Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 13026. Отображено 200.
10-04-2008 дата публикации

ПРИВОД ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ

Номер: RU2321761C2
Принадлежит: СНЕКМА МОТОРС (FR)

Изобретение относится к приводу вспомогательного оборудования, такого как топливный насос или смазочный насос в газотурбинном двигателе. Привод содержит электродвигатель и характеризуется тем, что дополнительно содержит воздушную турбину (22), связанную с электродвигателем. Эта воздушная турбина предназначена для питания воздушным потоком, отбираемым от компрессора газотурбинного двигателя, и участвует в приведении в действие указанного вспомогательного оборудования. Привод содержит также клапан регулирования расхода воздуха, отбираемого от компрессора, причем во время фазы запуска газотурбинного двигателя этот клапан находится в закрытом положении. Такое выполнение привода позволит повысить его надежность. 12 з.п. ф-лы, 10 ил.

Подробнее
20-12-2011 дата публикации

УСТРОЙСТВО ДЛЯ ВПРЫСКА ТОПЛИВОВОЗДУШНОЙ СМЕСИ, КАМЕРА СГОРАНИЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СНАБЖЕННЫЙ ТАКИМ УСТРОЙСТВОМ

Номер: RU2437033C2
Принадлежит: СНЕКМА (FR)

Устройство для впрыска топливовоздушной смеси в камеру сгорания газотурбинного двигателя, имеющее симметрию вращения вокруг оси Y, содержит расположенные с входа на выход по направлению течения газов скользящую траверсу (30b), кольцевую манжету (50b), по меньшей мере, одну радиальную спираль (60b) с трубкой (62b) Вентури, связанную выходным концом со смесительной камерой (70). В центре скользящей траверсы (30b) размещен инжектор (40). Кольцевая манжета (50b) удерживает на оси скользящую траверсу (30b). Скользящая траверса (30b) содержит размещенные с входа на выход входную цилиндрическую часть (31b), переходящую в промежуточную коническую сходящуюся часть и заканчивающуюся кольцевой шайбой (33b), направленной радиально наружу. Кольцевая манжета (50b) содержит размещенный от входа к выходу входной профилированный обтекатель (51b), переходящий в кольцевую шайбу (52b), радиально направленную внутрь. Изобретение позволяет улучшить подачу воздуха в устройство для впрыска при минимизации потерь ...

Подробнее
20-12-2011 дата публикации

УСТРОЙСТВО ДЛЯ ВПРЫСКА ТОПЛИВОВОЗДУШНОЙ СМЕСИ, КАМЕРА СГОРАНИЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СНАБЖЕННЫЙ ТАКИМ УСТРОЙСТВОМ

Номер: RU2437032C2
Принадлежит: СНЕКМА (FR)

Система питания топливом камеры сгорания газотурбинного двигателя, содержащая топливный инжектор (80) с двумя потоками для впрыска первичного потока топлива, подаваемого первичной цепью топливного питания, и вторичного потока топлива, подаваемого вторичной цепью топливного питания. Первичный поток топлива формирует конус (83) топлива, образуемый первичным и вторичным потоками топлива. Устройство для впрыска топлива, выходящего из инжектора (80), имеет вращательную симметрию вокруг оси Y и содержит расположенные на входе и на выходе по ходу движения топлива скользящую траверсу (20), в центре которой размещен инжектор (80), радиальные спирали (40, 41, 42), связанные выходными концами со смесительной емкостью (60). Радиальные спирали (40, 41, 42) содержат трубку (50) Вентури, снабженную внутренней стенкой (51) с развитым профилем, содержащей входную сходящуюся часть (51а), связанную с выходной расходящейся частью (51b) переходной зоной. Трубка (50) Вентури имеет минимальный внутренний диаметр ...

Подробнее
20-08-2016 дата публикации

УСТРОЙСТВО И СПОСОБ УПРАВЛЕНИЯ УСТАНОВКОЙ ВНУТРЕННЕГО СГОРАНИЯ С ПОВЫШЕНИЕМ ДАВЛЕНИЯ

Номер: RU2594845C2

Изобретение относится к энергетике. Способ управления работой установки внутреннего сгорания с повышением давления, включающий: нахождение скважности импульсов топливной форсунки и частоты циклов сгорания, которые соответствуют заданной рабочей точке нагрузки и заданному коэффициенту заполнения камеры сгорания установки; определение уставки давления подачи топлива, уставки момента впрыска для топливной форсунки и уставки момента зажигания, которые обеспечивают найденную скважность импульсов топливной форсунки и найденную частоту циклов сгорания; и передачу управляющего сигнала давления подачи топлива, содержащего уставку давления подачи топлива, в устройство обеспечения давления топлива, управляющего сигнала топливной форсунки, содержащего уставку момента впрыска топлива, в топливную форсунку и управляющего сигнала момента зажигания, содержащего уставку момента зажигания, в узел зажигания установки. Также представлены установка внутреннего сгорания с повышением давления и контроллер для ...

Подробнее
10-01-2004 дата публикации

ГЕНЕРИРУЮЩАЯ УСТАНОВКА КОМБИНИРОВАННОГО ЦИКЛА (ВАРИАНТЫ)

Номер: RU2221155C2

Установка относится к выработке энергии в комбинированном цикле. Остаток от перегонки нефти под атмосферным давлением, полученный путем перегонки подаваемой нефти в устройстве для перегонки под атмосферным давлением, подвергается перегонке под вакуумом в заранее заданных условиях в устройстве для перегонки под вакуумом, чтобы посредством этого разделить его на легкое вещество и остаток от перегонки нефти под вакуумом. Легкое вещество подается как топливо в газовую турбину. Остаток от перегонки нефти под вакуумом подается как топливо в котел паротурбинной генерирующей секции вместе с высокотемпературным отработавшим газом, выходящим из газовой турбины так, чтобы паровую турбину можно было привести в действие паром, выработанным в котле, чтобы посредством этого дать возможность осуществить выработку энергии в паротурбинной генерирующей секции. Остаток от перегонки нефти под атмосферным давлением может быть использован как топливо для газовой турбины и котла так, чтобы эффективность выработки ...

Подробнее
27-05-2015 дата публикации

КАМЕРА СГОРАНИЯ В СБОРЕ

Номер: RU2551436C2

Камера сгорания в сборе содержит основной корпус, формируемый подающим коллектором с системой подачи топлива и топливными форсунками, продолжающимися от подающего коллектора и снабжаемыми топливом посредством системы подачи топлива подающего коллектора. Подающий коллектор имеет сандвич-конструкцию и сформирован из отдельных элементов. Количество отдельных элементов коллектора превышает количество типов топлива в системе подачи топлива. Система подачи топлива содержит по меньшей мере один газопроводный канал и по меньшей мере один жидкотопливный канал. Подающий коллектор сформирован из по меньшей мере трех отдельных элементов. Изобретение позволяет создать эффективную камеру сгорания в сборе при значительном снижении затрат на изготовление основного корпуса. 2 н. и 10 з.п. ф-лы, 6 ил.

Подробнее
09-02-2017 дата публикации

ТУРБОМАШИНА, СОДЕРЖАЩАЯ НАСОС ПИТАНИЯ ТОПЛИВОМ С ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ, И СПОСОБ ПИТАНИЯ ТОПЛИВОМ ТУРБОМАШИНЫ

Номер: RU2610360C2
Принадлежит: ТУРБОМЕКА (FR)

Турбомашина для летательного аппарата, содержащая вал турбомашины и насосный модуль (100), содержащий конструктивный корпус (9), насосный вал (11), связанный с валом (1) турбомашины, насос (3) питания топливом турбомашины, установленный на упомянутом насосном валу (11) и внутри конструктивного блока (9), и электрическое устройство (5), установленное на упомянутом насосном валу (11) и выполненное с возможностью вращения упомянутого насосного вала (11) для приведения в действие насоса (3) питания или с возможностью быть приведенным во вращение упомянутым насосным валом (11) для электрического питания агрегата (8) турбомашины, при этом электрическое устройство содержит элементы ротора (51), установленные на наружной периферии подвижной части (32) насоса питания, и элементы статора (52), установленные на внутренней периферии конструктивного корпуса. Обеспечивается быстрый и надёжный запуск газотурбинного двигателя, сокращается продолжительность обслуживания для замены топливного фильтра фильтрационного ...

Подробнее
22-01-2018 дата публикации

СРЕДСТВА УПРАВЛЕНИЯ ДЛЯ ТУРБИНЫ С МНОЖЕСТВОМ КАМЕР СГОРАНИЯ

Номер: RU2641776C2

Изобретение относится к энергетике. Система для постепенного окисления топлива включает в себя окислительный реактор, который имеет реакционную камеру с входным отверстием и выходным отверстием. Реакционная камера выполнена с возможностью приема текучей среды, содержащей окисляемое топливо, через входное отверстие. Окислительный реактор выполнен с возможностью поддержания процесса беспламенного окисления. Система также включает в себя камеру сгорания со входным отверстием и выходным отверстием. Входное отверстие камеры сгорания находится в гидравлическом сообщении с выходным отверстием реакционной камеры. Камера сгорания выполнена с возможностью приема текучей среды из реакционной камеры и избирательного нагрева текучей среды. Также представлены способ запуска постепенного окисления в газовой турбине и вариант системы для постепенного окисления топлива. Изобретение позволяет обеспечить улучшенное управление процессом окисления топлива. 3 н. и 28 з.п. ф-лы, 21 ил.

Подробнее
27-07-2001 дата публикации

УСТРОЙСТВО ДЛЯ ПОДАЧИ ТОПЛИВА В ОСНОВНУЮ КАМЕРУ СГОРАНИЯ

Номер: RU2171387C2

Изобретение относится к устройствам регулирования подачи топлива в основную камеру сгорания ГТД в топливной форсунке. Устройство для подачи топлива в основную камеру сгорания ГТД содержит малую топливную форсунку, а также форсунку, выполненную в виде внешнего корпуса (гильзы) малой форсунки, внешний и внутренний завихрители воздуха, при этом форсунка (гильза) выполнена высокорасходной и удерживается в неподвижном положении пружиной, а лопатки внешнего завихрителя выполнены поворотными. Изобретение позволяет расширить диапазон устойчивого горения и обеспечить стабильность процесса горения при увеличении расхода топлива. 7 ил.

Подробнее
21-05-2020 дата публикации

ТОПЛИВНЫЙ ИНЖЕКТОР С ГАЗОРАСПРЕДЕЛЕНИЕМ ЧЕРЕЗ МНОЖЕСТВО ТРУБОК

Номер: RU2721627C2

Настоящее изобретение в целом относится к газотурбинным двигателям и к топливному инжектору с контуром газораспределения через множество трубок. Раскрыт топливный инжектор (600) для газотурбинного двигателя. Топливный инжектор (600) содержит фланец в сборе (610) с распределительным блоком (612), три трубки для основного газа и распылительное устройство (630). Распределительный блок (612) равномерно распределяет основное газообразное топливо по трем трубкам для основного газа. Распылительное устройство (630) содержит корпус (640) инжектора с первичным проходом для газа, имеющим кольцеобразную форму. Три трубки для основного газа подключены параллельно между распределительным блоком (612) и первичным проходом для газа. Три трубки для газа находятся в связи по текучей среде с первичным проходом для газа и предоставляют основное газообразное топливо от одного и того же источника основного газообразного топлива. Выравнивание термического расширения в каждой трубке для основного газа может предотвратить ...

Подробнее
27-08-2003 дата публикации

КОРПУС ТОПЛИВНОЙ ФОРСУНКИ ДЛЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2211408C2

Корпус топливной форсунки для газотурбинного двигателя, выполненный из детали из твердого материала, содержит входную и выходную торцевые части. В корпусе между входной и выходной торцевыми частями выполнено, по крайней мере, одно пазовое средство, которое по всей длине герметизировано, по крайней мере, одним закрывающим средством с образованием, по крайней мере, одного канала подачи топлива от упомянутой входной торцевой части к упомянутой выходной торцевой части. Входная торцевая часть выполнена с возможностью соединения с подсоединенным к топливному инжектору переходником топливопровода и подачи топлива через упомянутый корпус топливной форсунки. При изготовлении корпуса топливной форсунки сначала рассверливают противоположные торцы детали из твердого материала. Затем выполняют, по крайней мере, одно пазовое средство по длине упомянутой детали между входными и выходными частями. Герметизируют пазовые средства посредством, по крайней мере, одного закрывающего устройства и образуют, по ...

Подробнее
05-09-2017 дата публикации

ТОПЛИВНЫЙ ИНЖЕКТОР С КАМЕРОЙ ПРЕДВАРИТЕЛЬНОГО СМЕШИВАНИЯ С ЗАЩИТНЫМ ПОКРЫТИЕМ, НАПЛАВЛЕННЫМ ЛАЗЕРОМ

Номер: RU2630067C2

Изобретение относится к энергетике. Топливный инжектор газотурбинного двигателя содержит центральное тело, расположенное на продольной оси, и камеру предварительного смешивания, расположенную в радиальном направлении внешне относительно центрального тела и образующую кольцевой канал между ними. Кольцевой канал проходит от входного патрубка, соединенного с возможностью передачи потока с компрессором, к выходному патрубку, соединенному с возможностью передачи потока с камерой сгорания. Камера предварительного смешивания содержит первый участок, расположенный на входном патрубке и состоящий из нержавеющей стали, и второй участок, расположенный на выходном патрубке, состоящий из жаропрочного сплава на основе никеля и присоединенный к первому участку посредством лазерной наплавки. При этом наклоненная стенка первого участка образует острый угол с продольной осью. Также представлен способ изготовления камеры предварительного смешивания топливного инжектора газовой турбины. Изобретение позволяет ...

Подробнее
28-12-2021 дата публикации

КОНТУР ДОЗИРОВАНИЯ ТОПЛИВА И СПОСОБ С КОМПЕНСАЦИЕЙ ИЗМЕНЧИВОСТИ ПЛОТНОСТИ ТОПЛИВА

Номер: RU2763240C2

Изобретение может быть использовано в устройствах дозирования топлива для турбомашин. Контур дозирования топлива для турбомашины содержит устройство дозирования, насос, регулирующий клапан, диафрагму и объемный расходомер. Насос выполнен с возможностью направления расхода топлива в устройство дозирования. Регулирующий клапан выполнен с возможностью возврата избыточного расхода топлива, подаваемого в устройство дозирования, в насос в соответствии с перепадом давления топлива на конечных точках устройства дозирования. Объемный расходомер выполнен с возможностью определения объемного расхода топлива, проходящего через диафрагму. Диафрагма и объемный расходомер установлены параллельно с устройством дозирования в обходном канале ниже по потоку от регулирующего клапана, чтобы определять плотность топлива, циркулирующего в контуре дозирования. Раскрыты турбомашина, содержащая контур дозирования топлива, и способ дозирования топлива. Технический результат заключается в повышении точности дозирования ...

Подробнее
27-08-2015 дата публикации

СПОСОБ ЭКСПЛУАТАЦИИ КАМЕРЫ СГОРАНИЯ ПРИ РАБОТЕ В НЕУСТАНОВИВШЕМСЯ РЕЖИМЕ

Номер: RU2561359C2

Изобретение относится к способу эксплуатации камеры сгорания при работе в неустановившемся режиме. В камеру сгорания подают, по меньшей мере, топливо. Неустановившийся режим включает в себя период, имеющий продолжительность, в течение которого топливо подают в количестве меньшем, чем критическое количество топлива. Способ включает в себя задание предельного значения для длительности периода и регулирование подачи топлива так, чтобы длительность периода была меньше или равна предельному значению. Изобретение позволяет нейтрализовать пульсации горения, возникающие во время работы в неустановившемся режиме. 8 з.п. ф-лы, 7 ил.

