discharged and supplied as an alkalinity control agent to at least upstream of an aftercooler in a first impurity separator.

Подробнее
18-01-2018 дата публикации

METHOD AND APPARATUS FOR PRODUCING COMPRESSED NITROGEN AND LIQUID NITROGEN BY CRYOGENIC SEPARATION OF AIR

Номер: US20180017322A1
Автор: Golubev Dimitri
Принадлежит:

A method and apparatus for producing compressed nitrogen and liquid nitrogen. A separation system has a high-pressure column, a low-pressure column with a top condenser and a main condenser. Air is compressed in an air compressor, purified, cooled in a heat exchanger and introduced into the high-pressure column. A first part of the gaseous top nitrogen from the low-pressure column becomes compressed nitrogen product. A second part of the gaseous top nitrogen is condensed in the condensing space of the top condenser and vapour is drawn off as a residual gas stream. The vapor is expanded in a first expansion machine. A second compressed nitrogen stream from the top of the high-pressure column is expanded in a second expansion machine and then drawn off as compressed nitrogen product. A part of the nitrogen condensed in the top condenser is drawn off as liquid nitrogen product. 1. Method for producing compressed nitrogen and liquid nitrogen by cryogenic separation of air in a distillation column system having a high-pressure column and a low-pressure column and also a main condenser and a low-pressure column top condenser which are both designed as condenser evaporators , wherea feed air stream is compressed in a main air compressor, is purified, cooled in a main heat exchanger and introduced into the high-pressure columna first part of the gaseous top nitrogen from the low-pressure column is drawn off as a first nitrogen stream, is heated in the main heat exchanger and is drawn off as a first compressed nitrogen product,a second part of the gaseous top nitrogen of the low-pressure column is at least partially condensed in the condensing space of the low-pressure-column top condenser,a liquid coolant stream is at least partially evaporated in the evaporating space of the low-pressure-column top condenser,the vapour produced in the evaporating space of the low-pressure-column top condenser is drawn off as a residual gas stream and is heated in the main heat exchanger to ...

Подробнее
17-04-2014 дата публикации

Method of cooling boil off gas and an apparatus therefor

Номер: US20140102133A1
Автор: Alan Roderick Duckett
Принадлежит: Babcock Integrated Technology Ltd

The disclosure relates to a method and apparatus for cooling, preferably liquefying a boil off gas (BOG) stream from a liquefied cargo in a floating transportation vessel, said liquefied cargo having a boiling point of greater than −110° C. at 1 atmosphere and comprising a plurality of components, said method comprising at least the steps of: compressing a boil off gas stream ( 01 ) from said liquefied cargo in two or more stages of compression comprising at least a first stage ( 65 ) and a final stage ( 75 ) to provide a compressed BOG discharge stream ( 06 ), wherein said first stage ( 65 ) of compression has a first stage discharge pressure and said final stage ( 75 ) of compression has a final stage suction pressure and one or more intermediate, optionally cooled, compressed BOG streams ( 02, 03, 04 ) are provided between consecutive stages of compression; cooling the compressed BOG discharge stream ( 06 ) to provide a cooled vent stream ( 51 ) and a cooled compressed BOG stream ( 08 ); expanding, optionally after further cooling, a portion of the cooled compressed BOG stream ( 08 ) to a pressure between that of the first stage discharge pressure and the final stage suction pressure to provide an expanded cooled BOG stream ( 33 ); heat exchanging the expanded cooled BOG stream ( 33 ) against the cooled vent stream ( 51 ) to provide a further cooled vent stream ( 53 ).

Подробнее
16-01-2020 дата публикации

High-pressure density-driven separation

Номер: US20200018544A1
Принадлежит: University of Missouri System

In general, the present invention is directed to processes for separating a vapor comprising a first component and a second component using high-pressure density-driven separation. The present invention further relates to various processes for the capture of carbon dioxide. In particular, various processes of the present invention relate to the separation of carbon dioxide from flue gas of combustion processes. The invention also applies to upgrading fuel gases containing carbon dioxide. The invention also applies to separation of hydrogen from fuel gas vapor solutions.

Подробнее
16-01-2020 дата публикации

Method for separating components of a gas

Номер: US20200018546A1
Принадлежит: Newvistas Capital LLC

A method is disclosed for separating components of a gas. A feed gas stream is cooled in the first vessel. The feed gas stream comprises methane, carbon dioxide, and a secondary component. A first portion of the secondary component condenses, desublimates, or a combination thereof to form a primary stream, resulting in a first depleted gas stream. The first depleted gas stream is cooled in a condensing exchanger such that a first portion of the methane condenses as a first liquid methane stream, resulting in a second depleted gas stream. The second depleted gas stream is cooled in the second vessel such that a first portion of the carbon dioxide desublimates to form a solid product stream, resulting in a third depleted gas stream.

Подробнее
16-01-2020 дата публикации

Method of separating components of a gas

Номер: US20200018547A1
Принадлежит: Newvistas Capital LLC

A method is disclosed for separating components of a gas. A feed gas stream is passed into a vessel. The feed gas stream includes methane, carbon dioxide, and water. The feed gas stream is cooled in the vessel such that a portion of the methane and a portion of the carbon dioxide condense and a portion of the water desublimates, resulting in a product stream and a depleted gas stream exiting the vessel.

Подробнее
28-01-2016 дата публикации

Air separation method and apparatus

Номер: US20160025408A1
Принадлежит: Praxair Technology Inc

A method and apparatus for separating air by cryogenic rectification in which cooled, compressed and purified air is separated in a distillation column system having higher and lower pressure columns operatively associated with one another in a heat transfer relationship to produce an oxygen-rich liquid stream from the lower pressure column. The oxygen-rich liquid stream is pumped and heated through indirect heat exchange with a compressed heat exchange stream to form a pressurized oxygen product stream. Part of the air is sequentially and successively compressed in booster compressors driven by turboexpanders to form the compressed heat exchange stream while other parts of the air are expanded in turboexpanders driving the booster compressors to form exhaust streams that are introduced into both the higher and lower pressure columns to generate refrigeration.

Подробнее
26-01-2017 дата публикации

CONFIGURATIONS AND METHODS FOR NITROGEN REJECTION, LNG AND NGL PRODUCTION FROM HIGH NITROGEN FEED GASES

Номер: US20170023293A1
Автор: Mak John
Принадлежит:

Variable N2 content in feed gas ranging from 3 mol % to 50 mol % can be rejected from the process using a feed exchanger that is fluidly coupled with a cold separator and a single fractionation column to produce a nitrogen vent stream and streams that are suitable to be further processed for NGL recovery and LNG production. 1. A plant with a nitrogen removal unit and a natural gas liquids recovery unit , comprising:a feed gas source configured to provide a hydrocarbonaceous feed gas having a CO2 content of equal or less than 50 ppmv, a water content of equal or less than 0.1 ppmv, and a nitrogen content of at least 3 mol %;a heat exchanger configured to receive and cool the hydrocarbonaceous feed gas to a temperature that condenses C3+ components in the hydrocarbonaceous feed gas;a phase separator configured to receive the cooled hydrocarbonaceous feed gas and to separate the condensed C3+ components as a liquid stream from a vapor stream comprising C1, C2, and nitrogen;a conduit fluidly coupled to the phase separator and configured to transport the liquid stream to a natural gas liquids recovery unit;a refluxed fractionation column configured to receive the vapor stream and to produce a nitrogen-enriched overhead product and a nitrogen-depleted bottom product;a reflux condenser configured to partially condense the nitrogen-enriched overhead product using refrigeration of a pressure-reduced first portion of the nitrogen-depleted bottom product to thereby produce a liquid reflux to the fractionation column and a gaseous nitrogen vent stream; anda natural gas liquefaction unit fluidly coupled to the refluxed fractionation column and configured to receive the first portion of the nitrogen-depleted bottom product and a second portion of the nitrogen-depleted bottom product.2. The plant of claim 1 , wherein the heat exchanger is further configured to receive and cool the vapor stream to at least partially condense the vapor stream.3. The plant of claim 1 , wherein the ...

