Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 8272. Отображено 200.
27-06-2008 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ

Номер: RU2327519C2

Изобретение относится к способу получения олефинов из углеводородов, в котором углеводороды обрабатываются автотермическим крекингом. Описан способ получения олефина, который включает пропускание смеси углеводорода и кислородсодержащего газа через зону катализатора, который способен поддерживать горение за верхним пределом воспламеняемости топлива, с получением упомянутого олефина, причем упомянутая каталитическая зона включает по меньшей мере первый слой катализатора и второй слой катализатора, где второй слой катализатора размещен в технологической линии после первого слоя катализатора, отличается составом от первого слоя катализатора и отвечает общей формуле: M1aM2bM3cOz , в которой М1 выбирают из групп IIA, IIB, IIIB, IVB, VB, VIB, VIIB, лантанидов и актиноидов, М2 выбирают из групп IIA, IB, IIB, IIIB, IVB, VB, VIB, а М3 выбирают из групп IIA, IB, IIB, IIIB, IVB, VB, VIB и VIIIB, а, b, с и z обозначают атомные соотношения компонентов соответственно М1, М2, М3 и О, значение а находится ...

Подробнее
08-12-2017 дата публикации

КАТАЛИЗАТОР ОКИСЛЕНИЯ АММИАКА ДЛЯ ПРОИЗВОДСТВА АЗОТНОЙ КИСЛОТЫ НА ОСНОВЕ ОРТОКОБАЛЬТАТОВ ИТТРИЯ-ГАДОЛИНИЯ

Номер: RU2637939C2

Настоящее изобретение относится к каталитически активному компоненту катализатора, включающему однофазные оксиды на основе смешанных оксидных систем ортокобальтата иттрия-гадолиния и к способу окисления аммиака в процессе Оствальда, в котором газовую смесь, содержащую аммиак и кислород, подвергают превращению в присутствии указанного катализатора. Каталитически активный компонент катализатора для окисления аммиака содержит стабильные однофазные оксиды на основе оксидной системы смешанного ортокобальтата иттрия-гадолиния с формулой Y1-XGdXCo1-YMYO3, где X больше 0 и меньше 1, Y больше или равен 0 и меньше 1, а М представляет собой металл, выбранный из группы, состоящей из марганца, железа, хрома, ванадия и титана, алюминия, переходного металла или щелочноземельного металла. Легирование ортокобальтата иттрия стойким к восстановлению гадолинием приводит к высокой селективности по отношению к NOx и низким уровням образования нежелательного N2O в условиях, соответствующих промышленному окислению ...

Подробнее
27-05-2014 дата публикации

КАТАЛИЗАТОР НА ОСНОВЕ МЕДИ, НАНЕСЕННЫЙ НА МЕЗОПОРИСТЫЙ УГОЛЬ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ

Номер: RU2517108C2

Данное изобретение относится к нанесенному на мезопористый уголь катализатору на основе меди, к способу его получения и применению в каталитическом дегидрировании соединения с алкильной цепью C-Cдля превращения соединения с алкильной цепью C-Cв соединение с соответствующей алкенильной цепью. Катализатор включает мезопористый уголь, медный компонент и вспомогательный элемент, нанесенные на указанный мезопористый уголь. Один или несколько вспомогательных элементов (в виде оксидов) выбирают из группы, состоящей из VO, LiO, MgO, СаО, GaO, ZnO, AlО, CeO, LaO, SnOи KO. Количество медного компонента (в расчете на CuO) составляет 2-20 мас.% в расчете на общую массу катализатора. Количество вспомогательного элемента (в расчете на указанный оксид) составляет 0-3 мас.%. Количество мезопористого угля составляет 77.1-98 мас.% в расчете на общую массу катализатора. Способ получения катализатора включает: (1) стадию контактирования предшественника медного компонента, предшественника вспомогательного элемента ...

Подробнее
27-01-2010 дата публикации

ПОЛУЧЕНИЕ НАНЕСЕННЫХ КАТАЛИЗАТОРОВ НА ОСНОВЕ МЕТАЛЛ/ОКСИД МЕТАЛЛА ПУТЕМ ПРЕДШЕСТВУЮЩЕЙ ХИМИЧЕСКОЙ НАНОМЕТАЛЛУРГИИ В ОПРЕДЕЛЕННЫХ РЕАКЦИОННЫХ ПРОСТРАНСТВАХ ПОРИСТЫХ НОСИТЕЛЕЙ С ПОМОЩЬЮ МЕТАЛЛОРГАНИЧЕСКИХ И/ИЛИ НЕОРГАНИЧЕСКИХ ПРЕДШЕСТВЕННИКОВ И МЕТАЛЛСОДЕРЖАЩИХ ВОССТАНОВИТЕЛЕЙ

Номер: RU2380155C2
Принадлежит: ЗЮД-ХЕМИ АГ (DE)

Изобретение относится к способу получения и использования катализаторов для синтеза метанола. Описан способ получения катализатора с пористым носителем, по меньшей мере одним активным металлом, выбранным из группы, состоящей из меди, серебра и золота, и по меньшей мере одним промотором, выбранным из группы, состоящей из цинка, олова и алюминия, который пригоден для синтеза метанола, причем подготавливают пористый носитель, который имеет удельную поверхность по меньшей мере 500 м2/г, на пористый носитель наносят по меньшей мере один предшественник активного металла, который включает по меньшей мере один активный металл в восстанавливаемой форме, а также по меньшей мере одну группу, которая связана с атомом активного металла через связывающий атом, выбранный из атомов азота и фосфора, предшественник активного металла восстанавливают с помощью восстановителя, который включает по меньшей мере один металл-промотор, и по меньшей мере одну органическую группу, которая связана с атомом промотора ...

Подробнее
20-06-2009 дата публикации

РАЗРАБОТКА УЛУЧШЕННОЙ ЗАГРУЗКИ КАТАЛИЗАТОРА

Номер: RU2358901C2
Принадлежит: ДЖОНСОН МЭТТИ ПЛС (GB)

Способ окисления аммиака, включая процесс Андрусова, заключающийся в том, что исходный газ проходит над катализатором первой ступени окисления аммиака, содержащим в качестве катализатора металл платиновой группы с высокой площадью поверхности, с достижением конверсии аммиака от 20 до 99% и получением продукта первой стадии, содержащего оксиды азота, кислород и непрореагировавший аммиак, а затем продукт первой стадии проходит над катализатором второй ступени окисления аммиака, причем катализатор второй ступени эффективен также в качестве катализатора разложения N2O, с получением продукта второй стадии, содержащего незначительное количество непрореагировавшего аммиака и менее чем 500 ч/млн N2O. Процесс проводят при температуре от 700 до 1000°С. Предложена также загрузка катализатора, предназначенная для осуществления указанного выше способа. В предпочтительных вариантах осуществления можно наблюдать низкий уровень образования закиси азота и увеличение срока службы. Способ позволяет достичь ...

Подробнее
26-11-2018 дата публикации

КАТАЛИЗАТОРЫ ОЧИСТКИ ВЫХЛОПНОГО ГАЗА

Номер: RU2673344C2

Изобретение относится к катализатору для очистки выхлопного газа от дизельного двигателя, содержащему: (а) 0,1-10% мас. переходного металла групп 8-11; и (b) 90-99,9% мас. носителя. При этом носитель содержит по меньшей мере 90% мас. диоксида церия и 0,1-10% мас. лиганда, легирующего диоксид церия, где лиганд содержит ниобий (Nb) или тантал (Та). Также изобретение относится к способу получения указанного катализатора, включающему: (а) пропитку диоксида церия водным раствором, содержащим водорастворимую соль ниобия (Nb) или тантала (Ta); (b) прокаливание пропитанного диоксида церия при температуре в интервале от 600°С до 1000°С с получением носителя; (с) пропитку носителя раствором, содержащим переходный металл платиновой группы. Кроме того, изобретение относится к системе доочистки выхлопного газа, содержащей катализатор и, необязательно, СКВ-катализатор, фильтр дизельных твердых частиц, фильтр катализированной сажи, катализатор конверсии аммиака или их комбинацию, и к способу окисления ...

Подробнее
23-03-2022 дата публикации

Катализатор и способ его получения

Номер: RU2768115C1

Изобретение относится к катализатору и способу получения катализатора для производства бензинов при совместной переработке углеводородных фракций, оксигенатов и олефин-содержащих фракций. Катализатор включает цеолит ZSM-5 в количестве от 50.0 до 85.0 мас. %, где: a. объем пор катализатора составляет от 0.15 до 0.26 см3/г, b. средний диаметр пор катализатора составляет от 38 до 53 Å, c. соотношение слабых и сильных кислотных центров катализатора составляет от 2.2 до 3.5, причем катализатор включает по химическому составу в пересчете на оксиды: d. диоксид кремния в количестве от 53.0 до 85.0 мас. %, e. оксид алюминия в количестве от 10.9 до 43.0 мас. %, f. оксид бора в количестве от 0.5 до 2.5 мас. %, g. оксид цинка в количестве от 1.4 до 2.9 мас. %, h. оксиды редкоземельных элементов в количестве от 0.9 до 2.0 мас. %. Способ получения катализатора включает: смешение HZSM-5 и пептизированного псевдобемита, добавление борной кислоты, добавление кремнезоля с рН 8-10 для получения формовочной ...

Подробнее
27-10-2008 дата публикации

КАТАЛИЗАТОР ОЧИСТКИ ВОДОРОДСОДЕРЖАЩЕЙ ГАЗОВОЙ СМЕСИ ОТ СО И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Номер: RU2336947C1

Изобретение относится к области катализаторов, в частности предназначенных для процессов очистки водородсодержащей газовой смеси от СО путем селективного каталитического окисления СО кислородом воздуха. Описан катализатор очистки водородсодержащей газовой смеси от СО, включающий металлическую медь и/или оксид меди и диоксид церия, нанесенные на углеродный носитель, в качестве которого используют мезопористый графитоподобный углеродный материал, представляющий собой трехмерную матрицу с объемом пор 0,2-1,7 см3/г, образованную ленточными слоями углерода толщиной 100-10000 Å и с радиусом кривизны 100-10000 Å, обладающую истинной плотностью, равной 1,80-2,10 г/см3, рентгеновской плотностью 2,112-2,236 г/см3, пористой структурой с распределением пор с максимумом в диапазоне 200-2000 Å или бипористой структурой с распределением пор с дополнительным максимумом в диапазоне 40-200 Å и удельной поверхностью 50-500 м2/г, при этом катализатор имеет следующий состав, мас.%: Cu - 5,0-10,0; Се - 15,0- ...

Подробнее
10-10-2011 дата публикации

КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ОКИСЛЕНИЯ АММИАКА

Номер: RU2430782C1

Изобретение относится к катализаторам и процессам окисления аммиака. Описан катализатор для окисления аммиака до NO и NO2 и разложения N2O для использования в качестве второй ступени двухступенчатой каталитической системы, сформированной различными способами, в том числе в комплекте с платиноидными сетками, улавливающими сетками и/или инертными насадками, в условиях процесса Оствальда при 800-920°С и давлении 1-9 бар, в том числе в условиях с проскоком аммиака, представляющий собой блочный носитель сотовой структуры, содержащий оксид алюминия или церия, или циркония, или титана, с нанесенным активным компонентом, при этом носитель имеет открытые транспортные поры размером 300-2000 Å, причем объем таких пор не ниже 0,25 см3/г, активный компонент имеет состав LayM1 1-xM2 xOz, где М1 выбирается из группы, состоящей из Fe, Mn, Со; М2 - Со, Cu, Ni, Zn, Mg; х=0÷0.4, y=0÷0.99, z=2÷4. Описан способ приготовления катализатора смешением порошка оксида алюминия или церия, или циркония, или титана ...

Подробнее
10-04-2012 дата публикации

КАТАЛИЗАТОР ПАРОВОГО РИФОРМИНГА УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2446879C1

Настоящее изобретение относится к катализатору парового риформинга углеводородов и способу его приготовления. Описан катализатор парового риформинга углеводородов, включающий оксиды никеля, титана, бора, марганца, лантана и алюминия, при следующем содержании компонентов, мас.%: оксид никеля - 8,5-24,5; оксид титана - 0,05-2,1; оксид бора - 0,1-3,0; оксид марганца - 0,01-2,8; оксид лантана - 0,1-5,0; оксид цезия - 0,1-2,0, оксид алюминия - остальное. Описан также способ получения катализатора путем приготовления шихты, включающей глинозем, оксид титана, борную кислоту, оксид марганца, оксид лантана, оксид цезия, добавления связующего, включающего парафин, воск и олеиновую кислоту, формования носителя в виде гранул методом шликерного литья при избыточном давлении 0,4-2 МПа при температуре 70-80°, провяливания на воздухе и прокаливания полученного носителя в две стадии: прокаливание в керамических формах в слое глинозема при температуре 1100-1200°С в течение 4-8 часов, затем подъем температуры ...

Подробнее
29-06-2023 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИЗАТОРА РАЗЛОЖЕНИЯ АММИАКА

Номер: RU2798955C1

Изобретение относится к способу изготовления катализатора разложения аммиака, включающему нанесение на поверхность носителя путем плазменного напыления сначала порошковой композиции для формирования адгезионного слоя и затем порошковой композиции для формирования каталитически активного слоя с последующим формированием слоя активатора, согласно изобретению дополнительно после формирования слоя активатора восстанавливают катализатор в потоке водорода при температурах 300-500°С, при этом в качестве порошковой композиции для формирования адгезионного слоя используют алюмоникелевый порошок, в качестве порошковой композиции для формирования каталитически активного слоя используют ZrO2 или Ce0.5Zr0.5O2 или их смеси, а формирование слоя активатора осуществляют путем пропитки подготовленного носителя предшественником активного компонента - раствором комплекса рутения [Ru[(NH3)nClm]OHp, где n=5-6, m=0-1, р=1-2. Техническим результатом изобретения является создание эффективного и термостабильного ...

Подробнее
04-06-2019 дата публикации

Способ приготовления катализаторов для получения синтез-газа путем углекислотной конверсии метана

Номер: RU2690496C1

Изобретение относится к области химии, нефтехимии и нефтепереработки, в частности, к способу приготовления катализаторов для получения синтез-газа реакцией углекислотной конверсии метана. Способ приготовления катализатора заключается в растворении солей-предшественников, добавлении комплексообразователя, выпаривании раствора, прокаливании в муфельной печи, при этом в качестве дополнительной соли-предшественника используют нитрат кобальта Co(NO)⋅3HO, перед добавлением комплексообразователя соли-предшественники Gd(NO)⋅6HO, Fe(NO)⋅9HO, Co(NO)⋅3HO, взятые в мольном соотношении 1:х:(1-х), где х=0-0.9, растворяют в деионизированной воде, в качестве комплексообразователя используют лимонную кислоту, взятую в весовом соотношении к смеси нитратов от 2:1 до 2.5:1, после полного растворения лимонной кислоты добавляют раствор аммиака до установления рН от 6 до 6.5, а полученный после выпаривания порошок прокаливают при 450°С в течение 2 ч и 1-2 ч при температуре 600-800°С. Технический результат заключается ...

Подробнее
10-05-2011 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ

Номер: RU2417841C1

Изобретение относится к области общего и специального катализа, в частности к способам получения катализаторов окисления оксида углерода и углеводородов, и может найти свое применение в системах снижения токсичности отходящих газов различных технологических процессов, где выбрасываемый в атмосферу газ содержит вредные органические вещества и оксид углерода. Описан способ изготовления каталитического композиционного покрытия, включающий получение каталитически активного слоя на металлическом носителе путем плазменного напыления на металлический носитель порошковой композиции. Нанесение адгезионного слоя производят путем напыления порошковой композиции, содержащий, мас.%: алюминий 3-5, гидроксид алюминия - остальное; нанесение пористого каталитического слоя, производят путем напыления порошковой композиции, содержащий, мас.%: алюминий 3-5, оксид хрома 2-5, оксид вольфрама 0,8-1,2, оксиды церия, лантана, неодима в сумме 1,8-2,2, оксид меди - 2-3, гидрооксид алюминия - остальное; затем ионно-плазменным ...

Подробнее
10-06-2004 дата публикации

КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ

Номер: RU2002117189A
Принадлежит:

... 1. Катализатор для получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, включающий марганецсодержащий активный компонент и оксид алюминия, отличающийся тем, что он содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную Mn-R оксидную фазу нестехиометрического состава MnRx Oy(0,05≤x≤2,24; 2,08≤у≤5,36), где R - висмут и/или лантаноид, а также оксид железа и оксид щелочноземельного металла при содержании компонентов, мас.%: MnRxOy 0,75-65,0 Оксид алюминия 99,24-0,005 Оксид железа 0,005-99,24 Оксид щелочноземельного металла 0,005-99,24 при этом расчетное содержание компонентов составляет, мас.%: Марганец (в пересчете на MnO2) 0,5-35,0 Висмут и/или лантаноид (в пересчете на R2 О3) 0,25-30,0 Оксид алюминия 0,005-99,24 Оксид железа 0,005-99,24 Оксид щелочноземельного металла 0,005-99,24 2. Катализатор по п.1, отличающийся тем, что он содержит оксид марганца Mn2O3. 3. Катализатор по пп.1 и 2, отличающийся тем, что он содержит ...

Подробнее
10-03-2010 дата публикации

СПОСОБ ГИДРООБРАБОТКИ НЕФТЯНЫХ ФРАКЦИЙ

Номер: RU2008135564A
Принадлежит:

... 1. Способ гидрообработки нефтяных фракций, включающий контакт нефтяных фракций с катализатором, содержащим гидрид металла типа внедрения, имеющим реакционную поверхность и одноатомный водород на реакционной поверхности, причем гидрид металла типа внедрения представляет собой гидрид сплава, содержащего металл VIII группы и лантанид или металл II группы. ! 2. Способ по п.1, в котором гидрид металла типа внедрения содержит накапливающие водород междоузлия, которые способны высвобождать одноатомный водород. ! 3. Способ по п.1, в котором гидрид металла типа внедрения содержит частицы, имеющие диаметр от примерно 0,01 до примерно 1000 мкм. ! 4. Способ по п.1, в котором реакционная поверхность, по существу, свободна от оксидного слоя. ! 5. Способ по п.1, дополнительно включающий подачу газообразного молекулярного водорода при контакте нефтяных фракций с катализатором, содержащим гидрид металла типа внедрения. ! 6. Способ по п.5, в котором накапливающие водород междоузлия одновременно повторно ...

Подробнее
10-05-2015 дата публикации

КАТАЛИЗАТОР РИФОРМИНГА ГАЗООБРАЗНОГО УГЛЕВОДОРОДНОГО СЫРЬЯ (ВАРИАНТЫ)

Номер: RU2549878C1

Изобретение относится к катализаторам для получения синтез-газа из газообразного углеводородного сырья, например метана, природного газа или попутных нефтяных газов. Заявляется катализатор риформинга газообразного углеводородного сырья (по варианту 1), который содержит, мас.%: оксид никеля (45-60), оксид лантана (1-5), диоксид циркония (3-15), диоксид церия (1-4), алюмомагниевое оксидное соединение (15-30) (в составе которого (30-70) оксида алюминия, (30-70) оксида магния), диоксид кремния (5-15), углерод (1-3). Заявляется также катализатор риформинга газообразного углеводородного сырья (по варианту 2), который содержит, мас.%: оксид никеля (50-65), оксид лантана (3-10), диоксид церия (1-8), алюмомагниевое оксидное соединение (15-30) (в составе которого (30-70) оксида алюминия, (30-70) оксида магния), диоксид кремния (5-15), углерод (1-3). Технический результат заключается в высокой термостабильности (до 1200°С) катализатора, обладающего высокой активностью как в процессе высокотемпературного ...

Подробнее
20-10-2006 дата публикации

КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ АЛКИЛАРОМАТИЧЕСКИХУГЛЕВОДОРОДОВ

Номер: RU2285560C1

Описывается катализатор для дегидрирования алкилароматических углеводородов следующего состава, мас.%: соединения калия (в пересчете на оксид калия) 8,0-25,0; соединения магния и/или соединения кальция (в пересчете на оксид магния и/или оксид кальция) 0,2-7,0; оксид молибдена 0,7-7,0; оксид церия 1,0-15,0; портландцемент 0,5-12,0; оксид лантана и/или оксид неодима 0,01-7,0; оксид железа остальное. Техническим результатом является повышение активности, селективности катализатора, а также термической стабильности, что увеличивает срок службы катализатора. 4 з.п. ф-лы, 2 табл., 2 ил.

Подробнее
10-01-2004 дата публикации

Катализатор получени закиси азота и способ

Номер: RU2002117188A
Принадлежит:

... 1. Катализатор для получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, включающий марганецсодержащий активный компонент, отличающийся тем, что он содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную Mn-Bi оксидную фазу нестехиометрического состава MnBixOy (0,05≤x≤2,24; 2,08≤y≤5,36), оксид лантана, оксид железа и оксид щелочноземельного металла при содержании компонентов, мас.%: MnBixOy 0,75÷65,0 Оксид железа 0,005÷99,24 Оксид лантана 0,005÷99,24 Оксид щелочноземельного металла 0,005÷99,24 при этом расчетное к содержание компонентов составляет, мас.%: Марганец (в пересчете на MnO2) 0, 5÷35,0 Висмут (в пересчете на Bi2O3) 0,25÷30,0 Оксид железа 0,005÷99,24 Оксид лантана 0,005÷99,24 Оксид щелочноземельного металла 0,005÷99,24 2. Катализатор по п.1, отличающийся тем, что он содержит оксид марганца Mn2О3. 3. Катализатор по пп.1 и 2, отличающийся тем, что он содержит кристаллическую фазу состава Bi2Mn4O10. 4. Катализатор ...

Подробнее
20-01-2006 дата публикации

КАТАЛИЗАТОР ДЛЯ ОБРАБОТКИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Номер: RU2005115099A
Принадлежит:

... 1. Катализатор, содержащий гидрид металла типа внедрения, имеющий реакционную поверхность и одноатомный водород на реакционной поверхности. 2. Катализатор по п.1, кроме того, содержащий носитель в контакте с гидридом металла типа внедрения. 3. Катализатор по п.2, в котором носитель содержит, по меньшей мере, один из неорганических оксидов, углерод и их комбинации. 4. Катализатор по п.2, кроме того, содержащий, по меньшей мере, один из Pt, Pd и их комбинации. 5. Катализатор по п.2, в котором гидрид металла содержит частицы, имеющие диаметр от примерно 0,01 до примерно 1000 мкм. 6. Катализатор по п.1, в котором реакционная поверхность по существу не содержит оксидного слоя. 7. Катализатор по п.1, в котором гидрид металла типа внедрения находится в форме частицы, имеющей диаметр, и в котором реакционная поверхность имеет оксидный слой, имеющий толщину, равную или меньшую, чем половина диаметра частицы iMeH. 8. Катализатор по п.7, в котором толщина оксидного слоя равна или меньше, чем четверть ...

Подробнее
07-08-1993 дата публикации

CATALYST FOR NON-SELECTIVE OXIDATION OF ORGANIC COMPOUNDS

Номер: RU1833197C
Автор:
Принадлежит:

Подробнее
29-06-1965 дата публикации

Катализатор для очистки водородсодержащего газа от кислорода

Номер: SU172699A3
Автор: Гуннар Эк
Принадлежит:

Подробнее
07-07-1984 дата публикации

Катализатор для очистки выхлопных газов двигателей внутреннего сгорания

Номер: SU1102483A3
Принадлежит: КНАПЗАК АГ (ФИРМА)

КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ, включающий соединения . меди, никеля, марганца, нанесенные на окись алюминия, отличающийся тем, что, с целью снижения температуры процесса очистки, он содержит в качестве соединений указанных элементов их алкн4инаты и дополнительно - окись церия при следующем соотношении компонентов,мае.%: 6,6-9,3 Алюминат марганца 12,7-14,7 Алюминат меди 0,6-4.7 Алюминат никеля 2,4-7,4 Окись церия Остальное Окись алюминия ...

Подробнее
18-06-2003 дата публикации

KATALYSATOR UND METHODE ZUR ABGASREINIGUNG

Номер: DE0069628206D1
Принадлежит: ICT CO LTD, ICT CO. LTD., OSAKA

Подробнее
14-11-1990 дата публикации

EXHAUST GAS CLEANER

Номер: GB0009021493D0
Автор:
Принадлежит:

Подробнее
20-03-1939 дата публикации

Improvements in reacting carbon monoxide with hydrogen

Номер: GB0000502542A
Автор:
Принадлежит:

Подробнее
01-09-2004 дата публикации

Oxidation process

Номер: GB0000416982D0
Автор:
Принадлежит:

Подробнее
15-12-1971 дата публикации

Номер: GB0001256697A
Автор:
Принадлежит:

Подробнее
04-10-2023 дата публикации

Vanadium-free titania-based SCR catalyst article

Номер: GB0002617247A
Принадлежит:

A selective catalytic reduction (SCR) catalyst article comprising vanadium-free extruded titania substrate comprising a titania-based portion, a filler portion, optionally a zeolitic portion, wherein [a] titania-based portion comprises (i) 1-10wt% Nb, (ii) 5-15wt% Ce, (iii) optionally up to 10wt% W, wherein the balance is at least 60wt% Ti; [b] 1-20wt% filler portion based on the weight of the substrate; [c] optionally up to 20wt% zeolitic portion based on the weight of the substrate. Also disclosed is a method of manufacturing the selective catalytic reduction (SCR) catalyst article.