Подробнее
20-08-2015 дата публикации

ТОПЛИВНОЕ СОПЛО (ВАРИАНТЫ)

Номер: RU2560099C2

Изобретение относится к энергетике. Топливное сопло имеет первый топливный канал, проходящий к нижней по потоку области смешивания, первый воздушный канал, проходящий от наружной области сопла к нижней по потоку области смешивания, и второй топливный канал, проходящий в указанный первый воздушный канал выше по потоку от указанной нижней по потоку области смешивания. Изобретение позволяет улучшить горение и уменьшить выбросы выхлопных газов. 2 н. и 12 з.п. ф-лы, 17 ил.

Подробнее
02-02-2018 дата публикации

СПОСОБ КОНТРОЛЯ СТЕПЕНИ ЗАБИВАНИЯ ПУСКОВЫХ ФОРСУНОК ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Номер: RU2643568C2
Принадлежит: ТЮРБОМЕКА (FR)

Изобретение относится к энергетике. Способ контроля степени забивания пусковых форсунок газотурбинного двигателя, содержащего камеру сгорания, в которую открыта по меньшей мере одна питаемая топливом пусковая форсунка, при этом указанные пусковые форсунки выполнены с возможностью инициации горения в указанной камере посредством воспламенения топлива, и турбину, приводимую во вращение газообразными продуктами горения топлива в камере. При этом способ содержит этапы, на которых во время фазы запуска газотурбинного двигателя измеряют (1100) температуру отработанных газов на выходе из турбины и на основании изменения по времени измеряемой температуры определяют (1200) степень забивания пусковых форсунок. Также представлены система контроля степени забивания, выполненная с возможностью осуществления способа контроля согласно изобретению, а также газотурбинный двигатель и летательный аппарат, содержащие такую систему. Изобретение позволяет обеспечить возможность обнаружения забивания пусковых ...

Подробнее
10-04-2012 дата публикации

ГАЗОТУРБИННАЯ УСТАНОВКА

Номер: RU2447304C2

Газотурбинная установка содержит турбину и компрессор, расположенные на одном валу, камеру сгорания, сообщенную выходом со входом в турбину и входом с выходом из компрессора, магистраль подачи топлива и систему управления. Камера сгорания снабжена смесительными элементами, выполненными с каналом течения воздуха в виде диффузора с углом конусности 6-12° и каналом течения топлива в виде цилиндрического насадка, соосно расположенного во входной части диффузора. Магистраль подачи топлива соединена с цилиндрическими насадками. Система управления снабжена запорной арматурой и запальным устройством. Смесительные элементы размещены, как минимум, в два ряда по кольцу на кольцевой камере сгорания или по концентрическим окружностям на камере сгорания трубчато-кольцевой формы. При этом смесительные элементы расположены на расстоянии не более трех диаметров выходной части диффузора, а между ними и вокруг выполнены отверстия для прохода воздуха. Часть цилиндрических насадков смесительных элементов объединены ...

Подробнее
10-02-2003 дата публикации

СПОСОБ ПРОИЗВОДСТВА ЭНЕРГИИ С ВЫСОКИМ КОЭФФИЦИЕНТОМ ПОЛЕЗНОГО ДЕЙСТВИЯ

Номер: RU2198310C2

Изобретение относится к способу производства энергии с высоким коэффициентом полезного действия. Способ выработки электроэнергии осуществляется с помощью системы дожигания отработавшего газа, использующей, по меньшей мере, газовую турбину, парогенератор и паровую турбину, в котором сырую нефть или тяжелое масло подвергают перегонке при пониженном давлении, электрическую энергию производят путем использования полученной легкой фракции сырой нефти или тяжелого масла в качестве топлива для газовой турбины и использования тяжелой фракции сырой нефти или тяжелого масла в качестве топлива для парогенератора. Изобретение позволяет увеличить коэффициент выработки энергии по отношению к топливу и более эффективно использовать высокотемпературную тепловую энергию. 6 ил.

Подробнее
28-03-2017 дата публикации

СПОСОБ ОЧИСТКИ ДЕТАЛЕЙ ТОПЛИВНЫХ КОЛЛЕКТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ ОТ НАГАРА И УГЛЕРОДНЫХ ЗАГРЯЗНЕНИЙ

Номер: RU2614441C1

Изобретение относится к области очистки деталей топливного коллектора газотурбинного двигателя от нагара и углеродных загрязнений. Выдержку деталей осуществляют при температуре от 100 до 150°C в водном растворе щелочи, содержащем от 600 до 800 г/л гидроксида натрия и дополнительно содержащем от 0,5 до 2 г/л нитрата натрия или от 0,2 до 0,5 г/л сульфата натрия, после выдержки в водном растворе щелочи проводят очистку деталей топливного коллектора в растворе ортофосфорной кислоты с концентрацией от 50 до 150 г/л при температуре от 80 до 105°C, причем выдержку в водном растворе щелочи, очистку деталей топливного коллектора в растворе ортофосфорной кислоты, промывку в воде и продувку сжатым воздухом проводят по меньшей мере два раза. Технический результат - повышение эффективности и снижение длительности очистки деталей топливного коллектора газотурбинного двигателя, а также снижение энергозатрат. 3 ил.

Подробнее
20-12-2015 дата публикации

СИСТЕМА ПОДАЧИ ТОПЛИВА В ОСНОВНУЮ И ФОРСАЖНУЮ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Номер: RU158064U1

Система подачи топлива в основную и форсажную камеры сгорания газотурбинного двигателя, содержащая топливный бак, насос низкого давления с механическим приводом, насос высокого давления с электроприводом, двухступенчатый центробежный насос высокого давления с механическим приводом и отбором топлива за каждой ступенью, систему управления, двухпозиционное устройство подключения насосов высокого давления к основной и форсажной камерам сгорания через соответствующие дозаторы, при этом вход насоса низкого давления гидравлически связан магистралью с топливным баком, а выход с параллельно установленными в магистрали насосом с электроприводом и двухступенчатым центробежным насосом, причем система управления электрически связана с электроприводом насоса, двухпозиционным устройством и дозаторами, отличающаяся тем, что система управления дополнительно содержит модуль ограничения температуры топлива за центробежным насосом с уставками соответственно допустимой температуры подогрева топлива в насосе ...

Подробнее
25-10-2024 дата публикации

ДВИГАТЕЛЬ ГАЗОТУРБИННЫЙ

Номер: RU229769U1

Полезная модель относится к конструкциям газотурбинного двигателя. Техническим результатом является уменьшение массы двигателя газотурбинного, который достигается за счет того, что двигатель газотурбинный, характеризующийся тем, что в его передней части выполнен единый привод насоса-дозатора и маслонасоса от приводной шестерни редуктора, горизонтальная ось с движущимися валами является общей для маслонасоса и топливного насоса-дозатора, с одной стороны вал маслонасоса соединен с приводной шестерней редуктора через первую ведущую шестерню маслонасоса, с другой стороны вал маслонасоса соединен с приводным валом топливного насоса-дозатора через вторую ведущую шестерню маслонасоса. 5 ил.

Подробнее
11-11-2022 дата публикации

Способ капитального ремонта системы топливоподачи газотурбинной установки

Номер: RU2783309C1

Изобретение относится к области газотурбостроения, в частности к системам топливоподачи газотурбинных установок в газоперекачивающих агрегатах. Способ капитального ремонта системы топливоподачи газотурбинной установки (ГТУ), включающей установленные в трубопроводе топливного газа ГТУ отсечную и стопорную запорную арматуру и регулирующий клапан с поворотной дозирующей системой с электроприводом и с отдельно установленным блоком управления им, путем демонтажа из корпуса регулирующего клапана поворотной дозирующей системы с электроприводом и отдельно установленного блока управления клапаном и последующей установки вместо них новых дозирующей системы с электроприводом и отдельно устанавливаемого блока управления клапаном, при этом в качестве новой дозирующей системы в регулирующем клапане устанавливают запорно-плунжерную дозирующую систему с линейным электроприводом и отдельно устанавливаемым блоком управления клапаном, для этого на неработающей ГТУ при закрытой запорной арматуре на трубопроводе ...

Подробнее
27-12-1999 дата публикации

ГОРЕЛКА, В ЧАСТНОСТИ ДЛЯ ГАЗОВОЙ ТУРБИНЫ

Номер: RU2143643C1

Горелка, в частности для газовой турбины, содержит каталитическую камеру сгорания. Камера сгорания имеет в направлении течения топлива в основном цилиндрическую протяженность и содержит на обращенной к топливу стенке каталитически активное покрытие для окисления топлива. Камера сгорания выполнена с возможностью подведения топлива, содержащего главный поток топлива, предварительно сформированный частичный поток топлива и воздуха. Для предварительного формирования предусмотрена обтекаемая частичным потоком топлива каталитическая ступень предварительного формирования, разлагающая топливо, по крайней мере частично, на легко воспламеняющиеся вещества, в частности на спирты, альдегиды или водород. Для ввода предварительно сформированного, частичного потока топлива, смешанного при необходимости с воздухом, в стенке камеры сгорания предусмотрены отверстия. За счет каталитически индуцированного сжигания топлива достигается особенно низкое содержание окислов азота в отходящем газе горелки. Одновременно ...

Подробнее
10-11-1999 дата публикации

ТОПЛИВНАЯ ДРЕНАЖНАЯ СИСТЕМА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Номер: RU2141049C1

Топливная дренажная система предназначена для газотурбинного двигателя. Топливная дренажная система газотурбинного двигателя включает дренажный бак, подключенную к нему через заборное отверстие магистраль откачки с топливным насосом и магистраль перепуска топлива. Дренажный бак снабжен поплавковым клапаном, магистраль перепуска топлива соединена одним концом с выходом топливного насоса, а другим - с поплавковым клапаном, выполненным с размещением уровней его открытия и закрытия над уровнем заборного отверстия. Такое выполнение системы позволит исключить попадание воздуха на вход в топливный насос. 1 ил.

Подробнее
20-11-2015 дата публикации

ЦЕНТРОБЕЖНЫЙ НАСОС

Номер: RU156753U1

... 1. Центробежный насос, содержащий корпус с входным и выходным каналами, образованную в корпусе рабочую полость, в которой с возможностью вращения размещено рабочее колесо, закрепленное на рессоре, имеющей возможность связи с приводом ее вращения, входное запорное устройство, размещенное в рабочей полости между рабочим колесом и входным каналом, выполненный в корпусе кольцевой сборник, связанный с выходным каналом, отличающийся тем, что насос оснащен задвижкой, установленной на закрепленной в полости корпуса опоре с возможностью осевого возвратно-поступательного перемещения относительно опоры и подпружиненной относительно нее, причем задвижка выполнена в виде втулки с перфорированными в ней щелями и кольцевым выступом на наружной поверхности, образующим с выступом опоры полость подачи командного давления, причем задвижка имеет возможность перемещения в зазор между рабочим колесом и кольцевым сборником, перекрывая его, при этом щели задвижки при таком ее положении расположены в упомянутом ...

Подробнее
20-04-1995 дата публикации

СПОСОБ ЗАЩИТЫ ФОРСУНОК КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ КОКСООТЛОЖЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Номер: RU2033546C1

Использование: для обеспечения предварительной очистки топлива от продуктов коксоотложения в системе топливопитания камеры сгорания газотурбинного двигателя. Сущность изобретения: при подаче топлива к форсункам его нагревают до 350...450°С при скорости подачи 0,5...2,5 м/с и времени пребывания 2...4 с при этих температурах и скоростях на режиме максимального расхода топлива. Затем топливо фильтруют. Топливо могут нагреть в присутствии катализатора ускорения его коксования в течение 1...3 с на режиме максимального расхода топлива. Устройство содержит топливный коллектор с форсунками, подключенный при помощи трубопровода к источнику топлива. Устройство имеет также источник теплоносителя. Между источником топлива и коллектором установлен полый теплообменник. В полости последнего размещен змеевик. На его выходе со стороны трубопровода установлен фильтр. Змеевик на входе соединен с источником подвода топлива. Полость теплообменника соединена с источником теплоносителя. Змеевик может быть полностью ...

Подробнее
21-02-2023 дата публикации

Система подачи жидкого топлива газотурбинной установки

Номер: RU2790503C1

Изобретение относится к области энергомашиностроения, конкретно к газотурбостроению, в частности к системе подачи жидкого топлива к горелкам камеры сгорания и может быть использовано в составе двухтопливной энергетической газотурбинной установки. Система подачи жидкого топлива содержит магистраль подачи жидкого топлива 1 к горелкам камеры сгорания ГТУ, линию возврата жидкого топлива 2 от горелок камеры сгорания газовой турбины. Магистраль подачи жидкого топлива 1 содержит последовательно, друг за другом, установленный сдвоенный фильтр жидкого топлива 3, мембранные баки 7, насос жидкого топлива 4, клапан рециркуляции жидкого топлива 17, аварийный запорный клапан 5, регулирующий клапан 6. На линии возврата жидкого топлива 2 последовательно друг за другом установлены аварийный запорный клапан 8 и регулирующий клапан 9. Магистраль подачи жидкого топлива 1 связана с линией возврата жидкого топлива 2 через линию рециркуляции жидкого топлива 26, включающую регулятор сопротивления 25, которая с ...

Подробнее
10-09-1998 дата публикации

СИСТЕМА ПОДАЧИ ТОПЛИВА ДЛЯ КАМЕРЫ СЖИГАНИЯ

Номер: RU2118756C1

Изобретение относится к системе подачи топлива. В системе подачи топлива с сжиганием предварительно подготовленной смеси впрыскивается газообразное и/или жидкое топливо в качестве дополнительного потока в газообразной, проходящий по каналу осовной поток. Дополнительный поток является значительно меньшим по массе потоком, чем основной. Основной поток направляется через вихревые генераторы (9), многие из которых расположены в ряд по окружности канала по меньшей мере на одной стенке канала. Дополнительный поток вводится в канал непосредственно с области расположения вихревых генераторов (9). Вихревой генератор (9) обнаруживает три свободно обтекаемые плоскости, ориентированные в направлении потока, и одна из которых является верхней плоскостью (10), а две другие - боковыми поверхностями (11,13). Топливо подается в канал через насадки, которые находятся за вихревыми генераторами или в них. Изобретение улучшает качество смешивания и увеличивает продолжительность завихрения. 15 з.п.ф-лы, 21 ил ...

Подробнее
19-05-2021 дата публикации

Насосный агрегат системы топливопитания газотурбинного двигателя летательного аппарата

Номер: RU2748107C1

Изобретение относится к области авиадвигателестроения, в частности к области систем автоматического управления подачи топлива к газотурбинному двигателю летательного аппарата, и позволяет предотвратить перегрев топлива в системе топливопитания газотурбинного двигателя при уменьшении величины подачи топлива до 1%. Насосный агрегат системы топливопитания газотурбинного двигателя летательного аппарата выполнен по двухкаскадной схеме. Первый каскад содержит основной насос подачи топлива, установленный на выходном валу гидродинамического преобразователя крутящего момента, связанного с валом газотурбинного двигателя, причем внутренняя полость гидродинамического преобразователя крутящего момента гидравлически связана с входом основного насоса и с его напорной полостью, а регулирующий орган гидродинамического преобразователя подключен через сервопоршень к регулятору подачи топлива системы автоматического управления двигателем. Второй каскад агрегата содержит дополнительный насос в виде центробежной ...

Подробнее
20-05-2000 дата публикации

УСОВЕРШЕНСТВОВАНИЯ В СЖИГАНИИ И УТИЛИЗАЦИИ ТОПЛИВНЫХ ГАЗОВ

Номер: RU2149312C1

Изобретение предназначено для использования при сжигании и утилизации топливных газов. Топливный газ, поступающий в камеру сгорания по входному трубопроводу, является сжатой смесью с воздухом с концентрацией ниже низшего предела взрываемости. Смесь топливного газа/воздуха проходит внутри трубы для прохода в зону сгорания, где происходит сгорание в реакции или самосгорание. Продукт сгорания газа проходит по извилистому пути, обеспеченному расположением перегородок, к выходной трубе. Отходящий продукт сгорания газа проходит над внешней поверхностью трубы и отдает подогревающее тепло находящемуся в ней входящему газу. Система газовой турбины для утилизации отработанного топливного газа включает камеру сгорания, которая подает продукт сгорания топлива на ступень расширения турбины. Обеспечивается технологичность процесса и энергосбережение. 4 с. и 16 з.п.ф-лы, 7 ил.