Подробнее
26-01-2017 дата публикации

METHOD AND DEVICE FOR GENERATING A GAS PRODUCT

Номер: US20170023295A1
Принадлежит:

The invention relates to a method and also a device for producing a gas product, wherein a first gas stream is combined with a second gas stream and the first gas stream that is present at a lower output pressure than the second gas stream is fed to a mechanical compressor in order to be compressed to the preset pressure of the gas product. It is characteristic in this case that the pressure of the first gas stream is elevated using a gas jet compressor arranged upstream of the mechanical compressor, to which gas jet compressor at least a part of the second gas stream is fed as pumping medium. 1. A method for producing a gas product , wherein a first gas stream is combined with a second gas stream and the first gas stream that is present at a lower output pressure than the second gas stream is fed to a mechanical compressor in order to be compressed to the preset pressure of the gas product , characterized in that the pressure of the first gas stream is elevated using a gas jet compressor arranged upstream of the mechanical compressor , to which gas jet compressor at least a part of the second gas stream is fed as pumping medium.2. The method according to claim 1 , characterized in that the part of the second gas stream that is used as pumping medium is fed directly to the gas jet compressor with substantially the output pressure of the second gas stream or subsequently to a pressure elevation carried out using the mechanical compressor.3. The method according to claim 1 , characterized in that the pressure of the first gas stream is elevated using the gas jet compressor on the output pressure thereof to a value which is greater than or equal to the suction pressure of the mechanical compressor.4. The method according to claim 1 , characterized in that the method is used in the production of a carbon monoxide product in which a synthesis gas predominantly consisting of hydrogen and carbon monoxide is fractionated in a cryogenic separation process claim 1 , wherein a ...

Подробнее
25-01-2018 дата публикации

METHOD FOR RECOVERING HELIUM

Номер: US20180023888A1
Принадлежит:

A method for recovering a helium product fraction () from a nitrogen- and helium-containing feed fraction () is described, wherein the nitrogen- and helium-containing feed fraction () is partially condensed (E), separated into a first helium-enriched fraction () and a first nitrogen-enriched fraction () and the former is cleaned again in an adsorptive manner. 2. The method according to claim 1 , characterized in that the third nitrogen-enriched fraction is at least partially work-performing expanded.3. The method according to claim 1 , characterized in that the separation column is operated under a pressure of 7 to 20 bar.4. The method according to claim 1 , characterized in that the third nitrogen-enriched fraction contains at least 50% of the nitrogen contained in the first nitrogen-enriched fraction.5. The method according to claim 1 , characterized in that at least a sub-flow of the second nitrogen-enriched fraction is evaporated against the nitrogen- and helium-containing feed fraction to be partially condensed under a pressure of less than 3 bar.6. The method according to claim 1 , characterized in that the adsorptive cleaning process is a (V)PSA and/or TSA process.7. The method according to claim 3 , characterized in that the separation column is operated under a pressure of 10 to 15 bar. The invention relates to a method for recovering a helium product fraction from a nitrogen- and helium-containing feed fraction, whereinThe term “helium product fraction” be comprised of highly purified helium, the concentration and contamination of which do not exceed a value of 100 vppm, preferably of 10 vppm.The term “nitrogen- and helium-containing feed fraction” be understood as a fraction, which contains 1 to 20 mol-% helium and 80 to 99 mol-% nitrogen. Further, this feed fraction can contain 0.1 to 2 mol-% methane and traces of hydrogen, argon and/or other noble gases.Currently, helium is obtained almost exclusively from a mixture of volatile natural gas components, ...

Подробнее
25-01-2018 дата публикации

Heavy Hydrocarbon Removal System for Lean Natural Gas Liquefaction

Номер: US20180023889A1
Принадлежит: Air Products and Chemicals Inc

A system and method for integrated heavy hydrocarbon removal in a liquefaction system having a lean natural gas source. An economizer located between a main cryogenic heat exchanger and a reflux drum is provided to cool an overhead vapor stream against a partially condensed stream. In addition, pressure of the natural gas feed stream is maintained into a scrub column. A pressure drop is provided by a valve located between the economizer and the reflux drum on a partially condensed stream withdrawn from the cold end of the warm section of the main cryogenic heat exchanger.

Подробнее
25-01-2018 дата публикации

METHODS AND APPARATUS FOR MECHANICAL SEPARATION OF CO2

Номер: US20180023891A1
Принадлежит: Petroliam Nasional Berhad (Petronas)

A method for the separation of liquid COfrom a 2 phase feed stream, the process comprising the steps of: cooling the feed stream to a cryogenic temperature; expanding the cooled stream so as to further lower the temperature of the feed through expansion; mechanically separating the expanded stream, using a mechanical separator, into a gas phase and a liquid COphase, and; venting the gas phase and outflowing the liquid CO. 1. A method for the separation of liquid COfrom a 2 phase feed stream , the process comprising the steps of:cooling the feed stream to a cryogenic temperature;expanding the cooled stream so as to further lower the temperature of the feed through expansion;{'sub': '2', 'mechanically separating the expanded stream, using a mechanical separator, into a gas phase and a liquid COphase; and'}{'sub': '2', 'venting the gas phase and outflowing the liquid CO.'}2. The method of claim 1 , further including a separator intermediate the expanding step and the mechanical separating step;said separating step including venting a gas stream from the separator and outflowing a liquid stream to the mechanical separator.3. The method according to claim 1 , further including a re-cooling step simultaneously with the mechanical separating step claim 1 , wherein the re-cooling step includes passing an outflow of liquid CO2 from the mechanical separator through a re-cooling stage and inflowing the re-cooled liquid phase back through mechanical separator.4. The method according to claim 2 , wherein venting of the gas stream from the separator is to a first mechanical separator and outflowing of the liquid stream is to a second mechanical separator.5. The method according to claim 4 , including the steps of the first mechanical separator venting a gas stream claim 4 , and outflowing a liquid stream to the second mechanical separator.6. The method according to claim 4 , including the steps of the second mechanical separator outflowing a liquid CO2 stream claim 4 , and ...

Подробнее
02-02-2017 дата публикации

SYSTEM AND METHOD FOR LIQUEFACATION OF NATURAL GAS

Номер: US20170030633A1
Принадлежит:

By using the power generated by an expander by an expansion of material gas, the outlet pressure of a compressor is increased, and a requirement on the cooling capacity of a cooler is reduced. The liquefaction system () for natural gas comprises a first expander () for generating power by expanding natural gas under pressure as material gas; a first cooling unit () for cooling the material gas depressurized by expansion in the first expander; a distillation unit () for reducing or eliminating a heavy component in the material gas by distilling the material gas cooled by the first cooling unit; a first compressor () for compressing the material gas from which the heavy component was reduced or eliminated by the distillation unit by using the power generated in the first expander; a second heat exchanger for exchanging heat between the material gas introduced into the first compressor and the material gas compressed by the first compressor; and a liquefaction unit () for liquefying the material gas compressed by the first compressor by exchanging heat with a refrigerant. 1. A method for cooling a natural gas feed comprising:a) reducing the pressure of the natural gas feed to produce a reduced pressure material gas;b) removing heavy components from the reduced pressure material gas to produce a top fraction and a bottom fraction;c) cooling the top fraction to produce a cooled top fraction;d) separating the cooled top fraction into a gas phase component and a liquid phase component;e) increasing the pressure of the gas phase component to produce a compressed material gas; andf) exchanging heat between the gas phase component and the compressed material gas to produce at least a cooled compressed material gas.2. The method of further comprising cooling the reduced pressure material gas of step (a) prior to removing heavy components in step (b).3. The method of further comprising at least partially liquefying the cooled compressed material gas of step (f).4. The method of ...