Подробнее
10-05-2006 дата публикации

Highly active fischer-tropsch synthesis using doped, thermally stable catalyst support.

Номер: OA0000012233A
Принадлежит:

Подробнее
13-12-2006 дата публикации

Alumina-coated metal structure and catalyst structure.

Номер: OA0000013226A
Принадлежит:

Подробнее
15-06-2011 дата публикации

SIMULTANEOUS PRODUCTION OF CARBON NANO-TUBES AND MOLECULAR HYDROGEN

Номер: AT0000512116T
Принадлежит:

Подробнее
15-06-2003 дата публикации

CATALYSTS TO DEHYDROGENIERUNG FROM ETHYLBENZOL TO STYRENE

Номер: AT0000242660T
Принадлежит:

Подробнее
10-05-1971 дата публикации

Catalyst for the oxidation of alkenes

Номер: AT0000289843B
Автор:
Принадлежит:

Подробнее
13-09-1990 дата публикации

CATALYST COMPOSITION AND METHOD FOR CONVERSION OF C3 AND C4 HYDROCARBONS

Номер: AU0000601642B2
Принадлежит:

Подробнее
30-06-1988 дата публикации

METAL CATALYSTS SUPPORTED ON RUTILE TITANIA AND USE THEREOF

Номер: AU0000574222B2
Принадлежит:

Подробнее
10-04-2000 дата публикации

Catalysts and process for reforming of hydrocarbons

Номер: AU0006182199A
Принадлежит:

Подробнее
19-07-2012 дата публикации

Catalyst for production of nitric oxide

Номер: AU2008317569B2
Принадлежит:

The present invention provides a catalyst for production of nitric oxide from ammonia and oxygen. The catalyst has the composition ABC(nDO, wherein A is a lanthanide (La, Gd, Nd, Sm) or yttrium, B is an alkaline-earth cation (Ca, Sr or Ba), C is Fe and D is Cr, Mn, Ni, Ce, Ti, Co or Mg, wherein A, B, C and D are selected independent of each other. The catalyst has a high selectivity towards nitric oxide and a low ignition temperature in the reactor. Further the present invention relates to a method for the production of gas comprising nitric oxide by the catalyst of the present invention. The produced gas has a very low content of nitrous oxide.

Подробнее
11-02-1999 дата публикации

Catalysts for dehydrogenating ethylbenzene to styrene

Номер: AU0007859198A
Принадлежит:

Подробнее
15-10-1998 дата публикации

Catalysts and process for reforming of hydrocarbons

Номер: AUPP607398A0
Автор:
Принадлежит:

Подробнее
27-08-1998 дата публикации

Catalyst

Номер: AU0000695953B2
Принадлежит:

Подробнее
25-07-2002 дата публикации

MESOSTRUCTURED CATALYST INCORPORATING PARTICLES OF NANOMETRIC DIMENSIONS

Номер: CA0002434769A1
Принадлежит:

La présente invention concerne un matériau mésostructuré, thermiquement stable, utile à titre de catalyseur hétérogène, dans lequel les parois de la mésostructure comprennent: (a) une matrice minérale; et (b) dispersées au sein de cette matrice minérale (a), des particules de dimensions nanométriques à base d'au moins une terre rare T et d'au moins un élément de transition M différent de cette terre rare. L'invention concerne également un procédé d'obtention d'un tel matériau.

Подробнее
17-09-1991 дата публикации

COBALT CATALYSTS FOR CONVERSION OF METHANOL OR SYNTHESIS GAS

Номер: CA0001289126C
Принадлежит: MAULDIN CHARLES H, MAULDIN, CHARLES H.

IMPROVED COBALT CATALYSTS, AND USE THEREOF FOR THE CONVERSION OF METHANOL TO HYDROCARBONS, AND FOR THE FISCHER-TROPSCH SYNTHESIS A zirconium, hafnium, cerium or uranium promoted cobalt catalyst and process for the conversion of methanol or synthesis gas to hydrocarbons. Methanol is contacted, preferably with added hydrogen, over said catalyst, or synthesis gas is contacted over said catalyst to proudce, at reaction conditions, an admixture of C10+ linear paraffins and olefins. These hydrocarbons can be further refined to high quality middle distillate fuels, and other valuable products such as mogas, diesel fuel, and jet fuel, particularly premium middle distillate fuels of carbon number ranging to about C20.

Подробнее
17-05-1994 дата публикации

DEHYDROGENATION CATALYST

Номер: CA0001329584C
Принадлежит: DOW CHEMICAL CO, DOW CHEMICAL COMPANY (THE)

This invention relates to an improved dehydrogenation catalyst, useful in converting alkylaromatics to alkenylaromatics, e.g. ethylbenzene to styrene, which contains lower amounts of iron and relatively larger amounts of cerium and potassium than those known to the art.

Подробнее
05-01-1999 дата публикации

CATALYST SUPPORT AND CATALYST FOR THE PROCESSING OF INTERNAL COMBUSTION ENGINE EXHAUST GASES, PROCESS FOR PRODUCING SAID CATALYST

Номер: CA0001340303C

L'invention concerne un catalyseur pour le traitement des gaz d'échappement des moteurs à combustion interne, ainsi qu'un procédé de fabrication de ce catalyseur qui est du type monolithique et comprend un support ou substrat revêtu d'une couche poreuse sur laquelle est imprégnée une phase catalytiquement active. Selon l'invention, la couche poreuse comprend de l'alumine, un oxyde de terres rares tel que l'oxyde de cérium, et un composé de type spinelle présentant une surface spécifique comprise entre 50 m2/g et 300 m2/g. Le catalyseur selon l'invention est tout particulièrement avantageux dans la mesure où il présente une bonne stabilité thermique et tolère la présence de soufre ou de composés soufrés dans les gaz d'échappement.

Подробнее
08-03-2001 дата публикации

DISPROPORTIONATION CATALYST

Номер: CA0002383239A1
Принадлежит:

Disclosed are halide-free catalyst compositions for the disproportionation/isomerization of aromatic carboxylic acid salts. In one embodiment the catalyst comprises a mixed catalyst of compounds of copper, zinc, and zirconium; and, in a second embodiment, the catalyst comprises a copper compound treated with a base, optionally used with a promoter. Both halide-free catalysts provide advantages with respect to metallurgic problems, as well as good stability, activity and selectivity, and the later is faster kinetically at lower temperatures.

Подробнее
31-05-2001 дата публикации

DEHYDROHALOGENATION OF HALOGENATED ALKANES USING RARE EARTH HALIDE OR OXYHALIDE CATALYST

Номер: CA0002391938A1
Принадлежит:

A process for the dehydrohalogenation of halogenated alkanes involving contacting a halogenated alkane having three or more carbon atoms with a rare earth halide or rare earth oxyhalide catalyst under process conditions sufficient to prepare an alkene or halogenated alkene. The process converts low valued halogenated alkanes, which are by-products of industrial chlorination processes, into higher valued alkenes and halogenated alkenes. 1,2-Dichloropropane, for example, can be dehydrochlorinated predominantly to allyl chrloride and 1-chloropropene with little production of low value 2- chloropropene. 1,2,3-Trichloropropane can be dehydrochlorinated predominantly to 1,3-dichloropropene which is useful in soil fumigants.

Подробнее
14-11-2002 дата публикации

PROCESS FOR THE PREPARATION OF AMONIA OXIDATION

Номер: CA0002446269A1
Принадлежит:

Ammonia oxidation by passing a mixture of air and ammonia over a catalyst containing at least one cobalt compound at an elevated temperature wherein, prior to contact with the catalyst, the air is passed through an absorber comprising a support carrying an absorbent material for acidic gases.

Подробнее
09-08-1983 дата публикации

ALUMINA-SUPPORTED COPPER CATALYST COMPOSITIONS FOR FLUID-BED HYDROCARBON OXYHYDROCHLORINATION

Номер: CA0001151636A1
Автор: EDEN JAMAL S
Принадлежит:

Подробнее
26-09-1989 дата публикации

COMPOSITION OF MATTER AND METHOD FOR CONVERSION OF C.SUB.3 AND C.SUB.4 HYDROCARBONS

Номер: CA0001261315A1
Принадлежит:

Подробнее
02-07-2020 дата публикации

DEHYDROGENATION CATALYST

Номер: CA3103773A1
Принадлежит:

Provided is a dehydrogenation catalyst with which it is possible to suppress caulking and increase the yield of an olefin in a thermal decomposition reaction of a hydrocarbon raw material. This dehydrogenation catalyst (4A) used in the manufacture of an olefin contains at least one element of La and Ce as a catalyst component. The dehydrogenation catalyst (4A) contains at least one element selected from the group consisting of Ba, Fe, and Mn when the dehydrogenation catalyst (4A) does not contain Ce. The dehydrogenation catalyst (4A) contains at least one element of Fe and Mn when the dehydrogenation catalyst (4A) contains Ce.

Подробнее
25-04-2019 дата публикации

METHOD FOR CONVERTING A GAS COMPRISING CARBON MONOXIDE INTO METHANE BY MEANS OF A CATALYTIC MATERIAL CONTAINING PRASEODYMIUM AND NICKEL ON ALUMINA

Номер: CA0003079487A1
Принадлежит:

Le procédé de conversion d'un gaz en méthane (CH4) comporte : - une étape d'activation d'un matériau catalytique comportant de l'oxyde de praséodyme (Pr6O11) associé à de l'oxyde de nickel (NiO) et à de l'alumine (Al2O3), dont les proportions respectives sont, par rapport à la masse totale de ces trois composés : - Pr6O11 : 1 à 20 % en masse, - NiO : 1 à 20 % en masse et - Al2O3 : 60 à 98 % en masse; et - une étape de passage d'un gaz comportant au moins du monoxyde de carbone (CO) sur le matériau catalytique activé.

Подробнее
19-07-2001 дата публикации

METHOD OF PREPARING COMPOUNDS USING CAVITATION AND COMPOUNDS FORMED THEREFROM

Номер: CA0002397367A1
Принадлежит:

Nanostructured materials and processes for the preparation of these nanostructured materials in high phase purities using cavitation is disclosed. The method preferably comprises mixing a metal containing solution with a precipitating agent and passing the mixture into a cavitation chamber. The chamber consists of a first element to produce cavitation bubbles, and a second element that creates a pressure zone sufficient to collapse the bubbles. The process is useful for the preparation of catalysts and materials for piezoelectrics and superconductors.

Подробнее
29-10-2015 дата публикации

STRUCTURED IRON-BASED CATALYST FOR PRODUCING A-OLEFIN FROM SYNTHESIS GAS AND PREPARATION METHOD AND USE

Номер: CA0002946450A1
Принадлежит:

A structured iron-based catalyst for producing an a-olefin from a synthesis gas and a preparation method and use. The catalyst comprises an active component iron, auxiliary agents and a carrier, wherein the auxiliary agents comprise a first auxiliary agent which is a transition metal or a transition metal oxide and a second auxiliary agent which is a metal oxide. The content of the active component iron is 50.0%-99.8%, the content of the first auxiliary agent is 0-5.0%, the content of the second auxiliary agent is 0-10% and the balance is the carrier which is silicon dioxide. A precursor of the active component iron, a precursor of the first auxiliary agent and the carrier silicon dioxide are made into mono-dispersed particles using a heat dispersing method, and then impregnated with a solution of a precursor of the second auxiliary agent to obtain the structured iron-based catalyst. The above-mentioned structured iron-based catalyst is used for producing an a-olefin from a synthesis gas ...

Подробнее
16-11-1992 дата публикации

CATALYTIC COMPOSITE FOR PURIFYING EXHAUST GASES AND A METHOD FOR PREPARING THE SAME

Номер: CA0002042664A1
Принадлежит:

For the preparation of a catalytic composite for purifying exhaust gases, first, at least one perovskite-type compound oxide of the formula RMO3, where R is La or a combination of La and Ca, and M is Co, Mn or a combination thereof, is supported together with cerium dioxide and alumina sol on a heat resistant carrier made of an inorganic oxide selected from the group consisting of cordierite and mullite, and then iron and palladium are further supported together thereon. As a result, a catalytic composite having a high degree of oxidation activity at low temperatures and also having excellent heat resistance can be obtained.

Подробнее
24-10-1995 дата публикации

CATALYTIC COMPOSITE FOR PURIFYING EXHAUST GASES AND A METHOD FOR PREPARING THE SAME

Номер: CA0002042664C

For the preparation of a catalytic composite for purifying exhaust gases, first, at least one perovskite-type compound oxide of the formula RMO3, where R is La or a combination of La and Ca, and M is Co, Mn or a combination thereof, is supported together with cerium dioxide and alumina sol on a heat resistant carrier made of an inorganic oxide selected from the group consisting of cordierite and mullite, and then iron and palladium are further supported together thereon. As a result, a catalytic composite having a high degree of oxidation activity at low temperatures and also having excellent heat resistance can be obtained.

Подробнее
06-07-1991 дата публикации

CATALYST AND PROCESS FOR PREPARATION OF AMINES FROM ALCOHOLS, ALDEHYDES OR KETONES

Номер: CA0002033611A1
Принадлежит:

A process for preparing secondary amines which comprises contacting an alcohol, aldehyde, or ketone with a primary amine in the presence of a catalyst under reaction conditions sufficient to form a secondary amine, wherein the catalyst comprises a homogeneous mixture of (a) 10 to 90 mole percent cobalt or an insoluble salt thereof, (b) 9 to 89 mole percent copper or an insoluble salt thereof, and (c) 1 to 20 mole percent of a metal or insoluble salt of a metal selected from the group consisting of a Lanthanum series metal, thorium, uranium, scandium, titanium, and yttrium is described. A process which employs zirconium as component (c) and which is supported on a carrier material, wherein the carrier material has been neutralized with a base, is also disclosed. 36,403-F ...

Подробнее
07-10-2003 дата публикации

CATALYST FOR THE PRODUCTION OF SYNTHESIS GAS

Номер: CA0002161132C

The invention relates to a catalyst for the production of synthesis gas (CO and H2) by reaction of CO2 and CH4 and/or other light hydrocarbons, consisting of a support material with at least 80 wt.% ZrO2 of oxides selected from the group consisting of Y, La, Al, Ca, Ce and Si, as well as of a coating with metals of Group VIII which is applied physically by adsorption.

Подробнее
11-01-1996 дата публикации

CATALYST AND PROCESS FOR THE PRODUCTION OF HYDROGEN AND/OR METHANE

Номер: CA0002170408A1
Принадлежит:

A rare earth oxide stabilized, cobalt promoted nickel catalyst supported on refractory material and a process employing said catalyst for the production of hydrogen-containing gases, such as synthesis gas and reducing gas, or for the production of methane-enriched gases, such as town's gas and pipeline gas at low steam-to-carbon ratio not above 3.5.

Подробнее
08-08-1996 дата публикации

CATALYST

Номер: CA0002212135A1
Принадлежит:

The invention relates to an oxidation and combustion catalyst such as the type comprising palladium and zinc oxide. The catalyst may be supported on an alumina or zirconia support and may further comprise an earth metal oxide such as ceria or praseodymium oxide. The catalyst exhibits a lower "light-off" temperature than conventional combustion catalysts and does not require the presence of rhodium.

Подробнее
31-08-1968 дата публикации

Verfahren zur Herstellung von aromatischen Carbonsäuren

Номер: CH0000461458A
Принадлежит: TEIJIN LTD, TEIJIN LIMITED

Подробнее
15-04-1982 дата публикации

PROCEDURE FOR THE PRODUCTION OF HOEHEREN KETONEN.

Номер: CH0000629170A5
Принадлежит: BASF AG

Подробнее
30-04-2012 дата публикации

КАТАЛИЗАТОР НИКЕЛЬ/ОКСИД ЛАНТАНА ДЛЯ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА

Номер: EA201101340A1
Принадлежит:

Изобретение относится к никель/оксид лантана (Ni/La2O3) катализатору получения синтез-газа из исходного углеводородного потока, который готовят in situ посредством осаждения никеля (Ni) на носителе из оксида лантана (La2O3) путем приведения указанного La2O3-носителя в контакт с водным раствором соли никеля (Ni-соль) в присутствии газового потока, содержащего кислород, с последующим восстановлением осажденного никеля. Катализатор настоящего изобретения отличается тем, что он может в процессе получения синтез-газа из исходного углеводородного потока непрерывно эксплуатироваться в течение более 14 дней без значительной потери каталитической активности.

Подробнее
15-11-2001 дата публикации

Катализатор для дегидрирования этилбензола в стирол

Номер: UA0000042783C2

Катализатор для дегидрирования этилбензола в стирол в виде гранулы имеет пористость в пределах 0,15-0,35 см3/г. Свыше 50% пор имеют радиус более 600 Å и менее 1800 Å. Катализатор не имеет макропор с радиусом, превышающим 50000 Å.

Подробнее
10-12-2012 дата публикации

КАТАЛИЗАТОР, ПРОЦЕСС ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В РАЗЛОЖЕНИИ N2O

Номер: UA0000100243C2
Принадлежит: УДЕ ГМБХ, DE

Катализаторы для разложения N2O на азот и кислород в газовой фазе, содержащие пористую основу, состоящую из поликристаллического или стекловидного неорганического материала, нанесенного на него функционального слоя оксида церия и нанесенного на последней слоя из материала, содержащего оксидный кобальт. Катализаторы могут использоваться, в частности, как вторичные или третичные катализаторы в установках по изготовлению азотной кислоты.

Подробнее
23-12-2020 дата публикации

КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ АЛКИЛАРОМАТИЧЕСКОГО СОЕДИНЕНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ДЕГИДРИРОВАНИЯ С ЕГО ИСПОЛЬЗОВАНИЕМ

Номер: EA0000036822B1

Изобретение решает задачу получения катализатора, который является высокоактивным при дегидрировании алкилароматических углеводородов в присутствии водяного пара не только в высокотемпературном диапазоне (например, 600-650C), который соответствует входам в слой катализатора устройств производства СМ, но также и в низкотемпературном диапазоне (например, ниже 600C), который соответствует выходам из слоя катализатора, где температура падает из-за эндотермической реакции. Указанная задача решается с помощью катализатора, который предназначен для использования при дегидрировании алкилароматических углеводородов, причем катализатор содержит железо (Fe), калий (K) и церий (Ce), а также включает в себя по меньшей мере один редкоземельный элемент, отличный от церия, причем редкоземельный элемент выбран из группы, состоящей из иттрия (Y), диспрозия (Dy) и их смесей, и в указанном катализаторе железо содержится в количестве 30-90 мас.% в расчете на Fe2O3, калий содержится в количестве 1-50 мас.% в ...

Подробнее
30-04-2014 дата публикации

Катализатор, способ его получения и применение его для разложения N2O

Номер: BY0000018060C1

... 1. Катализатор для разложения N2O на азот и кислород в газовой фазе, содержащий пористую подложку, состоящую из поликристаллического или стекловидного неорганического материала, содержащего оксид магния, нанесенного на нее функционального слоя оксида церия и нанесенного на нее слоя материала, содержащего оксид кобальта.

Подробнее
30-11-2018 дата публикации

CATALYST DEHYDROGENATION OF ALKYLAROMATIC COMPOUNDS, METHOD OF ITS PRODUCTION AND METHOD OF DEHYDROGENATION OF WITH ITS USE

Номер: EA0201891389A1
Автор:
Принадлежит:

Подробнее
27-06-2002 дата публикации

IMPROVED ACTIVITY BY FISHER - TROPShU FOR "NEPROMOTIROVANNYKh" CATALYSTS COBALT - ON - ALUMINIUM OXIDE

Номер: EA0200101245A1
Автор:
Принадлежит:

Подробнее
20-08-2008 дата публикации

Method for eliminating chloro-aromatics low temperature catalytic combustion

Номер: CN0101245916A
Принадлежит:

The invention discloses a method used for fully catalysing, burning and eliminating volatile pollutants such as aromatic hydrocarbon chloride in the environment. The invention takes a transition metal oxide and a rare earth oxide loaded by alumina, silica and zirconia as a catalyst which is then brought into a reactor by the air which is taken as oxidant; the chlorine-containing volatile aromatic hydrocarbon is completely combusted under the action of the catalyst and is then converted into carbon dioxide, hydrogen chloride and chlorine; the tail gas which has been completely burned can be absorbed by a diluted alkali solution (acid gases such as hydrogen chloride/chlorine, etc.) and are emptied then. The catalyst which is used by the method of the invention has high activity, generates no by-product, causes no secondary pollution, has strong chlorine poisoning resistance and long service life of catalyst, which is especially suitable for completely catalysing, burning and eliminating chlorine-containing ...

Подробнее
27-10-2010 дата публикации

Catalyst for preparing low-grade aliphatic amine and preparation method and application thereof

Номер: CN0101869836A
Принадлежит:

The invention relates to a catalyst for preparing low-grade aliphatic amine and a preparation method and application thereof. The catalyst mainly loads the following active ingredient in percentage by weight: (1) 10 to 50 percent of cobalt (Co); (2) 0.01 to 5 percent of at least one of cerium (Ce), neodymium (Nd), praseodymium (Pr) and gadolinium (Gd); and (3) 0.01 to 10 percent of at least one of chromium (Cr), magnesium (Mg), barium (Ba), silver (Ag), manganese (Mn), titanium (Ti), germanium (Ge) and zirconium (Zr). The catalyst of the invention can be prepared by using an immersion method or a spraying method. The catalyst is particularly suitable for preparing the low-grade aliphatic amine. Amine can be prepared at a lower pressure and a lower temperature in the presence of the catalyst, and the ratio of primary amine to secondary amine to tertiary amine can be regulated by changing reaction conditions, so the catalyst is extremely suitable for technology for producing middle-grade ...

Подробнее
25-12-2020 дата публикации

High-load nickel-based catalyst as well as preparation method and application thereof

Номер: CN0112121801A
Автор:
Принадлежит:

Подробнее
25-05-2018 дата публикации

A ozone catalytic wet oxidation method of treating organic waste water

Номер: CN0108069500A
Автор:
Принадлежит:

Подробнее
15-09-2010 дата публикации

Preparation method and application of cerium-zirconium composite oxide catalyst loaded with copper oxide

Номер: CN0101829579A
Принадлежит:

The invention discloses a preparation method and application of cerium-zirconium composite oxide catalyst loaded with copper oxide. The preparation method comprises the following steps of: dissolving Cu salt, Ce salt and Zr salt in deionized water, slowly and dropwise adding the deionized water into dilute ammonia water, heating by microwave, depositing, filtering, washing, drying by microwave and baking at high temperature to obtain the cerium-zirconium composite oxide catalyst loaded with copper oxide. Compared with the preparation method of traditional catalysts, the preparation method of the catalyst has the advantages that the preparation process is simple, the working hour is short, and CuO as an active component is highly dispersed on the surface of a carrier. The catalyst prepared by using the preparation method has very high anti-sintering capability and heat stability and has higher activity for CO catalytic oxidation reaction.

Подробнее
19-01-2012 дата публикации

Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst

Номер: US20120015802A1
Принадлежит: NIPPON SHOKUBAI CO LTD

Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.

Подробнее
01-03-2012 дата публикации

One-pot production of carbamates using solid catalysts

Номер: US20120053359A1

The invention relates to the production of carbamates in a single reactor (one-pot) using solid catalysts, involving the reaction between at least one nitro compound, an organic carbonate of formula (OR)(OR′)C═O, a gas selected from hydrogen gas and a mixture of gases containing hydrogen and hydrogen precursor compounds, and a catalyst that has at least one metallic oxide and can also contain an element of groups 8, 9, 10 and 11 of the periodical table. The carbonates obtained can be transformed into their corresponding isocyanates.

Подробнее
14-06-2012 дата публикации

Method of manufacturing porous metal oxide

Номер: US20120149560A1

Provided is a method of manufacturing porous metal oxide, the method including: preparing a metal-organic framework (MOF) wherein an ion of a metal to be used as a catalyst is linked to an organic ligand; impregnating the MOF with a precursor solution of metal oxide to be manufactured; and thermally treating the metal oxide precursor solution-impregnated MOF to remove the organic ligand. The inventive method of manufacturing porous metal oxide involves the impregnation of a metal oxide precursor solution in a MOF wherein metal ions are uniformly linked to organic ligands and the thermal treatment (calcination) of the metal oxide precursor solution-impregnated MOF to remove the organic ligands.

Подробнее
02-08-2012 дата публикации

Method Of Making Organohalosilanes

Номер: US20120197034A1

The invention pertains to a process for the preparation of organohalosilanes. The process comprises contacting a first finely-divided silicon comprising from 0.08 to 0.25% (w/w) of aluminum with an organohalide in a reactor at a temperature of from 250 to 350° C. in the presence of a Direct Process catalyst comprising copper, and a promotor; and introducing a second finely-divided silicon into the reactor comprising from 0.001 to <0.10% (w/w) of aluminum into the reactor as needed in an amount sufficient to maintain an aluminum concentration of from 0.08 to 0.2% (w/w), based on a weight of unreacted silicon and aluminum.

Подробнее
28-02-2013 дата публикации

Nickel-based reforming catalyst

Номер: US20130053237A1
Принадлежит: Individual

The present invention relates unique pore structures in nickel supported on alumina with the negligible formation of macropores. Incorporation of additional elements stabilizes the pore structure of the nickel supported on alumina. Additional element(s) were then further added into the nickel-supported materials. These additional element(s) further stabilize the pore structures under heating conditions. The improvements of pore structure stability under heating conditions and negligible presence of macropores limit the sintering of nickel metal to a mechanism of impeded diffusion. The negligible presence of macropores also limits the deposition of alkali metal hydroxide(s)/carbonate(s) to the outer shell of the catalyst pellet. Both of the negligible presence of macropores and improvement in pore structure stability allow for prolonging the catalyst life of these nickel supported on alumina catalysts of the present invention for reforming hydrocarbons.