Подробнее
20-09-2013 дата публикации

КАМЕРА СГОРАНИЯ ГТД И ФОРСУНОЧНЫЙ МОДУЛЬ

Номер: RU2493492C1

Камера сгорания ГТД содержит корпус, жаровую трубу, имеющую внешнюю и внутреннюю стенки и плиту кольцевой формы с установленными на ней форсуночными модулями и основной топливный коллектор, соединенный с плитой, полость которого соединена топливными каналами с форсуночными модулями, внешний и внутренний корпусы, внешний и внутренний кожуха, установленные с зазором относительно внешнего и внутреннего корпусов. Число форсуночных модулей выполнено кратным четырем. Форсуночные модули установлены в два ряда: внешний и внутренний. Дополнительно выполнено два топливных коллектора внешний и внутренний. Полость внешнего коллектора соединена топливными каналами с каждым форсуночным модулем через один внешнего ряда форсуночных модулей. Полость внутреннего коллектора соединена с каждым форсуночным модулем через один внутреннего ряда. Основной топливный коллектор соединен с остальными форсуночными модулями обеих рядов. Между плитой и внешней и внутренней стенками жаровой трубы установлены соответственно ...

Подробнее
10-04-2014 дата публикации

СПОСОБ СЖИГАНИЯ ТОПЛИВА

Номер: RU2511980C2

Изобретение относится к энергетическому, химическому и транспортному машиностроению и может быть использовано в камерах сгорания газотурбинных установок. Предложен способ сжигания топлива, заключающийся в предварительном разделении потока воздуха на коаксиальные кольцевые струи, закрутке соседних смежных струй в противоположных направлениях, причем ближайшие одна к другой части соседних закрученных в противоположном направлении струй подают в радиальном направлении навстречу одна другой с образованием турбулентного сдвигового слоя, при этом подачу топлива осуществляют в этот слой для последующего воспламенения образовавшейся топливовоздушной смеси. Одну часть топлива предварительно, непосредственно после разделения потока воздуха на коаксиальные кольцевые струи, подают в образовавшиеся вращающиеся коаксиальные кольцевые струи тангенциально, противоположно направлению вращения коаксиальной кольцевой струи воздуха предпочтительно в сторону, противоположную ее осевому движению. Оставшуюся ...

Подробнее
27-01-2002 дата публикации

ДРЕНАЖНАЯ СИСТЕМА АВИАЦИОННОГО ДВИГАТЕЛЯ

Номер: RU2000110526A
Принадлежит:

Дренажная система авиационного двигателя, содержащая дренажный бак с клапаном слива, жиклер, обратный клапан, эжектор и трубопроводы, отводящие дренаж к срезу сопла с последующим удалением дренажа в атмосферу, отличающаяся тем, что, с целью экономии топлива путем исключения слива дренажа в атмосферу при длительном хранении авиационного двигателя в составе самолета, исключения загрязнения окружающей среды, улучшения культуры технического обслуживания авиационной техники, снижения массы и стоимости изготовления дренажной системы, она состоит из фильтра тонкой очистки, обратных клапанов, жиклера, клапана слива и трубопроводов, соединенных с надтопливной частью топливного бака самолета.

Подробнее
20-12-2004 дата публикации

УСТРОЙСТВО ДРЕНИРОВАНИЯ ТОПЛИВА

Номер: RU2003116814A
Принадлежит:

Устройство дренирования топлива, содержащее дренажный бак, соединенный с источником сливаемого топлива, эжектор с рабочим соплом, выходом и приемной камерой, запорный клапан слива из дренажного бака, поплавок, установленный в дренажном баке и соединенный с запорным клапаном, отличающееся тем, что на входе в рабочее сопло эжектора установлен клапан постоянного давления, связанный с выходом эжектора, в рабочем сопле эжектора установлена дросселирующая игла с пружиной и поршнем, одна полость которого соединена с полостью дренажного бака, а другая - с выходом эжектора.

Подробнее
10-01-2001 дата публикации

ГАЗОВАЯ ТУРБИНА ВНУТРЕННЕГО СГОРАНИЯ

Номер: RU99105763A
Принадлежит:

Газовая турбина внутреннего сгорания, содержащая ротор с полым валом, имеющим подающие каналы топлива и рабочего тела, размещенные в чередующемся порядке, камеры внутреннего сгорания, ограниченные внутренними поверхностями сопел, отличающаяся тем, что на ее валу установлен компрессор с системой инжекции горючего в канал подачи его в камеры внутреннего сгорания.

Подробнее
20-05-2015 дата публикации

ТОПЛИВНАЯ СИСТЕМА ВЕРТОЛЕТА С РЕАКТИВНЫМИ ДВИГАТЕЛЯМИ НА ЛОПАСТЯХ

Номер: RU2551296C1

Изобретение относится к области авиации, в частности к конструкциям топливных систем вертолетов. Топливная система вертолета с реактивными двигателями на лопастях несущего винта содержит топливный бак (1) с насосом подкачки (2), топливопровод (3), участки которого расположены внутри вала несущего винта и внутри лопастей. В топливопроводе каждой лопасти установлен регулятор частоты вращения несущего винта. На участке топливопровода от насоса подкачки установлен электроприводной насос-регулятор запуска и малого газа (5) с выходами по числу двигателей (8), а также насос-регулятор рабочих режимов (7) двигателей (8) с приводом от вала (11) несущего винта через шестеренчатую передачу (12) коробки приводов (10). На входе в идущие по лопастям (14) топливопроводы (9) смонтирован топливный коллектор (15) для передачи топлива из неподвижных участков топливопроводов (9) к их подвижным участкам (9′) в каждой лопасти (14). Топливный коллектор (15) выполнен в виде двух отсеков (16) и (17). Неподвижный ...

Подробнее
27-06-2003 дата публикации

Способ монтажа топливной форсунки для камеры сгорания турбомашины

Номер: RU2001131073A
Принадлежит:

... 1. Способ сборки распылителя топливной форсунки (12, 14, 16), предназначенной для камеры (20) сгорания турбомашины и содержащей средства подачи первичного топлива, включающие в себя первую топливоподающую трубку (170), к которой присоединен кольцевой сопловой наконечник (152) с первыми сопловыми отверстиями (188) для впрыска первичного топлива в указанную камеру сгорания, и средства подачи вторичного топлива, включающие в себя вторую топливоподающую трубку (176), которая окружает указанную первую трубку и к которой присоединена цилиндрическая насадка (158), окружающая указанный сопловой наконечник и содержащая вторые сопловые отверстия (190) для впрыска вторичного топлива в указанную камеру сгорания, отличающийся тем, что указанная цилиндрическая насадка и указанный кольцевой сопловой наконечник снабжены радиальными полостями (159, 175) для приема припоя, причем вначале указанные полости заполняют указанным припоем, затем указанный кольцевой сопловой наконечник устанавливают внутри указанной ...

Подробнее
20-08-2014 дата публикации

УСТРОЙСТВО ПОЗДНЕГО ВПРЫСКА ОБЕДНЕННОЙ ТОПЛИВНОЙ СМЕСИ (ВАРИАНТЫ)

Номер: RU2013106577A
Принадлежит:

... 1. Устройство позднего впрыска обедненной топливной смеси, содержащеепо меньшей мере одну топливную форсунку, расположенную проксимально к зоне горения, ипо меньшей мере один направляющий элемент, предназначенный для направления воздушного потока из области, проксимальной к выпуску компрессора, к указанной по меньшей мере одной топливной форсунке.2. Устройство по п.1, дополнительно содержащее переходный канал.3. Устройство по п.2, в котором указанная по меньшей мере одна топливная форсунка расположена проксимально к указанному переходному каналу и предназначена для впрыскивания топлива в указанную зону горения.4. Устройство по п.2, дополнительно содержащее жаротрубный канал, причем указанная по меньшей мере одна топливная форсунка расположена проксимально к жаротрубному каналу и предназначена для впрыскивания топлива в указанную зону горения.5. Устройство по п.1, в котором указанный по меньшей мере один направляющий элемент имеет первый конец, расположенный проксимально к указанному выпуску ...

Подробнее
20-11-2004 дата публикации

НИЗКОНАПОРНАЯ ФОРСУНКА И СПОСОБ РАСПЫЛА ТОПЛИВА

Номер: RU2003115177A
Принадлежит:

... 1. Низконапорная форсунка, содержащая корпус, в котором расположен центральный завихритель воздуха, канал для подвода топлива, а на корпусе форсунки расположен наружный завихритель воздуха, отличающаяся тем, что вокруг канала для подвода топлива, который содержит шнековый завихритель, расположен канал подвода закрученного воздуха высокого давления, при этом наружный завихритель воздуха выполнен двухъярусным струйным и имеет кольцевые наружные и внутренние распыливающие кромки. 2. Способ распыла топлива, осуществляемый низконапорной форсункой, заключающийся в том, что подают топливо и нагнетают воздух через центральный завихритель и наружный завихритель, отличающийся тем, что подачу топлива производят между двумя закрученными потоками воздуха, образованными центральным завихрителем и завихрителем воздуха высокого давления, а поступающие на кольцевые распыливающие кромки форсунки потоки образуют мелкодисперсную топливовоздушную смесь, при этом капли полученной смеси дробят воздушными струями ...

Подробнее
20-01-1997 дата публикации

КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ И ТОПЛИВНЫЙ ИНЖЕКТОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Номер: RU95108223A
Принадлежит:

Камера сгорания газовой турбины имеет первичную, вторичную и третью зоны сгорания по направлению потока, канал вторичного смешивания и канал третьего смешивания. Площадь поперечного сечения каналов вторичного и третьего смешивания уменьшается от их вкускных устройств до их выпускных отверстий для создания ускоренного потока через каналы смешивания, чтобы предотвратить образование зон рециркуляции. Топливные инжекторы имеют отверстия для выпуска топлива ниже по потоку относительно любых зон рециркуляции, могущих образоваться у впускных устройств. Топливные инжекторы проходят через основной участок каналов так, чтобы эффективно подразделить каналы по, как минимум, части их длины. Участки топливных инжекторов, находящиеся внутри каналов, имеют в поперечном сечении форму гоночного трека, а участки вне каналов имеют в поперечном сечении форму профиля крыла. Топливные инжекторы имеют уменьшающиеся в поперечном направлении размеры по ширине каналов.

Подробнее
10-07-2004 дата публикации

СПОСОБ ОЧИСТКИ КОЛЛЕКТОРА ФОРСАЖНОЙ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Номер: SU1401962A1
Принадлежит:

Способ очистки коллектора форсажной камеры сгорания газотурбинного двигателя, включающий очистку отверстий коллектора и продувку последнего газом с последующим отводом его в атмосферу, отличающийся тем, что, с целью упрощения процесса очистки, продувку осуществляют путем подачи в коллектор газа и проточной части двигателя при работе его на бесфорсажном режиме.

Подробнее
20-04-1997 дата публикации

ТОПЛИВНАЯ СИСТЕМА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Номер: RU95106839A1
Принадлежит:

Для судов с газотурбинными энергетическими установками серьезной проблемой является обеспечение надежного запуска при низких температурах. Причиной невозможности запуска газотурбинных двигателей является интенсивное выпадение парафинов из топлива при низкой температуре, приводящее к засорению фильтров пусковых блоков. Целью изобретения является решение данной проблемы.

Подробнее
27-07-1999 дата публикации

ФИЛЬТР-СЕПАРАТОР ДЛЯ ТОПЛИВНОЙ СИСТЕМЫ

Номер: SU1433121A1
Принадлежит:

... 1. Фильтр-сепаратор для топливной системы, включающий статический сепаратор, содержащий кожух с нижней стенкой, снабженный в верхней части осевым патрубком отвода топлива, фильтр, установленный с зазором относительно кожуха, камеру сбора отделенной воды и центробежный сепаратор, содержащий напорную камеру с патрубком подвода топлива, радиальным сопловым аппаратом для подачи загрязненного топлива на цилиндроконическую поверхность и кожух с верхней стенкой, содержащий в нижней части грязевую сборную камеру, снабженную датчиками уровней, связанными с клапаном слива примесей, причем центробежный сепаратор подсоединен к статическому сепаратору по ходу подачи топлива, отличающийся тем, что, с целью повышения эффективности очистки топлива, упрощения технологии изготовления и удобства обслуживания фильтра-сепаратора, он снабжен промежуточной перепускной камерой с горизонтальной кольцевой стенкой и перепускными патрубками, сообщающими внутреннюю полость центробежного сепаратора с перепускной камерой ...

Подробнее
31-05-1933 дата публикации

ТУРБИНА, ДЕЙСТВУЮЩАЯ СМЕСЬЮ ПРОДУКТОВ ГОРЕНИЯ И ПАРА

Номер: SU30517A1
Автор: Шебанов И.П.
Принадлежит:

Подробнее
05-09-1978 дата публикации

Газожидкостная форсунка

Номер: SU622997A1
Принадлежит:

Подробнее
30-10-1975 дата публикации

Фронтовое устройство камеры сгорания

Номер: SU489866A1
Принадлежит:

Подробнее
01-01-1949 дата публикации

Номер: SU80167A1
Автор:
Принадлежит:

Подробнее
05-07-1973 дата публикации

Топливная форсунка

Номер: SU389278A1
Принадлежит:

Подробнее
31-07-1931 дата публикации

ТУРБИНА ВНУТРЕННЕГО ГОРЕНИЯ

Номер: SU21598A1
Принадлежит:

Подробнее
03-10-1973 дата публикации

Распределительный клапан

Номер: SU399613A1
Принадлежит:

Подробнее
31-01-1928 дата публикации

Аппарат для получения струи газа для газовых турбин

Номер: SU4445A1
Автор: Луценко М.Н.
Принадлежит:

Подробнее
23-11-1992 дата публикации

Способ подачи топлива в камеру сгорания газотурбинного двигателя

Номер: SU1777628A3

Использование: при выбеге ротора двигателя . Сущность изобретения: топливо в камеру сгорания газотурбинного двигателя подают после его выключения путем подво А Рж.т ° 5 , где РЭф да топлива в кольцевой коллектор и последующей его подачи в жаровую трубу через подключенные к коллектору форсунки. При этом через форсунку, подключенную к коллектору в его нижней части, топливо подают с расходом, определенным из соотношения GT 0,044 Ci-макс м эффективная площадь отверстий для подвода воздуха в сектор жаровой трубы с упомя- нутой форсункой (см ): L0 стехиометрический коэффициент; «макс минимальное значение коэффициента избытка воздуха при бедном срыве пламени в секторе жаровой трубы с упомянутой форсункой; Л РЖ.Т - перепад давления воздуха на стенке жаровой трубы (кгс/см2). 2 ил.

Подробнее
29-12-2016 дата публикации

Düse, Brenner, Brennkammer, Gasturbine und Gasturbinensystem

Номер: DE112015001352T5

Eine Brennkammer (10) ist mit Folgendem vorgesehen: einer Düse (25), die darin einen Luftdüsenabschnitt (51) gebildet hat, der bewirkt, dass Luft von einem Düsenabschnitt (25s) ausgestoßen wird; einem zylindrischen Teil (26), das die Düse (25) von der Außenumfangsseite davon abdeckt und einen Luftströmungsweg zwischen dem zylindrischen Teil (26) und der Düse (25) bildet; und einem Druckverlustabschnitt (27), der am Luftströmungsweg vorgesehen ist, wobei der Druckverlustabschnitt (27) einen Druckverlust der Luft, die durch den Luftströmungsweg fließt, bewirkt. Die Düse (25) ist mit Folgendem vorgesehen: zumindest einem Lufteinlassabschnitt (52), der Luft von einer Außenumfangsfläche, die eine stromaufwärtige Seite des Druckverlustabschnitts (27) ist, einlässt; und einem Strömungswegbildungsabschnitt (50), der einen Abluft-Strömungsweg (R2) bildet, der die Luft, die von zumindest einem Lufteinlassabschnitt (52) eingelassen wird, zum Luftdüsenabschnitt (51) leitet.