Подробнее
02-02-2017 дата публикации

AIR FRACTIONATION PLANT, OPERATING METHOD AND CONTROL FACILITY

Номер: US20170030635A1
Принадлежит:

An air fractionation plant in which a cooling water circuit having a recooling apparatus is provided for cooling compressed air, where the recooling apparatus is configured for cooling cooling water using cooling air. The recooling apparatus is configured so as to cool the cooling water, at least at a wet bulb temperature of the cooling air of more than 289 K, to a temperature which is not more than 3 K above the wet bulb temperature. A corresponding operating method and a control facility are likewise provided. 1. An air fractionation plant in which a cooling water circuit having a recooling apparatus is provided for cooling compressed air , where the recooling apparatus is configured for cooling cooling water using cooling air , characterized in that the recooling apparatus is configured so as to cool the cooling water , at least at a wet bulb temperature of the cooling air of more than 289 K , to a temperature which is not more than 3 K above the wet bulb temperature.2. The air fractionation plant according to claim 1 , wherein the recooling apparatus is configured so as to cool the cooling water to a temperature which is at least 0.5 K above the wet bulb temperature.3. The air fractionation plant according to claim 1 , wherein the recooling apparatus comprises a cooling tower.4. The air fractionation plant according to claim 3 , wherein the recooling apparatus has forced ventilation.5. The air fractionation plant according to claim 1 , wherein the cooling water circuit comprises a heat exchanger which is arranged downstream of a compressor.6. The air fractionation plant according to claim 1 , wherein a cooling zone range of from 5 to 25 K is provided.7. A method of operating an air fractionation plant in which a cooling water circuit having a recooling apparatus is provided for cooling compressed air claim 1 , where the recooling apparatus is configured for cooling cooling water using cooling air claim 1 , characterized in that the recooling apparatus is ...

Подробнее
02-02-2017 дата публикации

APPARATUS FOR THE PRODUCTION OF LOW PRESSURE GASEOUS OXYGEN

Номер: US20170030636A1
Автор: Musicus Paul

An apparatus for the production of low pressure gaseous oxygen includes a heat exchanger and a system of columns comprised of an auxiliary column, a higher pressure column and a lower pressure column. The LP column and the HP column are thermally integrated via a top reboiler/condenser disposed on top of the HP column. The system of columns is configured to separate a cooled air stream into oxygen and nitrogen. The auxiliary column comprises a distillation section and a first and second reboiler. One of the reboilers is driven by the cooled air stream and the other reboiler is driven by a pressurized nitrogen stream. The first and second reboilers boil their fluids at the same pressure as the auxiliary column. 1. An apparatus for the production of low pressure gaseous oxygen , the apparatus comprising:a) a heat exchanger having a warm end, a cold end, and an intermediate section;b) an auxiliary column in fluid communication with the cold end of the heat exchanger, the auxiliary column further comprising a distillation section, a first reboiler and a second reboiler, wherein the first reboiler is configured to use a fluid consisting essentially of air as its reboiling fluid, wherein the second reboiler is configured to use a pressurized nitrogen stream as its reboiling fluid;c) a higher pressure (HP) column in fluid communication with the heat exchanger and the auxiliary column, wherein the HP column is configured to receive at least a first portion of air from the first reboiler of the auxiliary column, wherein the HP column is configured to receive at least a first portion of the pressurized nitrogen stream from the second reboiler of the auxiliary column;d) a lower pressure (LP) column in fluid communication with the heat exchanger and the HP column, wherein the LP column is configured to receive a bottoms liquid comprising oxygen from the HP column; ande) a cold compressor in fluid communication with a top portion of the HP column, such that the compressor is ...

Подробнее
02-02-2017 дата публикации

METHOD FOR THE PRODUCTION OF LOW PRESSURE GASEOUS OXYGEN

Номер: US20170030637A1
Автор: Musicus Paul
Принадлежит: AIR LIQUIDE GLOBAL E&C SOLUTIONS US Inc

A method for the production of low pressure gaseous oxygen includes providing a system of distillation columns and a heat exchanger, wherein the system of columns comprises a lower pressure column, a higher pressure column, an auxiliary column, the auxiliary column having a distillation section, a first reboiler, and a second reboiler, wherein the LP column and the HP column are thermally integrated via a top reboiler/condenser disposed on top of the HP column. A cooled air stream is rectified within the system of columns such that the auxiliary column produces a cold oxygen fluid that is then warmed in the heat exchanger to produce a low pressure oxygen product. The cooled air stream provides reboiling duty for the first reboiler prior to rectification within the system of columns, and a compressed nitrogen stream received from a cold end of the heat exchanger provides reboiling duty for the second reboiler. 1. A method for the production of low pressure gaseous oxygen , the method comprising the steps of:a) cooling a compressed and purified air stream in a heat exchanger, the heat exchanger having a warm end, a cold end, and an intermediate section;b) withdrawing the compressed and purified air stream from the cold end of the heat exchanger and introducing the compressed and purified air stream to a first reboiler such that the compressed and purified air stream acts as a reboiling fluid for the first reboiler such that an at least partially condensed air stream is formed, wherein the first reboiler is disposed within a auxiliary column, the auxiliary column further comprising a distillation section and a second reboiler, wherein the second reboiler is configured to use a pressurized nitrogen stream as its reboiling fluid;c) withdrawing the at least partially condensed air stream from first reboiler;d) introducing at least a first air portion to a higher pressure (HP) column under conditions effective to separate the first air portion into a nitrogen-rich fluid at ...

Подробнее
01-02-2018 дата публикации

Carbon Dioxide Capture from Flu Gas

Номер: US20180031315A1
Автор: Baxter Larry
Принадлежит:

A method for capturing carbon dioxide from a flue gas includes (i) removing moisture from a flue gas to yield a dried flue gas; (ii) compressing the dried flue gas to yield a compressed gas stream; (iii) reducing the temperature of the compressed gas stream to a temperature Tusing a first heat exchanger; (iv) reducing the temperature of the compressed gas stream to a second temperarature Tusing a second heat exchanger stream, where T Подробнее

05-02-2015 дата публикации

Process for liquefaction of natural gas

Номер: US20150033793A1
Автор: John L. Griffiths
Принадлежит: UOP LLC

A process and system for production of liquefied natural gas (LNG) from natural gas. The natural gas is first partially purified by removal of water and other contaminants, followed by partial chilling to freeze some contaminants and to allow for production of a purge stream to remove other contaminants. These contaminants may be removed from the stream. The process has advantages of low cost and improved removal of contaminants.

Подробнее
30-01-2020 дата публикации

PROCESS FOR SEPARATING HYDROCARBON COMPOUNDS

Номер: US20200031736A1
Принадлежит:

Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement. 155.-. (canceled)56. A system for providing Ccompounds via oxidative coupling of methane (OCM) , comprising:at least one catalytic OCM reactor system including at least one OCM catalyst to provide an OCM product gas including at least ethane, ethylene, oxygen and nitrogen, wherein each OCM reactor system includes at least a means to provide a gas mixture including at least methane and oxygen prior to introduction to at least one OCM reactor; and{'sub': 2', '2, 'a first separations system to cryogenically separate the OCM product gas into at least a C-rich effluent that includes at least one Ccompound and a gas mixture effluent that includes methane and nitrogen.'}57. The system of wherein at least a portion of the methane in the gas mixture is provided by a feedstock gas and the feedstock gas is heated to about 600° C. or less and is at a pressure of 150 pounds per square inch gauge (psig) or less.58. The system of claim 56 , further comprising:at least one OCM product gas compressor to increase the pressure of the OCM product gas to about 200 pounds per square inch gauge (psig) or more prior to the first separations system.59. The system of claim 58 , further comprising:{'sub': '2', 'at least one turboexpander to expand a first portion of the high pressure OCM product gas and to provide a mechanical shaft work output prior to separating the first portion of the OCM product gas into the C-rich effluent and the gas mixture effluent.'}60. The system of further ...