Подробнее
04-04-2013 дата публикации

Novel formulation of hexa-aluminates for reforming fuels

Номер: US20130085062A1
Автор: Magali S. Ferrandon
Принадлежит: UChicago Argonne LLC

The invention is directed to a catalyst and a method for making a reforming catalyst for the production of hydrogen from organic compounds that overcomes the problems of catalyst poisoning and deactivation by coking and high temperature sintering, yet provides excellent durability and a long working life in process use. An embodiment is the formation of a unique four-metal ion hexa-aluminate of the formula M1 a M2 b M3 c M4 d Al 11 O 19-α . M1 and M2 are selected from the group consisting of beryllium, magnesium, calcium, strontium, barium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and gadolinium. M3 and M4 are selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, platinum, wherein 0.010≦a+b+c+d≦2.0. Also, 1≦α≦1. Further, M1≠M2 and M3≠M4.

Подробнее
16-05-2013 дата публикации

Copper hydrogenation catalyst, especially for converting oxalate to ethylene glycol, method of preparing the catalyst and applications thereof

Номер: US20130123550A1
Принадлежит: TIANJIN UNIVERSITY

A copper catalyst for producing ethylene glycol by hydrogenation of an oxalate. The catalyst includes a carrier, an additive, and an active component. The carrier is ceramic or metallic honeycomb. The additive is Al, Si, Ba, Ca, Ti, Zr, Fe, Zn, Mn, V, La, Ce, an oxide thereof, or a mixture thereof. The active component is copper, and the active component and the additive are coated on the carrier to form a coating layer. The additive accounts for 5-90 wt. % of the carrier, the active component accounts for 1-40 wt. % of the carrier, and the copper accounts for 5-50 wt. % of the coating layer.

Подробнее
23-05-2013 дата публикации

Process for Producing SN-Comprising Catalysts

Номер: US20130131339A1
Принадлежит: BASF SE

The present invention relates to a process for producing a supported tin-comprising catalyst, wherein a solution (S) comprising tin nitrate and at least one complexing agent is applied to the support, where the solution (S) does not comprise any solid or has a solids content of not more than 0.5% by weight based on the total amount of dissolved components. 120.-. (canceled)21. A process for producing a supported tin-comprising catalyst , wherein a solution (S) comprising tin nitrate and at least one complexing agent is applied to the support , where the solution (S) does not comprise any solid or comprises a solids content of not more than 0.5% by weight based on the total amount of dissolved components.22. The process according to claim 21 , wherein the solution (S) is an aqueous solution.23. The process according to claim 21 , wherein the solution (S) additionally comprises at least one further metal salt.24. The process according to claim 23 , wherein the further metal salt is nickel nitrate claim 23 , cobalt nitrate or copper nitrate.25. The process according to claim 21 , wherein the support is aluminum oxide.26. The process according to claim 21 , wherein the complexing agent is selected from among glycolic acid claim 21 , lactic acid claim 21 , hydracylic acid claim 21 , hydroxybutyric acid claim 21 , hydroxyvaleric acid claim 21 , malic acid claim 21 , mandelic acid claim 21 , citric acid claim 21 , sugar acids claim 21 , tartronic acid claim 21 , tartaric acid claim 21 , oxalic acid claim 21 , malonic acid claim 21 , maleic acid claim 21 , succinic acid claim 21 , glutaric acid claim 21 , adipic acid claim 21 , glycine claim 21 , hippuric acid claim 21 , EDTA claim 21 , alanine claim 21 , valine claim 21 , leucine and isoleucine.27. The process according to claim 21 , wherein the solution (S) comprises tin nitrate claim 21 , nickel nitrate claim 21 , cobalt nitrate claim 21 , copper nitrate and citric acid.28. The process according to claim 21 , wherein the ...

Подробнее
04-07-2013 дата публикации

SILICA-BASED MATERIAL AND PROCESS FOR PRODUCING THE SAME, NOBLE METAL SUPPORTED MATERIAL AND PROCESS FOR PRODUCING CARBOXYLIC ACIDS BY USING THE SAME AS CATALYST

Номер: US20130172599A1
Принадлежит: ASAHI KASEI CHEMICALS CORPORATION

A silica-based material comprising: 1. A silica-based material comprising:silicon;aluminum;at least one fourth period element selected from the group consisting of iron, cobalt, nickel and zinc; andat least one basic element selected from the group consisting of alkali metal elements, alkali earth metal elements and rare earth elements,wherein the silica-based material comprises 42 to 90 mol % of the silicon, 3 to 38 mol % of the aluminum, 0.5 to 20 mol % of the fourth period element and 2 to 38 mol % of the basic element, based on a total mole of the silicon, the aluminum, the fourth period element and the basic element.2. The silica-based material according to claim 1 ,wherein a composition ratio of the fourth period element to the aluminum is 0.02 to 2.0 on a mole basis.3. The silica-based material according to or claim 1 ,wherein a composition ratio of the fourth period element to the basic element is 0.02 to 2.0 on a mole basis.4. The silica-based material according to or claim 1 ,wherein the fourth period element is nickel, the basic element is magnesium, and the silica-based material comprises 42 to 90 mol % of the silicon, 3 to 38 mol % of the aluminum, 0.5 to 20 mol % of the nickel and 2 to 38 mol % of the magnesium, based on a total mole of the silicon, the aluminum, the nickel and the magnesium.5. A process for producing a silica-based material comprising silicon claim 1 , aluminum claim 1 , at least one fourth period element selected from the group consisting of iron claim 1 , cobalt claim 1 , nickel and zinc and at least one basic element selected from the group consisting of alkali metal elements claim 1 , alkali earth metal elements and rare earth elements claim 1 , and comprising 42 to 90 mol % of the silicon claim 1 , 3 to 38 mol % of the aluminum claim 1 , 0.5 to 20 mol % of the fourth period element and 2 to 38 mol % of the basic element claim 1 , based on a total mole of the silicon claim 1 , the aluminum claim 1 , the fourth period element and ...

Подробнее
08-08-2013 дата публикации

Ce-BASED COMPOSITE OXIDE CATALYST, PREPARATION METHOD AND APPLICATION THEREOF

Номер: US20130202513A1

Disclosed is a Ce-based composite oxide catalyst for selective catalytic reducing nitrogen oxides with ammonia, which comprises Ce oxide and at least one oxide of transition metal except Ce. The Ce-based composite oxide catalyst is prepared by a simple method which uses non-toxic and harmless raw materials, and it has the following advantages: high catalytic activity, and excellent selectivity for generating nitrogen etc. The catalyst can be applied in catalytic cleaning plant for nitrogen oxides from mobile and stationary sources.

Подробнее
15-08-2013 дата публикации

HEXAALUMINATE-COMPRISING CATALYST FOR THE REFORMING OF HYDROCARBONS AND A REFORMING PROCESS

Номер: US20130210619A1
Принадлежит:

A hexaaluminate-containing catalyst for reforming hydrocarbons. The catalyst consists of a hexaaluminate-containing phase, which consists of cobalt and at least one further element from the group consisting of La, Ba, and Sr, and an oxidic secondary phase. To prepare the catalyst, an aluminum source is brought into contact with a cobalt-containing metal salt solution, dried, and calcined. The metal salt solution additionally contains the at least one further element. The reforming of methane and carbon dioxide is great economic interest since synthesis gas produced during this process can form a raw material for the preparation of basic chemicals. In addition, the use of carbon dioxide as a starting material is important in the chemical syntheses in order to bind carbon dioxide obtained as waste product in numerous processes by a chemical route and thereby avoid emission into the atmosphere. 1. A process for the reforming of hydrocarbons , preferably methane , in the presence of CO , which comprises the following steps:{'sub': '2', '(a.1) contacting of a reforming gas comprising more than 70% by volume of hydrocarbons, preferably methane, and COwith a hexaaluminate-comprising catalyst,'}(a.2) heating of the catalyst at a temperature of >700° C., preferably at a temperature of >800° C. and more preferably at a temperature of >900° C. when coming into contact with the reforming gas,(a.3) operation of the reactor at a process pressure of >5 bar, preferably at a process pressure of >10 bar and more preferably at a process pressure of >15 bar while the reaction is being carried out,{'sup': −1', '−1', '−1, '(a.4) the reforming gas brought into contact with the catalyst has a GHSV in the range from 500 to 20 000 hr, preferably the GHSV is in the range from 1500 to 10 000 hrand more preferably in the range from 2000 to 5000 hr, and'}the hexaaluminate-comprising catalyst comprises cobalt and at least one further metal from the group consisting of Ba, Sr, La.2. The process ...

Подробнее
15-08-2013 дата публикации

Catalyst And Method For The Direct Synthesis Of Dimethyl Ether From Synthesis Gas

Номер: US20130211148A1
Принадлежит: BASF Corp

Catalysts and methods for their manufacture and use for the synthesis of dimethyl ether from syngas are disclosed. The catalysts comprise ZnO, CuO, ZrO 2 , alumina and one or more of boron oxide, tantalum oxide, phosphorus oxide and niobium oxide. The catalysts may also comprise ceria. The catalysts described herein are able to synthesize dimethyl ether directly from synthesis gas, including synthesis gas that is rich in carbon monoxide.

Подробнее
22-08-2013 дата публикации

STABLE SLURRY BED FISCHER-TROPSCH CATALYST WITH HIGH SURFACE AREA AND ACTIVITY

Номер: US20130217569A1
Принадлежит: RENTECH, INC.

A method of forming a Fischer-Tropsch catalyst by providing at least one metal nitrate solution, combining each of the at least one metal nitrate solutions with a precipitating agent whereby at least one catalyst precipitate is formed, and incorporating a strong base during precipitation, subsequent precipitation, or both during and subsequent precipitation. Catalysts produced via the disclosed method are also provided. 1. A method of forming a Fischer-Tropsch catalyst , the method comprising: providing at least one metal nitrate solution; combining each of the at least one metal nitrate solutions with a precipitating agent whereby at least one catalyst precipitate is formed; andincorporating a strong base during precipitation, subsequent precipitation, or both during and subsequent precipitation.2. The method of wherein the metal comprises iron.3. The method of wherein the iron nitrate solution comprises Fe(II)/Fe(III) at a desired ratio.4. The method of wherein the desired ratio of ferrous iron to ferric iron is about 1:3.5. The method of wherein the at least one metal nitrate solution further comprises at least one other metal in addition to iron claim 2 , and the method further comprises co-precipitating at least one other metal or metalloid from the at least one metal nitrate solution.6. The method of wherein the at least one other metal comprises copper.7. The method of comprising providing at least two metal nitrate solutions claim 1 , and wherein the method further comprises precipitating at least one other metal or metalloid from a second metal nitrate solution.8. The method of wherein the at least one other metal or metalloid is selected from the group consisting of magnesium claim 7 , copper claim 7 , aluminum claim 7 , silicon claim 7 , and combinations thereof.9. The method of wherein the second metal nitrate solution comprises copper nitrate.10. The method of wherein the precipitating agent is selected from the group consisting of NHOH claim 1 , (NH)CO ...

Подробнее
29-08-2013 дата публикации

Process for the Hydrotreatment of Vegetal Materials

Номер: US20130219774A1
Принадлежит: BTG BIOMASS TECHNOLOGY GROUP B.V.

The present invention relates to a process for the hydrotreatment of a vegetal biomass. Specifically, the present invention relates to a process for the hydrotreatment of a vegetal biomass comprising: a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal-metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel. Further, the present invention relates to a metal oxide, mixed metal oxide or metal-metalloid oxide catalyst. Furthermore, the present invention relates to the use of the catalyst. 1. Process for the hydrotreatment of a vegetal biomass comprising:a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal- metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel.2. Process according to claim 1 , wherein the process further comprises:b) subjecting the mixture of step a) to a second hydrotreatment in a second reactor and contacting the hydrotreated vegetal biomass in an ...

Подробнее
29-08-2013 дата публикации

SUPPORTED CATALYST AND USE THEREOF FOR REFORMING OF STEAM AND HYDROCARBONS

Номер: US20130225399A1
Принадлежит: AIR PRODUCTS AND CHEMICALS, INC.

A method of making a supported catalyst for reforming of steam and hydrocarbons and a steam-hydrocarbon reforming process using the supported catalyst. The supported catalyst is made from a mixture comprising 20 to 99.5 mass % of lanthanum-stabilized γ-alumina and/or lanthanum-stabilized θ-alumina, 0 to 60 mass % oalumina, 0 to 25 mass % of calcium carbonate and/or magnesium carbonate, and 0.5 to 5 mass % of graphite, a cellulose ether, and/or magnesium stearate. The supported catalyst has a porosity between 55% and 75% and a pore volume between 0.3 cc/g and 0.65 cc/g. 1. A method of making a supported catalyst comprising nickel for reforming of steam and hydrocarbons , the method comprising , in sequence:(a) forming a mixture comprising 20 to 99.5 mass % of at least one of lanthanum-stabilized γ-alumina and lanthanum-stabilized θ-alumina, 0 to 60 mass % α-alumina, 0 to 25 mass % of at least one of calcium carbonate and magnesium carbonate, and 0.5 to 5 mass % of at least one of graphite, a cellulose ether, and magnesium stearate;(b) forming pellets from the mixture;(c) calcining the pellets in one or more heating stages wherein the pellets are heated to at least 975° C. during at least one of the one or more heating stages and wherein the pellets are not heated above 1100° C. during calcining;(d) cooling the pellets to between 20° C. and 30° C.;(e) soaking the pellets in an aqueous nickel-containing solution comprising at least one of nickel nitrate, nickel hydroxide, and nickel acetate;(f) removing the pellets from the nickel-containing solution;(g) baking the pellets wherein the pellets are heated to at least 625° C. wherein the pellets are not heated above 800° C. during baking; and(h) cooling the pellets to between 20° C. and 30° C. to make the supported catalyst comprising nickel.2. The method of wherein the one or more heating stages comprise:(i) a first heating step wherein the pellets are heated from a first temperature to at least 575° C. during a first ...

Подробнее
05-09-2013 дата публикации

Method for producing catalysts and catalysts thereof

Номер: US20130231241A1
Принадлежит: Yara International ASA

The invention relates to a process to produce catalysts by powder injection moulding and the catalysts thereof, wherein the catalysts are made by preparing a ceramic formulation with temperature controlled rheological properties comprising catalytic components, heating the powder formulation up to at least the fluid state transition temperature, shaping a sample by injecting the fluid powder formulation into an injection mould followed by cooling the injected powder formulation below the fluid state transition temperature, de-binding the shaped sample, and sintering the shaped sample to form a ceramic catalyst. Alternatively the ceramic structure may be formed initially followed by a coating of the ceramic structure by one or more catalytic compounds.

Подробнее
12-09-2013 дата публикации

Method for Manufacturing Iron Catalyst

Номер: US20130237410A1
Принадлежит: KOREA INSTITUTE OF ENERGY RESEARCH

Disclosed is a method for manufacturing an iron catalyst, the method including: a mixing stage where a mixture solution is manufactured by mixing iron nitrate (Fe(NO)) solution and copper nitrate (Cu(NO)) solution; a precipitation slurry-forming stage where a precipitation slurry is formed by adding at least one of sodium carbonate (NaCO) or sodium hydroxide (NaCO) solutions to the mixture solution; a washing stage where the precipitation slurry is filtered and washed with distilled water; a silica adding stage where fumed silica powder and potassium carbonate (KCO) solution are added to the precipitation slurry and then agitated; a drying stage where the precipitation slurry is passed through a sieve having a size of 30 μm to 100 μm and dried by a spry drying method to manufacture a powdered iron catalyst; and a heat treatment stage where the iron catalyst is dried at a temperature of 50° to 150° C., and then heat-treated at a temperature of 300° C. to 500° C. 1. A method for manufacturing an iron catalyst , the method comprising:{'sub': 3', '3', '3', '2, 'a mixing stage where a mixture solution is manufactured by mixing iron nitrate (Fe(NO)) solution and copper nitrate (Cu(NO)) solution;'}{'sub': 2', '3', '2', '3, 'a precipitation slurry-forming stage where a precipitation slurry is formed by adding at least one of sodium carbonate (NaCO) or sodium hydroxide (NaCO) solutions to the mixture solution;'}a washing stage where the precipitation slurry is filtered and washed with distilled water;{'sub': 2', '3, 'a silica adding stage where fumed silica powder and potassium carbonate (KCO) solution are added to the precipitation slurry and then agitated;'}a drying stage where the precipitation slurry is passed through a sieve having a size of 30 μm to 100 μm and dried by a spry drying method to manufacture a powdered iron catalyst; anda heat treatment stage where the iron catalyst is dried at a temperature of 50° C. to 150° C., and then heat-treated at a temperature of ...

Подробнее
03-10-2013 дата публикации

CATALYST FOR HYDROGENATION OF OXALIC ESTER TO ETHANOL, METHOD OF PREPARING THE CATALYST, AND METHOD OF USING THE SAME

Номер: US20130261350A1
Принадлежит: TIANJIN UNIVERSITY

A catalyst including: a support, the support including a mixture of SiOand ZrO; an active ingredient including copper; a first additive including a metal, an oxide thereof, or a combination thereof; and a second additive including Li, Na, K, or a combination thereof. The metal is Mg, Ca, Ba, Mn, Fe, Co, Zn, Mo, La, or Ce. Based on the total weight of the catalyst, the weight percentages of the different components are as follows: SiO=50-90 wt. %; ZrO=0.1-10 wt. %; copper=10-50 wt. %; the first additive=0.1-10 wt. %; and the second additive=0.1-5 wt. %. 2. The catalyst of claim 1 , wherein the weight of SiOis 50-80% of that of the catalyst.3. The catalyst of claim 1 , wherein the weight of ZrOis 0.4-5% of that of the catalyst.4. The catalyst of claim 1 , wherein the weight of active ingredient copper is 20-40% of that of the catalyst.5. The catalyst of claim 1 , wherein the weight of first additive is 0.5-5% of that of the catalyst.6. The catalyst of claim 1 , wherein the weight of second additive is 0.3-1% of that of the catalyst.7. A method for preparing the catalyst of claim 1 , the method comprising:1) providing an aqueous solution comprising a soluble copper precursor;2) providing a first soluble precursor comprising the first additive, and uniformly mixing the first soluble precursor with the soluble copper precursor;3) adding a precipitator of aqueous ammonia or urea to the aqueous solution and stirring;4) dissolving a precursor of Zr with diluted nitric acid and adding aqueous ammonia to the precursor until a pH value therein is 1.5-2.0 to form a semitransparent Zr sol;5) adding the Zr sol to gel sol and stirring for 2-10 h under heating;6) adding a mixed sol obtained in step 5) to the aqueous solution obtained in step 3), stirring for 2-12 h, heating the mixture to 50-100° C. to allow for precipitation of copper and the first additive, terminating heating when the pH value is lower than 7, filtering a resulting precipitant, washing, and drying; and7) ...

Подробнее
10-10-2013 дата публикации

Single reaction synthesis of texturized catalysts

Номер: US20130267411A1
Принадлежит: BRIGHAM YOUNG UNIVERSITY

Methods are described for making a texturized catalyst. The textural promoter may be a high-surface area, high-porosity, stable metal oxide support. The catalyst is manufactured by reacting catalyst precursor materials and support materials in a single, solvent deficient reaction to form a catalyst. The catalyst may be particles or a coating or partial coating of a support surface.

Подробнее
24-10-2013 дата публикации

METHOD AND SYSTEM FOR FORMING PLUG AND PLAY OXIDE CATALYSTS

Номер: US20130281288A1
Принадлежит:

An oxide catalyst is formed by vaporizing a quantity of at least one precursor material or catalyst material thereby forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming oxide catalysts comprises means for vaporizing a quantity of at least one precursor material or at least one catalyst material, quenching the resulting vapor cloud and forming precipitate nanoparticles. The system further comprises means for supports with the nanoparticles. 124-. (canceled)25. An oxide catalyst prepared by a method comprising:a. providing a quantity of oxygen containing nanoparticles;b. providing a quantity of supports; andc. combining the supports with the nanoparticles.26. The oxide catalyst of wherein the supports comprise voids and pores.27. The oxide catalyst of wherein providing a quantity of nanoparticles comprises:a. loading a quantity of at least one precursor material into a plasma gun;b. vaporizing the at least one precursor material; andc. quenching the at least one precursor material.28. The oxide catalyst of wherein the precursor material comprises a material selected from the group consisting of a metal claim 27 , a metal compound claim 27 , an oxide claim 27 , a salt claim 27 , a carbon compound claim 27 , and any combination thereof.29. The oxide catalyst of wherein providing a quantity of nanoparticles comprises:a. loading a quantity of at least one catalyst material into a plasma gun;b. vaporizing the at least one catalyst material; andc. quenching the at least one catalyst material.30. The oxide catalyst of wherein combining the supports with the nanoparticles comprises:a. suspending the nanoparticles in a solution, thereby forming a suspension; andb. mixing the suspension with a quantity of the supports.31. The oxide catalyst of wherein the solution further comprises a dispersant or a ...

Подробнее
24-10-2013 дата публикации

CATALYST PREPARATION METHOD

Номер: US20130281289A1
Принадлежит: JOHNSON MATTHEY PLC

A method is described for preparing a catalyst comprising including the steps of: 1. A method for preparing a catalyst comprising the steps of:(i) impregnating a calcined support comprising a metal aluminate with a solution comprising nickel acetate at a temperature ≧40° C. to form an impregnated support and drying the impregnated support to form a dried impregnated support,(ii) calcining the dried impregnated support, to form a nickel oxide coated support, and(iii) optionally repeating steps (i) and (ii), on the nickel oxide coated support.2. A method according to wherein the metal aluminate is selected from the group consisting of calcium aluminate claim 1 , magnesium aluminate and nickel aluminate.3. A method according to wherein the metal aluminate is calcium aluminate and the calcined support is formed by shaping a calcium aluminate cement powder into a shaped support claim 1 , curing the cement claim 1 , and subsequently calcining the shaped support.4. A method according to wherein the shaped support is alkalised by impregnation with a solution of an alkali prior to calcining the shaped support.5. A method according to wherein the calcined support is in the form of a shaped pellet claim 1 , extrudate claim 1 , or granule.6. A method according to wherein the calcined support is in the form of a cylindrical pellet having between 1 and 12 holes extending therethrough.7. A method according to wherein the solution is at a temperature ≧50° C.8. A method according to wherein the solution has a Ni concentration in the range of 0.5-1.0M.9. A method according to wherein steps (i) and (ii) are performed until the nickel oxide coated support has a nickel oxide content in the range of 2 to 25% wt.10. A method according to wherein one or more promoter compounds are impregnated into the dried impregnated support and/or the nickel oxide coated support.11. A method according to wherein calcining the dried impregnated support is performed at a temperature in the range of 250- ...

Подробнее
31-10-2013 дата публикации

CATALYST FOR PREPARING CHLORINE BY OXIDATION OF HYDROGEN CHLORIDE AND PREPARATION THEREOF

Номер: US20130288884A1
Принадлежит:

The present invention relates to a catalyst for producing chlorine by oxidation of hydrogen chloride and a method for preparing the same. The catalyst comprises a support and active ingredients that comprise 1-20 wt % of copper, 0.01-5 wt % of boron, 0.1-10 wt % of alkali metal element(s), 0.1-15 wt % of one or more rare earth elements, and 0-10 wt % of one or more elements selected from magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium or titanium based on the total weight of the catalyst. The catalyst is prepared by a two-step impregnation method. Comparing with the available catalysts of the same type, the catalyst according to the present invention has greatly improved conversion and stability. 1. A catalyst for producing chlorine by oxidation of hydrogen chloride comprising a support and active ingredients , wherein the active ingredients comprise: 1-20 wt % of copper , 0.01-5 wt % of boron , 0.1-10 wt % of alkali metal element(s) , 0.1-15 wt % of one or more rare earth elements , and 0-10 wt % of one or more elements selected from the group consisting of: magnesium , calcium , barium , manganese , iron , nickel , cobalt , zinc , ruthenium and titanium , based on the total weight of the catalyst.214-. (canceled)15. The catalyst according to claim 1 , wherein the active ingredients comprise: 4-15 wt % of copper claim 1 , 0.1-4 wt % of boron claim 1 , 2-7 wt % of alkali metal element(s) claim 1 , 1-11 wt % of one or more rare earth elements claim 1 , and 1-8 wt % of one or more elements selected from the group consisting of: magnesium claim 1 , calcium claim 1 , barium claim 1 , manganese claim 1 , iron claim 1 , nickel claim 1 , cobalt claim 1 , zinc claim 1 , ruthenium and titanium.16. The catalyst according to claim 15 , wherein the active ingredients comprise: 5-12 wt % of copper claim 15 , 0.15-3 wt % of boron claim 15 , 2.5-6 wt % of alkali metal element(s) claim 15 , 2-9 wt % of one or more rare earth elements claim 15 , and 2-6 ...