Подробнее
20-09-1973 дата публикации

Номер: DE0001426355B2

Подробнее
18-09-2014 дата публикации

System mit einer Vielrohr-Brennstoffdüse

Номер: DE102014103079A1
Принадлежит:

Ein System enthält mehrere Vielrohr-Brennstoffdüsen, die jeweils mehrere Rohre aufweisen, die sich in einer axialen Richtung erstrecken, wobei jedes Rohr von den mehreren Rohren einen Lufteinlass, einen Brennstoffeinlass und einen Brennstoff-Luft-Mischungsauslass aufweist, ein Brennstoffdüsengehäuse mit einer ersten Außenwand, die sich in Umfangsrichtung um eine Mittelachse erstreckt, wobei die mehreren Vielrohr-Brennstoffdüsen in dem Brennstoffdüsengehäuse angeordnet sind, einen Einlassströmungskonditionierer, der mit einem ersten Endabschnitt der ersten Außenwand lösbar verbunden ist, wobei der Einlassströmungskonditionierer mehrere Luftöffnungen enthält, und eine rückseitige Plattenanordnung, die mit einem zweiten Endabschnitt der ersten Außenwand lösbar verbunden ist, wobei die rückseitige Plattenanordnung eine rückseitige Platte mit mehreren Rohröffnungen aufweist und die mehreren Rohre sich zu den mehreren Rohröffnungen erstrecken.

Подробнее
31-07-2014 дата публикации

Brenner mit einer zentralen Brennstoffzufuhranordnung

Номер: DE102013201232A1
Принадлежит:

Die Erfindung betrifft einen Brenner (1) mit einer zentralen Brennstoffzufuhranordnung (2), einem die zentrale Brennstoffzufuhranordnung (2) umgebenden Ringluftkanal (3) zur Zuführung von Verbrennungsluft, ersten Brennstoffdüsen (4) zum Eindüsen eines im Wesentlichen gasförmigen Brennstoffs in den Ringluftkanal (3), wobei die ersten Brennstoffdüsen (4) von einem ersten Brennstoffverteiler (5) in der zentralen Brennstoffzufuhranordnung (2) gespeist werden, und zweiten Brennstoffdüsen (6) zum Eindüsen eines im Wesentlichen flüssigen Brennstoffs in den Ringluftkanal (3), wobei die zweiten Brennstoffdüsen (6) von einem zweiten Brennstoffverteiler (7) in der zentralen Brennstoffzufuhranordnung (2) gespeist werden, wobei der zweite Brennstoffverteiler (7) in der zentralen Brennstoffzufuhranordnung (2) im Wesentlichen vom Rest der zentralen Brennstoffzufuhranordnung (2) thermisch entkoppelt ist.

Подробнее
30-12-2021 дата публикации

Katalytische Reformierungsbaugruppe zur Verwendung bei einem Gasturbinensystem, und Gasturbinensystem

Номер: DE102011000480B4
Автор: Velkur, Karim
Принадлежит: General Electric Co.

Katalytische Reformierungsbaugruppe (200) zur Verwendung bei einem Gasturbinensystem (10), wobei die katalytische Reformierungsbaugruppe aufweist: einen katalytischen Reformer (202), der mit einer Brenngasquelle (206) strömungsmäßig verbunden ist, um einen Strom von Brenngas (204) zu einem katalytischen Reformer (202) zu leiten, wobei der katalytische Reformer (202) ein Katalysatorbett (213) aufweist; wenigstens einen mit dem katalytischen Reformer (202) verbundenen Injektor (214) zum Injizieren einer Menge von Oxidatorgas (216) in den katalytischen Reformer (202), um ein Gemisch mit dem Oxidatorgas (216) und dem Brenngas (204) zu erzeugen, wobei das Gemisch über das Katalysatorbett (213) zum Erzeugen eines Reformatstroms geleitet wird; mehrere im Katalysatorbett (213) positionierte Temperatursensoren (220), um jeweils eine Temperatur an mehreren Punkten über das Katalysatorbett (213) hinweg zu messen; mehrere Oxidatorgassensoren (222), die an mehreren unterschiedlichen Stellen über einer ...

Подробнее
23-12-2021 дата публикации

AMMONIAKZERSETZUNGSANLAGE, HIERMIT AUSGESTATTETES GASTURBINENKRAFTWERK, UND AMMONIAKZERSETZUNGSVERFAHREN

Номер: DE112020001250T9
Принадлежит: Mitsubishi Power, Ltd.

Eine Ammoniakzersetzungsanlage (50) umfasst eine Heizmediumleitung (85), welche derart konzipiert ist, dass sie von einem Heizmedium durchströmt wird, das mithilfe der von einer Gasturbine (11) erzeugten Wärme erwärmt wird, eine Ammoniakzuführleitung (81), welche derart konzipiert ist, dass sie von Ammoniak durchströmt wird, eine Ammoniakzersetzungsvorrichtung (51) und eine Ammoniakentfernungsvorrichtung (61). Die Ammoniakzersetzungsvorrichtung (51) ist derart konzipiert, dass sie die Wärme des Heizmediums aus der Heizmediumleitung (85) nutzt, das Ammoniak aus der Ammoniakzuführleitung (81) thermisch zersetzt, und ein Wasserstoff, Stickstoff und Restammoniak enthaltendes Zersetzungsgas (DG) erzeugt. Die Ammoniakentfernungsvorrichtung (61) ist derart konzipiert, dass sie das im Zersetzungsgas (DG) aus der Ammoniakzersetzungsvorrichtung (51) enthaltene Restammoniak entfernt.

Подробнее
11-06-1970 дата публикации

Zufuhr von fluessigem Brennstoff zu einer Gasturbine

Номер: DE0001806921A1
Принадлежит:

Подробнее
19-04-2012 дата публикации

Systeme und Verfahren zur Zuführung von Brennstoff zu einer Gasturbine

Номер: DE102011054548A1
Принадлежит:

Systeme (300) und Verfahren (600) zum Zuführen von Brennstoff zu einer Gasturbine (315) werden beschrieben. Ein Brennstoff kann empfangen und ein oder mehrere mit dem empfangenen Brennstoff verbundene Parameter können bestimmt werden. Zumindest teilweise auf der Grundlage des bestimmten einen oder der bestimmten mehreren Parameter kann ein erwünschter Druck zum Entfernen einer oder mehrerer Flüssigkeiten aus dem Brennstoff unter Benutzung eines Separators (310) errechnet werden. Der Betrieb einer Druck ändernden Vorrichtung (305) kann dann geregelt werden, um den erwünschten Druck zu erzielen. In gewissen Ausführungsformen können die Operationen des Verfahrens durch einen Regler (320) ausgeführt werden, der einen oder mehrere Computer einschließt.

Подробнее
13-03-1996 дата публикации

Fuel reforming apparatus and electric power generating system having the same

Номер: GB0009600289D0
Автор:
Принадлежит:

Подробнее
04-12-1974 дата публикации

INJECTOR PUMPS

Номер: GB0001376133A
Автор:
Принадлежит:

... 1376133 Jet pumps; gas turbine engine fuel systems PLESSEY CO Ltd 27 Jan 1972 [11 Feb 1971] 4490/71 Headings F1E and F1G An injector 3 comprises a Venturi tube, the convergent inlet passage 6 of which has inducing fluid inlet ports 12 shaped to cause the inducing fluid to adhere to the tube wall while flowing therethrough; an additional inducing fluid nozzle 31 is coaxially mounted in the inlet passage 6. As shown the injector is secured to the inlet of a pump 2 and the Specification describes with reference to Fig. 2 the use of the injector in jet engine fuel pumping systems. One or more injectors 3 may precede the backing pump 1 which supplies the inducing fluid. An injector 3b may precede the booster pump 19. An injector 3a may be provided to feed waste products into the pump 1.

Подробнее
13-06-1951 дата публикации

Improvements in fuel supply systems

Номер: GB0000654265A
Автор: CAREY FREDERICK HENRY
Принадлежит:

... 654,265. Reciprocating pumps. DOWTY EQUIPMENT. Ltd. Jan. 20,1947, No. 34259. Divided out of 654,244, [Group XI]. [Class 102(i)] [Also in Groups XI and XXVI] In a liquid fuel supply system for gas turbines having burners of the spill type, and comprising a pump for circulating fuel at a fixed rate in a circuit including the burners, and a variable delivery supply pump for injecting fuel into the circulating flow, the circulating pump though operating normally as a fixed delivery unit is capable of emergency operation as a variable delivery unit, and means are provided which are responsive to failure of either pump whereby failure of either pump results in emergency operation of the operative pump to deliver fuel from the tank to the burners. During normal operation the pressure face 17 of the plunger 15 of the circulating pump 1 is exposed only to the pressure of fuel within the tank 8 through the passage 26 of the emergency control valve 22, and a spring 16 maintains the ring 13 in the ...

Подробнее
07-04-1954 дата публикации

Liquid fuel control means for internal combustion prime movers

Номер: GB0000707000A
Принадлежит:

... 707,000. Gas turbine plant LUCAS (INDUSTRIES), Ltd., J. July 18, 1952 [July 31, 1951], No. 18078/51, Class 110(3) [Also in Group XXIX] The supply of liquid fuel from an enginedriven centrifugal pump b the burner c of a gas turbine or jet propulsion engine is controlled by two throttles d, r in the supply pipe a, the main throttle d which is normally open being operated by liquid pressure acting on a piston f under the control of a governing device o responsive to engine speed and the other throttle r which lies between the pump and the main throttle being opened gradually against the action of a spring s as the engine speed increases by the fuel pressure in the supply pipe a. The slidable throttle d co-operates with an orifice e and its operating piston f which is loaded in the throttle opening direction by a spring h is exposed on the spring side to the pressure in a pipe i connected to the pump delivery and on its opposite side to the pressure on the inlet side of the throttled. The pipe ...

Подробнее
12-01-1948 дата публикации

Improvements in fuel supply systems for internal combustion engines, e.g. gas turbines

Номер: GB0000596808A
Автор:
Принадлежит:

... 596,808. Fluid-pressure servomotor-control systems. HOBSON (AIRCRAFT & MOTOR) COMPONENTS, Ltd., H. M., and GREENLAND. L. S. May 3, 1945, No. 11309. [Class 135] [Also in Groups XXVI and XXVII] In an internal-combustion engine, e.g. a gas turbine, having a servomotor controlling means for varying the rate of flow of fuel to the engine, and a governor for applying to the control valve of the servomotor, against a substantially constant biassing pressure, a force which varies with engine speed, speed selecting means is provided for adjusting the relationship between engine speed and the force applied to the valve by the governor. As shown in Fig. 1, liquid fuel is delivered by a pump 11 through a conduit 12 to a burner manifold 13, the rate of flow to the burners being determined by a needle valve 18 in a byepass 17. An enginedriven centrifugal impeller 30, constituting the governor, has its inlet connected to the byepass and to one side of a spring-loaded diaphragm 36 by conduits 32, 34, and ...

Подробнее
15-10-1975 дата публикации

HYBRID GAS TURBINE ENGINE

Номер: GB0001410543A
Автор:
Принадлежит:

... 1410543 Gas turbine plant; combustion chambers NISSAN MOTOR CO Ltd 26 March 1973 [1 April 1972] 14376/73 Headings F1G and F1L A gas turbine engine comprises a combustion chamber 32 to which is fed a solid or semi-solid fuel 34, and high temperature oxygen produced from a hydrogen peroxide source 10 via a catalyst chamber 26, the combustion products being directed to a cooling chamber 46 via a nozzle 44a surrounded by an ejector tube 48 arranged to draw in cooling air which is mixed with the combustion products and directed against the turbine blades 54. The fuel is a solid rod fed by an electric motor 40 and worm gear 38, or be in the form of gelled polyethylene and acryl resins and be fed by gravity. As shown, the turbine rotor 54 drives a main shaft 58 to drive a power transmission 62 and a generator 74 to charge the battery. At starting, the generator 74 may be utilized to drive the turbine. Again, Fig. 2, (not shown), a fan (90) drives cooling air into the ejector tube 48, and oppositely ...

Подробнее
27-10-1954 дата публикации

Improvements in and relating to liquid fuel supply systems for aircraft gas turbine engines

Номер: GB0000717590A
Автор:
Принадлежит:

... 717,590. Gas turbine plant. DOWTY EQUIPMENT, Ltd., and SIMMONS, H. C. Oct. 10, 1952 [Oct. 11, 1951], No. 23733/51. Class 110(3) [Also in Group XI] In a gas turbine fuel system comprising two pumps, one of which, a circulating pump, circulates fuel around a circuit including the swirl chambers of spill type burners and the other, a supply pump, supplies controlled quantities of fuel to the circuit, the circuit comprises a plurality of spill burners 15 each having an inlet connected through a non-return valve 23 to a common burner ring 13 and a spill orifice connected through a non-return valve 25 to a common collector ring 17, an engine driven centrifugal or other non-positivedisplacement type pump 11 having its inlet connected to the collector ring and its outlet to the burner ring through a shut off cock 24 and a branch line connected to the supply pump. The non-return valves 23, 25 may be incorporated in the burners. The engine driven supply pump 19 injects fuel from the supply tank 20 ...

Подробнее
27-04-1977 дата публикации

PRIMING VALVE FOR LIQUID FUEL SUPPLY SYSTEM

Номер: GB0001471658A
Автор:
Принадлежит:

... 1471658 Re-heat fuel systems LUCAS INDUSTRIES Ltd 27 Aug 1974 [10 Oct 1973] 47286/73 Heading F1J [Also in Division G3] A priming valve 15 for the re-heat manifold 13 of a gas turbine engine 11 comprises a housing 16 having inlet and outlet ports 17, 18 connected respectively to pump 10 and manifold 13. A two position pilot valve 20 is operative to apply to pressure at port 17 via restriction 21 selectively to the ends of valve shuttle 19 so as to urge the latter in respective opposite directions and thus permit priming shots of fuel to flow from port 17 to port 18. Pilot valve 20 is actuated in response to the output pressure of pump 10 in combination with other engine characteristics sensed by metering device 12, i.e. temperature, rotational speed and compressor pressures.

Подробнее
09-03-1983 дата публикации

FLAMMABLE FLUID LEAK DEFLECTOR

Номер: GB0008303081D0
Автор:
Принадлежит:

Подробнее
10-02-1993 дата публикации

SYSTEM FOR SUPPLYING FUEL TO THE INJECTORS OF A TURBOSHAFT ENGINE

Номер: GB0009226298D0
Автор:
Принадлежит:

Подробнее
28-06-1950 дата публикации

Improvements relating to fuel systems for gas-turbine engines

Номер: GB0000639261A
Принадлежит:

... 639,261. Fluid-pressure servomotor-control systems. ROLLS-ROYCE, Ltd. May 12, 1947, No. 12821. Drawings to Specification. [Class 135] [Also in Group XXVI] In a fuel system for a gas-turbine engine in which a constant volume, engine-driven pump passes liquid through restricting means variable by a speed-selecting device and in which means responsive to the pressure drop across the restriction is operative to reduce the fuel delivery to the engine with increase of pressure drop, and vice versa, means is provided to limit the minimum value of the pressure drop whereby a corresponding upper limit of fuel delivery is defined. The invention is described with reference to the disclosure in Specification 639,260. It is stated that the loading on valves 25, 29 may be varied by speed-responsive devices similar to those described as varying the effect of capsule 37. Specification 639,262 also is referred to in the Provisional Specification.