Подробнее
31-01-2019 дата публикации

LIQUIEFYING A GASEOUS MEDIUM

Номер: US20190032995A1
Принадлежит: LINDE AKTIENGESELLSCHAFT

An arrangement comprising at least one liquefaction plant for liquefying a gaseous medium to produce a liquefied medium; and at least one storage tank for storing the liquefied medium. At least one first transfer line is connected between the liquefaction plant and the storage tank, for transferring liquefied medium from the liquefaction plant into the storage tank. At least one second transfer line is connected between the liquefaction plant and the storage tank, for transferring gaseous medium from the storage tank into the liquefaction plant. At least one shut-off valve is provided in each transfer line. The apparatus further includes a bypass line 235444. The arrangement according to claim 1 , further comprising a control element claim 1 , wherein the control element is configured such that claim 1 , after a standstill phase of the liquefaction plant (V) and before the transfer of liquefied medium from the liquefaction plant (V) into the storage tank (S) claim 1 , the control element performs a transfer line cooling phase claim 1 , in which the shut-off valves (a claim 1 , b) of the transfer lines are closed and the bypass line shut-off valve (c) is opened claim 1 , so that liquefied medium from the liquefaction plant (V) can flow through partial sections of the at least one first transfer line () claim 1 , the bypass line () claim 1 , the at least one second transfer line ( claim 1 , ′ claim 1 , ″) claim 1 , and back into the liquefaction plant (V).35. The arrangement according to claim 1 , wherein the bypass line () is arranged substantially adjacent to the storage tank (S).43444. The arrangement according to claim 1 , comprising only one first transfer line () having one first shut-off valve (a) claim 1 , and only one second transfer line ( claim 1 , ′ claim 1 , ″) having one second shut-off valve (b) claim 1 , and{'b': 5', '3', '4', '4', '4, 'wherein the bypass line () is connected between a point on the first transfer line () upstream of the first shut-off ...

Подробнее
30-01-2020 дата публикации

NATURAL GAS LIQUID FRACTIONATION PLANT WASTE HEAT CONVERSION TO POTABLE WATER USING MODIFIED MULTI-EFFECT DISTILLATION SYSTEM

Номер: US20200032677A1
Принадлежит: Saudi Arabian Oil Company

A method of recovering heat from a Natural Gas Liquid (NGL) fractionation plant for production of potable water. The method includes heating a buffer fluid via a heat exchanger in to transfer heat from the NGL fractionation plant to the buffer fluid. The method includes heating water with the buffer fluid discharged from the heat exchanger to produce potable water via train distillation effects. 1. A method of recovering heat , via a waste heat recovery heat exchanger network having heat exchangers , from a Natural Gas Liquid (NGL) fractionation plant for producing potable water , the method comprising:heating a buffer fluid via a heat exchanger in the waste heat recovery network with a stream in the NGL fractionation plant, the NGL fractionation plant comprising a dehydrator, a distillation column, and a compressor; andproducing potable water via train distillation effects with heat from the buffer fluid.2. The method of claim 1 , wherein producing potable water with heat from the buffer fluid comprises heating brackish water with heat carried by the buffer fluid claim 1 , wherein a multi-effect-distillation (MED) system comprises the train distillation effects.3. The method of claim 2 , wherein the buffer fluid comprises water or oil claim 2 , and wherein the MED system comprises a modified MED system.4. The method of claim 1 , wherein the distillation column comprises a de-propanizer distillation column the stream comprises an overhead outlet stream from the de-propanizer distillation column claim 1 , or wherein the distillation column comprises a de-butanizer distillation column and the stream comprises an overhead outlet stream from the de-butanizer distillation column.5. The method of claim 1 , wherein the distillation column comprises a de-butanizer distillation column claim 1 , and wherein the stream comprises an overhead outlet stream from the de-butanizer distillation column or a bottoms outlet stream from the de-butanizer distillation column.6. The method ...

Подробнее
30-01-2020 дата публикации

ADDITIONAL LIQUID NATURAL GAS PLANT AND METHOD OF OPERATING THEREOF

Номер: US20200033054A1
Принадлежит:

The invention relates to a liquid natural gas plant for producing liquefied natural gas. The liquid natural gas plant comprises two or more parallel treatment and liquefaction trains, each train comprising a cooling stage arranged to receive a cleaned natural gas stream from a gas treatment stage, an NGL-extraction unit for extracting natural gas liquids, thereby generating a light natural gas stream. The liquid natural gas plant comprises an additional liquefaction train, comprising an additional cooling stage arranged to receive an additional feed stream for generating additional liquefied natural gas. The additional feed stream comprises two or more side streams taken from the light natural gas taken from the respective light natural gas streams of the one or more parallel treatment and liquefaction trains. 1. A liquid natural gas plant for producing liquefied natural gas from a contaminated natural gas feed stream , the liquid natural gas plant comprising two or more parallel treatment and liquefaction trains arranged in process portions of the contaminated natural gas feed stream in parallel , the treatment and liquefaction trains each comprising:an inlet for receiving a portion of the contaminated natural gas feed stream,a gas treatment stage for removing contaminants from the respective portion of the contaminated natural gas feed stream thereby generating a cleaned natural gas stream,a cooling stage arranged to receive the cleaned natural gas stream from the gas treatment stage for cooling at least part of the cleaned natural gas stream, wherein the cooling stage comprises a NGL-extraction unit for extracting natural gas liquids, thereby generating a light natural gas stream to be at least partially further cooled by the cooling stage to be at least partially liquefied; andan outlet for discharging liquefied natural gas,wherein the liquid natural gas plant comprises at least one additional liquefaction train, the additional liquefaction train comprising:an ...

Подробнее
30-01-2020 дата публикации

PROCESS AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF CARBON MONOXIDE, HYDROGEN AND METHANE FOR THE PRODUCTION OF CH4

Номер: US20200033055A1

In a process of the separation of a mixture of carbon monoxide, hydrogen and methane, the mixture is sent to a scrubbing column, a bottom liquid withdrawn at the bottom of the scrubbing column is depleted in hydrogen with respect to the mixture and is sent to a stripping column, a bottom liquid from the stripping column is sent to a separation column and a liquid enriched in methane withdrawn from the bottom of the separation column is vaporized in order to form a final product. 1. A process for the separation of a mixture of carbon monoxide , hydrogen and methane , the process comprising the steps of:i) sending the mixture or a fluid derived from this mixture, after cooling to a cryogenic temperature in a heat exchanger, to a scrubbing column fed at the top with a liquid containing at least 80 mol % of carbon monoxide or to at least one phase separator;ii) withdrawing a bottom liquid at the bottom of the scrubbing column or of the phase separator or of one of the phase separators is depleted in hydrogen with respect to the mixture and is sent to a stripping column;iii) withdrawing a gas at the top of the stripping column;iv) sending a bottom liquid from the stripping column to a separation column; andv) withdrawing a liquid enriched in methane from the bottom of the separation column and vaporized in the heat exchanger in order to form a final product,wherein the vaporized liquid enriched in methane is compressed in a compressor and a part of the compressed gas is returned at the bottom of the separation column for separation therein.2. The process according to claim 1 , in which the part of the compressed gas is at a lower pressure than that of the compressed final product.3. The process according to claim 1 , in which the scrubbing column is fed at the top with a liquid originating from a condenser where at least a part of the gas from the top of the scrubbing column or originating from the top of the separation column or originating from a cycle for ...

Подробнее
09-02-2017 дата публикации

Methods and systems for integration of industrial site efficiency losses to produce lng and/or lin

Номер: US20170038132A1

A method includes receiving input corresponding to a proposed configuration of a liquefaction facility and identifying a plurality of components utilized to produce LNG and/or LIN at the facility. The method includes determining an alternative configuration that is different from the proposed configuration. Determining the alternative configuration may include identifying resources accessible to a proposed location for the liquefaction facility and whether at least one of the resources accessible to the proposed location corresponds to a resource generated by a component identified by the proposed configuration, and determining whether to omit at least one component of the plurality of components identified by the proposed configuration. The method includes omitting the at least one component from the alternative configuration, and generating a report based on the proposed configuration and the alternative configuration. The report includes information indicating a difference between the proposed configuration and the alternative configuration.