Подробнее
31-10-2013 дата публикации

AMMONIA OXIDATION/DECOMPOSITION CATALYST

Номер: US20130288890A1
Принадлежит: HITACHI ZOSEN CORPORATION

Provided is an ammonia oxidation/decomposition catalyst which can decrease the reduction temperature of a support, which is required for the catalyst to have a property of being activated at room temperature, and also can render a property of being activated at a temperature lower than room temperature. The ammonia oxidation/decomposition catalyst of the present invention is an ammonia oxidation/decomposition catalyst, comprising: a catalyst support composed of a composite oxide of cerium oxide and zirconium oxide; and at least one metal selected from the group consisting of metals of group 6A, group 7A, group 8, and group 1B as a catalytically active metal deposited thereon, characterized in that the molar concentration of zirconium oxide in the catalyst support is from 10 to 90%. 1. An ammonia oxidation/decomposition catalyst , comprising: a catalyst support composed of a composite oxide of cerium oxide and zirconium oxide; and at least one metal selected from the group consisting of metals of group 6A , group 7A , group 8 , and group 1B as a catalytically active metal deposited thereon , characterized in that the molar concentration of zirconium oxide in the catalyst support is from 10 to 90%.2. The ammonia oxidation/decomposition catalyst according to claim 1 , which is in a honeycomb form.3. The ammonia oxidation/decomposition catalyst according to claim 1 , which is in a pellet or raschig ring form. The present invention relates to an ammonia oxidation/decomposition catalyst which is used in a combustion improver for an ammonia engine using ammonia as a fuel or in a hydrogen production reaction in a fuel cell, etc.Conventionally, in order to produce hydrogen by decomposing ammonia, it is necessary to allow a reaction of the following formula (I) to proceed in the presence of a ruthenium-based ammonia decomposition catalyst.NH3/2H+1/2N  (I)ΔH=46.1 kJ/molSince the reaction of the formula (I) is an endothermic reaction, in order to obtain a stable ammonia ...

Подробнее
31-10-2013 дата публикации

Catalysts and process for producing same

Номер: US20130288891A1
Принадлежит: Santoku Corp

A catalyst, a hydrocarbon steam reforming catalyst, and a method for producing the same are provided. A catalytic metal containing at least Ni is supported on a composite oxide containing R, Zr, and oxygen, at a composition of not less than 10 mol % and not more than 90 mol % of R, not less than 10 mol % and not more than 90 mol % of Zr, and not less than 0 mol % and not more than 20 mol % of M (M: elements other than oxygen, R, and Zr), with respect to the total of the elements other than oxygen being 100 mol %, wherein the composite oxide has a specific surface area of 11 to 90 m 2 /g, and the largest peak in the wavelength range of 200 to 800 cm −1 of Raman spectrum with a full width at half maximum of 20 to 72 cm −1 .

Подробнее
14-11-2013 дата публикации

CATALYST FOR HYDROGEN PRODUCTION

Номер: US20130302241A1
Принадлежит:

The invention provides a catalyst for the production of hydrogen by steam reforming. The catalyst is a porous catalyst which is based on at least aluminium oxide and preferably magnesium oxide, and further comprises boron and nickel. The porous catalyst comprises pores having an average pore size in the range of 0.1-50 nm. The activity of the catalyst may be further enhanced by addition of a noble metal such as Rh, Ru, Pd, Ir or Pt. The catalyst can be broadly used in hydrogen production processes, and is especially suitable for reforming using a membrane which is selective for a predetermined reaction product. Such process can be operated at relatively low temperatures of about 450-700° C. 117.-. (canceled)18. A porous catalyst having pores with an average pore size in the range of 0.1-50 nm and comprising: (a) aluminium oxide , (b) a metal oxide selected from magnesium oxide , calcium oxide , titanium oxide , chromium oxide , iron oxide , manganese oxide and zirconium oxide , and (c) boron and nickel.19. The catalyst according to claim 18 , wherein the metal oxide is selected from magnesium oxide claim 18 , calcium oxide and titanium oxide.20. The catalyst according to claim 19 , wherein the metal oxide comprises magnesium oxide.21. The catalyst according to claim 19 , comprising MgAlO.22. The catalyst according to claim 18 , wherein the average pore size is in the range of 4-30 nm.23. The catalyst according to claim 18 , comprising 15-45 wt. % of Ni and 0.5-5 wt. % of B.24. The catalyst according to claim 18 , further comprising one or more elements selected from the group consisting of Li claim 18 , Na claim 18 , K claim 18 , Rb claim 18 , Cs claim 18 , Be claim 18 , Sr claim 18 , Ba claim 18 , Sc claim 18 , Y claim 18 , La claim 18 , Ce claim 18 , Pr claim 18 , Nd claim 18 , Sm claim 18 , Eu claim 18 , Gd claim 18 , Tb claim 18 , Dy claim 18 , Ho claim 18 , Er claim 18 , Tm claim 18 , Yb claim 18 , Hf claim 18 , V claim 18 , Nb claim 18 , Ta claim 18 , Mo claim ...

Подробнее
14-11-2013 дата публикации

METHOD OF PREPARING MAGNESIUM OXIDE STRUCTURE WITH MESO-MACRO PORES

Номер: US20130303357A1

Provided are a method of preparing a magnesium oxide structure and a magnesium oxide structure prepared by using the method. The magnesium oxide structure has meso-macro pores, a large specific surface area, and high strength, thereby enabling production of a catalyst with high catalytic activity. 1. A method of preparing a magnesium oxide catalyst support with meso-macro pores , the method comprising:preparing magnesium oxide precursor powder for forming mesopores;forming a powder mixture by mixing the magnesium oxide precursor powder for forming mesopores with an inorganic binder; andmolding and sintering the powder mixture.2. The method of claim 1 , wherein the magnesium oxide precursor powder for forming mesopores is magnesium hydroxide powder claim 1 , magnesium hydrogen carbonate powder claim 1 , or magnesium carbonate powder.3. The method of claim 1 , wherein the inorganic binder comprises at least one selected from magnesium hydroxide claim 1 , aluminum hydroxide claim 1 , and zinc hydroxide.4. The method of claim 1 , wherein the preparing of the magnesium oxide precursor powder for forming mesopores comprises treating a magnesium nitrate with supercritical carbon dioxide.5. The method of claim 4 , wherein the treating with supercritical carbon dioxide is performed at the temperature of 30 to 300° C. at a pressure of 0.5 to 30 MPa.6. The method of claim 1 , wherein when the magnesium oxide precursor powder for forming mesopores is mixed with the inorganic binder claim 1 , a precipitating agent is further added thereto.7. The method of claim 1 , wherein the forming of the powder mixture comprises obtaining a mixed precipitate of magnesium oxide precursor powder for forming mesopores and the inorganic binder and solid-liquid separating of the mixed precipitate.8. The method of claim 1 , wherein the precipitating agent is ammonia water.9. The method of claim 1 , wherein the magnesium oxide precursor powder for forming mesopores and the inorganic binder are ...

Подробнее
21-11-2013 дата публикации

Processes for preparing amines and catalysts for use therein

Номер: US20130310560A1
Принадлежит: BASF SE

Processes for preparing an amine are described which comprise reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound selected from the group of ammonia, primary and secondary amines, in the presence of a zirconium dioxide-, copper- and nickel-containing catalyst. The catalytically active composition of the catalyst, before its reduction with hydrogen, comprises oxygen compounds of zirconium, of copper, of nickel, in the range from 1.0 to 5.0% by weight of oxygen compounds of cobalt, calculated as CoO, and in the range from 0.2 to 5.0% by weight of oxygen compounds of sulfur, of phosphorus, of gallium, of lead and/or of antimony, calculated in each case as H2SO4, H3PO4, Ga203, PbO and Sb203 respectively.

Подробнее
21-11-2013 дата публикации

Ligand Synthesis

Номер: US20130310590A1
Принадлежит: NOVA CHEMICALS (INTERNATIONAL) S.A.

Compounds 1,3,4-(SiMe)(CF)(alkyl)CHare made using a simplified synthetic strategy which is readily scalable. On reaction with a suitable transition metal species, a 1,3,4-(SiMe)(CF)(alkyl)CHmolecule provides an organotransition metal complex comprising a 1,2-(CF)(alkyl) substituted cyclopentadienyl ligand, which is active toward olefin polymerization. 1. A method for making the compound 1 ,3 ,4-(SiMe)(CF)(R)CHwithout isolating intermediates , said method comprising the following steps:{'sub': 6', '6', '5', '5', '6', '5', '5', '4, 'sup': 1', '2', '1', '1', '2, 'Step 1) in the presence of an ethereal solvent, combining perfluorobenzene CF, a metal cyclopentadienide [M][CH] and a first base MBto form a first reaction mixture comprising [M/M][(CF)CH];'}{'sub': 3', '3', '6', '5', '5', '4, 'Step 2) combining at least 2 molar equivalents of ClSiMewith said first reaction mixture to give a second reaction mixture comprising 1,3-(SiMe)(CF)CH;'}{'sup': 3', '2', '1', '2', '3, 'sub': 3', '6', '5', '5', '3, 'Step 3) combining a second base MBwith said second reaction mixture to give a third reaction mixture comprising [M/M/M][1,3-(SiMe)(CF)CH];'}{'sub': 3', '6', '5', '5', '3, 'claim-text': {'sup': 1', '2', '3', '+', '+', '+', '1', '2, 'wherein M, M, Mare the same or different metal selected from the group consisting of Li, Na and K; Band Bare the same or different base selected from the group consisting of hydride, alkylide, amide and alkoxide; R is a primary or secondary alkyl group; and X is a halide group or a sulfonate group.'}, 'Step 4) combining a compound RX with said third mixture to give a fourth reaction mixture comprising 1,3,4-(SiMe)(CF)(R)CH;'}2. The method of wherein approximately equimolar amounts of CF claim 1 , [Na][CH] and NaH are combined in step 1.3. The method of wherein CFis combined with approximately 2 molar equivalents of [Na][CH] in step 1.4. The method of wherein CFis added slowly over at least 30 min to approximately 2 molar equivalents of [Na][CH] in ...

Подробнее
28-11-2013 дата публикации

Nickel-M-Alumina Xerogel Catalyst, Method for Preparing the Same, and Method for Preparing Methane Using the Catalyst

Номер: US20130317127A1
Принадлежит: Posco Co Ltd

A nickel-M-alumina hybrid xerogel catalyst for preparing methane, wherein the metal M is at least one element selected from the group consisting of Fe, Co, Ni, Ce, La, Mo, Cs, Y, and Mg, a method for preparing the catalyst and a method for preparing methane using the catalyst are provided. The catalyst has strong resistance against a high-temperature sintering reaction and deposition of carbon species, and can effectively improve a conversion ratio of carbon monoxide and selectivity to methane.

Подробнее
05-12-2013 дата публикации

PROCESS FOR THE PREPARATION OF A MONO-N-ALKYLPIPERAZINE

Номер: US20130324731A1
Принадлежит:

Process for the preparation of a mono-N-alkylpiperazine of the formula I 132-. (canceled)34. The process according to claim 33 , wherein the oxidic material comprises(a) copper oxide with a fraction in the range from 50≦x≦80% by weight, calculated as CuO,(b) aluminum oxide with a fraction in the range from 15≦y≦35% by weight and(c) lanthanum oxide with a fraction in the range from 2≦z≦20% by weight,in each case based on the total weight of the oxidic material after calcination, where: 80≦x+y+z≦100.35. The process according to claim 33 , wherein the oxidic material comprises(a) copper oxide with a fraction in the range from 55≦x≦75% by weight, calculated as CuO,(b) aluminum oxide with a fraction in the range from 20≦y≦30% by weight and(c) lanthanum oxide with a fraction in the range from 3≦z≦15% by weight, in each case based on the total weight of the oxidic material after calcination, where: 80≦x+y+z≦100.36. The process according to claim 33 , wherein the oxidic material comprises(a) copper oxide with a fraction in the range from 55≦x≦75% by weight, calculated as CuO,(b) aluminum oxide with a fraction in the range from 20≦y≦30% by weight and(c) lanthanum oxide with a fraction in the range from 3≦z≦15% by weight,in each case based on the total weight of the oxidic material after calcination, where: 95≦x+y+z≦100.37. The process according to claim 33 , wherein claim 33 , in step ii claim 33 , graphite is added in amounts in the range from 0.5 to 5% by weight claim 33 , based on the total weight of the oxidic material after calcination.38. The process according to claim 33 , wherein pulverulent copper and/or the copper flakes taken together are added in amounts in the range from 0.5 to 40% by weight claim 33 , based on the total weight of the oxidic material after calcination.39. The process according to claim 33 , wherein 0.5 to 5% by weight of graphite is added to the mixture resulting from step ii prior to the shaping in step iii claim 33 , based on the total weight ...

Подробнее
05-12-2013 дата публикации

Process for the Preparation of a Mono-N-Alkypiperazine

Номер: US20130324732A1
Принадлежит:

Process for the preparation of a mono-N-alkylpiperazine of the formula I 132-. (canceled)34. The process according to claim 33 , wherein the catalytically active mass of the catalyst claim 33 , prior to its reduction with hydrogen claim 33 , comprises in the range from 0.4 to 4.0% by weight of oxygen-containing compounds of tin claim 33 , calculated as SnO.35. The process according to claim 33 , wherein the catalytically active mass of the catalyst claim 33 , prior to its reduction with hydrogen claim 33 , comprises in the range from 0.6 to 3.0% by weight of oxygen-containing compounds of tin claim 33 , calculated as SnO.36. The process according to claim 33 , wherein the catalytically active mass of the catalyst claim 33 , prior to its reduction with hydrogen claim 33 , comprises in the range from 5.0 to 35% by weight of oxygen-containing compounds of cobalt claim 33 , calculated as CoO.37. The process according to claim 33 , wherein the catalytically active mass of the catalyst claim 33 , prior to its reduction with hydrogen claim 33 , comprises in the range from 10 to 30% by weight of oxygen-containing compounds of cobalt claim 33 , calculated as CoO.38. The process according to claim 33 , wherein the catalytically active mass of the catalyst claim 33 , prior to its reduction with hydrogen claim 33 , comprises in the range from{'sub': 2', '3, '15 to 80% by weight of oxygen-containing compounds of aluminum, calculated as AlO,'}1.0 to 20% by weight of oxygen-containing compounds of copper, calculated as CuO, and5.0 to 35% by weight of oxygen-containing compounds of nickel, calculated as NiO.39. The process according to claim 33 , wherein the catalytically active mass of the catalyst claim 33 , prior to its reduction with hydrogen claim 33 , comprises in the range from{'sub': 2', '3, '30 to 70% by weight of oxygen-containing compounds of aluminum, calculated as AlO,'}2.0 to 18% by weight of oxygen-containing compounds of copper, calculated as CuO, and10 to 30% by ...

Подробнее
19-12-2013 дата публикации

METAL EUTECTIC SUPPORTED METAL CATALYST SYSTEM AND REACTIONS WITH THE METAL CATALYST SYSTEM

Номер: US20130336878A1
Автор: Johnson Allen L.
Принадлежит:

A eutectic supported catalyst system is used in catalyzed chemical reactions. A metal catalyst particle is supported in a eutectic medium. The system may have a) a eutectic composition of at least two metals forming the eutectic composition; and b) metal catalyst particles, preferably of nanometer dimensions, such as from 0.5 to 50 nm. The particles are dispersed throughout the eutectic composition when the eutectic composition is solid, and the particles are dispersed or suspended throughout the eutectic composition when the eutectic composition is in liquid form. At least one metal of the eutectic may comprises lead and a metal in the metal catalyst is a different metal then the metals in the eutectic. The eutectic may be in a liquid state and the metal catalyst particles may be in an equilibrium state within the eutectic. 2. The supported catalyst system of wherein the eutectic is in a liquid state and the metal catalyst particles are in an equilibrium state within the eutectic.3. The supported catalyst system of wherein the eutectic in a liquid state is at a temperature of between 20° C. and 750° C.4. The supported catalyst system of wherein the eutectic in a liquid state is at a temperature of between the melting point of the low melting alloy and higher temperatures and 750° C. and the equilibrium state of the catalyst particles has metal of the metal catalyst dissolving or washing off residues or precipitates on surfaces of the catalyst particles.5. The supported catalyst system of wherein gaseous alcohol bubbles and hydrogen gas bubbles are present within the eutectic.6. A method of catalytically chemically modifying organic compounds in a catalytic reaction comprising:supporting metal catalyst particles having average diameters of from 1-25 nm within a liquid eutectic comprising two metals;flowing a gaseous organic compound as bubbles through the liquid eutectic;the gas bubbles contacting metal catalyst particles exposed from the liquid eutectic against an ...

Подробнее
16-01-2014 дата публикации

EXHAUST GAS PURIFYING CATALYST, EXHAUST GAS PURIFYING MONOLITH CATALYST, AND METHOD FOR MANUFACTURING EXHAUST GAS PURIFYING CATALYST

Номер: US20140018235A1
Принадлежит:

An exhaust gas purifying catalyst having a high purifying ability even if noble metal is not used as an essential component, an exhaust gas purifying monolith catalyst, and a method for manufacturing an exhaust gas purifying catalyst, are provided. The exhaust gas purifying catalyst includes an oxide having an oxygen storage and release capacity, and an oxide represented by the following formula (1) supported on the oxide having the oxygen storage and release capacity, 19.-. (canceled)10. An exhaust gas purifying catalyst , comprising:an oxide having an oxygen storage and release capacity; and {'br': None, 'sub': x', '1-x', '3-δ, 'LaMM′O\u2003\u2003(1)'}, 'an oxide represented by formula (1) supported on the oxide having the oxygen storage and release capacity,'}(wherein La represents lanthanum, M represents at least one element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M′ represents at least one element selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) and manganese (Mn), δ represents an oxygen deficiency amount, and x and δ fulfill conditions represented by 0 Подробнее

30-01-2014 дата публикации

METHANE SYNTHESIS CATALYST PREPARATION METHOD AND CATALYST PRECURSOR

Номер: US20140031199A1

The present invention relate to a methane synthesis catalyst preparation method, comprising a preparation step for a catalytic body and a prereduction step. The prereduction step comprises: calcining the catalytic body to form a nickel aluminate spinel-containing catalyst precursor; and prereducing the catalyst precursor to acquire the methane synthesis catalyst. The catalyst prepared in the preparation method can be used in high-temperature and high liquid-to-gas ratio conditions, shows performance stability, and obviates the need for a further step of high-temperature reduction during vehicle operation. Also provided is the methane synthesis catalyst precursor. The catalyst precursor contains nickel aluminate spinel. 1. A method for preparing a methane synthesis catalyst , comprising a preparation step for a catalytic body containing nickel nitrate , a aluminium compound and a magnesium compound and a prereduction step , wherein the catalytic body is produced by the mixing-precipitation method or the coprecipitation method; the prereduction step comprises calcining the catalytic body at 700-1100° C. to form a nickel aluminate spinel-containing catalyst precursor; and prereducing the catalyst precursor at 700-1000° C. to acquire the methane synthesis catalyst.2. The preparation method according to claim 1 , wherein the preparation step for a catalytic body by the mixing-precipitation method comprises spray drying a slurry containing nickel nitrate claim 1 , aluminium hydroxide and light magnesium oxide.3. The preparation method according to claim 1 , wherein the preparation step for a catalytic body by the coprecipitation method comprises neutralizing with an aluminium-containing precipitator a suspension or solution containing nickel nitrate and a magnesium compound selected from the group consisting of magnesium nitrate and light magnesium oxide.4. The preparation method according to claim 3 , wherein the aluminium-containing precipitator is sodium metaaluminate. ...

Подробнее
13-02-2014 дата публикации

Nickel catalysts for reforming hydrocarbons

Номер: US20140041300A1

A catalyst for reforming hydrocarbons may include a catalytically active amount of nickel or nickel oxide dispersed on a metal oxide support. The metal oxide support may be of a single-metal oxide of a first metal or a complex-metal oxide of the first metal and a second metal. A co-catalyst of magnesium oxide (MgO) may anchor the nickel or nickel oxide onto the metal oxide support.

Подробнее
06-03-2014 дата публикации

Light Absorbing Oxide Materials for Photovoltaic and Photocatalytic Applications and Devices

Номер: US20140060643A1
Принадлежит: University of Illinois

Provided are materials, methods and devices for absorption of visible or solar terrestrial electromagnetic radiation. The disclosed materials, methods and devices employ a multi-component oxide material comprising a solar terrestrial light absorbing metallic oxide and a catalytic oxide to achieve conversion of absorbed visible or solar terrestrial electromagnetic radiation into useful work, such as for photocatalytic or photovoltaic applications.

Подробнее
07-01-2016 дата публикации

PEROVSKITE WITH AN OVLERLAYER SCR COMPONENT AS AN AMMONIA OXIDATION CATALYST AND A SYSTEM FOR EXHAUST EMISSION CONTROL ON DIESEL ENGINES

Номер: US20160001228A1
Принадлежит:

An ammonia slip control catalyst having a layer containing perovskite and a separate layer containing an SCR catalyst is described. The ammonia slip catalyst can have two stacked layers, with the top overlayer containing an SCR catalyst, and the bottom layer containing a perovskite. The ammonia slip catalyst can alternatively be arranged in sequential layers, with the SCR catalyst being upstream in the flow of exhaust gas relative to the perovskite. A system comprising the ammonia slip catalyst upstream of a PGM-containing ammonia oxidation catalyst and methods of using the system are described. The system allows for high ammonia oxidation with good nitrogen selectivity. Methods of making and using the ammonia slip catalyst to reduce ammonia slip and selectively convert ammonia to Nare described. 1. An ammonia slip catalyst comprising a first layer comprising an SCR catalyst and a second layer comprising a perovskite , wherein the first layer is arranged to contact an exhaust gas before the second layer.2. The ammonia slip catalyst of claim 1 , wherein the first layer is an overlayer located over the second layer.3. The ammonia slip catalyst of claim 1 , wherein the first layer is supported on a first support material and the second layer is supported on a second support material.4. The ammonia slip catalyst of claim 1 , wherein the SCR catalyst comprises an oxide of a base metal claim 1 , a molecular sieve claim 1 , a metal exchanged molecular sieve or a mixture thereof.5. The ammonia slip catalyst of claim 4 , wherein the base metal is selected from the group consisting of cerium (Ce) claim 4 , chromium (Cr) claim 4 , cobalt (Co) claim 4 , copper (Cu) claim 4 , iron (Fe) claim 4 , manganese (Mn) claim 4 , molybdenum (Mo) claim 4 , nickel (Ni) claim 4 , tungsten (W) and vanadium (V) claim 4 , and mixtures thereof.6. The ammonia slip catalyst of claim 1 , wherein the SCR catalyst comprises a metal exchanged molecular sieve and the metal is selected from the group ...

Подробнее
07-01-2021 дата публикации

METAL ALLOY/OXIDE, METAL ALLOY/NITRIDE COMPOSITE CATALYST FOR AMMONIA DECOMPOSITION

Номер: US20210001311A1
Принадлежит:

The present invention discloses a series of ammonia decomposition catalysts, the method of making such catalysts and the use of such catalysts. The said catalysts are made of composite metal or metal alloys supported on composite oxides or nitrides as the catalyst supports. The catalysts are useful in ammonia decomposition at various temperatures and pressures, including temperatures below 500° C. and pressures up to 30 atm. 1. A catalyst , comprising: 'cobalt, iron, chromium, manganese, and vanadium;', 'a first element comprising at least one of 'nickel, copper, and niobium;', 'a second element comprising at least one ofa support; anda promoter; a bimetallic nanocluster; and', 'an alloy;, 'wherein the first element and the second element are combined to form at least one of a first mixture, the first mixture being at least one of a mixed oxide;', 'a nitride; and', 'a perovskite;, 'wherein the first mixture is supported on the support, the support comprising at least one ofwherein the promoter is an alkali metal.2. The catalyst of claim 1 , wherein the support comprises an alkaline earth metal.3. The catalyst of claim 2 , wherein the alkaline earth metal comprises at least one of magnesium claim 2 , calcium claim 2 , strontium claim 2 , and barium.4. The catalyst of claim 2 , wherein the support further comprises a rare earth metal.5. The catalyst of claim 4 , wherein the rare earth metal comprises at least one of cerium claim 4 , lanthanum claim 4 , praseodymium.6. The catalyst of claim 2 , wherein the support further comprises at least one of aluminum claim 2 , zirconium claim 2 , molybdenum claim 2 , and titanium.7. The catalyst of claim 1 , wherein the alkali metal of the promoter is at least one of potassium claim 1 , cesium claim 1 , sodium claim 1 , lithium claim 1 , and rubidium.8. The catalyst of claim 1 , wherein:the first mixture is the bimetallic nanocluster; an alkaline earth metal and a rare earth metal; and', 'at least one of aluminum, zirconium, ...