Подробнее
14-05-1952 дата публикации

Apparatus for controlling the flow of fuel to a turbo-jet-engine

Номер: GB0000672208A
Автор:
Принадлежит:

... 672,208. Gas turbine plant. PACKARD MOTOR CAR CO. Aug. 13, 1948 [Aug. 28, 1947], No. 21449/48. Class 110(iii) A gas turbine fuel system comprising a metering valve controlling the supply from a fuel pump to the engine and a byepass valve controlling the flow of fuel to the metering valve has a manual control for adjusting the metering valve through the range from a stop position through an idling position to the maximum speed position, an all-speed governor for adjusting the metering valve. from the idling to the maximum speed position and means operated by the manual control at the idling position to render the all-speed governor operative. The fuel supply to a gas turbine jet propulsion engine is controlled by a unit 12, Fig. 1, which comprises a main fuel pump 55, Fig. 2, a metering valve 57 and a byepass valve 63. The metering valve 57 may be controlled by the manual lever 21, Fig. 1, through linkwork 20 or by an electronic speed governor 30 through an electric motor 34. The engine ...

Подробнее
21-05-1952 дата публикации

Flow-equalizing means for two or more liquid streams

Номер: GB0000672326A
Принадлежит:

... 672,326. Distributing liquids. S. U. CARBURETTER CO., Ltd. Nov. 9, 1950 [Jan. 18, 1950], No. 1293/50. Class 21 [Also in Groups XI, XXVI and XXIX] The volumetric rates of flow of liquid streams under approximately the same head and derived from a single source are equalized by rapidly transposing portions of the respective streams in a continuous manner without interrupting the flow in any of them. In Fig. 1, a rotor 2 with two diametrically opposed ducts 3, 4 is rotatably supported in a casing 1 by a spigot 6 and a continuously driven shaft 5 and is urged against the facing 11 of the end wall 8 by a spring 10. Liquid is supplied through an inlet 14 and is discharged in two equal streams through outlets 15, 16. The outlets 15, 16 communicate with arcuate grooves 12, 13 in the facing 11. The ends of the grooves 12, 13 are sufficiently close to be bridged by the ducts 3, 4. The arcuate grooves may alternatively be in the adjacent end face of the rotor. More than two rotor ducts may be provided ...

Подробнее
26-11-1975 дата публикации

METHOD OF OPERATING A GAS TURBINE

Номер: GB0001415530A
Автор:
Принадлежит:

... 1415530 Gas turbine plant ENGELHARD MINERALS & CHEMICALS CORP 9 Nov 1972 [10 Nov 1971] 51855/72 Headings F1G and F1L A method of operating a gas turbine comprises partially oxidizing a carbonaceous fuel, which when burned with a stoichiometric amount of air has an adiabatic flame temperature of at least 3300‹F, and then effecting further oxidation of the fuel at a temperature of between about 1500 and 3000‹F whilst the fuel/oxidant mixture undergoes expansion in the turbine. In one arrangement a gas turbine plant comprises a centrifugal compressor 12 supplying air to a region adjacent mixing vanes 22 where a hydrocarbon fuel, e.g. propane or naphtha, is introduced via line 21, the fuel/air mixture then flowing through a pre-heater 25 to a combustion catalyst 30. The latter is of insufficient volume to cause complete oxidation of the fuel but further oxidation occurs as the mixture expands through the nozzles 31 and rotor 14 of a single or multi-stage turbine on its way to exhaust duct 24 ...

Подробнее
18-10-1989 дата публикации

Fuel spraybar

Номер: GB0002216999A
Принадлежит:

The present invention comprises a gas turbine engine augmentor including a new and improved fuel spraybar therein. The spraybar includes a base having a manifold for receiving fuel, and a plurality of fuel tubes extending from the base and in flow communication with the manifold. The invention further includes means for cooling the fuel tubes for allowing independent thermal movement between the cooling means and the fuel tubes. In one embodiment of the invention, the cooling means comprises an elongate shield disposed upstream of the fuel tubes to block direct impingement of combustion gases against the fuel tubes while channeling a cooling fluid such as air over the fuel tubes. In accordance with another embodiment, the invention includes means for securing the shield to the fuel tubes for allowing unrestrained longitudinal thermal movement while restraining lateral movement therebetween beyond a predetermined amount. In yet another embodiment, the invention includes means for laterally ...

Подробнее
04-02-2009 дата публикации

Driving a gas turbine engine fuel pump by electric motor with air turbine assistance

Номер: GB2451575A
Принадлежит:

A system for driving a fuel pump 13 in a turbine engine 10, eg of an aircraft, comprises an electric motor 21 and fluid flow assistance means, eg air turbine 22, which may be driven by bleed air from the compressor 12 under the control of a control valve 25. The control valve 25 is a regulator valve, eg a two-port valve, the opening of which is controlled, eg by the Fadec 30, as a function of information representative of the speed of the pump 13, and/or the speed of the turbine engine 10, and/or the flow rate of fuel delivered to the turbine engine. As a result, operating safety of the turbine engine can be increased in the event of the electric motor 21 failing or of its electricity generator failing, and the weight/size/cost ratios of the drive system are improved. The air turbine 22 may be operated together with the electric motor 21 for driving the fuel pump 13. The maximum power of the electric motor 21 may be less than the power that can be drawn by the pump 13.

Подробнее
23-01-2002 дата публикации

Fire safety system

Номер: GB0002330303B
Принадлежит: CRAMER FRANK BROWN, FRANK BROWN * CRAMER

Подробнее
21-07-2004 дата публикации

Gas turbine system comprising closed system between fuel and combustion gas using underground coal layer

Номер: GB0002397349A
Принадлежит:

A gas turbine system especially a gas turbine electric power generation system, wherein a methane gas contained in a coal layer gas is burned with oxygen separated from air by an oxygen production apparatus (3), to drive an oxygen combustion type gas turbine (1), the carbon dioxide discharged from the turbine is pressed into a coal layer (7) together with the residual components of air after the separation of oxygen, to thereby fix the carbon dioxide into the coal layer, and a coal layer gas is recovered to the surface of the ground by the pressure of the gas pressed into the coal layer and is supplied to the gas turbine as a fuel. The gas turbine system allows the carbon dioxide gas generated to be recovered in an almost whole amount and not to be released to the atmosphere, through the use of a coal layer gas.

Подробнее
24-10-1973 дата публикации

ROTARY ENGINE

Номер: GB0001334774A
Автор:
Принадлежит:

... 1334774 Gas turbine plant A IGNELZI and O MONARI 4 May 1971 13101/71 Heading F1G The invention relates to a rotary gas turbine engine of the Barkers mill type, the engine shown comprising three combustion chambers 31 mounted on radial arms projecting from a rotary shaft 38, air under pressure being supplied through the hollow radial arms as indicated in Fig.8 and fuel under pressure being supplied through lines 36 to nozzles 79 in the combustion chambers. The air and fuel mixture is ignited by hot wire devices 72 and the combustion gases discharge through outlet nozzles to rotate the assembly, power being taken off the shaft 38 through centrifugal clutch 24 and pulley 23. The engine comprises a fuel pump 12, a starter motor 8 and an air compressor 19, there being a centrifugal clutch 34 between the turbine shaft 38 and the compressor, and flexible couplings 15, 17 between the starter motor and the fuel pump 12 and compressor 19. A lubricating oil system comprising pump 22 is provided. Air ...

Подробнее
15-11-1950 дата публикации

Means for effecting and controlling the supply of liquid fuel to a prime mover

Номер: GB0000645942A
Автор: IFIELD RICHARD JOSEPH
Принадлежит:

... 645,942. Gas turbine plant. LUCAS, Ltd., J. May 3, 1947, No. 11959. [Class 110(iii)] [Also in Groups XI and XXIX] A choke member regulating the fuel supply to a gas turbine is supplied with fuel by a centrifugal pump driven by the turbine and regulated by a servomotor controlled by a valve responsive to barometric pressure and by a diaphragm responsive to a fuel pressure difference, which diaphragm may further control the said valve or a second servomotor control valve or alternatively regulate the fuel supply to the choke. As shown, the choke 9, Fig. 1, and the centrifugal pump 2 are housed in a casing 1 having an inlet 4 to the pump and an outlet 8 to the burners. The choke 9 is connected to a servomotor piston 12 slidable in a cylinder 13 connected at its bottom end to a chamber 6 around the pump periphery via ducts 14, 7, at its top end to the seat of a leak-off valve 17 via a duct 15 and between its ends by a restricted orifice 18 in the piston. The valve 17 is mounted on a pivoted ...

Подробнее
23-11-1988 дата публикации

FUEL NOZZLE ASSEMBLY FOR GAS TURBINE ENGINE

Номер: GB0008824501D0
Автор:
Принадлежит:

Подробнее
18-03-1987 дата публикации

Fuel system for a gas turbine engine

Номер: GB0002180005A
Принадлежит:

The present invention is particularly concerned with the supply of fuel to fuel servos of gas turbine engines. A check valve (62) is positioned in a return pipe (40, 24, 22, 26) from a fuel spill valve (12) to the upstream low pressure side of a high pressure pump (10). An aperture (32) in a piston (30) of the check valve (62) produces a predetermined pressure drop across the check valve (62) when the flow of excess fuel reaches a predetermined value. A fuel servo shut off valve (64) is positioned in a pipe (42, 58) connecting a fuel flow regulator (14) to a fuel servo (80). A piston (46) of the fuel servo shut off valve (64) initially closes a chamber (56) to prevent fuel being supplied to the fuel servo (80), from the fuel flow regulator (14). The piston (46) of the fuel servo shut off valve (64) is moved against a spring (48) when the predetermined pressure drop is formed across the check valve (62) to allow fuel to be supplied from the fuel flow regulator (14) to the fuel servo (80) ...

Подробнее
01-12-1982 дата публикации

GAS TURBINE

Номер: GB0002036296B
Автор:
Принадлежит: ROLLS ROYCE, ROLLS ROYCE LTD

Подробнее
28-01-2015 дата публикации

Method of reducing combustion induced oscillations in a turbine engine

Номер: GB0002516585A
Принадлежит:

A method for operating a turbine engine (100) having a plurality of fuel injectors (30) arranged circumferentially in a combustor (50), with each fuel injector having a main fuel supply and a pilot fuel supply, includes supplying fuel to the plurality of fuel injectors through the main fuel supply to create a circumferential thermal gradient in the combustor.

Подробнее
19-08-2015 дата публикации

Gear pump

Номер: GB0002523196A
Принадлежит:

A gear pump comprising a plurality of gear pairs 30, each pair having a respective input port and output port 34, and a connector device 36 to changeably select which output port(s) is connected to a base load fluid line and connect the other output port(s) to an additional load fluid line. Preferably the pairs are equally sized and are angularly spaced around a central connector device which is rotatably operable to changeably select the output ports. Preferably an indexing actuator operates the connector device and sequentially selects the output port(s) connected to the base load fluid line after each period of operation of the pump. Also claimed is an aero engine utilising the pump to pump fuel to a control arrangement which returns excess fuel received from the additional load fluid line back to the pump. By switching the output ports between the base load fuel line and the additional load fuel line intermittently, the gears wear at substantially the same rate and service life of the ...

Подробнее
02-06-2004 дата публикации

Fuel compressor system for a gas turbine

Номер: GB0002395753A
Принадлежит:

A micro turbine generator system (10) includes a gas fuel compressor (54) which is driven by a steam powered turbine (44). The turbine (44) is driven by steam produced in a heat recovery steam generator (36), which is heated by the exhaust from the gas turbine engine.

Подробнее
12-01-2012 дата публикации

Split flow valve arrangement

Номер: US20120006433A1
Автор: Antony Morgan
Принадлежит: Rolls Royce PLC

A split flow valve arrangement comprising a first valve portion having an inlet, a first outlet and a second outlet; and a second valve portion having a first inlet coupled to the first outlet, a second inlet coupled to the second outlet, a main outlet and a secondary outlet. The inlet is selectively coupled to none, one or both of the first and second outlets; the first inlet is selectively coupled to the main outlet and the second inlet is selectively coupled to the secondary outlet. The first and second valve portions are constrained to move in synchronicity to therefore selectively direct fluid to flow from the inlet to none, one or both of the main and secondary outlets.

Подробнее
02-02-2012 дата публикации

Methods for controlling fuel splits to a gas turbine combustor

Номер: US20120023953A1
Принадлежит: General Electric Co

Methods for controlling fuel splits to a combustor of a gas turbine are disclosed. The methods may include determining a combustion reference temperature of the gas turbine, measuring a biasing parameter of the gas turbine, determining at least one fuel split biasing value based on the combustion reference temperature and the biasing parameter and adjusting a nominal fuel split schedule based on the at least one fuel split biasing value.

Подробнее
21-06-2012 дата публикации

Pegless secondary fuel nozzle

Номер: US20120151927A1
Принадлежит: General Electric Co

A unitary fuel injection manifold for a secondary fuel nozzle improves fuel-air mixing and offers flexibility to alter the mixing profile through adaptability to a variety of number, types, and orientation of discharge outlets to the combustion air mixing space around the secondary fuel nozzle. An aerodynamic surface with reduced extension into the mixing space reduces pressures drop and interference with design airflow. Manifold integrity is enhanced by elimination of fillet welds to mount external pegs.

Подробнее
05-07-2012 дата публикации

Fuel anti-icing and apu compartment drain combination

Номер: US20120167579A1
Принадлежит: Hamilton Sundstrand Corp

A heat exchanger has a first passage to be connected to a source of fuel. The heat exchanger has an outlet to communicate the fuel downstream. A second passage connects to a source of air. The air passes adjacent to the first passage to heat fuel in the first passage. A jet pump is positioned downstream of the second passage to receive air from the second passage. The jet pump includes a tap connected to a housing compartment to drain fluid from the compartment. A method is also disclosed.

Подробнее
05-07-2012 дата публикации

Method to maximize lng plant capacity in all seasons

Номер: US20120167619A1
Принадлежит: Chevron USA Inc

As described herein, a method and system for operating a liquefied natural gas (LNG) plant are provided. The method and system also provide for domestic natural gas production. In the present methods and systems, substantially all of the natural gas produced from a well or formation is processed to form LNG; a portion of the LNG produced is regasified; and the regasification is utilized to cool the inlet air to the gas turbines in the LNG plant, either directly or indirectly.

Подробнее
10-01-2013 дата публикации

Apparatus and systems relating to fuel injectors and fuel passages in gas turbine engines

Номер: US20130008169A1
Принадлежит: General Electric Co

A combustor casing fuel injector in a combustor of a combustion turbine engine, the combustor including a combustor casing that encloses internal structure of the combustor, wherein the combustor casing fuel injector includes a fuel manifold adjacent to an outer surface of the combustor casing. In certain embodiments, the combustor casing fuel injector includes a fuel injector; wherein the fuel injector extends through the combustor casing from a position within the fuel manifold to a predetermined fuel injection location; and wherein the fuel injector includes a protruding injector inlet within the fuel manifold.

Подробнее
14-03-2013 дата публикации

Fuel manifold cooling flow recirculation

Номер: US20130061599A1
Принадлежит: General Electric Co

Cooling flow recirculation in fuel manifolds, such as fuel manifolds associated with gas turbine engines is disclosed. An example system for jet pump driven recirculation of manifold cooling flow according to at least some aspects of the present disclosure may include a flow split valve having a spool valve disposed therein, the flow split valve having a pilot manifold and a main manifold attached thereto; a jet pump fluidically coupled to the pilot manifold, the jet pump being arranged to drive recirculation of a cooling flow through the main manifold via a cooling flow circuit in a pilot only mode of operation; and/or a fuel nozzle in fluid communication with the pilot manifold and the main manifold.