Подробнее
09-02-2017 дата публикации

METHOD FOR THE INTEGRATION OF A NITROGEN LIQUEFIER AND LETDOWN OF NATURAL GAS FOR THE PRODUCTION OF LIQUID NITROGEN AND LOWER PRESSURE NATURAL GAS

Номер: US20170038133A1

A method describing the integration of a nitrogen liquefier and letdown of natural gas for the production of liquid nitrogen and lower pressure natural gas is provided. The method may include: providing a nitrogen liquefier having a nitrogen refrigeration cycle, wherein the nitrogen liquefier comprises a nitrogen compressor, a nitrogen recycle compressor, a heat exchanger, and at least a first turbine booster and introducing a nitrogen gas stream to the nitrogen liquefier under conditions effective for liquefying the nitrogen to produce a liquid nitrogen product. The refrigeration needed to liquefy the nitrogen is provided for by the nitrogen refrigeration cycle and letdown of a high pressure natural gas stream. 1. A method for the integration of a nitrogen liquefier and letdown of natural gas for the production liquid nitrogen (“LIN”) , the method comprising the steps of:a) providing a nitrogen liquefier having a nitrogen refrigeration cycle, wherein the nitrogen liquefier comprises a nitrogen recycle compressor, a heat exchanger, and a first turbine booster;b) introducing a nitrogen gas stream to the nitrogen liquefier under conditions effective for liquefying the nitrogen to produce a liquid nitrogen product;{'sub': 'H', 'c) withdrawing a natural gas stream from a source operating at a first pressure P;'}d) purifying the natural gas stream in a purification unit to produce a purified natural gas;e) partially cooling the purified natural gas in the heat exchanger;withdrawing the partially cooled natural gas from an intermediate section of the heat exchanger;{'sub': M', 'M', 'H, 'g) expanding the partially cooled natural gas to a medium pressure Pin a natural gas expansion turbine to form a cold natural gas stream, wherein the medium pressure Pis at a pressure lower than the first pressure P; and'}h) warming the cold natural gas stream in the heat exchanger by heat exchange against nitrogen from the nitrogen refrigeration cycle to produce a warm natural gas stream ...

Подробнее
09-02-2017 дата публикации

METHOD FOR THE PRODUCTION OF LIQUEFIED NATURAL GAS

Номер: US20170038134A1

A method for the production of liquefied natural gas is provided. The method may include providing a high pressure natural gas stream, splitting the high pressure natural gas stream into a first portion and a second portion, and liquefying the first portion of the high pressure natural gas stream to produce an LNG stream. The refrigeration needed for cooling and liquefaction of the natural gas can be provided by a closed nitrogen refrigeration cycle and letdown of the second portion of the high pressure natural gas stream. 1. A method for the production of liquefied natural gas (“LNG”) , the method comprising the steps of:a) providing a nitrogen refrigeration cycle, wherein the nitrogen refrigeration cycle is configured to provide refrigeration within a heat exchanger;b) purifying a first natural gas stream in a first purification unit to remove a first set of impurities to produce a purified first natural gas stream;{'sub': 'H', 'c) cooling and liquefying the first natural gas stream in the heat exchanger using the refrigeration from the nitrogen refrigeration cycle to produce an LNG stream, wherein the first natural gas stream has an LNG refrigeration requirement, wherein the LNG stream is liquefied at a first pressure P;'}d) purifying a second natural gas stream in a second purification unit to remove a second set of impurities to produce a purified second natural gas stream;e) partially cooling the second natural gas stream in the heat exchanger;f) withdrawing the partially cooled second natural gas stream from an intermediate section of the heat exchanger;{'sub': M', 'M', 'H, 'g) expanding the partially cooled second natural gas stream to a medium pressure Pin a natural gas expansion turbine to form a cold natural gas stream, wherein the medium pressure Pis at a pressure lower than the first pressure P; and'}h) warming the cold natural gas stream in the heat exchanger by heat exchange against the first natural gas stream to produce a warm natural gas stream at ...

Подробнее
09-02-2017 дата публикации

METHOD FOR THE PRODUCTION OF LIQUEFIED NATURAL GAS AND LIQUID NITROGEN

Номер: US20170038135A1

A method for the production of liquefied natural gas and liquid nitrogen is provided. The method may include providing a high pressure natural gas stream, splitting the high pressure natural gas stream into a first portion and a second portion, and liquefying the first portion of the high pressure natural gas stream to produce an LNG stream. The refrigeration needed for cooling and liquefaction of the natural gas and liquefaction of the nitrogen can be provided by a nitrogen refrigeration cycle and letdown of the second portion of the high pressure natural gas stream. 1. A method for the production of liquefied natural gas (“LNG”) and liquid nitrogen (“LIN”) , the method comprising the steps of:a) providing a nitrogen refrigeration cycle, wherein the nitrogen refrigeration cycle is configured to provide refrigeration within a heat exchanger, wherein a portion of the nitrogen within the nitrogen refrigeration cycle is withdrawn and liquefied yielding a liquid nitrogen product, wherein at least an equal portion of gaseous nitrogen is introduced to the nitrogen refrigeration cycle as is withdrawn;b) purifying a first natural gas stream in a first purification unit to remove a first set of impurities to produce a purified first natural gas stream;{'sub': 'H', 'c) cooling and liquefying the first natural gas stream in the heat exchanger using the refrigeration from the nitrogen refrigeration cycle to produce an LNG stream, wherein the first natural gas stream has an LNG refrigeration requirement, wherein the LNG stream is liquefied at a first pressure P;'}d) purifying a second natural gas stream in a second purification unit to remove a second set of impurities to produce a purified second natural gas stream;e) partially cooling the second natural gas stream in the heat exchanger;f) withdrawing the partially cooled second natural gas stream from an intermediate section of the heat exchanger;{'sub': M', 'M', 'H, 'g) expanding the partially cooled second natural gas stream ...

Подробнее
09-02-2017 дата публикации

METHOD FOR THE INTEGRATION OF A NITROGEN LIQUEFIER AND LIQUEFACTION OF NATURAL GAS FOR THE PRODUCTION OF LIQUEFIED NATURAL GAS AND LIQUID NITROGEN

Номер: US20170038136A1

A method for the integration of a nitrogen liquefier and liquefaction of natural gas for the production of liquefied natural gas and liquid nitrogen is provided. The method may include providing a nitrogen liquefaction unit and providing a natural gas liquefaction unit. Liquefaction of the nitrogen can be achieved via a nitrogen refrigeration cycle within the nitrogen liquefaction unit. Liquefaction of the natural gas can be achieved through the use of natural gas letdown and a second nitrogen refrigeration cycle. The two liquefaction units can be integrated via a common nitrogen recycle compressor, thereby providing significant capital savings. 1. A method for the integration of a nitrogen liquefier and natural gas liquefier for the production of liquefied natural gas (“LNG”) and liquid nitrogen (“LIN”) , the method comprising the steps of:a) providing a nitrogen liquefier having a first nitrogen refrigeration cycle, wherein the nitrogen liquefier comprises a turbine, a booster and a plurality of coolers, wherein the first nitrogen refrigeration cycle is configured to provide refrigeration within a first heat exchanger;b) providing a second nitrogen refrigeration cycle, wherein the second nitrogen refrigeration cycle comprises a second turbine, a second booster and a plurality of second coolers, wherein the second nitrogen refrigeration cycle is configured to provide refrigeration within a second heat exchanger;c) purifying a first natural gas stream in a first purification unit to remove a first set of impurities to produce a purified first natural gas stream;{'sub': 'H', 'd) cooling and liquefying the first natural gas stream in the second heat exchanger using the refrigeration from the nitrogen refrigeration cycle to produce an LNG stream, wherein the first natural gas stream has an LNG refrigeration requirement, wherein the LNG stream is liquefied at a first pressure P;'}e) purifying a second natural gas stream in a second purification unit to remove a second ...

Подробнее
09-02-2017 дата публикации

METHOD FOR THE PRODUCTION OF LIQUEFIED NATURAL GAS AND NITROGEN

Номер: US20170038137A1
Автор: TURNEY Michael A.