Подробнее
07-01-2016 дата публикации

PROCESS FOR THE PREPARATION OF Ni-CeMgAl2O4 CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE

Номер: US20160001269A1
Принадлежит:

The present invention provides a process and catalyst system for the production of synthesis gas (a mixture of CO and H) from greenhouse gases like methane and carbon di oxide. The process provide a single step selective reforming of methane with carbon dioxide to produce synthesis gas over Ce—Ni—MgAlOcatalyst prepared by using combination of two methods evaporation induced self-assembly and organic matrix combustion method. These suitably combined methods generate a unique catalyst system with very fine Ni nano clusters evenly dispersed in high surface area support. The process provides both Methane and carbon di oxide conversion more than 90% without any noticeable deactivation till 100 hours between temperature range of 500-800° C. at atmospheric pressure. 1. A process for the preparation of Ni—CeMgAlOcatalyst wherein the said process comprising the steps of;i. dissolving Aluminium isopropoxide in a mixture of ethanol and concentrated nitric acid;ii. preparing a second solution by dissolving Poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) (P123) in mole ration ranging between 0.003-0.004 in ethanol;iii. adding salt of Magnesium and Cerium into the second solution;{'sub': 2', '4, 'iv. mixing solution as prepared in step (i) and step (iii) and stirring for 8-10 hrs at room temp 25° C. for homogenation and kept for drying at 60-80° C. for 48-72 h and calcing at a range 700-900° C. for 6-8 hr and subsequently depositing nickel particles onto it to and further calcining at temperature 400-600° C. 6-8 h to obtain Ni—CeMgAlOcatalyst.'}2. A process as claimed in claim 1 , wherein the wt % of Ni to Ce—MgAl2O4 of the catalyst is varied in the range 1-10% (Ni:Ce—MgAl2O4).3. A process as claimed in claim 1 , wherein the wt % of MgO to Al2O3 of the catalyst is varied in the range of 1-5% (MgO:Al2O3).4. A process as claimed in claim 1 , wherein the wt % of Ce to Al2O3 is in the range of 0.1-5% Ce:Al2O3).5. A process as claimed in claim 1 , ...

Подробнее
13-01-2022 дата публикации

DRY REFORMING OF HYDROCARBONS

Номер: US20220009774A1
Принадлежит:

A dry reforming process for producing a synthesis gas from a hydrocarbon fuel is described. A feed stream is preheated. The feed stream includes the hydrocarbon fuel and carbon dioxide. The feed stream is flowed to a reactor. The reactor includes a catalyst. Flowing the feed stream to the reactor brings the feed stream into contact with the catalyst in the absence of oxygen and causes a dry reforming reaction within the reactor for a period of time sufficient to reform the hydrocarbon fuel to produce the synthesis gas. The catalyst includes nickel (Ni), lanthanum oxide (LaO), cerium oxide (CeO), and platinum (Pt). 1. A dry reforming process for producing a synthesis gas from a hydrocarbon fuel , comprising:preheating a feed stream comprising the hydrocarbon fuel and carbon dioxide; and{'sub': 2', '3', '2', '3, 'flowing the feed stream to a reactor comprising a catalyst, thereby bringing the feed stream into contact with the catalyst in the absence of oxygen and causing a dry reforming reaction within the reactor for a period of time sufficient to reform the hydrocarbon fuel to produce the synthesis gas, the catalyst comprising nickel (Ni), lanthanum oxide (LaO), cerium oxide (CeO), and platinum (Pt).'}2. The dry reforming process of claim 1 , wherein the feed stream is preheated to a temperature in a range of from about 750 degrees Celsius (° C.) to about 950° C.3. The dry reforming process of claim 1 , wherein an operating pressure within the reactor during the dry reforming reaction is in a range of from about 7 bar to about 28 bar.4. The dry reforming process of claim 1 , wherein the feed stream has a carbon dioxide to hydrocarbon ratio in a range of from about 1:1 to about 4:1.5. The dry reforming process of claim 4 , wherein the carbon dioxide to hydrocarbon ratio of the feed stream is in a range of from about 1:1 to about 2:1.6. The dry reforming process of claim 1 , wherein the feed stream comprises water.7. The dry reforming process of claim 6 , wherein the ...

Подробнее
01-01-2015 дата публикации

Optimization of Zero-PGM Catalyst Systems on Metallic Substrates

Номер: US20150005157A1
Принадлежит: CDTI

Present disclosure provides a novel process for optimization of Zero-PGM catalyst systems using metallic substrate. Deposition of a homogeneous and well-adhered layer of catalyst on the metallic substrate may be enabled by the selection of a washcoat loading resulting from variation of metal loadings. Characterization of catalysts may be performed using a plurality of catalytic tests, including but not limited to washcoating adherence test, back pressure test, inspection of textural characteristics, and catalyst activity. Optimization may be applied to a plurality of metallic substrates of different geometries and cell densities. 1. A method for improving performance of catalytic systems , comprising:providing at least one substrate;depositing a washcoat suitable for deposition on the substrate, the washcoat comprising at least one oxide solid further comprising at least one carrier metal oxide;depositing an overcoat suitable for deposition on the substrate, the overcoat comprising at least one ZPGM catalyst;wherein the washcoat is deposited at about 60 g/L to about 100 g/L; and{'sup': '3', 'wherein the substrate exhibits a back pressure of about 0.300 kPa to about 0.400 kPa when receiving an air flow of about 1.0 m/min.'}2. The method according to claim 1 , wherein the washcoat is heated for about 2 to about 6 hours.3. The method according to claim 1 , wherein the washcoat is heated for about 4 hours.4. The method according to claim 1 , wherein the washcoat is heated between about 300° C. and about 700° C.5. The method according to claim 1 , wherein the washcoat is heated about 550° C.6. The method according to claim 1 , wherein the substrate is about 100 cells per square inch.7. The method according to claim 1 , wherein the substrate comprises metal.8. The method according to claim 1 , wherein the at least one carrier material oxide comprises one selected from the group consisting of aluminum oxide claim 1 , doped aluminum oxide claim 1 , spinel claim 1 , ...

Подробнее
01-01-2015 дата публикации

Optimization of Zero-PGM Metal Loading on Metallic Substrates

Номер: US20150005159A1
Принадлежит: CDTI

The present disclosure refers to a plurality of process employed for optimization of Zero-PGM metal loading in Washcoat and Overcoat on metallic substrates. According to an embodiment a substantial increase in conversion of HC and CO may be achieved by optimizing the metal loading of the catalyst. According to another embodiment, the present disclosure may provide solutions to determine the optimum metal loading in washcoat for minimizing washcoat adhesion loss. As a result, may increase the conversion of HC and CO from discharge of exhaust gases from internal combustion engines, optimizing performance of Zero-PGM catalyst systems. 1. A method for optimizing a catalytic system , comprising: 'a substrate;', 'providing a catalyst system, comprisinga washcoat suitable for deposition on the substrate, comprising at least one first oxide solid selected from the group consisting of a first carrier material oxide, at least one first catalyst, and a mixture thereof; andan overcoat suitable for deposition on the substrate, comprising at least one second oxide solid selected from the group consisting of a second carrier material oxide, at least one second catalyst, and a mixture thereof;adjusting an amount of metal in the at least one first catalyst whereby the T50 temperatures for HC and CO are substantially equal.2. The method according to claim 1 , wherein the metal is selected from the group consisting of Cu claim 1 , Ag claim 1 , Ce claim 1 , and combinations thereof.3. The method according to claim 2 , wherein the silver in present at about 5.5 g/L.4. The method according to claim 2 , wherein the copper in present at about 6.5 g/L.5. The method according to claim 4 , wherein the ratio of cerium to copper remains substantially unchanged.6. The method according to claim 2 , wherein the copper in present at less than about 8.0 g/L.7. The method according to claim 1 , wherein the substrate is metallic.8. The method according to claim 1 , wherein the overcoat further ...

Подробнее
01-01-2015 дата публикации

EXHAUST GAS PURIFYING CATALYST AND METHOD FOR PRODUCING SAME

Номер: US20150005160A1
Автор: Nitta Iwao, Sawada Naotaka
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

Provided is a non-noble metal-based exhaust gas purifying catalyst which is capable of removing an unreacted material such as carbon monoxide in an exhaust gas at low temperatures. An exhaust gas purifying catalyst of the present invention contains a ceria-based carrier and a complex oxide of cobalt and an additional metal element, said complex oxide being supported by the ceria carrier. The additional metal element contains a metal element that is selected from the group consisting of copper, silver, magnesium, nickel, zinc and combinations of these elements. 118-. (canceled)19. An exhaust gas purifying catalyst , comprisinga ceria-based support, anda composite oxide of cobalt and an additive metal element, supported on said ceria-based support,wherein said additive metal element comprises copper,wherein said composite oxide has a spinel structure, and{'sub': TET', 'OCT, 'wherein, when said composite oxide is analyzed by Rietveld analysis, compared with cobalt oxide not containing said additive metal element, the M-O bond distance in the spinel structure of said composite oxide is extended by 0.03 Å or more, and/or the M-O bond distance in the spinel structure of said composite oxide is contracted by 0.03 Å or more.'}20. The exhaust gas purifying catalyst according to claim 19 , wherein said ceria-based support is selected from the group consisting of ceria particles claim 19 , ceria-zirconia composite oxide particles claim 19 , ceria-alumina composite oxide particles claim 19 , ceria-titania composite oxide particles claim 19 , ceria-silica composite oxide particles claim 19 , and ceria-zirconia-alumina composite oxide particles.21. The exhaust gas purifying catalyst according to claim 19 , wherein the molar ratio (Co:M) between cobalt (Co) and additive metal element (M) in said composite oxide is 1:0.1 to 1.0.22. The exhaust gas purifying catalyst according to claim 19 , wherein the metal-based supporting amount of cobalt is from 1 to 20 mass % relative to said ...

Подробнее
14-01-2016 дата публикации

Nickel hexaaluminate-containing catalyst for reforming hydrocarbons in the presence of carbon dioxide

Номер: US20160008791A1
Принадлежит: BASF SE

The invention relates to a nickel hexaaluminate-comprising catalyst for reforming hydrocarbons, preferably methane, in the presence of carbon dioxide, which comprises hexaaluminate in a proportion in the range from 65 to 95% by weight, preferably from 70 to 90% by weight, and a crystalline, oxidic secondary phase selected from the group consisting of LaAlO 3 , SrAl 2 O 4 and BaAl 2 O 4 in the range from 5 to 35% by weight, preferably from 10 to 30% by weight. The BET surface area of the catalyst is ≧5 m 2 /g, preferably ≧10 m 2 /g. The molar nickel content of the catalyst is ≦3 mol %, preferably ≦2.5 mol % and more preferably ≦2 mol %. The interlayer cations are preferably Ba and/or Sr. The process for producing the catalyst comprises the steps: (i) production of a mixture of metal salts, preferably nitrate salts of Ni and also Sr and/or La, and a nanoparticulate aluminum source, (ii) molding and (iii) calcination. The catalyst of the invention is brought into contact with hydrocarbons, preferably methane, and CO 2 in a reforming process, preferably at a temperature of >800° C. The catalyst is also distinguished by structural and preferred properties of the nickel, namely that the nickel particles mostly have a tetragonal form and the particles have a size of ≦50 nm, preferably ≦40 nm and particularly preferably ≦30 nm, and are present finely dispersed as grown-on hexaaluminate particles. The catalyst has only a very low tendency for carbonaceous deposits to be formed.

Подробнее
11-01-2018 дата публикации

Nano-sized functional binder

Номер: US20180008973A1
Принадлежит: BASF Corp

Described are catalytic articles comprising a substrate having a washcoat on the substrate, the washcoat containing a catalytic component having a first average (D50) particle size and a functional binder component having a second average (D50) particle size in the range of about 10 nm to about 1000 nm, wherein the ratio of the first average (D50) particle size to the second average (D50) particle size is greater than about 10:1. The catalytic articles are useful in methods and systems to purify exhaust gas streams from an engine.

Подробнее
14-01-2016 дата публикации

Catalysts for the mechanocatalytic oxidative depolymerization of polymer-containing materials and methods of making oxidized reaction products using same

Номер: US20160009621A1
Автор: Richard Blair

The presently disclosed and/or claimed inventive concept(s) relates generally to oxidative oxidized reaction products made from the mechanocatalytic oxidative depolymerization of lignin. More particularly, but without limitation, the mechanocatalytic oxidative depolymerization of lignin is performed in a non-aqueous/non-solvent based and solvent-free process, i.e., via a solid-solid mechanocatalytic oxidative reaction methodology. In one particular embodiment, the process of making such oxidative oxidized reaction products includes, without limitation, the step of mechanocatalytically reacting an oxidation catalyst with lignin or a lignin-containing material. The oxidative reaction products obtained from the process include, for example, at least one of vanillin, and syringealdehyde, vanillic acid, and syringic acid.

Подробнее
14-01-2021 дата публикации

Nano-sized functional binder

Номер: US20210008533A1
Принадлежит: BASF Corp

Described are catalytic articles comprising a substrate having a washcoat on the substrate, the washcoat containing a catalytic component having a first average (D50) particle size and a functional binder component having a second average (D50) particle size in the range of about 10 nm to about 1000 nm, wherein the ratio of the first average (D50) particle size to the second average (D50) particle size is greater than about 10:1. The catalytic articles are useful in methods and systems to purify exhaust gas streams from an engine.

Подробнее
08-01-2015 дата публикации

CATALYST FOR CARBON NANOTUBE PRODUCTION

Номер: US20150011380A1
Принадлежит:

The present invention provides a catalyst for carbon nanotube production capable of continuously mass-producing a carbon nanotube having a long fiber length and excellent conductivity. The catalyst for carbon nanotube production of the present invention includes a carrier particle which is configured to include a metal oxide and has voids therein, and a metal catalyst which is carried on the carrier particle. In a pore distribution curve of the carrier particle which is obtained by a mercury penetration method, when an integrated value of volumes of pores having a pore size of equal to or larger than 0.1 μm is set to be a volume of voids per unit mass of the carrier particle, the volume of the voids is set to be in a range of 0.6 cm/g to 2.2 cm/g. 1. A catalyst for carbon nanotube production , the catalyst comprising:a carrier particle which is configured to include a metal oxide and has voids therein; anda metal catalyst which is carried on the carrier particle,{'sup': 3', '3, 'wherein when an integrated value of volumes of pores having a pore size of equal to or larger than 0.1 μm is set to be a volume of the voids per unit mass of the carrier particle in a pore distribution curve of the carrier particle which is obtained by a mercury penetration method, a volume of the voids is in a range of 0.6 cm/g to 2.2 cm/g.'}2. A method of manufacturing a catalyst for carbon nanotube production , the method comprising:a process of obtaining a carrier particle, which is configured to include a metal oxide and has voids therein, by adding alcohol, in dispersing metal oxide particles in the alcohol, in an amount capable of impregnating the metal oxide particles with the alcohol to adjust a metal oxide solution, by drying the metal oxide solution, and then by further firing the metal oxide solution;a process of dispersing a metal catalyst in the alcohol to adjust a nano-metal solution; anda process of coating a surface of the carrier particle with the nano-metal solution, ...

Подробнее
09-01-2020 дата публикации

MATERIALS AND METHODS FOR OXIDATIVE DEHYDROGENATION OF ALKYL AROMATIC COMPOUNDS INVOLVING LATTICE OXYGEN OF TRANSITION METAL OXIDES

Номер: US20200009539A1
Принадлежит:

In one aspect, the disclosure relates to a process for dehydrogenating a first dehydrogenation reactant into its unsaturated counterparts. The disclosed process comprises introducing a dehydrogenation reactant to a metal oxide catalyst having dehydrogenation activity, and dehydrogenating the dehydrogenation reactant to provide its unsaturated counterpart and hydrogen; selectively combusting the hydrogen released during dehydrogenation using a lattice oxygen from the metal oxide catalyst, resulting in a reduced metal oxide catalyst and steam; re-oxidizing the reduced metal oxide catalyst by introducing a gaseous oxidant to the reduced metal oxide catalyst; and optionally re-using the re-oxidized metal oxide catalyst for catalytic conversion and combustion. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure. 1. A process for oxidative dehydrogenation , comprising:a. introducing one or more dehydrogenation reactants to a metal oxide catalyst having dehydrogenation activity, and dehydrogenating the one or more dehydrogenation reactants to provide a dehydrogenated reaction product and hydrogen;b. selectively combusting the hydrogen released during dehydrogenation using a lattice oxygen from the metal oxide catalyst, resulting in a reduced metal oxide catalyst and steam;c. re-oxidizing the reduced metal oxide catalyst by introducing a gaseous oxidant to the reduced metal oxide catalyst; and optionallyd. re-using the re-oxidized metal oxide catalyst for a subsequent dehydrogenation and/or selective combustion.2. The process of claim 1 , wherein the dehydrogenation reactants comprise an alkyl aromatic hydrocarbon or a substituted alkyl aromatic hydrocarbon and the dehydrogenated reaction product comprises an alkene aromatic hydrocarbon or substituted alkene aromatic hydrocarbon claim 1 , respectively.3. The process of claim 1 , wherein the dehydrogenation reactants ...

Подробнее
15-01-2015 дата публикации

METHOD OF MAKING PYROCHLORES

Номер: US20150014591A1
Принадлежит:

Disclosed is a method of making a pyrochlore comprising, obtaining a solution comprising a solvent and a metal precursor or salt thereof capable of forming a pyrochlore, wherein the metal precursor or salt thereof is dissolved in the solvent, subjecting the solution to a drying step to obtain a non-gelled or non-polymerized pyrochlore precursor material in powdered form, and subjecting the pyrochlore precursor material to a calcination step to obtain a pyrochlore.

Подробнее
19-01-2017 дата публикации

Method for breakdown of formates

Номер: US20170015608A1
Принадлежит: BASF SE

A process for decomposing formates in formate-containing compositions of matter comprises reacting formate-containing compositions of matter in the presence of at least one heterogeneous catalyst comprising lanthanum and at a temperature of from 80 to 180° C. and a pressure of from 0.1 to 60 bar, the formate-containing compositions of matter having a pH of from 6.5 to 10

Подробнее
19-01-2017 дата публикации

CATALYSTS, METHODS, AND SYSTEMS FOR PREPARING CARBAMATES

Номер: US20170015622A1
Автор: HOU Zhenshan, ZHANG Ran
Принадлежит:

Methods, systems and kits for preparing carbamates as well as catalysts for preparing the carbamates, are disclosed. The methods for preparing carbamate can include providing a catalyst comprising cerium oxide (CeO2) and at least one metal selected from the group consisting of iron (Fe), manganese (Mn), titanium (Ti), cobalt (Co), aluminum (Al), zinc (Zn), calcium (Ca), tin (Sn), indium (In), and any combination thereof; contacting the catalyst with at least one amine and at least one alcohol to form a mixture; and contacting the mixture with carbon dioxide under conditions sufficient to form the carbamate. 1. A catalyst comprising cerium oxide (CeO) and aluminum (Al); wherein the catalyst is a calcined catalyst.2. The catalyst of claim 1 , wherein the catalyst is a heterogeneous catalyst.34-. (canceled)5. The catalyst of claim 1 , wherein the catalyst comprises a formula CeAlO claim 1 , wherein x and y add up to about 1 claim 1 , and x and y are each a positive number.6. The catalyst of claim 5 , wherein x is about 0.8 to about 1 claim 5 , and y is about 0 to about 0.2.7. The catalyst of claim 5 , wherein x is 0.966 and y is 0.033.829-. (canceled)30. A method of preparing a carbamate claim 5 , the method comprising:contacting a catalyst with at least one amine and at least one alcohol to form a mixture; andcontacting the mixture with carbon dioxide under conditions sufficient to form the carbamate;{'sub': '2', 'wherein the catalyst comprises cerium oxide CeOand aluminum Al and is a calcined catalyst.'}3134-. (canceled)35. The method of claim 30 , wherein the at least one alcohol comprises methanol claim 30 , ethanol claim 30 , propanol claim 30 , butanol claim 30 , n-hexanol claim 30 , or a combination of any two or more thereof.36. The method of claim 30 , wherein the at least one amine comprises at least one aliphatic amine.37. The method of claim 36 , wherein the at least one aliphatic amine comprises methylamine claim 36 , ethylamine claim 36 , n-propylamine ...

Подробнее
15-01-2015 дата публикации

Variations of Loading of Zero-PGM Oxidation Catalyst on Metallic Substrate

Номер: US20150018202A1
Принадлежит: CDTI

The present disclosure refers to processes and formulations employed for optimization of variations of Zero-PGM catalyst coated on metallic substrates. Deposition of a uniform and well-adhered layer of catalyst on the metallic substrate may be enabled by the selection of a washcoat loading resulting from variation of metal loadings. Characterization of catalysts may be performed using a plurality of catalytic tests, including but not limited to washcoating adherence test, back pressure test, inspection of textural characteristics, and catalyst activity. Optimized variations may be applied to a plurality of metallic substrates for achieving coating uniformity, desired level of WCA loss, and optimized performance of catalyst activity. 1. A method for improving performance of catalytic systems , comprising:providing at least one substrate;depositing a washcoat suitable for deposition on the substrate, the washcoat comprising at least one oxide solid further comprising at least one carrier metal oxide and at least one first ZPGM catalyst;depositing an overcoat suitable for deposition on the substrate, the overcoat comprising at least one second ZPGM catalyst;wherein the washcoat is deposited at about 60 g/L to about 120 g/L;wherein the overcoat is deposited at about 120 g/L; and{'sup': '3', 'wherein the substrate exhibits a back pressure of about 0.400 kPa to about 0.750 kPa when receiving an air flow of about 1.0 m/min.'}2. The method according to claim 1 , wherein the washcoat is heated for about 2 to about 6 hours.3. The method according to claim 1 , wherein the washcoat is heated for about 4 hours.4. The method according to claim 1 , wherein the washcoat is heated to about 900° C.5. The method according to claim 1 , wherein the substrate about 100 cells per square inch.6. The method according to claim 1 , wherein the substrate comprises metal.7. The method according to claim 1 , wherein the at least one carrier material oxide comprises one selected from the group ...

Подробнее
15-01-2015 дата публикации

Minimizing Washcoat Adhesion Loss of Zero-PGM Catalyst Coated on Metallic Substrate

Номер: US20150018204A1
Принадлежит: CDTI

Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides an enhanced process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variation of rheological properties by the solid content of the overcoat slurry and variation of the overcoat slurry particle size distribution to produce desirable homogeneity, specific loading, and adherence of the coating on metallic substrates. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities. 1. A catalytic system , comprising:at least one substrate;a washcoat suitable for deposition on the substrate, the washcoat comprising at least one oxide solid further comprising at least one carrier metal oxide;an overcoat suitable for deposition on the substrate, the overcoat comprising at least one ZPGM catalyst;wherein adhesion of the washcoat is affected by one selected from the group consisting of the pH of the overcoat, at least one binder in the overcoat, ab average particle size of the overcoat, rheology of the overcoat, and combinations thereof.2. The catalytic system of claim 1 , wherein the at least one binder is about 32% to about 38% by weight of the overcoat.3. The catalytic system of claim 2 , wherein the adhesion of the washcoat is improved by about 25%.4. The catalytic system of claim 1 , wherein the average particle size of the washcoat is about 3.0 μm to about 10.0 μm.5. The catalytic system of claim 1 , wherein the average particle size of the washcoat is about 8.5 μm.6. The catalytic system of claim 2 , wherein the loss of the washcoat of less than 2%.7. The catalytic system of claim 1 , wherein the at least one ZPGM catalyst comprises one selected from the group consisting of chromium claim 1 , manganese claim 1 , iron claim 1 ...

Подробнее
17-01-2019 дата публикации

PEROVSKITE-CATALYZED HYDROGENOLYSIS OF HETEROATOM-CONTAINING COMPOUNDS

Номер: US20190016646A1
Принадлежит:

Perovskite compounds that catalyze hydrogenolysis (e.g., hydrodeoxygenation, hydrodenitrogenation, and/or hydrodesulfurization) of heteroatom-containing compounds, as well as associated systems and methods, are generally described. In some embodiments, methods are provided for contacting a perovskite compound with a heteroatom-containing compound (e.g., a compound comprising oxygen, nitrogen, and/or sulfur) in the presence of hydrogen gas (H) such that the perovskite compound catalyzes hydrogenolysis of the heteratom-containing compound to produce one or more hydrocarbon products (e.g., one or more aromatic hydrocarbons and/or aliphatic hydrocarbons). According to certain embodiments, the perovskite compound has the formula ABDO, where A comprises a lanthanide, B comprises an alkaline earth metal, D comprises a transition metal, and x is greater than or equal to 0 and less than or equal to 1. Compounds, systems, and methods described herein may be useful for applications involving petroleum (e.g., crude oil) and/or biofuels. 1. A method , comprising:{'sub': '2', 'contacting a perovskite compound with a heteroatom-containing compound in the presence of H, wherein the perovskite compound catalyzes hydrogenolysis of the heteroatom-containing compound to produce one or more hydrocarbon products.'}2. The method of claim 1 , wherein the perovskite compound has the formula ABDO claim 1 , wherein:A comprises a lanthanide;B comprises an alkaline earth metal;D comprises a transition metal; andx is greater than or equal to 0 and less than or equal to 1.3. The method of claim 1 , wherein the heteroatom-containing compound comprises N claim 1 , O claim 1 , and/or S.4. The method of claim 1 , wherein hydrogenolysis comprises hydrodeoxygenation claim 1 , hydrodenitrogenation claim 1 , and/or hydrodesulfurization.5. The method of claim 2 , wherein A comprises La.6. The method of claim 2 , wherein B comprises Mg claim 2 , Ca claim 2 , Sr claim 2 , and/or Ba.7. The method of claim 6 ...