Подробнее
21-03-2013 дата публикации

FUEL SUPPLY DEVICE OF GAS TURBINE ENGINE

Номер: US20130067919A1
Автор: OGATA Hideki
Принадлежит: KAWASAKI JUKOGYO KABUSHIKI KAISHA

A fuel divider included in a fuel supply device of a gas turbine engine includes a movable member which is movable according to a fuel pressure at a fuel entrance, opens only a pilot port when the fuel pressure at the fuel entrance is lower than a first pressure, and opens both of the pilot port and the main port when the fuel pressure at the fuel entrance is higher than the first pressure. In addition, the fuel divider includes an adjusting means which adjusts a value of the first pressure in such a manner that it applies to the movable member a counter force in a direction opposite to a direction in which the movable member moves according to the fuel pressure at the fuel entrance, and adjusts the counter force. 1. A fuel supply device of a gas turbine engine , which supplies a fuel to a combustor including a pilot burner and a main burner; the fuel supply device comprising:a pilot fuel passage through which the fuel is supplied to the pilot burner;a main fuel passage through which the fuel is supplied to the main burner;a collecting fuel passage through which the fuel is supplied to the pilot fuel passage and to the main fuel passage; anda fuel divider which divides the fuel supplied from the collecting fuel passage to feed the fuel to the pilot fuel passage and to the main fuel passage;wherein the fuel divider includes:a fuel entrance into which the fuel supplied from the collecting fuel passage is introduced;a pilot port connected to the pilot fuel passage;a main port connected to the main fuel passage;a movable member which is movable according to a fuel pressure at the fuel entrance, the movable member being configured to open only the pilot port when the fuel pressure at the fuel entrance is lower than a first pressure, and to open both of the pilot port and the main port when the fuel pressure at the fuel entrance is higher than the first pressure; andan adjusting means for adjusting a value of the first pressure in such a manner that the adjusting means ...

Подробнее
21-03-2013 дата публикации

FUEL INJECTOR AND SWIRLER ASSEMBLY WITH LOBED MIXER

Номер: US20130067920A1
Принадлежит:

Disclosed is a gas turbine fuel injector and swirler assembly, including: a delivery tube structure arranged on a central axis of the fuel injector and swirler assembly, a first fuel supply channel arranged in the delivery tube structure, a shroud surrounding the delivery tube structure, swirl vanes arranged between the delivery tube structure and the shroud, a radial passage in each swirl vane, communicating with the first fuel supply channel, a set of apertures open between the radial passage and the exterior surface of said each swirl vane, wherein a second fuel supply channel is arranged in the delivery tube structure extending to a downstream end of the delivery tube structure and a mixer with lobes for fuel injection is arranged at the downstream end. Further disclosed is an assembly method for assembling a fuel injector and swirler assembly. 115-. (canceled)16. A gas turbine fuel injector and swirler assembly , comprising:a delivery tube structure arranged on a central axis of the fuel injector and swirler assembly;a first fuel supply channel arranged in the delivery tube structure;a shroud surrounding the delivery tube structure;a plurality of swirl vanes arranged between the delivery tube structure and the shroud;a radial passage in each swirl vane, communicating with the first fuel supply channel;a set of apertures open between the radial passage and the exterior surface of each swirl vane; anda second fuel supply channel arranged in the delivery tube structure extending to a downstream end of the delivery tube structure,wherein a mixer with a plurality of lobes for fuel injection is arranged at the downstream end.17. The fuel injector and swirler assembly as claimed in claim 16 , wherein the delivery tube structure comprises coaxial cylindrical inner and outer tubes claim 16 , providing the first fuel supply channel in the inner tube and forming the annular second fuel supply channel between the inner and outer tubes.18. The fuel injector and swirler ...

Подробнее
21-03-2013 дата публикации

Multiple Tube Premixing Device

Номер: US20130067926A1
Принадлежит: GENERAL ELECTRIC COMPANY

The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes. 1. A premixer for a combustor , comprising: a plurality of fuel tubes comprising a first plurality of fuel tubes and a second plurality of fuel tubes:', 'a first chamber in communication with the first plurality of fuel tubes; and', 'a second chamber in communication with the second plurality of fuel tubes; and, 'a fuel plenum comprisinga burner tube comprising a plurality of air tubes,wherein the plurality of fuel tubes extend about the plurality of air tubes.2. The premixer of claim 1 , wherein the burner tube comprises a bell mouth at a first end and a burner tube nozzle at a second end.3. The premixer of claim 2 , wherein the plurality of air tubes extends from the bell mouth to the burner tube nozzle.4. The premixer of claim 1 , further comprising a plurality of spacers positioned between the fuel plenum and the burner tube.5. The premixer of claim 1 , wherein the fuel plenum comprises a chamber in communication with the plurality of fuel tubes.68-. (canceled)9. The premixer of claim 1 , wherein the first plurality of fuel tubes surrounds the second plurality of fuel tubes.10. The premixer of claim 1 , wherein the plurality of air tubes comprises a first diameter claim 1 , wherein the plurality of fuel tubes comprises a second diameter claim 1 , and wherein the first diameter is larger than the second diameter.11. A method of mixing a first flow and a second flow claim 1 , comprising:dividing the first flow into a plurality first flow tubes;dividing the second flow into a plurality of second flow tubes;placing the plurality of first flow tubes about the plurality of second flow tubes; andmixing the first flow and the second flow within the plurality of second flow tubes.12. The method of claim 11 , further comprising dividing a third flow into a ...

Подробнее
11-04-2013 дата публикации

Low Emission Power Generation Systems and Methods

Номер: US20130086916A1
Принадлежит:

Methods and systems for C0separation for low emission power generation in combined-cycle power plants are provided. One system includes a gas turbine system that stoichiometrically combusts a fuel and an oxidant in the presence of a compressed recycle stream to provide mechanical power and a gaseous exhaust. The compressed recycle stream acts as a diluent to moderate the temperature of the combustion process. A boost compressor can boost the pressure of the gaseous exhaust before being compressed into the compressed recycle stream. A purge stream is tapped off from the compressed recycle stream and directed to a C0separator configured to absorb C0from the purge stream using a potassium carbonate solvent. 1. An integrated COseparation system , comprising:a gas turbine system having a combustion chamber configured to stoichiometrically combust a compressed oxidant and a fuel in the presence of a compressed recycle stream in order generate a discharge stream, which is expanded in an expander, thereby generating a gaseous exhaust stream and at least partially driving a main compressor, wherein the compressed recycle stream acts as a diluent configured to moderate the temperature of the discharge stream;an exhaust gas recirculation system having at least one of a boost compressor and one or more cooling units configured to increase the mass flow rate of the gaseous exhaust stream to provide a cooled recycle gas to the main compressor, wherein the main compressor compresses the cooled recycle gas and generates the compressed recycle stream, a portion of which is directed to the combustion chamber and a portion of which provides a purge stream; and{'sub': 2', '2, 'claim-text': [{'sub': '2', 'an absorber column configured to receive the purge stream and circulate a potassium carbonate solvent therein to absorb COin the purge stream, wherein the absorber column discharges a nitrogen-rich residual stream and a bicarbonate solvent solution;'}, 'a first valve fluidly coupled to ...

Подробнее
25-04-2013 дата публикации

Hydrajetting Nozzle and Method

Номер: US20130098043A1
Автор: Surjaatmadja Jim B.
Принадлежит: Halliburton Energy Services, Inc.

A jetting device comprises a body, and an interior flow path within the body. The interior flow path comprises a flow section, an expansion section, and a shoulder formed at the intersection of the flow section and the expansion section. The length and diameter of the expansion section are configured to allow a portion of the pressure of the fluid downstream of the expansion section to provide power to a fluid flowing through the nozzle when the fluid is flowing through the nozzle. 1. A jetting device comprising:a body; and a flow section;', 'an expansion section; and', 'a shoulder formed at the intersection of the flow section and the expansion section, wherein the length and diameter of the expansion section are configured to allow a portion of the pressure of the fluid downstream of the expansion section to provide power to a fluid flowing through the jetting device when the fluid is flowing through the jetting device., 'an interior flow path within the body, wherein the interior flow path comprises2. The jetting device of claim 1 , wherein a length and a diameter of an expansion section of the jetting device are configured such that a fluid stream diameter of a fluid stream discharged from the jetting device is less than the diameter of the expansion section at an outer end of the jetting device.3. The jetting device of claim 1 , wherein the portion of the pressure of the fluid downstream of the expansion section is at least about 10% of the pressure of the fluid downstream of the expansion section.4. The jetting device of claim 1 , wherein the portion of the pressure of the fluid downstream of the expansion section is less than about 80% of the pressure of the fluid downstream of the expansion section.5. A flow device comprising:a body; and a flow section;', 'an expansion section; and', 'a shoulder formed at the intersection of the flow section and the expansion section, wherein the length and diameter of the expansion section are configured to control the ...

Подробнее
16-05-2013 дата публикации

FUEL INJECTION SYSTEM FOR TURBOJET ENGINE AND METHOD OF ASSEMBLING SUCH AN INJECTION SYSTEM

Номер: US20130118177A1
Принадлежит: SNECMA

A fuel injection system for a turbojet engine including a fixed part and a sliding lead-through, the fixed part and the sliding lead-through extending along a reference axis, the fixed part including a cavity that has a bottom and a closure cup, the sliding lead-through being provided with a sole plate contained inside the cavity. The injection system has increased resistance to wearing of the injector on which it is mounted. To achieve this it further includes a spring arranged in such a way as to apply to the sole plate a force capable of preventing the vibration-induced micro-movements of the sliding lead-through with respect to the fixed part in the absence of thermal expansion. 1. A fuel injection system for a turbojet engine , comprising:a fixed portion and a sliding cross-member, the fixed portion and the sliding cross-member extending along a reference axis, the fixed portion comprising a cavity defined axially by a base and a closing cup, the sliding cross-member being provided with a flange contained in the cavity; anda spring disposed in the cavity so as to exert an axial force on the flange.2. The injection system as claimed in claim 1 , wherein the spring comprise comprises a corrugated plate.3. The injection system as claimed in claim 2 , wherein the corrugated plate is circular.4. The injection system as claimed in claim 1 , wherein the spring is axially constrained in the cavity.5. The injection system as claimed in claim 1 , comprising a washer disposed between the spring and the flange.6. The injection system as claimed in claim 1 , wherein the spring is configured to exert a force in the range 10 Newtons to 30 Newtons on the flange.7. A combustion chamber comprising at least one injection system as claimed in claim 1 , the sliding cross-member further comprising a centring cone in which a fuel injector is inserted.8. An aircraft engine comprising a combustion chamber as claimed in .9. A method for assembling an injection system comprising a fixed ...

Подробнее
06-06-2013 дата публикации

FUEL NOZZLE AND METHOD OF REPAIR

Номер: US20130139513A1
Принадлежит: PRATT & WHITNEY CANADA CORP.

A modular fuel nozzle tip for a gas turbine engine includes a body defining one or more fuel conveying passages extending therethrough, an annular cap having a radially inner shoulder surface interfacing with the peripheral end surface of the body to define a plurality of air channels extending through the head portion of the modular fuel nozzle tip. At least two fasteners fasten the annular cap to the body. 1. A modular fuel nozzle tip for a gas turbine engine , the modular fuel nozzle tip comprising:a fuel conveying body defining one or more fuel conveying passages extending between an inlet end and an outlet end of the body, the outlet end having a head portion with a peripheral end surface, the head portion having web portions extending radially therefrom, and at least two projections extending from the end of said web portions;an annular cap circumscribing only the outlet of said fuel conveying body and having a radially inner shoulder surface interfacing with the peripheral end surface of the fuel conveying body, the peripheral end surface and the shoulder surface defining a plurality of air channels extending through the head portion of the modular fuel nozzle tip; andat least two fasteners fastening the annular cap to the fuel conveying body, said fasteners being circumferentially distributed about the annular cap, each of said fasteners extending through the annular cap and into one of the projections.2. The modular fuel nozzle tip according to claim 1 , wherein the at least two projections each contain a hole claim 1 , the annular cap contains at least two holes and the holes of the projections and the holes of the annular cap are circumferentially spaced and aligned.3. The modular fuel nozzle tip according to claim 2 , wherein each fastener extends through both the hole of one of the projections and one of the holes of the cap.4. The modular fuel nozzle tip according to claim 1 , wherein a concentric annular rim extends from the shoulder surface of the ...

Подробнее
06-06-2013 дата публикации

METHOD FOR MONITORING A CONTROL DEVICE OF A FUEL METERING VALVE OF A TURBOJET ENGINE

Номер: US20130139520A1
Принадлежит: SNECMA

A method for monitoring a control device of a fuel metering valve of an aircraft turbojet engine, the control device supplying a control current) to a servo valve in order to modify the position of the fuel metering valve, the method comprising: 1. Method for monitoring a control device of a fuel metering valve of an aircraft turbojet engine , the control device supplying a control current to a servo valve in order to modify the position of the fuel metering valve , the method comprising:a step for determining the position of the fuel metering valve during a flight of the aircraft;a step for determining the travelling speed of the fuel metering valve;a step for determining the control current when the travelling speed of the fuel metering valve is zero;a step for calculating a mean control current when the travelling speed of the fuel metering valve is zero, the mean control current forming an indicator of deterioration of the control device;a step for comparing the deterioration indicator with a reference base of indicators with deterioration so as to infer the type of deterioration from it;a step for calculating an abnormality score for the deterioration indicator;a step for comparing the abnormality score with a decision threshold of abnormality characteristic of the type of deterioration; anda step for releasing an alarm in case of violation of the decision threshold of abnormality.2. Method according to claim 1 , in which the deterioration indicator is normalized according to its standard deviation and average obtained over a plurality of flights during a learning phase.3. Method according to claim 2 , in which the abnormality score of the deterioration indicator is a function of the absolute value of the said normalized deterioration indicator.4. Method according to claim 1 , in which the reference base of indicators with deterioration comprises an indicator of deterioration of a positive drift and an indicator of deterioration of a negative drift.5. Method ...

Подробнее
27-06-2013 дата публикации

Rigid raft

Номер: US20130160460A1
Принадлежит: Rolls Royce PLC

The present invention provides a rigid raft formed of rigid composite material. The raft has an electrical system and/or a fluid system embedded therein. The raft further has a tank for containing liquid integrally formed therewith. The tank can be formed of the rigid composite material. The tank can be for a gas turbine engine.

Подробнее
27-06-2013 дата публикации

Gas turbine engine part

Номер: US20130160462A1
Принадлежит: Rolls Royce PLC

The present invention provides a gas turbine engine part which has a primary purpose in the engine which is structural and/or aerodynamic. The part is formed of rigid composite material, and has an electrical system comprising electrical conductors permanently embedded in the composite material. This provides advantages in terms of weight, complexity, and build time.

Подробнее
04-07-2013 дата публикации

Apparatus for mixing fuel and air in a combustion system

Номер: US20130167538A1
Принадлежит:

A fuel shroud assembly () into which fuel () is injected for mixing with an air stream () in a fuel manifold. The shroud assembly () comprises a plurality of parallel fuel scoops () each receiving the injected fuel (). The fuel stream () flows through each scoop (), exiting at an open scoop end (A). The air stream () flows between scoops, creating a shear region proximate each scoop end (A) where the fuel exits. The shear causes mixing of the air () and the fuel () streams, wherein the degree of mixing is not dependent on the momentum ratio of the air () or fuel () streams. 1. A fuel delivery apparatus for use within a fuel manifold of a gas turbine , the apparatus comprising:laterally spaced apart fuel scoops, each fuel scoop having a rectangular cross section with the fuel scoops arranged in a parrallel configuration, and each defining a plurality of first openings on an external surface thereof for receiving fuel, each one of the fuel scoops directing fuel flow therethrough and the fuel exiting each fuel scoop at a second opening;adjacent ones of the fuel scoops defining an open channel therebetween, wherein an air stream flows only through the channel in a direction toward the second openings; andwherein the air stream creates a shear region proximate the second openings, and wherein the air stream and the fuel stream mix in the shear region.2. The fuel delivery apparatus of wherein the second opening of each one of the fuel scoops is defined by a straight edge.3. The fuel delivery apparatus of wherein the second opening of each one of the fuel scoops is defined by an arcuate edge.4. (canceled)5. (canceled)6. The fuel delivery apparatus of wherein each of the fuel scoops extends between an upper surface and a lower surface of the fuel manifold.7. The fuel delivery apparatus of wherein each of the fuel scoops extends about ⅔ of a distance between an upper surface and a lower surface of the fuel manifold.8. A manifold for mixing fuel and air claim 1 , the manifold ...