A method for the production of liquefied natural gas (“LNG”) and nitrogen is provided. The method may include the steps of: a) providing a nitrogen production facility, wherein nitrogen production facility comprises: a main heat exchanger, an air separation unit, a nitrogen recycle compressor, a first nitrogen refrigeration supply configured to provide refrigeration to the main heat exchanger for cooling a main air feed, b) providing a secondary refrigeration supply; c) liquefying a natural gas stream using refrigeration from the secondary refrigeration supply to form an LNG product stream; wherein the secondary refrigeration supply is configured to compress and expand a refrigerant to produce refrigeration, wherein the refrigerant of the secondary refrigeration supply is shared with refrigerant of the first nitrogen refrigeration supply 1. A method for the production of liquefied natural gas (“LNG”) and nitrogen , the method comprising the steps of:a) providing a nitrogen production facility, wherein nitrogen production facility comprises: a main heat exchanger, an air separation unit, a nitrogen recycle compressor, a first nitrogen refrigeration supply configured to provide refrigeration to the main heat exchanger for cooling a main air feed;b) providing a secondary refrigeration supply;c) liquefying a natural gas stream using refrigeration from the secondary refrigeration supply to form an LNG product stream;wherein the secondary refrigeration supply is configured to compress and expand a refrigerant to produce refrigeration, wherein the refrigerant of the secondary refrigeration supply is shared with refrigerant of the first nitrogen refrigeration supply.2. The method as claimed in claim 1 , wherein the secondary refrigeration supply comprises a third turbine-booster claim 1 , wherein the third turbine-booster has a third booster and a third turbine.3. The method as claimed in claim 2 , wherein the natural gas stream is liquefied in a secondary heat exchanger.4. ...

Подробнее
09-02-2017 дата публикации

APPARATUS FOR THE PRODUCTION OF LIQUEFIED NATURAL GAS

Номер: US20170038138A1

A transportable apparatus for production of liquefied natural gas (LNG) having include a housing, a natural gas feed inlet, a heat exchanger, a phase separator, a liquid outlet disposed on the cold end of the heat exchanger, an LNG product outlet disposed on the cold end of the heat exchanger, a first refrigeration supply, a second refrigeration supply, and wherein the heat exchanger, the phase separator, the first expansion valve, the first refrigeration supply, and the second refrigeration supply are all disposed within the housing. The first refrigeration supply includes expansion of a portion of the LNG product, and the second refrigeration supply can include expansion of another portion of the LNG product or expansion and heat exchange with a supply of liquid nitrogen. The production of LNG is achieved without the external supply of electricity. 1. A transportable apparatus for the production of liquefied natural gas (“LNG”) , the apparatus comprising:a) a housing;b) a natural gas feed inlet configured to accept a stream of pressurized natural gas originating from outside the housing;c) a heat exchanger in fluid communication with the natural gas feed inlet, such that the heat exchanger is configured to receive the stream of pressurized natural gas from the natural gas feed inlet, wherein the heat exchanger has a warm end, a cold end, and an intermediate section;d) a phase separator having a fluid inlet, a gaseous outlet, and a liquid outlet, wherein the fluid inlet is in fluid communication with a first intermediate fluid outlet located in the intermediate section of the heat exchanger, such that the phase separator is configured to receive a partially cooled fluid from the heat exchanger, wherein the gaseous outlet of the phase separator is in fluid communication with a second intermediate fluid inlet of the intermediate section of the heat exchanger, such that the second intermediate fluid inlet of the intermediate section of the heat exchanger is configured ...

Подробнее
09-02-2017 дата публикации

METHOD FOR THE PRODUCTION OF LIQUEFIED NATURAL GAS

Номер: US20170038139A1

A method for the production of liquefied natural gas (LNG) without the use of externally provided electricity is provided The method may include the steps of: providing a transportable apparatus, wherein the transportable apparatus comprises a housing, a heat exchanger, a phase separator, a first refrigeration supply, and a second refrigeration supply, wherein the first refrigeration supply and the second refrigeration supply are configured to provide refrigeration within the heat exchanger; introducing a natural gas stream into the transportable apparatus at a first pressure under conditions effective for producing an LNG stream; withdrawing the LNG stream from the transportable apparatus; and withdrawing a warm natural gas stream from the transportable apparatus, wherein the warm natural gas stream is at a second pressure, wherein the second pressure is lower than the first pressure. 1. A method for the production of liquefied natural gas (“LNG”) using a transportable apparatus , the method comprising the steps of:providing a transportable apparatus, wherein the transportable apparatus comprises a housing, a heat exchanger, a phase separator, a first refrigeration supply, and a second refrigeration supply, wherein the first refrigeration supply and the second refrigeration supply are configured to provide refrigeration within the heat exchanger;introducing a natural gas stream into the transportable apparatus at a first pressure under conditions effective for producing an LNG stream;withdrawing the LNG stream from the transportable apparatus; andwithdrawing a warm natural gas stream from the transportable apparatus, wherein the warm natural gas stream is at a second pressure, wherein the second pressure is lower than the first pressure.2. The method as claimed in claim 1 , wherein the first refrigeration supply comprises a first expansion valve claim 1 , a first LNG inlet disposed on a cold end of the heat exchanger claim 1 , and a first natural gas outlet ...

Подробнее
08-02-2018 дата публикации

METHOD FOR LIQUEFACTION OF INDUSTRIAL GAS BY INTEGRATION OF METHANOL PLANT AND AIR SEPARATION UNIT

Номер: US20180038641A1

A method for the liquefaction of an industrial gas by integration of a methanol plant and an air separation unit (ASU) is provided. The method can include the steps of: (a) providing a pressurized natural gas stream, a pressurized purge gas stream originating from a methanol plant, and a pressurized air gas stream comprising an air gas originating from the ASU; (b) expanding three different pressurized gases to produce three cooled streams, wherein the three different pressurized gases are the pressurized natural gas stream, the pressurized purge gas stream, and the pressurized air gas stream; and (c) liquefying the industrial gas in a liquefaction unit against the three cooled streams to produce a liquefied industrial gas stream. The industrial gas to be liquefied is selected from the group consisting of a first portion of the pressurized natural gas stream, a nitrogen gas stream, hydrogen and combinations thereof. 1. A method for the liquefaction of an industrial gas selected from the group consisting of natural gas , nitrogen , hydrogen and combinations thereof , the method comprising the steps of:a) withdrawing a pressurized natural gas stream from a natural gas pipeline;b) removing carbon dioxide and water from the pressurized natural gas stream;c) expanding the pressurized natural gas stream to form an expanded natural gas stream and warming the expanded natural gas stream in a first portion of a heat exchanger against the industrial gas to form a warmed natural gas stream;d) sending the warmed natural gas stream to a methanol production facility under conditions effective for producing a methanol stream, a purified hydrogen stream, and a purge gas rich in hydrogen;e) expanding the purge gas rich in hydrogen to form an expanded purge gas and warming the expanded purge gas in a second portion of the heat exchanger against the industrial gas to form a warmed purge gas stream;f) sending the warmed purge gas stream to the methanol production facility for use as ...