Подробнее
28-01-2016 дата публикации

CATALYST AND PROCESS FOR OXYCHLORINATION OF ETHYLENE TO DICHLOROETHANE

Номер: US20160023191A1
Автор: Kramer Keith
Принадлежит:

In an oxychlorination process of the type where ethylene is converted to 1,2-dichloroethane in the presence of a supported copper catalyst, the improvement comprising: the use of a supported catalyst prepared by (i) impregnating, within a first step, an alumina support with a first aqueous solution including copper, an alkaline earth metal, and an alkali metal to thereby form a first catalyst component; and (ii) impregnating, within a subsequent step, the first catalyst component with a second aqueous solution including copper and alkaline earth metal, where the second aqueous solution is substantially devoid of alkali metal, to thereby form the supported catalyst. 110-. (canceled)11. A process for producing a catalyst for the oxychlorination of ethylene to 1 ,2-dichloroethane , the process comprising the steps of:(i) impregnating, within a first step, an alumina support with a first aqueous solution including copper, an alkaline earth metal, and an alkali metal to thereby form a first catalyst component; and(ii) impregnating, within a subsequent step, the first catalyst component with a second aqueous solution including copper and alkaline earth metal, where the second aqueous solution is substantially devoid of alkali metal, to thereby form the supported catalyst.12. The process of claim 11 , where the alkaline earth metal is magnesium claim 11 , and where said second aqueous solution includes a magnesium to copper molar ratio of greater than 0.19.1314-. (canceled) This application claims the benefit of U.S. Provisional Application Ser. No. 61/798,872, filed on Mar. 15, 2013, which is incorporated herein by reference.Embodiments of the invention relate to catalysts for oxychlorination of ethylene to dichloroethane. The catalysts advantageously exhibit less stickiness, especially at high copper loadings, and they are therefore advantageously useful in baffled-bed reactors.Oxychlorination is the process where ethylene is converted to 1,2-dichloroethane. This ...

Подробнее
25-01-2018 дата публикации

CERIUM-ZIRCONIUM COMPOSITE OXIDE, PREPARATION METHOD THEREFOR, AND APPLICATION OF CATALYST

Номер: US20180021759A1
Принадлежит:

Provided are a cerium-zirconium composite oxide, a preparation method therefor and application of a catalyst. The cerium-zirconium composite oxide has a composite phase structure, and comprises a cerium oxide phase and a cerium-zirconium solid solution phase, or consists of two or more cerium-zirconium solid solution phases with different crystal structures and different chemical compositions, wherein the chemical formula of the cerium-zirconium solid solution phase is CeZrMO, where M is at least one selected from the group consisting of a rare earth element other than cerium, a transition metal element and an alkaline earth metal element, x is 15-85 mol %, and y is 0-20 mol %. 1. A cerium-zirconium composite oxide , wherein the cerium-zirconium composite oxide has a composite phase structure , and comprises a cerium oxide phase and a cerium-zirconium solid solution phase , wherein the chemical formula of the cerium-zirconium solid solution phase is CeZrMO , where M is at least one selected from the group consisting of a rare earth element other than cerium , a transition metal element and an alkaline earth metal element , x is 15˜85 mol % , and y is 0˜20 mol %.2. The cerium-zirconium composite oxide as claimed in claim 1 , wherein after the cerium-zirconium composite oxide is subjected to heat preservation at 1000° C. for 4 hours claim 1 , the cerium oxide phase has a proportion of 0.5˜30 vol % in the cerium-zirconium composite oxide claim 1 , preferably 3˜20 vol %.3. The cerium-zirconium composite oxide as claimed in claim 1 , wherein the cerium-zirconium composite oxide comprises cerium oxide needle-like particles and cerium-zirconium solid solution near-spherical particles claim 1 , and after being subjected to heat preservation at 1000° C. for 4 hours claim 1 , the cerium oxide needle-like particles have a diameter of 7˜20 nm and a length of 50˜300 nm claim 1 , the cerium-zirconium solid solution near-spherical particles have a diameter of 5˜30 nm claim 1 , and ...

Подробнее
25-01-2018 дата публикации

Hydrocarbon Dehydrocyclization in the Presence of Carbon Dioxide

Номер: US20180022667A1
Принадлежит: ExxonMobil Chemical Patents Inc

The invention relates to converting non-aromatic hydrocarbon in the presence of CO 2 to produce aromatic hydrocarbon. CO 2 methanation using molecular hydrogen produced during the aromatization increases aromatic hydrocarbon yield. The invention also relates to equipment and materials useful in such upgrading, to processes for carrying out such upgrading, and to the use of such processes for, e.g., natural gas upgrading.

Подробнее
10-02-2022 дата публикации

BI-REFORMING OF HYDROCARBONS TO PRODUCE SYNTHESIS GAS

Номер: US20220041441A1
Принадлежит: Sabic Global Technologies B.V.

Disclosed are catalysts, methods, and systems for the bi-reforming of hydrocarbons. The method includes contacting a catalyst material with a reactant feed that includes hydrogen (H), carbon monoxide (CO), carbon dioxide (CO), methane (CH), and water (HO) to produce a product stream that has a H/CO molar ratio of 1.4:1 to 2:1. The catalyst can have a metal oxide core, a redox metal oxide layer deposited on a surface of the metal oxide core, and a catalytically active metal deposited on the surface of the redox metal oxide layer. A dopant can be included in the redox metal oxide layer. The catalyst can have a corm-shell type structure. 1. A method of producing synthesis gas from methane , the method comprising contacting a reactant gas stream that includes hydrogen (H) , carbon monoxide (CO) , carbon dioxide (CO) , methane (CH) , and water (HO) with a catalyst material under conditions sufficient to produce a gaseous product stream comprising Hand CO in a H/CO molar ratio of 1.4 to 2.0 , wherein the catalyst material comprises:a chemically inactive metal oxide core;a redox metal oxide layer deposited on a surface of the metal oxide core, the redox metal oxide layer comprising a dopant; anda catalytically active metal deposited on the surface of the redox metal oxide layer.2. The method of claim 1 , wherein the reaction conditions include a temperature of 700° C. to 1000° C. claim 1 , a pressure of about 0.1 MPa to 2 MPa claim 1 , and a gas hourly space velocity of 500 hto 100 claim 1 ,000 h.3. The method of claim 1 , wherein the reactant stream comprises 25 vol. % to 40 vol. % H claim 1 , 5 vol. % to 30 vol. % CO claim 1 , 5 vol. % to 20 vol. % CO claim 1 , 10 vol. % to 30 vol. % CH claim 1 , and 10 vol. % to 30 vol. % HO.4. The method of claim 3 , wherein the reactant stream comprises 30 vol. % to 35 vol. % H claim 3 , 10 vol. % to 20 vol. % CO claim 3 , 10 vol. % to 15 vol. % CO claim 3 , 15 vol. % to 20 vol. % CH claim 3 , and 15 vol. % to 20 vol. % HO.5. The ...

Подробнее
24-04-2014 дата публикации

METHOD FOR THE DEPOSITON OF METALS ON SUPPORT OXIDES

Номер: US20140112849A1
Принадлежит: Umicore AG & Co., KG

The present invention is directed to a process for the production of supported transition metals with high dispersion. The latter are deposited onto refractory oxides without using a further liquid solvent. Hence, according to this dry procedure no solvent is involved which obviates certain drawbacks connected with wet ion exchange, impregnation or other metal addition processes known in the art. 2. A process according to claim 1 , wherein the metal is selected from the group of Pd claim 1 , Pt claim 1 , Rh claim 1 , Ir claim 1 , Ru claim 1 , Ag claim 1 , Au claim 1 , Cu claim 1 , Fe claim 1 , Mn claim 1 , Mo claim 1 , Ni claim 1 , Co claim 1 , Cr claim 1 , V claim 1 , W claim 1 , Nb claim 1 , Y claim 1 , La (lanthanides) or mixtures thereof.3. A process according to claim 1 , wherein the complex ligand is selected from one or a mixture of the group comprising a diketonate-structure claim 1 , carbonyl species claim 1 , acetates claim 1 , and alkenes.4. A process according to claim 1 , wherein the mixture is calcined at a temperature of 250-450° C. for 10 mins-4 hours.5. A process according to claim 1 , wherein the mixture comprises the refractory oxide and the precursor compound to provide a subsequent metal loading on the oxide of 0.01 wt % metal to 20 wt % metal.6. A material or mixture of materials obtained according to .7. A catalyst comprising the material or mixture of materials according to .8. A catalyst according to claim 7 , wherein the material or mixture of materials and optionally further materials are coated in zones on a substrate.9. A monolith catalyst formed via extrusion of the material or mixture of materials of .10. A process for the abatement of exhaust pollutants comprising subjecting an exhaust with exhaust pollutants to the material or mixture of materials of . The present invention is directed to a process for the production of highly dispersed, oxide supported transition metal (TM) catalysts. The TM elements are deposited onto refractory ...

Подробнее
04-02-2021 дата публикации

Compositions, methods of making compositions, and hydrogen production via thermo-chemical splitting

Номер: US20210032118A1

The present disclosure provides for compositions, methods of making compositions, and methods of using the composition. In an aspect, the composition can be a reactive material that can be used to split a gas such as water or carbon dioxide.

Подробнее
11-02-2016 дата публикации

METHOD FOR OXIDIZING AMMONIA AND SYSTEM SUITABLE THEREFOR

Номер: US20160039674A1
Принадлежит:

A system suitable for oxidizing ammonia with oxygen in the presence of catalysts is described. The system includes a reactor equipped with at least one supply line for a reactant gas mixture and at least one discharge line for a process gas; a catalyst comprising at least one transition metal oxide that is not an oxide of a platinum metal; and a device for adjusting a molar ratio of oxygen to ammonia of less than or equal to 1.75 mol/mol in the reactant gas mixture by mixing an oxygen-containing gas stream having an Ocontent of <20% by volume with a chosen amount of ammonia. The oxygen-containing gas stream is produced by a device for: diluting an air stream with a gas stream comprising less than 20% by volume oxygen; or depleting oxygen from an oxygen-containing gas mixture, preferably from air; or by a combination thereof. 130.-. (canceled)31. A method for oxidizing ammonia with oxygen in the presence of catalysts comprising at least one transition metal oxide that is not an oxide of a platinum metal , wherein the ratio of the molar amounts of oxygen to ammonia at the inlet of the reactant gas mixture into the catalyst bed is adjusted to values of less than or equal to 1.75 mol O/mol NH.32. The method as claimed in claim 31 , wherein the ratio of the molar amounts of Oto NHin the reactant gas mixture at the inlet into the catalyst bed is from 1.25 to 1.75 mol O/mol NH.33. The method as claimed in claim 31 , wherein the ratio of the molar amounts of Oto NHin the reactant gas mixture at the inlet into the catalyst bed is so chosen that it is in the range of from 0.1 mol O/mol NHbelow to 0.4 mol O/mol NHabove an optimal molar ratio claim 31 , wherein the optimal molar ratio is the ratio of oxygen to ammonia at the inlet of the reactant gas mixture into the catalyst bed at which a maximum yield of NOis achieved.34. The method as claimed in claim 31 , wherein the optimal molar ratio of oxygen to ammonia is determined by carrying out a series of tests under given method ...

Подробнее
09-02-2017 дата публикации

IRON-BASED CATALYST, METHOD FOR PREPARING THE SAME, AND METHOD FOR PRODUCING ALPHA-OLEFINS USING THE SAME

Номер: US20170037321A1
Принадлежит:

A catalyst including between 50.0 and 99.8 percent by weight of iron, between 0 and 5.0 percent by weight of a first additive, between 0 and 10 percent by weight of a second additive, and a carrier. The first additive is ruthenium, platinum, copper, cobalt, zinc, or a metal oxide thereof. The second additive is lanthanum oxide, cerium oxide, magnesium oxide, aluminum oxide, silicon dioxide, potassium oxide, manganese oxide, or zirconium oxide. 1. A catalyst , comprising , by a total weight of the catalyst:between 50.0 and 99.8 percent by weight of iron;between 0 and 5.0 percent by weight of a first additive, the first additive being ruthenium, platinum, copper, cobalt, zinc, or a metal oxide thereof;between 0 and 10 percent by weight of a second additive, the second additive being lanthanum oxide, cerium oxide, magnesium oxide, aluminum oxide, silicon dioxide, potassium oxide, manganese oxide, or zirconium oxide; anda carrier, the carrier being silicon dioxide.2. The catalyst of claim 1 , wherein a content of the first additive is between 0 and 2 wt. %; a content of the second additive is between 2 wt. % and 6 wt. %; and a content of the iron is between 60 wt. % and 97 wt. %.3. The catalyst of claim 1 , wherein a content of the carrier is between 1 wt. % and 40 wt. %; a content of the first additive is between 1 wt. % and 2 wt. %; a content of the second additive is between 2 wt. % and 6 wt. %; and the rest is the iron.4. A method for preparing the catalyst of claim 1 , the method comprising:1) mixing iron nitrate excluding crystal water, a nitrate of the first additive, and amorphous silicon dioxide with n-octanol to form a mixed solution, wherein a total weight percentage of the iron nitrate, the nitrate of the first additive, and the amorphous silicon dioxide in the mixed solution is between 3 wt. % and 20 wt. %; stirring the mixed solution so that the nitrate is dissolved and heating the mixed solution to a temperature of between 140 and 180° C.; keeping the ...

Подробнее
08-02-2018 дата публикации

Catalysts, related methods and reaction products

Номер: US20180037824A1
Принадлежит:

The present invention generally relates to improved catalysts that provide for reduced product contaminants, related methods and improved reaction products. It more specifically relates to improved direct fuel production and redox catalysts that provide for reduced levels of certain oxygenated contaminants, methods related to the use of those catalysts, and hydrocarbon fuel or fuel-related products that have improved characteristics. In one aspect, the present invention is directed to a method of converting one or more carbon-containing feedstocks into one or more hydrocarbon liquid fuels. The method includes the steps of: converting the one or more carbon-containing feedstocks into syngas; and, converting the syngas to one or more hydrocarbons (including liquid fuels) and a water fraction. The water fraction comprises less than 500 ppm of one or more carboxylic acids. 1. A method of converting one or more carbon-containing feedstocks into one or more hydrocarbons comprising:a) converting the one or more carbon-containing feedstocks into syngas;b) converting the syngas to one or more hydrocarbons and a water fraction wherein the water fraction comprises less than 500 ppm of one or more carboxylic acids.2. The method according to claim 1 , wherein the one or more carbon-containing feedstocks are selected from a group consisting of: gas-phase feedstocks; liquid-phase feedstocks; and claim 1 , solid-phase feedstocks.3. The method according to claim 1 , wherein the one or more carboxylic acids are selected from a group consisting of: methanoic acid; ethanoic acid;propanoic acid; butanoic acid; pentanoic acid; hexanoic acid; and octanoic acid.4. The method according to claim 1 , wherein a conversion catalyst is used to convert the syngas to one or more hydrocarbons and a water fraction claim 1 , and wherein the conversion catalyst comprises a substrate claim 1 , and wherein the substrate comprises a surface having a pH ranging from about 6.0 to about 8.0.5. The method ...

Подробнее
24-02-2022 дата публикации

CATALYSTS, PROCESSES FOR OBTAINING AND PROCESSES FOR STEAM REFORMING

Номер: US20220055894A1
Принадлежит:

The present invention refers to processes for obtaining steam reforming catalysts containing nickel, cerium, lanthanum and copper oxides, free from potassium or alkali metals, preferably with the oxide layer being located externally with a thickness of less than 0.5 mm on the support particle, preferably the support being based on alumina, magnesium aluminate, hexaaluminates or mixtures thereof. The catalysts according to present invention show high activity, resistance to thermal deactivation and resistance to coke accumulation in the steam reforming reaction of hydrocarbons. 1. A steam reforming catalyst comprising:{'sup': '2', '#text': 'a) an inorganic oxide support selected from theta-alumina, magnesium aluminate, hexaaluminates, or a mixture thereof, having a surface area above 15 m/g; and'}b) a mixture of nickel, copper, lanthanum, and cerium oxides, with the total nickel content, expressed as nickel oxide (NiO) between 5 and 25% w/w; the copper content expressed as copper oxide (CuO) between 0.5 to 5% w/w, a Ni/(La+Ce) atomic ratio between 3 to 5 and a Ce/Al atomic ratio between 1 to 4.2. The steam reforming catalyst according to claim 1 , wherein the inorganic oxide support has a surface area above 60 m/g.3. A process for obtaining the steam reforming catalyst of claim 1 , comprising the following steps:a) preparing a solution in a polar solvent, of a nickel salt, in the form of nickel nitrate, acetate or carbonate together with copper, lanthanum, and cerium salts in the form of nitrates;b) impregnating the solution containing the nickel, copper, cerium, and lanthanum salts in an inorganic oxide support selected from theta-alumina, magnesium aluminate, hexaaluminates, or a mixture thereof, by means of the wet spot technique or by placing the support of inorganic oxide in an excess of solution to form an impregnated material; andc) drying the impregnated material in air, at a temperature ranging between 50° C. and 150° C., and for a time interval in a range ...

Подробнее
06-02-2020 дата публикации

SCR CATALYST AND ITS PREPARATION METHOD AND APPLICATIONS

Номер: US20200038845A1
Принадлежит:

A method for preparing an SCR catalyst may include: (1) placing a first aqueous solution containing a titanium oxide and a tungstate in an electric field environment, adjusting the pH value of the first aqueous solution, and adjusting the current direction of the electric field environment to obtain a first mixture; (2) providing a second mixture by, in the electric field environment, adding dropwise a second aqueous solution containing a soluble salt of one or more active components, a copper-organic polyamine complex and a dispersant to the first mixture, and adjusting the current direction; and (3) processing the second mixture to obtain the SCR catalyst. The one or more active components may be selected from Ce, Zr, Cu, Fe, Pr and Sc. 1. A method for preparing an SCR catalyst , the method comprising(1) placing a first aqueous solution containing a titanium oxide and a tungstate in an electric field environment, adjusting the pH value of the first aqueous solution, and adjusting a current direction of the electric field environment to obtain a first mixture;(2) in the electric field environment, adding dropwise a second aqueous solution containing a soluble salt of one or more active components, a copper-organic polyamine complex and a dispersant to the first mixture, and adjusting the current direction to obtain a second mixture, wherein the one or more active components are selected from Ce, Zr, Cu, Fe, Pr and Sc; and(3) processing the second mixture to obtain the SCR catalyst.2. The method according to claim 1 , wherein step (1) further comprises:adjusting the current direction to a direction A when the pH value of the first aqueous solution is <5;adjusting the current direction to a direction B when the pH value of the first aqueous solution ranges from 5-9; andadjusting the current direction to the direction A when the pH value of the first aqueous solution ranges from 9-10;wherein the direction A and the direction B are opposite.3. The method according to ...

Подробнее
08-05-2014 дата публикации

EXHAUST GAS CATALYST, METHOD FOR THE PRODUCTION OF CARRIER, METHOD FOR THE PRODUCTION OF EXHAUST GAS CATALYST, AND APPARATUS FOR TREATING EXHAUST GAS

Номер: US20140127084A1
Принадлежит:

An exhaust gas controlling catalyst includes zirconia particles; ceria particles which contact the zirconia particles, of which a mean particle size is smaller than a mean particle size of the zirconia particles; and an active metal that is supported on at least the ceria particles in a dispersed manner. 1. An exhaust gas controlling catalyst , comprising:zirconia particles;ceria particles which contact the zirconia particles, of which a mean particle size is smaller than a mean particle size of the zirconia particles; anda base metal that is an active metal that is supported on at least the ceria particles in a dispersed manner,wherein a mean particle size of the ceria particles is 1 to 9 nm,wherein a percentage of the ceria particles to the zirconia particles is 5 to 30% by weight, anda mean particle size of the zirconia particles is 5 to 50 nm.2. (canceled)3. (canceled)4. (canceled)5. (canceled)6. (canceled)7. (canceled)8. An exhaust gas control apparatus , comprising:a first-stage base metal catalyst system that oxidizes HC and CO to harmless components, of which a conversion efficiency for HC is higher than a conversion efficiency for CO; and{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'a second-stage base metal catalyst system that has the exhaust gas controlling catalyst according to and reduces NOx to harmless components.'}9. The exhaust gas controlling catalyst according to claim 1 , wherein the base metal is Cu. 1. Field of the InventionThe present invention relates to an exhaust gas controlling catalyst that uses a base metal as an active metal, a method for the production of a carrier for the catalyst, a method for the production of the catalyst, and an exhaust gas control apparatus that uses the catalyst.2. Description of Related ArtIn the field of motorcars and so on, exhaust gas controlling catalysts that use a noble metal, such as Pt, Rh or Pd, as a catalyst metal are used. In contrast to this, exhaust gas controlling catalysts that use a base ...

Подробнее
25-02-2021 дата публикации

CATALYST FOR PROCESSING OXYCHLORINATION OF HYDROCARBON, PREPARATION METHOD THEREFOR, AND PREPARATION METHOD OF OXYCHLORINATED COMPOUND OF HYDROCARBON USING SAME

Номер: US20210053036A1
Принадлежит:

A catalyst for an oxychlorination process of hydrocarbons, a preparation method thereof, and a method for preparing an oxychlorination compound of hydrocarbons using the same. 1. A catalyst for an oxychlorination process of hydrocarbons , the catalyst comprising:a catalyst material comprising (a) copper, (b) a first co-catalyst comprising one or more selected from the group consisting of an alkali metal and an alkaline earth metal, and (c) a second co-catalyst comprising a lanthanide metal; anda carrier comprising cerium oxide.2. The catalyst of claim 1 , where the catalyst material is present in the catalyst in an amount of 5 wt % to 25 wt % based on a total weight of the catalyst.3. The catalyst of claim 1 , wherein an amount of the first co-catalyst and an amount of the second co-catalyst is the same as or different from each other claim 1 , and the amount of the first co-catalyst and the amount of the second co-catalyst are each in an amount of 10 parts by weight to 2 claim 1 ,000 parts by weight based on 100 parts by weight of copper.4. The catalyst of claim 1 , wherein the first co-catalyst comprises one or more selected from the group consisting of sodium claim 1 , lithium claim 1 , potassium claim 1 , magnesium claim 1 , and calcium.5. The catalyst of claim 1 , wherein the second co-catalyst further comprises one or more selected from the group consisting of yttria and a rare earth element.6. The catalyst of claim 1 , wherein the carrier has a specific surface area of 50 m/g to 250 m/g.7. The catalyst of claim 1 , wherein cerium oxide is present in the carrier in an amount of 80 wt % or more based upon a total 100 wt % of the carrier.8. The catalyst of claim 1 , wherein the catalyst is in the form of particles having a diameter of 0.1 mm to 1.0 mm.9. A method for preparing the catalyst for an oxychlorination process of hydrocarbons according to claim 1 , the method comprising:preparing a carrier comprising cerium oxide; andsupporting an active material ...

Подробнее
15-05-2014 дата публикации

Catalysts for renewable hydrogen production from oxygenated feedstocks

Номер: US20140134098A1
Принадлежит: Phillips 66 Co

A method of steam reforming where a reaction occurs in which an oxygenated feed contacts a catalyst to produce hydrogen. The catalyst of the reaction comprises a metal/metal promoter on a nickel/transition metal blend catalyst supported on a high-energy lattice metal oxide.

Подробнее
01-03-2018 дата публикации

Porous ceramic structure

Номер: US20180057407A1
Автор: Yunie Izumi
Принадлежит: NGK Insulators Ltd

A honeycomb structure that is the porous ceramic structure is made of a ceramic material and has pores in a structure interior, the honeycomb structure has cerium dioxide, at least a part of the cerium dioxide is incorporated in the structure interior, at least a part of the incorporated cerium dioxide is exposed on pore surfaces of the pores, and at least a part of the exposed cerium dioxide is constituted as an oxide-containing cerium dioxide including iron oxide on the surface and/or in the part.

Подробнее
01-03-2018 дата публикации

Chromium-free catalyst for gas-phase fluorination and application thereof

Номер: US20180057431A1

Disclosed in the present invention are a chromium-free gas phase fluorination catalyst and an application thereof. The precursor of the related chromium-free gas phase fluorination catalyst consists of a compound containing iron element, a compound containing rare earth metal element and a compound containing element A, wherein element A is one selected from Ca, Al, Mg and Ti, the precursor is subjected to roasting and fluorination treating to obtain the chromium-free gas phase fluorination catalyst. The precursor of the catalyst is roasted at 400-500° C. and fluoridized with hydrogen fluoride at 350-450° C. to obtain the chromium-free gas phase fluorination catalyst. The catalyst has characteristics of being chromium-free and environment-friendly, good catalytic activity and long life etc. The catalyst can be used for preparing hydrofluoroolefins or hydrochlorofluoroolefins from halohydrocarbons.

Подробнее
12-03-2015 дата публикации

MAGNETIC CATALYST FOR WET OXIDATION OF ORGANIC WASTE AND PREPARATION METHOD THEREOF

Номер: US20150069286A1

The present invention relates generally to a magnetic catalyst for wet oxidation of organic waste and the preparation method thereof. According to the present invention, after the raw materials are dissolved and mixed in water, the pH value is adjusted for producing precipitates. Then after heating, filtering, drying, grinding, sifting, and calcinations are performed, the given magnetic catalyst can be reused without losing its activity. In addition, during treating organic waste by using wet oxidation method, no secondary waste is produced. Besides, the magnetic catalyst can be recycled by magnetic devices, making it excellent in terms of performance and convenience. 1. A magnetic catalyst for wet oxidation of organic waste , added in an organic waste in wet oxidation reaction , comprising:copper, having a 15˜20% mole percentage;iron, having a 15˜20% mole percentage;cerium, having a 5˜10% mole percentage; andoxygen, having a 55˜65% mole percentage.2. The magnetic catalyst of claim 1 , wherein said organic waste is organic liquid waste claim 1 , radioactive organic liquid waste claim 1 , spent ion exchange resin claim 1 , or radioactive spent ion exchange resin.3. A preparation method of a magnetic catalyst for wet oxidation of organic waste claim 1 , comprising steps of:{'sub': 3', '3', '2', '3', '2', '2', '3', '2', '2', '2', '2', '2', '2', '3', '3', '2, 'mixing ferric nitrate nonahydrate (Fe(NO).9HO), one selected from the group consisting of copper acetate (Cu(CHCOO).HO), copper nitrate trihydrate (Cu(NO).3HO), and copper chloride dihydrate (CuCl.2HO), and one selected from the group consisting of ferrous chloride tetrahydrate (FeCl.4HO) and cerium nitrate hexahydrate (Ce(NO).6HO) in deionized water for forming a homogeneous solution;'}adjusting the pH value of said homogeneous solution to produce a precipitate;heating said homogeneous solution;cooling said homogeneous solution and separating said precipitate;drying said precipitate;calcining said precipitate; ...