Подробнее
11-07-2013 дата публикации

SYSTEM FOR INJECTING FUEL IN A GAS TURBINE ENGINE

Номер: US20130174558A1
Принадлежит: GENERAL ELECTRIC COMPANY

Embodiments of the present disclosure provide a turbine combustor having a primary fuel injection system, a first wall portion disposed about a primary combustion zone downstream from the primary fuel injection system, and a second wall portion disposed downstream from the first wall portion. The turbine combustor also has a secondary fuel injection system disposed between the first wall portion and the second wall portion, where the secondary fuel injection system is removable form the first and second wall portions. 1. A system , comprising: a primary fuel injection system;', 'a first wall portion disposed about a primary combustion zone downstream from the primary fuel injection system;', 'a second wall portion disposed downstream from the first wall portion; and', 'a secondary fuel injection system disposed between the first wall portion and the second wall portion, wherein the secondary fuel injection system is removable from the first and second wall portions., 'a turbine combustor, comprising2. The system of claim 1 , wherein the first wall portion comprises a liner and the second wall portion comprises a transition piece.3. The system of claim 2 , wherein the first wall portion comprises a sleeve or case disposed about the liner claim 2 , and the second wall portion comprises an impingement sleeve disposed about the transition piece.4. The system of claim 1 , comprising a first seal disposed between the first wall portion and the secondary fuel injection system claim 1 , wherein the first seal is configured to enable movement of the first wall portion relative to the secondary fuel injection system.5. The system of claim 1 , comprising a second seal disposed between the second wall portion and the secondary fuel injection system claim 1 , wherein the second seal is configured to enable movement of the second wall portion relative to the secondary fuel injection system.6. The system of claim 1 , wherein the secondary fuel injection system comprises a ...

Подробнее
18-07-2013 дата публикации

SYSTEM FOR INJECTING A FLUID, COMPRESSOR AND TURBOMACHINE

Номер: US20130180249A1
Автор: HILLER SVEN
Принадлежит: MTU AERO ENGINES GMBH

A system for injecting a fluid into a wall boundary layer of a flow in a turbomachine is disclosed. The system has a plurality of nozzles which are disposed in a side wall limiting the flow and are oriented diagonally in the direction of flow. The nozzles each have a rectangular, flat nozzle cross-section. A compressor having such a system, as well as a turbomachine having such a compressor, are also disclosed. 1. A system for injecting a fluid in a wall boundary layer of a flow in a turbomachine , comprising:a nozzle, wherein the nozzle is disposed in a side wall of the turbomachine, wherein the side wall limits the flow, wherein the nozzle is oriented diagonally with respect to a direction of flow in the turbomachine, and wherein the nozzle has a rectangular, flat nozzle cross-section.2. The system according to claim 1 , further comprising an injection channel disposed upstream from the nozzle in the direction of flow claim 1 , wherein the injection channel has a constriction that forms a boundary surface.3. The system according to claim 2 , wherein the boundary surface defines the nozzle cross-section.4. The system according to claim 2 , wherein the injection channel has an expanded funnel-shape upstream from the constriction in the direction of flow.5. The system according to claim 1 , wherein the nozzle is flat in the direction of flow.6. The system according to claim 1 , wherein the nozzle is disposed at an angle of ≦40° with respect to the direction of flow.7. The system according to claim 1 , wherein an outlet area of the nozzle is oriented tangentially to a direction of rotation of the turbomachine.8. The system according to claim 1 , wherein an outlet area of the nozzle is disposed ±20° from the direction of rotation of the turbomachine.9. A compressor having a system according to .10. The compressor according to claim 9 , wherein the nozzle is disposed on a stator side in a trailing edge region of at least one blade row formed of rotor blades.11. A ...

Подробнее
18-07-2013 дата публикации

FUEL SUPPLY APPARATUS, FUEL-FLOW-RATE-CONTROL APPARATUS, AND GAS-TURBINE POWER PLANT

Номер: US20130180250A1
Автор: Harada Shoichi
Принадлежит: MITSUBISHI HEAVY INDUSTRIES, LTD.

A fuel supply apparatus is provided with a plurality of flow-rate regulating valves that regulate the flow rate of fuel flowing in a fuel supply line; a calculating section that calculates a required flow-rate coefficient on the basis of at least a fuel pressure in the fuel flow upstream of the flow-rate regulating valves, a pressure determined in advance as a fuel pressure downstream of the flow-rate regulating valves, and the flow rate of fuel to be supplied to one fuel nozzle among different kinds of fuel nozzles, the required flow-rate coefficient being the coefficient of the flow-rate regulating valve corresponding to the one fuel nozzle; and a valve control section that controls the degree-of-opening of the flow-rate regulating valve corresponding to the one fuel nozzle on the basis of the required flow-rate coefficient. 1. A fuel supply apparatus configured to control the flow rates of fuel to be supplied to fuel nozzles provided in a combustor of a gas turbine , the apparatus comprising:a plurality of flow-rate regulating valves which are provided in fuel supply lines that supply fuel to the fuel nozzles and which regulate the flow rates of fuel flowing through the fuel supply lines;a calculating section that calculates required flow-rate coefficients of the flow-rate regulating valves corresponding to the fuel nozzles on the basis of at least a fuel pressure in the fuel flow upstream of the flow-rate regulating valves, a pressure determined in advance as a fuel pressure downstream of the flow-rate regulating valves, and the flow rates of fuel to be supplied to the fuel nozzles; anda valve control section that controls the degrees-of-opening of the flow-rate regulating valves on the basis of the required flow-rate coefficients.2. The fuel supply apparatus according to claim 1 , further comprising:a pressure measuring unit that measures a fuel pressure upstream of the flow-rate regulating valves,wherein the pressure measured by the pressure measuring unit is ...

Подробнее
25-07-2013 дата публикации

METHOD FOR MONITORING A FUEL CIRCUIT SHUT-OFF VALVE

Номер: US20130186096A1
Принадлежит: SNECMA

The invention relates to a method for monitoring the operation of a fuel circuit shut-off valve comprising an LPSOV, a flow regulator, the shut-off valve, characterised in that it comprises: 1. A method for monitoring the operation of a shut-off valve of an aircraft turbine engine fuel circuit , the circuit comprising , from upstream to downstream in the direction of fuel circulation , a low-pressure pump , a Low Pressure Shut-Off Valve (LPSOV) , a high-pressure pump , said shut-off valve and a device for measuring the fuel flow rate in the circuit ,wherein a LPSOV closing time is greater than a closing time of said shut-off valve,wherein the method comprises:a step for ordering closure of valves in the fuel circuit;a step for measuring fuel flow rate in the fuel circuit carried out before the LPSOV is completely closed; anda diagnostic step including determining that said shut-off valve is defective if the fuel flow rate measured is not equal to zero and determining that said shut-off valve is operating correctly if the fuel flow rate measured is zero.2. The monitoring method according to claim 1 , wherein the fuel circuit comprises a metering valve arranged between the LPSOV and said shut-off valve claim 1 , wherein the closing rate is greater than the closing rate of the LPSOV claim 1 ,further comprising a step of ordering opening of the metering valve carried out after the step for ordering the closure of the valves and before the step for measuring the fuel flow rate.3. The monitoring method according claim 2 , wherein claim 2 , if claim 2 , following the diagnostic step claim 2 , said shut-off valve is determined to be defective claim 2 , the diagnostic step is followed by a step for ordering closure of the metering valve.4. The monitoring method according to claim 2 , wherein the step for ordering the opening of the metering valve includes ordering the opening of the metering valve so as to enable the flow of a predetermined fuel flow rate.5. The monitoring ...

Подробнее
08-08-2013 дата публикации

DRIVE FOR A TURBINE AND DRIVE METHOD

Номер: US20130199199A1
Автор: Moddemann Horst Jan
Принадлежит:

The invention relates to the drive for a turbine, in particular for an aviation turbine, as well as to a method for operating such a turbine. An aviation turbine is a gas turbine that accelerates an aircraft. The invention further relates to an aircraft having the drive for a turbine. According to the invention, a drive for a turbine is provided with a compressor for compressing air, with a nozzle for injecting a first fuel into the compressed air, and with a combustion chamber for igniting the air-fuel mixture. Furthermore, the drive comprises another nozzle for injecting a second fuel. The nozzle for injecting a first fuel serves for starting the drive or a turbine engine comprising the drive as well as a turbine, which provides mechanical energy by the igniting the air-fuel mixture. Therefore, the first fuel is a conventional fuel, in particular kerosene. It is thus ensured that the engine can be started at any time, because it is, or at least can be, of a conventional design in this regard. The second nozzle serves for injecting a new fuel, which at least at first is a liquid gas. In particular, a mixture of and Bio LNG with a high calorific value, which is drawn from a tank and fed to the combustion chamber in an insulated pressure pipe, is used as the liquid gas. 1. Turbine drive with a compressor for compressing air , with a nozzle for injecting a first fuel into the compressed air , with a combustion chamber for igniting the air-fuel mixture , characterized in that the drive comprises another nozzle for injecting a second fuel.2. Turbine drive claim 1 , according to claim 1 , further comprising a heat exchanger for heating the fuel prior to injecting the first fuel into the compressed air.3. Turbine drive according to claim 2 , wherein a space or area for feeding compressed air into it claim 2 , with a heat exchanger located therein for heating a fuel prior to the injection of the fuel into the compressed air.4. Turbine drive according to claim 3 , wherein ...

Подробнее
08-08-2013 дата публикации

FUEL DISTRIBUTION WITHIN A GAS TURBINE ENGINE COMBUSTOR

Номер: US20130199200A1
Принадлежит: UNITED TECHNOLOGIES CORPORATION

A fuel system for a gas turbine engine includes a plurality of duplex nozzles arranged on each side of top dead center and a plurality of simplex nozzles. A primary manifold is operable to communicate fuel to a primary flow jet in each of the plurality of duplex nozzles and a secondary manifold is operable to communicate fuel to a secondary flow jet in each of the plurality of duplex nozzles and a secondary flow jet in each of the plurality of simplex nozzles. An equalizer valve that is in communication with both the primary manifold and the secondary manifold distributes fuel at various pressures to both the primary and secondary manifolds. 1. A fuel system for a gas turbine engine comprising:a plurality of duplex nozzles arranged on each side of top dead center;a plurality of simplex nozzles;a primary manifold operable to communicate fuel to a primary flow jet in each of the plurality of duplex nozzles;a secondary manifold operable to communicate fuel to a secondary flow jet in each of the plurality of duplex nozzles and a secondary flow jet in each of the plurality of simplex nozzles; andan equalizer valve in communication with the primary manifold and the secondary manifold, the equalizer valve movable between an open position and a closed position, the closed position is operable to permit a supply of fuel pressure to the primary manifold that is greater than fuel pressure to the secondary manifold, and the open position is operable to permit supply of fuel pressure to the primary manifold with essentially an equal fuel pressure as the secondary manifold.2. The fuel system as recited in claim 1 , wherein the plurality of duplex nozzles are arranged with respect to a fuel igniter.3. The fuel system as recited in claim 1 , wherein at least one of the plurality of duplex nozzles are arranged adjacent to a fuel igniter.4. The fuel system as recited in claim 3 , wherein at least one of the plurality of duplex nozzles are arranged opposite the fuel igniter.5. The ...

Подробнее
08-08-2013 дата публикации

Gas turbine engine thermal management system

Номер: US20130202406A1
Принадлежит: United Technologies Corp

A thermal management system for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a heat exchanger and a valve that controls an amount of a first fluid that is communicated through the heat exchanger A first sensor senses a first characteristic of a second fluid that is communicated through the heat exchanger to exchange heat with the first fluid and a second sensor senses a second characteristic of the second fluid. A positioning of the valve is based on at least one of the first characteristic and the second characteristic.

Подробнее
15-08-2013 дата публикации

OXIDIZER COMPOUND FOR ROCKET PROPULSION

Номер: US20130205754A1
Принадлежит:

The present disclosure generally pertains to a rocket propulsion oxidizer compound that is a solution, is a homogenous and stable liquid at room temperature and includes nitrous oxide and nitrogen tetroxide. In addition, an apparatus is provided for burning a fuel and nitrous oxide/nitrogen tetroxide. The apparatus has a combustor, a catalyst, a nitrous oxide/nitrogen tetroxide supply passage for directing the nitrous oxide/nitrogen tetroxide to a contact position with the catalyst, and a fuel supply passage for supplying the fuel to the combustor. The catalyst acts to facilitate decomposition of the nitrous oxide/nitrogen tetroxide, while the combustor burns the fuel, the decomposed nitrous oxide/nitrogen tetroxide and/or nitrous oxide/nitrogen tetroxide decomposed in the reaction. 1. An oxidizer solution for use in a rocket propulsion system comprising nitrous oxide dissolved into nitrogen tetroxide that is a homogenous and stable liquid at room temperature.2. The oxidizer solution of claim 1 , further comprising at least one additive having a theoretical specific energy greater than that of said nitrous oxide.32. The oxidizer solution of claim claim 1 , wherein said at least one additive is an earth-storable oxidizer.4. An oxidizer solution of claim 1 , wherein said liquid is non-viscous at room temperature.5. The oxidizer solution of claim 1 , wherein said liquid is a gel at room temperature.6. An oxidizer solution for use in a rocket propulsion system comprising a homogenous solution that includes nitrous oxide and approximately 28 to 52 weight percent nitrogen tetroxide.7. The oxidizer solution of claim 6 , wherein said solution is a non-viscous liquid at room temperature.8. The oxidizer solution of claim 6 , wherein said solution is a gel at room temperature.9. A rocket propulsion system comprising:a first container;a rocket fuel stored in said first container;a second container;an oxidizer solution stored in said second container, said oxidizer solution ...

Подробнее
22-08-2013 дата публикации

ARCHITECTURE FOR FEEDING FUEL TO A POWER PLANT FOR DRIVING A ROTARY WING OF A ROTORCRAFT

Номер: US20130213044A1
Принадлежит: EUROCOPTER

An architecture for feeding fuel to a power plant () of a rotorcraft, which power plant comprises a plurality of engines () individually fed with fuel by respective assemblies (). Each assembly () comprises a fuel feed circuit () for feeding a safe tank () from a fuel tank () that is common to the assemblies (). Together the feed circuits () form a circuit for forced both-way transfer of fuel from either one of the assemblies to the other via the common tank () and an intercommunication () interposed between the safe tanks (), which safe tanks are fitted with respective spillage devices () for transferring excess fuel to the common tank (). 1. Rotorcraft equipment constituted by an architecture for feeding fuel to a power plant comprising a plurality of engines for driving at least one rotary wing of the rotorcraft in rotation , the architecture comprising: each assembly comprising a fuel tank and a safe tank that is fed with fuel from the fuel tank by a feed circuit;', 'the feed circuit including at least one feed pump dipping into the safe tank and at least one ejector dipping into the fuel tank, the feed pump taking fuel from capture and delivery of the fuel by the ejector, and driving the fuel into the feed circuit so that it flows from the fuel tank towards the safe tank; and', 'the safe tank being provided with a spillage device enabling excess fuel therein to be emptied spontaneously therefrom;, 'fuel feed assemblies that are allocated to supplying fuel to respective engines;'}a supply circuit for supplying fuel from the safe tank to the engine with which the assembly is associated, the supply circuit including at least one supply pump that causes fuel to flow within the supply circuit from the safe tank to the engine;an intercommunication that is interposed between the assemblies and that forms an excess fuel spillway from one of the assemblies to the other; anda transfer circuit for forced transfer of fuel from one of the assemblies to the other, the ...