Подробнее
08-02-2018 дата публикации

PROCESS INTEGRATION OF A GAS PROCESSING UNIT WITH LIQUEFACTION UNIT

Номер: US20180038642A1

It is proposed to integrate a gas processing unit with a liquefaction unit. The industrial gas stream may be but is not limited to air gases of oxygen, nitrogen argon, hydrocarbon, LNG, syngas or its components, CO, or any other molecule or combination of molecules. It is proposed to integrate the underutilized process inefficiencies of a gas processing unit into the liquefaction unit to produce a liquid at a reduced operating cost. The gas processing unit may be any system or apparatus which alters the composition of a feed gas. Examples could be, but are not limited to, a methanol plant, steam methane reformer, cogeneration plant, and partial oxidation unit. 1. A process for the production of a liquid by integration of a gas processing unit and a liquefaction unit , the process comprising the steps of:a) providing a gas processing unit;b) providing a liquefaction unit, wherein the liquefaction unit is in fluid communication with the gas processing unit, such that the liquefaction unit and the gas processing unit are configured to send and receive fluids from each other;c) extracting a letdown energy from a high pressure gas to produce refrigeration to be used within the liquefaction unit, thereby producing a low pressure gas, wherein the low pressure gas is then used by the gas processing unit as a low pressure feedstream;d) liquefying an industrial gas within the liquefaction unit using refrigeration produced in step c).2. The process as claimed in claim 1 , wherein the gas processing unit is selected from the group consisting of a methanol plant claim 1 , a steam methane reformer claim 1 , a cogeneration plant claim 1 , a partial oxidation unit claim 1 , an autothermal reforming unit claim 1 , and combinations thereof.3. The process as claimed in claim 1 , wherein the industrial gas is selected from the group consisting of an air gas claim 1 , a hydrocarbon claim 1 , syngas claim 1 , carbon dioxide claim 1 , hydrogen claim 1 , carbon monoxide claim 1 , and ...

Подробнее
08-02-2018 дата публикации

METHOD FOR THE INTEGRATION OF LIQUEFIED NATURAL GAS AND SYNGAS PRODUCTION

Номер: US20180038643A1

An integrated method for the production of liquefied natural gas (LNG) and syngas is provided. The method can include the steps of: utilizing letdown energy of a high pressure natural gas stream that is withdrawn from a natural gas pipeline to provide a warm temperature cooling; utilizing a refrigeration cycle to provide a cold temperature cooling, wherein the refrigeration cycle comprises a refrigerant recycle compressor that is powered utilizing a steam turbine; and cooling a second high pressure natural gas stream using the warm temperature cooling and the cold temperature cooling to produce an LNG product stream. The second high pressure natural gas stream is withdrawn from the natural gas pipeline, and the steam turbine is powered by high pressure steam that is produced from a syngas production facility. 1. A method for the production of liquefied natural gas (“LNG”) , the method comprising the steps of:a) operating a syngas production facility that is configured to convert a first natural gas stream into a syngas stream, wherein the syngas production facility is further configured to produce a pressurized steam, wherein the pressurized steam is fed to a steam turbine, wherein during said operating step, the syngas production facility uses a second natural gas stream at a lower pressure than the first natural gas stream;b) cooling and liquefying a third natural gas stream using refrigeration provided by at least two different sources to produce an LNG product stream;c) providing a first source for the refrigeration used in step b) by expanding the second natural gas stream in a natural gas expander and then warming the second natural gas stream, prior to being used in the syngas production facility in step a), against the third natural gas stream; andd) providing a second source for the refrigeration used in step b) using a nitrogen refrigeration cycle, wherein the nitrogen refrigeration cycle comprises a nitrogen recycle compressor and at least one turbine, ...

Подробнее
08-02-2018 дата публикации

METHOD FOR LIQUEFACTION OF INDUSTRIAL GAS BY INTEGRATION OF METHANOL PLANT AND AIR SEPARATION UNIT

Номер: US20180038644A1

A method for the liquefaction of an industrial gas by integration of a methanol plant and an air separation unit (ASU) is provided. The method can include the steps of: (a) providing a pressurized natural gas stream, a pressurized purge gas stream composed predominately of hydrogen and originating from a methanol plant, and a pressurized air gas stream comprising an air gas from the ASU; (b) expanding three different pressurized gases to produce three cooled streams, wherein the three different pressurized gases consist of the pressurized natural gas stream, the pressurized purge gas stream, and the pressurized air gas stream; and (c) liquefying the industrial gas in a liquefaction unit against the three cooled streams to produce a liquefied industrial gas stream, wherein the industrial gas to be liquefied is selected from the group consisting of a first portion of the pressurized natural gas stream, a nitrogen gas stream, hydrogen and combinations thereof 1. A method for the liquefaction of an industrial gas selected from the group consisting of natural gas , nitrogen , hydrogen , and combinations thereof , the method comprising the steps of:a) withdrawing a pressurized natural gas stream from a natural gas pipeline;b) removing carbon dioxide and water from the pressurized natural gas stream;c) expanding the pressurized natural gas stream to form an expanded natural gas stream and warming the expanded natural gas stream in a first portion of a heat exchanger against the industrial gas to form a warmed natural gas stream;d) sending the warmed natural gas stream to a methanol production facility under conditions effective for producing a methanol stream, a purified hydrogen stream, and a purge gas rich in hydrogen;e) expanding the purge gas rich in hydrogen to form an expanded purge gas and warming the expanded purge gas in a second portion of the heat exchanger against the industrial gas to form a warmed purge gas stream;f) sending the warmed purge gas stream to the ...

Подробнее
24-02-2022 дата публикации

SYSTEM FOR PRE-PURIFICATION OF A FEED GAS STREAM

Номер: US20220057137A1
Принадлежит:

A system and method of pre-purification of a feed gas stream is provided that is particularly suitable for pre-purification of a feed air stream in cryogenic air separation unit. The disclosed pre-purification systems and methods are configured to remove substantially all of the hydrogen, carbon monoxide, water, and carbon dioxide impurities from a feed air stream and is particularly suitable for use in a high purity or ultra-high purity nitrogen plant. The pre-purification systems and methods preferably employ two or more separate layers of hopcalite catalyst with the successive layers of the hopcalite separated by a zeolite adsorbent layer that removes water and carbon dioxide produced in the hopcalite layers. Alternatively, the pre-purification systems and methods employ a hopcalite catalyst layer and a noble metal catalyst layer separated by a zeolite adsorbent layer that removes water and carbon dioxide produced in the hopcalite layer. 1. A method of purifying a gas stream to remove the hydrogen and carbon monoxide impurities present in the gas stream , the method comprising:(a) passing the gas stream substantially free of carbon dioxide and water through a first catalyst layer comprising a mixture manganese and copper oxides configured to remove at least some of the carbon monoxide and hydrogen from the gas stream and produce a first intermediate effluent;(b) passing the first intermediate effluent through an adsorbent layer disposed downstream of the first catalyst layer, the adsorbent layer configured to remove water and carbon dioxide from the intermediate effluent and produce a second intermediate effluent; and(c) passing the second intermediate effluent through a second catalyst layer disposed downstream of the adsorbent layer, the second catalyst layer configured to remove at least hydrogen from the second intermediate effluent to yield an intermediate purified stream.2. The method of claim 1 , wherein the intermediate purified stream is substantially ...

Подробнее
07-02-2019 дата публикации

Systems and Methods for Multi-Stage Refrigeration

Номер: US20190041126A1
Автор: David Ladd

Systems and methods for multi-stage refrigeration in mixed refrigerant and cascade refrigeration cycles using one or more liquid motive eductors in combination with a pump.

Подробнее
07-02-2019 дата публикации

Recovery Of Helium From Nitrogen-Rich Streams

Номер: US20190041128A1
Принадлежит: AIR PRODUCTS AND CHEMICALS, INC.

Overall power consumption in a cryogenic distillation process for recovering helium from nitrogen-rich gases comprising helium may be reduced if the feed to the distillation column system is at least substantially condensed by indirect heat exchange against a first bottoms liquid at first pressure, and a second bottoms liquid at a second pressure that is different from the first pressure. 1. Apparatus for recovering helium from a nitrogen-rich feed gas comprising helium , said apparatus comprising:a distillation column system for operation at an elevated operating pressure to separate at least partially condensed feed gas into helium-enriched overhead vapor and nitrogen-enriched bottoms liquid(s);an overhead condenser for partially condensing helium-enriched overhead vapor by indirect heat exchange to produce helium-enriched vapor as product and liquid for reflux in the column system;a first heat exchange system for cooling feed gas by indirect heat exchange with a first nitrogen-enriched bottoms liquid to produce cooled feed gas and vapor for the column system;a first pressure reduction device for reducing the pressure of a second nitrogen-enriched bottoms liquid to produce reduced pressure bottoms liquid;a second heat exchange system for cooling said cooled feed gas by indirect heat exchange against said reduced pressure bottoms liquid to produce at least partially condensed feed gas and vaporized bottoms liquid; anda second pressure reduction device for reducing the pressure of said at least partially condensed feed gas to produce at least partially condensed feed gas at reduced pressure for use as said feed to the distillation column system.2. The apparatus of comprising a third pressure reduction device for reducing the pressure of a third nitrogen-enriched bottoms liquid to produce reduced pressure bottoms liquid for vaporization by indirect heat exchange in said overhead condenser to produce nitrogen-enriched vapor.3. The apparatus of comprising an expander ...