Подробнее
27-02-2020 дата публикации

Metal powderdous catalyst for hydrogenation processes

Номер: US20200061587A1
Принадлежит: DSM IP ASSETS BV

The present invention is related to a new metal powder catalytic system (catalyst), its production and its use in hydrogenation processes.

Подробнее
27-02-2020 дата публикации

CATALYSTS FOR THE REFORMING OF GASEOUS MIXTURES

Номер: US20200061588A1
Принадлежит:

Pyrochlore-based solid mixed oxide materials suitable for use in catalysing a hydrocarbon reforming reaction are disclosed, as well as methods of preparing the materials, and their uses in hydrocarbon reforming processes. The materials contain a catalytic quantity of inexpensive nickel and exhibit catalytic properties in dry reforming reactions that are comparable—if not better—than those observed using expensive noble metal-containing catalysts. Moreover, the Pyrochlore-based solid mixed oxide materials can be used in low temperature dry reforming reactions, where other catalysts would become deactivated due to coking. Accordingly, the catalytic materials represent a sizeable development in the industrial-scale reforming of hydrocarbons. 1. A solid mixed oxide material suitable for use in catalysing a methane dry reforming reaction , wherein the solid mixed oxide material comprises a first crystalline phase , the first crystalline phase being attributable to a pyrochlore crystal structure , and wherein the solid mixed oxide material comprises 3.5-25.0% of nickel by weight relative to the total weight of the solid mixed oxide material.2. The solid mixed oxide material of claim 1 , wherein the solid mixed oxide material comprises 5.0-25.0% of nickel by weight relative to the total weight of the solid mixed oxide material.3. The solid mixed oxide material of or claim 1 , wherein the solid mixed oxide material comprises 7.5-20.0% of nickel by weight relative to the total weight of the solid mixed oxide material.4. The solid mixed oxide material of any one of claim 1 , or claim 1 , wherein the solid mixed oxide material comprises 9.0-15.0% of nickel by weight relative to the total weight of the solid mixed oxide material.5. The solid mixed oxide material of any preceding claim claim 1 , wherein the first crystalline phase has a composition according to general formula (I) shown below{'br': None, 'sub': 2', '2', '7, 'ABO\u2003\u2003 (I)'} A is at least one trivalent ...

Подробнее
08-03-2018 дата публикации

MIXED METAL IRON OXIDES AND USES THEREOF

Номер: US20180065114A1
Принадлежит:

This invention is directed to novel mixed transition metal iron (II/III) catalysts for the extraction of oxygen from COand the selective reaction with organic compounds. 1. A mixed transition metal iron (II/III) catalyst for catalyzing COoxidation of carbon or an organic compound.2. The mixed transition metal iron (II/III) catalyst of claim 1 , wherein the mixed transition metal iron (II/III) catalyst comprises an iron (II/III) and a second metal selected from the group consisting of Ag claim 1 , Bi claim 1 , Co claim 1 , Cu claim 1 , La claim 1 , Mn claim 1 , Sn claim 1 , Ru claim 1 , and Zn.3. The mixed transition metal iron (II/III) catalyst of claim 1 , further comprising a support.4. The mixed transition metal iron (II/III) catalyst of claim 1 , further comprising an alkali or alkaline-earth element promoter.5. The mixed transition metal iron (II/III) catalyst of claim 3 , wherein the support is AlO claim 3 , SiO claim 3 , TiO claim 3 , ZrOor a mixture thereof.6. The mixed transition metal iron (II/III) catalyst of claim 5 , having the formula FeO(SnO)(AlO).7. The mixed transition metal iron (II/III) catalyst of claim 6 , having the formula FeO(SnO)(AlO).8. The mixed transition metal iron (II/III) catalyst of claim 2 , having the formula (RuO)FeO.9. The mixed transition metal iron (II/III) catalyst of claim 2 , having the formula (RuO)FeO.10. A method for converting COand carbon to carbon monoxide which comprises contacting the mixed transition metal iron (II/III) catalyst of with an appropriate COfeed stream under appropriate temperature and pressure conditions.11. The method of claim 10 , wherein the carbon claim 10 , the mixed transition metal iron (II/III) catalyst claim 10 , and the appropriate COfeed stream are reacted together at the same time.12. The method of claim 11 , wherein the carbon claim 11 , the mixed transition metal iron (II/III) catalyst claim 11 , and the appropriate COfeed stream are reacted together in a fluidized bed.1324.-. (canceled) ...

Подробнее
08-03-2018 дата публикации

CATALYST FOR FIXED BED ANILINE RECTIFICATION RESIDUE RECYCLING AND PREPARATION METHOD

Номер: US20180065916A1
Принадлежит:

The present invention relates to a catalyst for fixed bed aniline rectification residue recycling and preparation method thereof. Based on the total weight of the catalyst, the catalyst comprises the following components in percentage by weight: 5-40% of an active component, 2-30% of a first cocatalyst component, 10-30% of a second cocatalyst component and the balance of carrier, wherein the active component is NiO; the first cocatalyst component is one or more of Fe, Mo, Cr or Co oxide; and the second cocatalyst component is one or more of La, Zr, Y or Ce oxide. The catalyst is prepared through co-precipitation. The catalyst shows high activity and stability in the waste liquid treatment process, and can still maintain high rectification residue cracking rate after reaction of 200 hours. 1. A process of recycling aniline rectification residue , comprising subjecting the aniline rectification residue to fixed bed hydrogenation with a catalyst , wherein said catalyst comprises the components described below based on the total weight of the catalyst:5-40 wt % of NiO as an active component,2-30 wt % of one or more selected from oxides of Fe, oxides of Mo, oxides of Cr and oxides of Co as a first cocatalyst component,10-30 wt % of one or more selected from oxides of La, oxides of Zr, oxides of Y and oxides of Ce as a second cocatalyst component,the remaining portion being the support.2. The process of claim 1 , wherein said catalyst comprises the components described below based on the total weight of the catalyst:15-30 wt % of NiO as the active component,5-25 wt % of one or more selected from oxides of Fe, oxides of Mo, oxides of Cr and oxides of Co as the first cocatalyst component,15-25 wt % of one or more selected from oxides of La, oxides of Zr, oxides of Y and oxides of Ce as the second cocatalyst component,the remaining portion being the support.3. The process of claim 1 , wherein the support is SiO.4. The process of claim 1 , wherein the aniline rectification ...

Подробнее
29-05-2014 дата публикации

IRON-MODIFIED NI-BASED PEROVSKITE-TYPE CATALYST, PREPARING METHOD THEREOF, AND PRODUCING METHOD OF SYNTHESIS GAS FROM COMBINED STEAM CO2 REFORMING OF METHANE USING THE SAME

Номер: US20140145116A1
Принадлежит:

The present invention relates to an Fe-modified perovskite-type catalyst, a method for preparing same and a method for preparing a synthesis gas by a combined reforming reaction using same. More particularly, it relates to a catalyst for a combined natural gas/steam/carbon dioxide reforming reaction having a perovskite structure with La and Sr introduced at the A site and Ni and Fe introduced at the B site with specific molar ratios and a method for producing a synthesis gas for Fischer-Tropsch synthesis or methanol synthesis using the catalyst by the combined reforming reaction. The catalyst of the present invention exhibits higher carbon dioxide conversion rate, significantly reduced catalyst deactivation caused by carbon deposition and improved long-term catalyst stability and activity, as compared to the existing catalyst for reforming reaction prepared by the impregnation method. 1. An Fe-modified nickel-based perovskite-type catalyst represented by Chemical Formula 1:{'br': None, 'sub': 1-x', 'x', '1-y', 'y', '3, 'LaANiBO\u2003\u2003[Chemical Formula 1]'}wherein A is an alkaline earth metal, B is Fe as a transition metal, 0≦x≦0.2 and 0≦y≦1.2. A method for preparing an Fe-modified nickel-based perovskite-type catalyst represented by Chemical Formula 1 , comprising:preparing a perovskite precursor solution by dissolving a lanthanum precursor, an alkaline earth metal precursor, a nickel precursor and an iron precursor in water such that the molar ratio of Chemical Formula 1 is satisfied;adding cellulose to the perovskite precursor solution with a mass ratio of 1:1 based on the metals included in the perovskite precursor solution;{'sub': '4', 'adjusting pH of the cellulose-added precursor solution by mixing with EDTA-NH.OH; and'} {'br': None, 'sub': 1-x', 'x', '1-y', 'y', '3, 'LaANiBO\u2003\u2003[Chemical Formula 1]'}, 'drying the precursor solution and sinteringwherein A is an alkaline earth metal, B is Fe as a transition metal, 0≦x≦0.2 and 0≦y≦1.3. The method ...

Подробнее
11-03-2021 дата публикации

CATALYST COMPRISING CERIA-ZIRCONIA-OXYGEN STORAGE MATERIAL AND PROCESS FOR ITS PRODUCTION

Номер: US20210069680A1
Принадлежит:

An oxygen storage material (OSM) that exhibits enhanced redox properties, developed mesoporosity, and a resistance to sintering. The oxygen storage material (OSM) has a high oxygen storage capacity (i.e., OSC>1.5 mmol H/g) and enhanced reducibility (i.e., bimodal TPR-Hprofile with two Tin the temperature range from 150° C. to 550° C.). The OSM is suitable for use as a catalyst and a catalyst support. The method of making the oxygen storage material comprises the preparation of a solution containing zirconium, cerium, rare earth and transition metal salts, followed by the co-precipitation of all constituent metal hydroxides with a base. 1. An Oxygen Storage Material (OSM) consisting of oxides of zirconium , cerium , at least one rare earth metal other than cerium , and at least one transition metal;wherein the OSM has a zirconium oxide content that is not less than 30% by weight and transition metal oxide content not higher than 8% by weight relative to the overall weight of the OSM;{'sub': 2', '2, 'wherein the OSM exhibits 100% CeO2 reducibility and an oxygen storage capacity (OSC) after ageing at 1100° C. for 4 hours that is at least 1.5 mmol H/g with bimodal TPR-Hprofile.'}2. The Oxygen Storage Material according to claim 1 , wherein the OSM has zirconium oxide content from 30% to 80% by weight relative to the overall weight of the OSM.3. The Oxygen Storage Material according to claim 1 , wherein the OSM has cerium oxide content from 5% to 50% by weight relative to the overall weight of the OSM.4. The Oxygen Storage Material according to claim 1 , wherein the rare earth metals are selected from the group lanthanum claim 1 , neodymium claim 1 , praseodymium claim 1 , yttrium or combination of thereof.5. The Oxygen Storage Material according to claim 1 , wherein the rare earth metal oxides content is from 0% up to 15% by weight relative to the overall weight of the OSM.6. The Oxygen Storage Material according to claim 1 , wherein the transition metals are selected ...

Подробнее
17-03-2016 дата публикации

UREA HYDROLYSIS REACTOR FOR SELECTIVE CATALYTIC REDUCTION

Номер: US20160074809A1
Автор: Goffe Randal A.
Принадлежит: PACCAR INC

This disclosure features a urea conversion catalyst located within a urea decomposition reactor (e.g., a urea decomposition pipe) of a diesel exhaust aftertreatment system. The urea conversion catalyst includes a refractory metal oxide and a cationic dopant. The urea conversion catalyst can decrease the temperature at which urea converts to ammonia, can increase the urea conversion yield, and can decrease the likelihood of incomplete urea conversion. 1. A urea decomposition reactor , comprising:a urea conversion catalyst;wherein the urea conversion catalyst comprises a refractory metal oxide and a cationic dopant.2. The urea decomposition reactor of claim 1 , wherein the refractory metal oxide is selected from the group consisting of cerium oxide claim 1 , titanium oxide claim 1 , zirconium oxide claim 1 , aluminum oxide claim 1 , silicon oxide claim 1 , hafnium oxide claim 1 , vanadium oxide claim 1 , niobium oxide claim 1 , tantalum oxide claim 1 , chromium oxide claim 1 , molybdenum oxide claim 1 , tungsten oxide claim 1 , ruthenium oxide claim 1 , rhodium oxide claim 1 , iridium oxide claim 1 , nickel oxide claim 1 , and any combination thereof.3. The urea decomposition reactor of claim 1 , wherein the refractory metal oxide is selected from the group consisting of titanium oxide claim 1 , zirconium oxide claim 1 , cerium oxide claim 1 , and any combination thereof.4. The urea decomposition reactor of claim 1 , wherein the refractory metal oxide is zirconium oxide or cerium oxide.5. The urea decomposition reactor of claim 1 , wherein the cationic dopant is an oxide comprising Mg claim 1 , Ni claim 1 , Ti claim 1 , V claim 1 , Nb claim 1 , Ta claim 1 , Cr claim 1 , Mo claim 1 , W claim 1 , W claim 1 , Mn claim 1 , Fe claim 1 , Zn claim 1 , Ga claim 1 , Al claim 1 , In claim 1 , Ge claim 1 , Si claim 1 , Sn claim 1 , Co claim 1 , Ni claim 1 , Ba claim 1 , La claim 1 , Ce claim 1 , and Nb.6. The urea decomposition reactor of claim 1 , wherein the urea conversion ...

Подробнее
17-03-2016 дата публикации

UREA HYDROLYSIS REACTOR FOR SELECTIVE CATALYTIC REDUCTION

Номер: US20160074839A1
Автор: Goffe Randal A.
Принадлежит: PACCAR INC

This disclosure features a urea conversion catalyst located within a urea decomposition reactor (e.g., a urea decomposition pipe) of a diesel exhaust aftertreatment system. The urea conversion catalyst includes a refractory metal oxide and a cationic dopant. The urea conversion catalyst can decrease the temperature at which urea converts to ammonia, can increase the urea conversion yield, and can decrease the likelihood of incomplete urea conversion. 1. A urea decomposition reactor , comprising:a urea conversion catalyst;wherein the urea conversion catalyst comprises a refractory metal oxide and a cationic dopant.2. The urea decomposition reactor of claim 1 , wherein the refractory metal oxide is selected from the group consisting of cerium oxide claim 1 , titanium oxide claim 1 , zirconium oxide claim 1 , aluminum oxide claim 1 , silicon oxide claim 1 , hafnium oxide claim 1 , vanadium oxide claim 1 , niobium oxide claim 1 , tantalum oxide claim 1 , chromium oxide claim 1 , molybdenum oxide claim 1 , tungsten oxide claim 1 , ruthenium oxide claim 1 , rhodium oxide claim 1 , iridium oxide claim 1 , nickel oxide claim 1 , and any combination thereof.3. The urea decomposition reactor of claim 1 , wherein the refractory metal oxide is selected from the group consisting of titanium oxide claim 1 , zirconium oxide claim 1 , cerium oxide claim 1 , and any combination thereof.4. The urea decomposition reactor of claim 1 , wherein the refractory metal oxide is zirconium oxide or cerium oxide.5. The urea decomposition reactor of claim 1 , wherein the cationic dopant is an oxide comprising Mg claim 1 , Ni claim 1 , Ti claim 1 , V claim 1 , Nb claim 1 , Ta claim 1 , Cr claim 1 , Mo claim 1 , W claim 1 , W claim 1 , Mn claim 1 , Fe claim 1 , Zn claim 1 , Ga claim 1 , Al claim 1 , In claim 1 , Ge claim 1 , Si claim 1 , Sn claim 1 , Co claim 1 , Ni claim 1 , Ba claim 1 , La claim 1 , Ce claim 1 , and Nb.6. The urea decomposition reactor of claim 1 , wherein the urea conversion ...

Подробнее
07-03-2019 дата публикации

CATALYST COMPOSITION COMPRISING MAGNETIC MATERIAL ADAPTED FOR INDUCTIVE HEATING

Номер: US20190070596A1
Принадлежит:

The invention provides a catalyst composition, including a mixture of catalytically active particles and a magnetic material, such as superparamagnetic iron oxide nanoparticles, capable of inductive heating in response to an applied alternating electromagnetic field. The catalytically active particles will typically include a base metal, platinum group metal, oxide of base metal or platinum group metal, or combination thereof, and will be adapted for use in various catalytic systems, such as diesel oxidation catalysts, catalyzed soot filters, lean NOx traps, selective catalytic reduction catalysts, ammonia oxidation catalysts, or three-way catalysts. The invention also includes a system and method for heating a catalyst material, which includes a catalyst article that includes the catalyst composition and a conductor for receiving current and generating an alternating electromagnetic field in response thereto, the conductor positioned such that the generated alternating electromagnetic field is applied to at least a portion of the magnetic material. 1. A catalyst composition , comprising a mixture of catalytically active particles and a magnetic material capable of inductive heating in response to an applied alternating electromagnetic field.2. The catalyst composition of claim 1 , wherein the magnetic material is superparamagnetic.3. The catalyst composition of claim 1 , wherein the magnetic material is in particulate form.4. The catalyst composition of claim 3 , wherein the magnetic material is in nanoparticle form.5. The catalyst composition of claim 1 , wherein the magnetic material comprises a transition metal or a rare earth metal.6. The catalyst composition of claim 1 , wherein the magnetic material comprises superparamagnetic iron oxide nanoparticles.7. The catalyst composition of claim 1 , wherein the magnetic material comprises a rare earth containing particulate material comprising neodymium-iron-boron or samarium-cobalt particles.8. The catalyst ...

Подробнее
16-03-2017 дата публикации

CERIUM-ZIRCONIUM-BASED COMPOSITE OXIDE AND METHOD FOR PRODUCING SAME

Номер: US20170072386A1
Принадлежит: DAIICHI KIGENSO KAGAKU KOGYO CO., LTD.

Provided is a cerium-zirconium-based composite oxide having an excellent OSC, high catalytic activity, and excellent heat resistance, and also provided is a method for producing the same. The cerium-zirconium-based composite oxide comprises cerium, zirconium, and a third element other than these elements. The third element is (a) a transition metal element or (b) at least one or more elements selected from the group consisting of rare earth elements and alkaline earth metal elements. After a heat treatment at 1,000° C. to 1,100° C. for 3 hours, (1) the composite oxide has a crystal structure containing a pyrochlore phase, (2) a value of {I111/(I111+I222)}×100 is 1 or more, and (3) the composite oxide has an oxygen storage capacity at 600° C. of 0.05 mmol/g or more, and an oxygen storage capacity at 750° C. of 0.3 mmol/g or more. 19-. (canceled)10. A cerium-zirconium-based composite oxide comprising cerium , zirconium , and a third element other than these elements;wherein the third element is(a) a transition metal element or(b) at least one or more elements selected from the group consisting of rare-earth elements and alkaline earth metal elements;after a heat treatment at 1,000° C. to 1,100° C. for 3 hours,(1) the composite oxide has a crystal structure containing a pyrochlore phase,(2) when the peak intensity of a (111) plane measured by an X-ray diffraction method is regarded as I111, and the peak intensity of a (222) plane is regarded as I222, a value of {I111/(I111+I222)}×100 is 1 or more, and(3) the composite oxide has an oxygen storage capacity at 600° C. of 0.05 mmol/g or more, and an oxygen storage capacity at 750° C. of 0.3 mmol/g or more; andthe third element is contained in an amount of 0.01 to 10 mol % in terms of oxide.11. The cerium-zirconium-based composite oxide according to claim 10 , wherein the third element is (a) a transition metal element; andafter a heat treatment at 1,000° C. to 1,100° C. for 3 hours, the composite oxide has an oxygen ...

Подробнее
19-03-2015 дата публикации

Method for Preparing Iron-Based Catalyst and Iron-Based Catalyst Prepared by the Same

Номер: US20150080210A1
Принадлежит:

A method for preparing an iron-based catalyst, the method including preparing iron ore particles by grinding iron ore; and impregnating the iron ore particles with a first metal and second metal, wherein the first metal is selected from copper, cobalt, or manganese, or a combination thereof, and the second metal is selected from an alkali metal or alkali earth metal, or a combination thereof. 1. A method for preparing an iron-based catalyst , the method comprising:preparing iron ore particles by grinding iron ore; andimpregnating the iron ore particles with a first metal and second metal,wherein the first metal is selected from copper, cobalt, or manganese, or a combination thereof, and the second metal is selected from an alkali metal or alkali earth metal, or a combination thereof.2. The method according to claim 1 ,wherein the preparing of iron ore particles comprises:coarse-grinding the iron ore to have an average particle size of 0.1 μm to 2 cm; andfine-grinding the iron ore to have an average particle size of 10 nm to 10 μm.3. The method according to claim 2 ,wherein at the coarse-grinding, the iron ore is ground 1 to 5 times by a method selected from a jaw crusher, roll crusher, or ball mill, or a combination thereof.4. The method according to claim 2 ,wherein at the fine-grinding, the iron ore is ground 1 to 3 times by a method selected from a jet mill, bead mill, or apex, or a combination thereof.5. The method according to claim 2 ,wherein the fine-grinding comprises:first fine-grinding wherein the iron ore ground at the coarse-grinding is dry-ground; andsecond fine-grinding wherein a solvent is mixed to the dry-ground iron ore and then the dry-ground iron ore is wet-ground.6. The method according to claim 5 ,wherein at the second fine-grinding, the iron ore is 1 to 20 weight % per 100 weight % of the iron ore and solvent.7. The method according to claim 5 ,wherein the second fine-grinding is performed by a bead mill or apex mill method using a bead having ...

Подробнее
19-03-2015 дата публикации

IRON OXIDE-ZIRCONIA COMPOSITE OXIDE AND METHOD FOR PRODUCING SAME, AND EXHAUST GAS PURIFICATION CATALYST

Номер: US20150080211A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A composite oxide with a high oxygen storage capacity is provided without using cerium. The composite oxide is an iron oxide-zirconia composite oxide containing iron, zirconium, and a rare-earth element. The total content of FeO, ZrO, and an oxide of the rare-earth element is not less than 90 mass %, the content of an iron oxide in terms of FeOis 10 to 90 mass %, and the absolute value of the covariance COV(Fe, Zr+X) of the composite oxide, which has been baked in the atmosphere at a temperature of greater than or equal to 900° C. for 5 hours or more, determined by the following Formulae (1) to (3), is not greater than 20: 2. The iron oxide-zirconia composite oxide according to claim 1 , wherein the absolute value of the covariance COV(Fe claim 1 , Zr+X) of the composite oxide claim 1 , which has been baked in the atmosphere at a temperature of greater than or equal to 900° C. for 5 hours or more claim 1 , determined by the Formulae (1) to (3) claim 1 , is not greater than 20.3. The iron oxide-zirconia composite oxide according to claim 1 , wherein the iron oxide in the composite oxide claim 1 , which has been baked in the atmosphere at a temperature of greater than or equal to 900° C. for 5 hours or more claim 1 , contains hematite.4. The iron oxide-zirconia composite oxide according to or claim 1 , wherein the composite oxide contains lanthanum.5. The iron oxide-zirconia composite oxide according to claim 4 , wherein the composite oxide claim 4 , which has been baked in the atmosphere at a temperature of greater than or equal to 900° C. for 5 hours or more claim 4 , contains at least one of a lanthanum-iron composite oxide or a lanthanum-zirconium composite oxide.6. The iron oxide-zirconia composite oxide according to claim 4 , wherein the absolute value of the covariance COV(Fe claim 4 , Zr+X) of the composite oxide claim 4 , which has been baked in the atmosphere at 1100° C. for 10 hours claim 4 , determined by the Formulae (1) to (3) claim 4 , is not greater ...

Подробнее
05-06-2014 дата публикации

SUBSTRATE FOR CARBON NANOTUBE GROWTH AND METHOD FOR MANUFACTURING THE SAME

Номер: US20140155251A1
Принадлежит: HONDA MOTOR CO., LTD.

Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth includes a base plate a catalyst a form-defining material layer which allows the catalyst to be dispersed and arranged, and a covering layer which has a metal oxide to cover the catalyst. A method for manufacturing a substrate for carbon nanotube growth includes a step of sputtering on a base plate a metal which forms a catalyst and oxidizing the surface of the metal, a step of sputtering a form-defining material on the base plate and a step of further sputtering on the form-defining material a metal which forms a catalyst and oxidizing the surface of the metal. 1. A substrate for carbon nanotube growth comprising a base plate and a catalyst disposed on the base plate , the substrate comprising:a catalyst consisting of a transition metal;a form-defining material layer which is formed on the base plate to define a form which allows the catalyst to be dispersed and arranged; anda covering layer which consists of a metal oxide to cover the surface of the catalyst.2. The substrate for carbon nanotube growth according to claim 1 , wherein the form-defining material layer controls a plane direction of the crystal structure of the catalyst to thereby define the form of the catalyst.3. The substrate for carbon nanotube growth according to claim 1 , wherein the catalyst consists of an iron group element.4. The substrate for carbon nanotube growth according to claim 3 , wherein the iron group element is Fe.5. The substrate for carbon nanotube growth according to claim 1 , wherein the base plate consists of MgO (100) single crystal.6. The substrate for carbon nanotube growth according to claim 1 , wherein the form-defining material layer has the same material as the base plate.7. The substrate for carbon nanotube growth according to claim 1 , wherein the base plate consists of MgO (100) ...

Подробнее
14-03-2019 дата публикации

CATALYSTS AND METHODS FOR METHANOL SYNTHESIS FROM DIRECT HYDROGENATION OF SYNGAS AND/OR CARBON DIOXIDE

Номер: US20190076828A1
Принадлежит:

Nano-sized mixed metal oxide catalysts capable of producing methanol (CHOH) from carbon dioxide (CO) and hydrogen (H) or from carbon dioxide (CO), carbon monoxide (CO), and hydrogen (H), methods of making the catalyst, and uses thereof are described herein. The nano-sized mixed metal oxide catalysts can have a formula of: [CuZnAlM]Owhere a is 20 to 80, b is 15 to 60, c is 1 to 25, d is 0 to 15 and n is determined by the oxidation states of the other elements is determined by the oxidation states, and Mcan be yttrium (Y), cerium (Ce), tin (Sn), sodium (Na), bismuth (Bi), magnesium (Mg), or gadolinium (Gd). 1. A mixed metal catalyst capable of producing methanol (CHOH) from hydrogen (H) and carbon dioxide (CO) or from hydrogen (H) , carbon dioxide (CO) and carbon monoxide (CO) , the catalyst having a general formula of:{'br': None, 'sub': a', 'b', 'c', 'n, 'sup': '1', '[CuZnAlMd]O'}where a is 20 to 80, b is 15 to 60, c is 1 to 25, d is 0 to 15 and n is determined by the oxidation states of the other elements; and{'sup': '1', 'where Mis yttrium (Y), cerium (Ce), tin (Sn), sodium (Na), magnesium (Mg), bismuth (Bi), or gadolinium (Gd).'}2. The mixed metal catalyst of claim 1 , wherein Mis Y.3. The mixed metal catalyst of claim 1 , wherein Mis Ce.4. The mixed metal catalyst of claim 1 , wherein Mis Sn.5. The mixed metal catalyst of claim 1 , wherein Mis Na.6. The mixed metal catalyst of claim 1 , wherein Mis Bi.7. The mixed metal catalyst of claim 1 , wherein Mis Gd.8. The mixed metal catalyst of claim 1 , wherein Mis Mg.9. The mixed metal catalyst of claim 1 , where in d is 0 and the catalyst has the formula of: [CuZnAl]O10. The mixed metal oxide catalyst of claim 1 , wherein the catalyst has a particle size of 2 to 12 nm.11. A method of producing methanol (CHOH) from hydrogen (H) and carbon dioxide (CO) or from hydrogen (H) claim 1 , carbon dioxide (CO) and carbon monoxide (CO) claim 1 , the method comprising contacting a reactant gas stream that includes Hand COor H ...

Подробнее
24-03-2016 дата публикации

NANO Ni-CeO2 CATALYST FOR SYNGAS PRODUCTION AND ITS PREPARATION THEREOF

Номер: US20160082421A1

The present invention relates to Nano Ni—CeOcatalyst and its preparation thereof useful for syngas production. Particularly, the present invention relates to a process for the activation of methane at low temperature for the production of synthesis gas (mixture of CO and H) using nanosize Ni—Ce oxide catalyst. More particularly, the present invention relates to a process for the partial oxidation of methane to synthesis gas between temperature range of 450° C. to 800° C. at atmospheric pressure over Ni—CeOsolid catalyst. The process provides a methane conversion of 20-98% with Hto CO molar ratio of 1.6 to 2 without deactivation till 100 h. 1. A Nano Ni—CeOcatalyst having formula NiO—CeOcomprises NiO in the range of 2.5-10 wt % and CeOin the range 97.5-90 wt % , wherein 2-5 nm Ni nanoparticles are present on 30-40 nm CeOnanoparticles.2. A process for the preparation of Nano Ni—CeOcatalyst as claimed in claim 1 , wherein the said process comprising the steps of;{'sub': 3', '3', '2', '3', '3', '2, 'a) precipitating Ce(NO).6HO in ethanol wherein mole ratio of Ce-salt:ethanol is in the range of 8:130 to 9:150 with 2-5% NH3 solution where Ce(NO).6HO was used as the precursor of Ce,'}b) maintaining the pH of the mixture between 7-10 and stirring the mixture for a period of 1-2 h at room temperature ranging between 30-40° C.,c) heating the resultant solution at a temperature range of 80-90° C. for a period of 3-5 hrs to obtain a thick mixture substance,d) evaporating the thick mixture substance to dryness at a temperature range of 90-100° C. for a period of 15-20 hrs to obtain solid;e) calcining the solid obtained as obtained in step (d) at a temperature range of 450-650° C. for a time period in the range of 4-8 hours to obtain Ce oxide;{'sub': 3', '2', '3', '2', '2', '2, 'sup': −4', '−4, 'f) adding dropwise Ni(NO)dissolved in water medium wherein mole ratio of Ni(NO)6HO:HO is in the range of 4.5×10:0.55 to 9×10:0.55 to the ethanolic solution of cetyltrimethylammonium ...

Подробнее
24-03-2016 дата публикации

Multimetallic Anionic Clays and Derived Products for SOx Removal in the Fluid Catalytic Cracking Process

Номер: US20160082424A1
Принадлежит:

The present invention relates to the preparation of Multimetallic Anionic Clays (MACs) through a simple method, which are then shaped by spray-drying into microspheres with adequate mechanical properties, suitable to be fluidized. The microspheres are appropriate for application as additives in the Fluid Catalytic Cracking (FCC) process, i.e. blended with the conventional catalyst, to in situ remove sulfur oxides (SO) from the combustion gases produced in the regeneration stage of the FCC process, when cracking sulfur-containing hydrocarbon feeds. An oxidation promoter is added to the MACs in order to promote the oxidation of SOto SO, a key step in SOremoval, providing more efficient and versatile materials, which are apt to be used in atmospheres with variable oxygen concentration. 1. A composition for removing sulfur oxides from combustion gases in a catalytic hydrocarbon cracking process , wherein said composition comprises particles of multimetallic anionic clays (MACs) having the formula:{'br': None, 'sub': x', 'y', 'z', '2', '(y+z)/n', '2', 'p', '2, 'sup': 'n−', 'i': '.m', '[MgAlFe(OH)](A)[CeO]HO'}{'sup': 'n−', "wherein Mg, Al and Fe are metals forming layers of the multimetallic anionic clay and wherein Ce is present in an amount effective as an oxidant promoter, and wherein Ce is present as cerium oxide highly dispersed on the inside of said MAC particles; A denotes an anion located between the layers formed by the metal cations; n represents the interlaminar anion's negative electronic charge from −1 to −8; m is the molecules of water present as hydration water or as water present in the interlaminar region and is from 0 to 2; where x=0.667 to 0.833, y=0.001 to 0.275, z=0.055 to 0.256, p=0.029 to 0.110; and wherein said multimetallic anionic clay is obtained by a process including the steps of"}{'sub': '2', 'mixing MgO in an acidified aqueous media to obtain a suspension containing a layered structure of Mg(OH);'}{'sub': 3', '3', '2, 'dissolving CeNOand Fe( ...

Подробнее
14-03-2019 дата публикации

CATALYSTS FOR PETROCHEMICAL CATALYSIS

Номер: US20190077728A1
Принадлежит:

Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed. 140-. (canceled)41. A catalyst comprising a mixed oxide of a lanthanide and tungsten , wherein the catalyst further comprises a sodium dopant and at least one doping element from groups 2 , 4-15 , lanthanides or combinations thereof , wherein the catalyst comprises a Cselectivity of greater than 50% and a methane conversion of greater than 20% when the catalyst is employed as a heterogeneous catalyst in the oxidative coupling of methane at a temperature of 750° C. or less.42. The catalyst of claim 41 , wherein the lanthanide is Ce claim 41 , Pr claim 41 , Nd claim 41 , La claim 41 , Eu claim 41 , Sm or Yb.43. The catalyst of claim 41 , wherein the at least one doping element is Fe claim 41 , Co claim 41 , Mn claim 41 , Cu claim 41 , Ni claim 41 , Sr claim 41 , Ga claim 41 , Zr claim 41 , Pb claim 41 , Zn claim 41 , Cr claim 41 , Pt claim 41 , Al claim 41 , Nb claim 41 , La claim 41 , Ba claim 41 , Bi claim 41 , Sn claim 41 , In claim 41 , Ru claim 41 , P or combinations thereof.44. A catalyst comprising a rare earth oxide and two or more dopants claim 41 , wherein the catalyst comprises a Cselectivity of greater than 50% and a methane conversion of greater than 20% when the catalyst is employed as a heterogeneous catalyst in the oxidative coupling of methane at a temperature of 750° C. or less claim 41 , and wherein the dopant comprises Eu/Na claim 41 , Sr/Na claim 41 , Na/Zr/Eu/Ca claim 41 , Mg/Na claim 41 , Sr/Sm/Ho/Tm claim 41 , Sr/W claim 41 , Mg/La/K claim 41 , Na/K/Mg/Tm claim 41 , Na/Dy/K claim 41 , Na/La/Dy claim 41 , Na/La/Eu claim 41 , Na/La/Eu/In claim 41 , Na/La/K claim 41 , Na/La/Li/Cs claim 41 , K/La claim 41 , K/La/S claim 41 , K/Na claim ...

Подробнее
23-03-2017 дата публикации

YTTRIUM-CONTAINING CATALYST FOR HIGH-TEMPERATURE CARBON DIOXIDE HYDRATION, COMBINED HIGH-TEMPERATURE CARBON DIOXIDE HYDRATION, AND REFORMING AND/OR REFORMING, AND A METHOD FOR HIGH-TEMPERATURE CARBON DIOXIDE HYDRATION, COMBINED HIGH-TEMPERATURE CARBON DIOXIDE HYDRATION AND REFORMING AND/OR REFORMING

Номер: US20170080407A1
Принадлежит: BASF SE

The invention relates to a process for producing a catalyst for the high-temperature processes (i) carbon dioxide hydrogenation, (ii) combined high-temperature carbon dioxide hydrogenation and reforming and/or (iii) reforming of hydrocarbon-comprising compounds and/or carbon dioxide and the use of the catalyst of the invention in the reforming and/or hydrogenation of hydrocarbons, preferably methane, and/or of carbon dioxide. To produce the catalyst, an aluminum source, which preferably comprises a water-soluble precursor source, is brought into contact with an yttrium-comprising metal salt solution, dried and calcined. The metal salt solution comprises, in addition to the yttrium species, at least one element from the group consisting of cobalt, copper, nickel, iron and zinc. 1. A catalyst precursor , comprising at least one crystalline material which comprises yttrium and aluminum and has the characteristic that it has a cubic garnet structure , where the catalyst precursor comprises Cu , Zn , Fe , Co and/or Ni and where part of the yttrium and/or aluminum species in the crystalline material is replaced by at least one element selected from the group consisting of Cu , Zn , Ni , Co , and Fe , where a proportion of secondary phases is in the range from 0-49% by weight.2. The catalyst precursor according to claim 1 , wherein the yttrium content is in the range 15-80 mol % and the aluminum content is in the range 10-90 mol % claim 1 , where the total content of elements selected from the group consisting of Cu claim 1 , Zn claim 1 , Ni claim 1 , Co claim 1 , Fe is in the range of 0.01-10 mol %.3. The catalyst precursor according to claim 1 , wherein the catalyst precursor comprises claim 1 , in addition to a main phase cubic garnet structure claim 1 , at least one secondary phase present in a proportion in the range of 1-49% by weight.4. The catalyst precursor according to claim 1 , wherein the catalyst precursor has a BET surface area which is greater than 2 m2/g.5. ...

Подробнее
31-03-2022 дата публикации

POROUS CARBON-BASED METAL CATALYST AS WELL AS PREPARATION METHOD AND APPLICATION THEREOF

Номер: US20220098033A1
Автор: WANG JIE, Zhu Yixin
Принадлежит: CQC INTIME TESTING TECHNOLOGY CO., LTD.

A porous carbon-based metal catalyst, a preparation method and application thereof are provided. The preparation method includes: successively performing activation, surface corrosion, nitrogen-doping treatment and graphitization treatment on washed micro-grade porous carbon, then performing sensitization treatment, and subsequently carrying out loading, reduction and other treatments of catalytic metal, so as to finally obtain the porous carbon-based metal catalyst. The porous carbon-based metal catalyst provided by the present application has excellent catalytic performance, is especially suitable for producing hydrogen by efficiently catalytically decomposing ammonia borane, is not prone to inactivation, and is easy to regenerate after inactivation. Meanwhile, the preparation method is environmental-friendly, is suitable for large-scale production and has a wide application prospect in the fields such as hydrogen fuel batteries. 1. A method for preparing a porous carbon-based metal catalyst , comprising:(1) ultrasonically washing a porous carbon having a particle size of 10-100 μm for 5-10 min with an absolute ethyl alcohol and deionized water in turn, and then drying the porous carbon;(2) activating the porous carbon treated in step (1) for 1-5 h with vapor having a temperature of 150-180° C., and then drying the porous carbon;(3) soaking the porous carbon treated in step (2) into a strong base solution having a temperature of 30-60° C. for 0.5-2 h, the strong base solution containing 5-10 wt % of hydrogen peroxide and 10-15 wt % of a strong base, then taking out the porous carbon, and washing the porous carbon with deionized water until the a pH value is 7-7.5 to obtain a moist porous carbon;(4) placing the moist porous carbon treated in step (3) into an inner cavity of a graphitization device, and introducing a first mixed gas consisting of nitrogen and nitric oxide in a volume ratio of 2:0.5-1.5 at a flow rate of 30-300 ml/min, simultaneously heating to 2200- ...

Подробнее
25-03-2021 дата публикации

CATALYST FOR OXYCHLORINATION PROCESS OF HYDROCARBON, METHOD FOR PRODUCING SAME, AND METHOD FOR MANUFACTURING OXYCHLORINATED COMPOUND OF HYDROCARBON BY USING SAME

Номер: US20210086168A1
Принадлежит:

A catalyst for an oxychlorination process of hydrocarbons, a preparation method thereof, and a method for preparing an oxychlorination compound of hydrocarbons using the same. 1. A catalyst for an oxychlorination process of hydrocarbons , the catalyst comprising:a catalyst material comprising iron; anda carrier comprising cerium oxide,wherein a content of the catalyst material is 0.1 wt % to 9 wt % based on a total weight of the catalyst.2. The catalyst of claim 1 , wherein the content of the catalyst material is 1 wt % to 7 wt % based on the total weight of the catalyst.3. The catalyst of claim 1 , wherein the catalyst material further comprises one or more selected from the group consisting of yttrium (Y) claim 1 , an alkali meal claim 1 , an alkaline earth metal claim 1 , a lanthanide metal claim 1 , and a rare earth metal.4. The catalyst of claim 1 , wherein a content of the iron in the catalyst material is 50 wt % to 100 wt % based on a total weight of the catalyst material.5. The catalyst of claim 1 , wherein a content of the iron in the catalyst is 1 wt % to 7 wt % based on the total weight of the catalyst.6. The catalyst of claim 1 , wherein the carrier has a specific surface area of 50 m/g to 250 m/g.7. The catalyst of claim 1 , wherein the carrier further comprises a composite oxide comprising one or more element selected from the group consisting of Zr claim 1 , an alkali metal element claim 1 , an alkaline earth metal element claim 1 , a lanthanide element claim 1 , and a rare earth element.8. The catalyst of claim 1 , wherein the cerium oxide is present in the carrier in an amount of 50 wt % to 100 wt % based on a total weight of the carrier.9. The catalyst of claim 1 , wherein the catalyst is in the form of particles having a diameter of 0.1 mm to 1.0 mm.10. A method for preparing the catalyst for an oxychlorination process of hydrocarbons according to claim 1 , the method comprising:preparing a carrier comprising cerium oxide; andsupporting a catalyst ...

Подробнее
30-03-2017 дата публикации

CATALYTIC FILTER HAVING A SOOT CATALYST AND AN SCR CATALYST

Номер: US20170087513A1
Принадлежит:

A catalytic filter is provided having a mixture of an SCR catalyst and soot oxidation catalyst where the soot oxidation catalyst is a copper doped ceria, iron doped ceria or manganese doped ceria. The mixture of an SCR catalyst and soot oxidation catalyst provides for a lowering of the peak oxidation temperature for soot removal from the filter. The use of the filter allows for improved soot combustion and reduces the susceptibility of an SCR catalyst contained on a filter to deterioration. The soot oxidation catalyst also improves the resistance of the SCR catalyst to poisoning and subsequent deterioration of SCR performance. 1. A composition comprising a mixture of an SCR catalyst and a soot catalyst comprising copper doped ceria , iron doped ceria or manganese doped ceria , wherein the composition is formulated for application to a filter.2. The composition of claim 1 , wherein the copper doped ceria claim 1 , iron doped ceria or manganese doped ceria is doped with: (a) zirconia claim 1 , (b) zirconia and praseodymium claim 1 , (c) zirconia and neodymium claim 1 , or (d) zirconia claim 1 , praseodymium and neodymium.3. The composition of claim 1 , wherein the soot catalyst and the SCR catalyst are present in an amount having a weight ratio of soot catalyst: SCR catalyst of 5:95 to 95:5 claim 1 , preferably from 5:95 to 50:50 claim 1 , more preferably from 10:90 to 30:70.4. The composition of claim 1 , wherein copper or manganese is present at from 0.5 to 15% by weight relative to the weight of ceria claim 1 , or iron is present at from 0.5 to 10% by weight relative to the weight of ceria.5. The composition of claim 1 , wherein the composition further comprises one or more additional metal oxides.6. The composition of claim 5 , where the one or more additional metal oxides comprises an oxide of zirconium claim 5 , praseodymium or neodymium claim 5 , or combinations of two or more of the oxides.7. A filter comprising an SCR catalyst and a soot catalyst comprising ...

Подробнее
30-03-2017 дата публикации

Mixed metal oxide catalysts for ammonia decomposition

Номер: US20170087537A1
Принадлежит: SABIC Global Technologies BV

Systems and methods for ammonia decomposition catalysts are described. Systems and methods may include providing a first solution, where the first solution includes a first metal soluble salt of cobalt, nickel, iron, and a combination thereof; a second metal soluble salt of magnesium, calcium, strontium, barium, and a combination thereof; a third metal soluble salt of lanthanide elements, and a combination thereof; and a fourth metal soluble salt of aluminum, transition metals, alkali metals, and a combination thereof. The first metal oxide, the second metal oxide, the third metal oxide, and the fourth metal oxide may be co-precipitated from the first solution at a pH between approximately 6.0 and approximately 11.0 to form a hydrotalcite-like structured material. The co-precipitated material may be aged and dried. The aged, dried, co-precipitated material may be decomposed to form a final catalyst product.

Подробнее
30-03-2017 дата публикации

Hydrocarbon Dehydrocyclization in the Presence of Carbon Dioxide

Номер: US20170088486A1
Принадлежит:

The invention relates to converting non-aromatic hydrocarbon in the presence of COto produce aromatic hydrocarbon. COmethanation using molecular hydrogen produced during the aromatization increases aromatic hydrocarbon yield. The invention also relates to equipment and materials useful in such upgrading, to processes for carrying out such upgrading, and to the use of such processes for, e.g., natural gas upgrading. 1. A hydrocarbon conversion process , comprising:{'sub': 2+', '2, '(a) providing a feed comprising ≧1 wt. % of C non-aromatic hydrocarbon and ≧0.1 wt. % of CO;'} the first catalyst includes (i) ≧0.005 wt. % of a dehydrogenation component which comprises one or more of Ga, Zn, Mo, W, La, Pt, and Pd, and (ii) ≧10 wt. % of a molecular sieve component, the molecular sieve component comprising at least one molecular sieve having a Constraint Index in the range of from 1 to 12, and', {'sub': '2', 'the second catalyst includes ≧0.005 wt. % of a COconversion component which comprises one or more of Ru, Rh, Ni, Co, and Fe;'}], '(b) providing first and second catalysts, wherein'}{'sub': 2+', '2, "(c) exposing the feed to the first catalyst under conversion conditions effective for (i) converting ≧10 wt. % of the feed's C non-aromatic hydrocarbon to aromatic hydrocarbon and molecular hydrogen and (ii) increasing aromatic hydrocarbon yield by reacting ≧1 wt. % of the feed's COwith at least a portion of the molecular hydrogen in the presence of the second catalyst to produce methane and water."}2. The process of claim 1 , wherein the feed comprises ≧1 wt. % of CO; 10 wt. % to 40 wt. % ethane; 20 wt. % to 50 wt. % propane claim 1 , and 20 wt. % to 50 wt. % butanes claim 1 , and further comprises 1 wt. % to 40 wt. % methane and ≦1 wt. % of aromatic hydrocarbon.3. The process of claim 1 , wherein the COreaction of step (c) has a greater selectivity for methane than CO.4. The process of claim 1 , wherein (i) the first catalyst includes (i) ≧0.01 wt. % of the ...

Подробнее
05-05-2022 дата публикации

A MOLDING COMPRISING A MIXED OXIDE COMPRISING OXYGEN, LANTHANUM, ALUMINUM, AND COBALT

Номер: US20220134312A1
Принадлежит:

A molding comprising a mixed oxide, wherein the mixed oxide comprises oxygen, lanthanum, aluminum, and cobalt, wherein in the mixed oxide, the weight ratio of cobalt relative to aluminum, calculated as elements, is at least 0.17:1. A preparation method by a dry route. Use of the molding as a catalyst for the reforming of hydrocarbons into a synthesis gas.

Подробнее
05-05-2022 дата публикации

Synthesis of high surface area, high entropy oxides

Номер: US20220134316A1
Принадлежит:

High surface area, high entropy oxides comprising multiple metal cations in a single-phase fluorite lattice material enables intrinsic catalytic activity without platinum group metals, tunable oxygen storage capacity, and thermal stability. These properties can be obtained through a facile sol-gel synthesis to provide a low-temperature route for production of phase-pure multi-cationic oxides. The resulting materials achieved significantly higher surface area and catalytic performance, taking advantage of all the properties endowed by the various cations in the composition.

Подробнее
05-05-2022 дата публикации

Nox Storage Catalyst and Method for Preparing the Same

Номер: US20220134320A1
Принадлежит:

A NOstorage catalyst includes CHA zeolite, a transition metal ion-exchanged in the CHA zeolite, and a rare earth metal that is different the transition metal and is supported on the CHA zeolite. A method for preparing a NOstorage catalyst includes preparing a synthetic mother liquid including a zeolite raw material as a source of silica and alumina, a structure-inducing material, a complexing material, and a solvent, reacting the synthetic mother liquid to prepare a CHA zeolite, and supporting a transition metal and a rare earth metal that is different from the transition metal on the prepared CHA zeolite.

Подробнее
19-06-2014 дата публикации

Catalysts and Processes for Producing Butanol

Номер: US20140171695A1
Принадлежит: Celanese International Corporation

A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of AlO, ZrO, MgO, TiO, zeolite, ZnO, and a mixture thereof. 1. A catalyst for converting alcohols to higher alcohols , the catalyst comprising:at least one alkali metal selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and francium;at least a second metal selected from the group consisting of palladium, platinum, copper, nickel, and cobalt; and{'sub': 2', '3', '2', '2, 'a support selected from the group consisting of AlO, ZrO, MgO, TiO, zeolite, ZnO, and a mixture thereof.'}2. The catalyst of claim 1 , wherein the at least one alkali metal is selected from the group consisting of lithium claim 1 , potassium claim 1 , and cesium.3. The catalyst of claim 1 , wherein the at least second metal is selected from the group consisting of palladium and copper.4. The catalyst of claim 1 , wherein the at least one alkali metal is present in an amount from 0.1 wt. % to 30 wt. %.5. The catalyst of claim 1 , wherein the at least second metal is present in an amount from 0.01 wt. % to 20 wt. %.6. The catalyst of claim 1 , wherein the support is present in an amount from 60 wt. % to 99.99 wt. %.7. The catalyst of claim 1 , wherein the catalyst is selected from the group consisting of lithium/copper claim 1 , lithium/palladium claim 1 , copper/lithium claim 1 , and potassium/copper.8. The catalyst of claim 1 , wherein the catalyst further comprises an alkaline earth metal selected from the group consisting of beryllium claim 1 , magnesium claim 1 , calcium claim 1 , strontium claim 1 , barium and radium.9. The catalyst of claim 1 , wherein the catalyst further comprises germanium.10. A catalyst for ...

Подробнее
01-04-2021 дата публикации

Composite oxide catalyst, porous composite, and method of producing composite oxide catalyst

Номер: US20210094018A1
Принадлежит: NGK Insulators Ltd

A composite oxide catalyst includes Ce that is a first metal, La that is a second metal, and a third metal as contained metals. The third metal is a transition metal, or a rare-earth metal other than Ce and La. A Ce content in the contained metals is higher than or equal to 5 mol % and lower than or equal to 95 mol %. An La content in the contained metals is higher than or equal to 2 mol % and lower than or equal to 93 mol %. A content of the third metal in the contained metals is higher than or equal to 2 mol % and lower than or equal to 93 mol %.

Подробнее