Подробнее
07-02-2019 дата публикации

Method and device for separating air by cryogenic distillation

Номер: US20190041130A1

Method for separating air by cryogenic distillation, wherein air is compressed in a compressor and is subsequently sent to a heat exchanger, with the air cooled in the exchanger being sent to a check valve downstream of the heat exchanger and subsequently to a turbine, the valve being positioned so that air from a short-circuiting duct cannot return to the exchanger from the compressor.

Подробнее
18-02-2016 дата публикации

Method and apparatus in a cryogenic liquefaction process

Номер: US20160047597A1
Принадлежит: Highview Enterprises Ltd

Methods and apparatus for the efficient cooling within air liquefaction processes with integrated use of cold recovery from an adjacent LNG gasification process are disclosed.

Подробнее
16-02-2017 дата публикации

Helium Recovery From Streams Containing Helium, Carbon Dioxide, and at least one of Nitrogen and Methane

Номер: US20170045290A1
Принадлежит: AIR PRODUCTS AND CHEMICALS, INC.

Systems and methods are provided for recovering helium from a feed comprising helium, carbon dioxide, and at least one of nitrogen and methane. The feed is separated in a first separator to form helium-enriched stream and a CO-enriched stream. The helium-enriched stream is separated in a pressure swing adsorption unit to form a helium-rich product stream and a helium-lean stream. At least a portion of the helium-lean stream is recycled to the first separator with the feed. In some embodiments, a membrane separation unit is used to enhance helium recovery. 1. A method for recovering helium from a feed stream containing helium , carbon dioxide and at least one of methane and nitrogen , the method comprising:{'sub': 2', '2, 'introducing a separator feed stream into a separator, the separator feed stream comprising at least a portion of the feed stream, separating the separator feed stream into a first helium-enriched stream and a first CO-enriched stream, and withdrawing the first helium-enriched stream and the first CO-enriched stream from the separator;'}introducing a pressure swing adsorption unit feed stream into a pressure swing adsorption unit, the pressure swing adsorption unit feed stream comprising at least a portion of the first helium-enriched stream, separating the pressure swing adsorption unit feed stream into a helium-rich product stream and a helium-lean stream, and withdrawing the helium-rich product stream and the helium-lean stream from the pressure swing adsorption unit;compressing a compressor feed stream in a compressor to form a compressor effluent stream, the compressor feed stream comprising the helium-lean stream and a helium-enriched permeate stream;introducing a first portion of the compressor effluent stream into a membrane separation unit, separating the first portion of the compressor effluent stream to form the helium-enriched permeate stream and a helium-depleted non-permeate stream, and withdrawing the helium-enriched permeate stream ...

Подробнее
16-02-2017 дата публикации

Method for purifying, cooling and separating a gaseous mixture and associated apparatus

Номер: US20170045291A1

The invention relates to a method for cooling, purifying and separating a gaseous mixture containing at least one impurity, in which the gaseous mixture is cooled to a temperature no higher than the temperature at which the at least one impurity solidifies in a heat exchanger having cooling passages, the cooling passages being at least partially covered with a coating and/or physically treated and/or chemically treated, the coating and/or the treatment serving to limit or even prevent the solidified impurity from forming and/or adhering to a surface of the passages; at least one portion of the solidified impurity exiting the cooling passages of the heat exchanger is collected; and the gaseous mixture is withdrawn from the heat exchanger.

Подробнее
15-02-2018 дата публикации

SYSTEMS AND METHODS FOR CAPTURING NATURAL GAS LIQUIDS FROM OIL TANK VAPORS

Номер: US20180045460A1
Принадлежит:

A hydrocarbon vapor capture and processing system is disclosed to reduce both carbon emissions and conventional pollution, while producing financial returns by turning waste vapors into high quality NGLs. In one embodiment, the hydrocarbon vapor is sent to a compressor for compression. Compressed vapor is then cooled via an air cooler, before being condensed by a refrigerator to form a liquid. The resulting two-phase flow is then separated into a dry gas stream and a liquid stream using a cyclonic separator. The dry gas stream may be transmitted as a light gas to sales line. The resulting liquid stream is passed to a stripping column to produce NGLs. The system offers great benefits to the environment and public health, by providing a technology that drastically cuts carbon emissions and noxious pollution, while incentivizing drillers to implement such measures through its ability to produce revenue. 1. An apparatus to capture natural gas liquids (NGLs) from oil tanks , comprising:a compressor to withdraw hydrocarbon vapors from the oil tanks; anda cooling system to condense liquids from said hydrocarbon vapors resulting in a natural gas liquids (NGLs) stream and a light gas stream.2. The apparatus of claim 1 , wherein the compressor is connected to a refrigerated evaporator to condense liquid components of the hydrocarbon vapors.3. The apparatus of claim 2 , wherein the refrigerated evaporator is connected to a cyclonic separator.4. The apparatus of claim 3 , wherein liquid product from the cyclonic separator connects into a stripping column warmed from below by a reboiler.5. The apparatus of claim 4 , wherein the stripping column and the reboiler remove dissolved air claim 4 , methane claim 4 , and excess ethane from the hydrocarbon vapors.6. The apparatus of claim 5 , wherein the cyclonic separator claim 5 , the stripping column and the reboiler are integrated into a single unit.7. The apparatus of claim 6 , wherein the compressor is powered by the light gas ...

Подробнее
03-03-2022 дата публикации

LIQUID NATURAL GAS PROCESSING WITH HYDROGEN PRODUCTION

Номер: US20220065160A1
Принадлежит:

Devices, systems, and methods for liquefied natural gas production facilities are disclosed herein. A liquefied natural gas (LNG) production facility includes a liquefaction unit, a gas turbine, and a hydrogen generation unit. The liquefaction unit condenses natural gas vapor into liquefied natural gas. The hydrogen generation unit generates hydrogen. At least a portion of the hydrogen formed in the hydrogen generation unit is combusted, along with hydrocarbons, as fuel in the gas turbine.

Подробнее
03-03-2022 дата публикации

LIQUID NATURAL GAS PROCESSING WITH HYDROGEN PRODUCTION

Номер: US20220065161A1
Принадлежит:

Devices, systems, and methods for liquefied natural gas production facilities are disclosed herein. A liquefied natural gas (LNG) production facility includes a liquefaction unit, a gas turbine, and a hydrogen generation unit. The liquefaction unit condenses natural gas vapor into liquefied natural gas. The hydrogen generation unit generates hydrogen. At least a portion of the hydrogen formed in the hydrogen generation unit is combusted, along with hydrocarbons, as fuel in the gas turbine.

Подробнее
03-03-2022 дата публикации

SYSTEM AND METHOD FOR SEPARATING AIR GASES AT LOW PRESSURE

Номер: US20220065530A1
Автор: Davidian Benoit

An air gas separation plant comprising, in the direction of circulation of the air stream: a compression means that makes it possible to compress the air stream to a pressure P of between 1.15 bar abs and 2 bar abs, an adsorption unit of TSA type, and a cryogenic distillation unit, with the adsorption unit comprising at least two adsorbers A and B each having a parallelepipedal casing arranged horizontally and comprising: an air stream inlet and an air stream outlet, a fixed bed adsorbent mass, likewise of parallelepipedal shape, the faces of which are parallel to the faces of the casing; and a set of volumes allowing the air stream to pass through the adsorbent mass horizontally, over the entire cross-section and throughout the entire thickness thereof.

Подробнее