Подробнее
29-08-2013 дата публикации

COMBUSTOR AND GAS TURBINE

Номер: US20130219898A1
Принадлежит: MITSUBISHI HEAVY INDUSTRIES, LTD.

A combustor according to the invention includes a combustor basket to which air A is supplied from the outside, a plurality of first nozzles that are annularly provided along the inner periphery of the combustor basket and that supply premixed gas M of the air and fuel to the inside of the combustor basket, and a transition piece in which the combustor basket is connected to a base end thereof and which burns the premixed gas supplied from the first nozzles, thereby forming a flame front spread to the outer periphery side toward the leading end in an axial direction, wherein each first nozzle supplies the premixed gas with fuel concentration changed around the center axis of the first nozzle such that the flame front has a uniform temperature in the axial direction. 1. A combustor comprising:a combustor basket to which air is supplied from the outside;a first nozzle that extends in an axial direction of the combustor basket, that is provided in a plurality at intervals along an inner periphery of the combustor basket, and that supplies premixed gas of the air and fuel to the inside of the combustor basket; anda transition piece in which the combustor basket is connected to a base end thereof and which burns the premixed gas supplied from the first nozzles, thereby forming a flame front, whereineach of the first nozzles supplies the premixed gas with fuel concentration changed around a center axis of the first nozzle such that the flame front has a uniform temperature in an axial direction.2. The combustor according to claim 1 , whereinthe first nozzle is configured such that, in a leading end outlet of the first nozzle, a fuel concentration of the premixed gas in a second area located radially inward of the inside of the combustor basket is relatively higher than that in a first area located radially outward of the inside of the combustor basket.3. The combustor according to claim 1 , whereinthe first nozzle is configured such that, in a leading end outlet of the ...

Подробнее
29-08-2013 дата публикации

Fuel air heat exchanger

Номер: US20130219915A1
Принадлежит: Pratt and Whitney Canada Corp

A fuel air heat exchanger for a gas turbine engine having fuel and air conduits in heat exchange relationship with one another, and a distribution conduit in heat exchange relationship with a component to be cooled. The distribution conduit is in fluid communication with the outlet of each air conduit. The heat exchanger also includes a secondary air inlet in fluid communication with the distribution conduit and a flow selection member selectively movable between first and second configurations. In the first configuration, the flow selection member closes the fluid communication between the secondary inlet and the distribution conduit. In the second configuration, the flow selection member opens the fluid communication between the secondary air inlet and the distribution conduit.

Подробнее
12-09-2013 дата публикации

GAS TURBINE FUEL FLOW MEASUREMENT USING INERT GAS

Номер: US20130232976A1
Принадлежит: GENERAL ELECTRIC COMPANY

The fuel flow rate to a gas turbine is measured using an inert gas. The inert gas is injected into the fuel flow and the concentration of the inert gas in the fuel/inert gas mixture is later measured. The concentration of the inert gas in the fuel/inert gas mixture is then used to calculate the mass flow rate of the fuel. 1. A system , comprising:a transport medium to convey a gas flow;an injection device to inject an inert gas into the gas flow to form a gas mixture; anda gas composition measuring device downstream of the injection device to measure a concentration of the inert gas in the gas mixture,wherein a flow rate of the gas flow is calculated based on the measured concentration of the inert gas in the gas mixture.2. The system of claim 1 , wherein the gas flow is a fuel flow.3. The system of claim 2 , wherein the fuel flow powers at least one gas turbine.4. The system of claim 1 , further comprising a controller to control a device based on the calculated flow rate of the gas flow.5. The system of claim 1 , further comprising a flow meter to measure an amount of the inert gas injected into the gas flow claim 1 , wherein the flow rate of the gas flow is calculated based on the amount of the inert gas injected into the gas flow and the measured concentration of the inert gas in the gas mixture.6. The system of claim 1 , further comprising a controller to control a device based on the measured concentration of the inert gas.7. The system of claim 4 , wherein the device is a gas turbine.8. The system of claim 1 , wherein the inert gas is neon.9. A method of measuring the flow rate of a gas claim 1 , comprising:injecting an inert gas into a gas flow at an injection location;mixing the inert gas with the gas flow to form a gas mixture;measuring a concentration of the inert gas in the gas mixture downstream of the injection location; andcalculating a flow rate of the gas flow based on the measured concentration of the inert gas in the gas mixture.109. The method of ...

Подробнее
12-09-2013 дата публикации

MONITORING OF A FILTER OF THE FUEL-SUPPLY SYSTEM OF AN AIRCRAFT ENGINE

Номер: US20130238215A1
Автор: Florentin Kim, Soyah Karim
Принадлежит: SNECMA

A monitoring method for monitoring a filter of a feed circuit for feeding an aircraft engine with fuel, the method including: detecting clogging of the filter; issuing an indication message; determining a current stage from among a plurality of successive stages of a mission of the aircraft, including at least a stage during which clogging of the filter is not capable of being caused by ice, and a stage during which clogging of the filter might be caused by ice; and in response to detecting clogging, determining the type of clogging as a function of the current stage; wherein during the issuing an indication message, the message that is issued depends on the type of clogging. 110-. (canceled)11. A monitoring method for monitoring a filter of a feed circuit for feeding an aircraft engine with fuel , the method comprising:detecting clogging of the filter;issuing an indication message;determining a current stage from among a plurality of successive stages of a mission of the aircraft, comprising at least a stage during which clogging of the filter is not capable of being caused by ice, and a stage during which clogging of the filter might be caused by ice; andin response to detecting clogging, determining a type of clogging as a function of the current stage;wherein during the issuing an indication message, the message that is issued depends on the type of clogging.12. A monitoring method according to claim 11 , wherein claim 11 , when the current stage is a stage during which clogging of the filter might be caused by ice claim 11 , the determining a type of clogging includes testing for icing conditions.13. A monitoring method according to claim 12 , further comprising after the testing for icing conditions claim 12 , and if the icing conditions are found to exist claim 12 , measuring a detection duration during which clogging has been detected claim 12 , wherein:if the detection duration is longer than a predetermined time-out duration, the type of clogging is ...

Подробнее
19-09-2013 дата публикации

Pump system for tms aoc reduction

Номер: US20130239588A1
Принадлежит: United Technologies Corp

An engine includes a duct containing a flow of cool air and a pump system having an impeller with an inlet for receiving air from the duct and an outlet for discharging air into a discharge manifold. The discharge manifold containing at least one heat exchanger which forms part of a thermal management system.

Подробнее
26-09-2013 дата публикации

METHOD FOR OPERATING A FIXED GAS TURBINE, DEVICE FOR REGULATING THE OPERATION OF A GAS TURBINE AND POWER PLANT

Номер: US20130247578A1
Принадлежит:

A method of operating a gas turbine, a device for regulating the starting and/or the operation of a gas turbine and a power plant are provided. The method includes continuously extracting fuel from a fuel network, and combusting, in at least one combustion chamber of a gas turbine, the fuel by adding combustion air. For an increase of a fuel stream supplied to the at least one combustion chamber, a fuel volume is extracted from a fuel store and supplied to the fuel still to be supplied to the at least one combustion chamber. 117-. (canceled)18. A method for operating a stationary gas turbine , comprising:continuously extracting fuel from a fuel supply network, andcombusting, in at least one combustion chamber of a gas turbine, the fuel by adding combustion air,wherein, for an increase of a fuel stream supplied to the at least one combustion chamber, a fuel volume is extracted from a fuel store and supplied to the fuel still to be supplied to the at least one combustion chamber.19. The method as claimed in claim 18 , wherein the increase of the fuel stream is performed during starting of the gas turbine and/or in an event of a fuel change and/or upon or directly after load rejection.20. The method as claimed in claim 18 , wherein the fuel volume is at a higher pressure than the fuel extracted from the fuel supply network.21. The method as claimed in claim 20 , wherein the pressure of the fuel volume is two to four times higher than a supply pressure in the fuel supply network.22. The method as claimed in claim 18 , wherein claim 18 , for the increase of the fuel supplied to the at least one combustion chamber via a pilot burner or via a plurality of pilot burners of the gas turbine claim 18 , the fuel volume extracted from the fuel store is supplied to the fuel still to be supplied to the at least one combustion chamber.23. The method as claimed in claim 19 , wherein the gas turbine drives an electrical generator which is connected to an electricity distribution grid ...

Подробнее
10-10-2013 дата публикации

HIGH TEMPERATURE FUEL MANIFOLD FOR GAS TURBINE ENGINES

Номер: US20130263602A1
Автор: Bleeker Daniel Edward
Принадлежит: Delavan Inc

A segment of a fluid manifold includes a flexible thermal shield with an insulation space defined inboard of the thermal shield to provide thermal isolation from conditions external to the thermal shield. The thermal shield includes a helically corrugated metal tube having opposed first and second ends. An outer collar is threaded to an end of the helically corrugated metal tube. The outer collar includes a crimped portion and an uncrimped portion. The uncrimped portion is spaced apart from the corrugated helical metal tube more than the crimped portion to define a vent between the outer collar and the corrugated helical metal tube in venting communication with the insulation space to vent hot gases. 1. A segment of a fluid manifold comprising:a flexible thermal shield with an insulation space defined inboard of the thermal shield to provide thermal isolation from conditions external to the thermal shield, wherein the thermal shield includes a helically corrugated metal tube having opposed first and second ends; andan outer collar threaded to a first end of the helically corrugated metal tube, wherein a vent is defined between the outer collar and the flexible thermal shield in venting communication with the insulation space.2. A segment of a fluid manifold as recited in claim 1 , wherein the outer collar includes a crimped portion and an uncrimped portion claim 1 , the uncrimped portion being spaced apart from the helically corrugated metal tube more than the crimped portion to define the vent between the outer collar and the helically corrugated metal tube in venting communication with the insulation space.3. A segment of a fluid manifold as recited in claim 2 , wherein there are four crimped portions circumferentially alternating with four respective uncrimped portions to form four vents from the insulation space to an area outside the flexible thermal shield.4. A segment of a fluid manifold as recited in claim 1 , further comprising a liner defining an internal ...

Подробнее
10-10-2013 дата публикации

NOZZLE DESIGN TO REDUCE FRETTING

Номер: US20130263603A1
Автор: Oskooei Saeid
Принадлежит: PRATT & WHITNEY CANADA CORP.

A method of designing a fuel nozzle of a gas turbine engine to reduce fretting thereof during use, including establishing an initial nozzle design, determining a first natural frequency of that design and a running frequency range of the gas turbine engine, and increasing a first transverse dimension of the stem member of the nozzle across a length of a portion thereof adjacent the inlet end until the first natural frequency of the nozzle is outside the running range, while a second transverse dimension of the portion remains at least substantially unchanged across the length thereof. 1. A fuel nozzle for a gas turbine engine , the nozzle comprising a monolithic stem member having an inlet end with at least one inlet for connection to a fuel supply , an outlet end with at least one outlet for connection to a spray tip assembly , and a central portion extending between the inlet and outlet ends , the stem member having at least one fuel conduit extending therethrough in connection with the inlet end and the outlet end , the stem member having a longitudinal axis and first and second transverse axes defined at least substantially perpendicularly to the longitudinal axis , a first outer dimension of the central portion defined parallel to the first transverse axis increasing from a first point located between the inlet and outlet ends to a second point adjacent the inlet end , a second outer dimension of the central portion defined parallel to the second transverse axis remaining at least substantially constant between the first and second points.2. The fuel nozzle as defined in claim 1 , wherein the first transverse dimension is increased at a progressively larger rate between the first and second points such as to obtain a flat tapered profile with a maximum located at the second point.3. The fuel nozzle as defined in claim 1 , wherein the first transverse dimension increases between the first and second points in an at least substantially symmetrical manner with ...

Подробнее
24-10-2013 дата публикации

Gas turbine purge process

Номер: US20130276452A1
Автор: Pierre Montagne
Принадлежит: GE ENERGY PRODUCTS FRANCE SNC

This purge process of a gas turbine supply pipe network provided with fuel (diesel or natural gas) at least partly containing synthesis gas comprises of injection of inert gas in intervalve portions or collectors of the pipe network likely to contain fuel when the fuel supply is stopped. This injection of gas is implemented in the said portions of the network according to a sequence of respective injection.

Подробнее
24-10-2013 дата публикации

Fuel metering system

Номер: US20130276918A1
Автор: Todd Haugsjaahabink
Принадлежит: Hamilton Sundstrand Corp

A fuel metering system includes a bypass valve configured to receive a fuel flow under a pressure P 1 , a pressure regulating valve in fluid communication with the bypass valve and configured to receive a fuel flow under a pressure P Q , a metering valve in fluid communication with the bypass valve and the pressure regulating valve, and configured to receive the fuel flow under the pressure P 1 and to output a fuel flow under a pressure P 2 , a single stage servo valve in fluid communication with the bypass valve, the pressure regulating valve and the metering valve, and configured to receive the fuel flow under the pressure P 1 , and to output the fuel flow under the pressure P Q , and to output a fuel flow under a pressure P M , and a linear variable differential transformer coupled to the metering valve.

Подробнее
31-10-2013 дата публикации

Fuel circuit for an aviation turbine engine, the circuit having a fuel pressure regulator valve

Номер: US20130283811A1
Принадлежит: SNECMA SAS

A fuel circuit for an aviation turbine engine, the fuel circuit including: a main fuel line for feeding fuel to a combustion chamber of the engine and including a positive displacement pump; an auxiliary fuel line connected to the main fuel line at a junction situated downstream from the pump and serving to feed fuel to hydraulic actuators to control variable-geometry equipment of the engine, the auxiliary fuel line including electrohydraulic servo-valves upstream from each actuator; and a fuel pressure regulator valve arranged on the main fuel line downstream from the pump.

Подробнее
31-10-2013 дата публикации

Gas turbine engine thermal management system

Номер: US20130284398A1
Принадлежит: United Technologies Corp

A thermal management system according to an exemplary aspect of the present disclosure includes, among other things, a first fluid circuit that selectively communicates a first portion of a first conditioned fluid having a first temperature to a first gas turbine engine system and a second portion of the first conditioned fluid having a second temperature to a second gas turbine engine system. The second temperature is a greater temperature than the first temperature. A second fluid circuit circulates a second conditioned fluid that is different from the first conditioned fluid to a third gas turbine engine system.

Подробнее
07-11-2013 дата публикации

METHOD AND APPARATUS FOR ISOLATING INACTIVE FUEL PASSAGES

Номер: US20130291545A1
Принадлежит:

A system includes a turbine engine having a fuel injector. The fuel injector includes fluid ducts, each having a fuel inlet coupled to a distinct fuel source. The system includes a compressed air source that provides compressed air simultaneously to the fluid ducts, and a convergence point where combined fuel and air streams from the ducts are mixed. The fuel inlets are in a parallel flow arrangement such that no fuel from one fuel injector is present at another fuel injector. 1. A fluid injector , comprising:a first fluid duct having a first active fluid inlet and a second fluid duct having a second active fluid inlet;a carrier fluid source structured to flow a carrier fluid simultaneously in each of the first fluid duct and the second fluid duct;a convergence point receiving a first combined stream and a second combined stream, the first combined stream comprising the carrier fluid mixed with a first active fluid and the second combined stream comprising the carrier fluid mixed with a second active fluid; andwherein the first active fluid inlet and the second active fluid inlet are structured in a parallel flow arrangement.2. The fluid injector of claim 1 , wherein the first active fluid comprises a first fuel and the second active fluid comprises a second fuel.3. The fluid injector of claim 1 , wherein each active fluid comprises a fluid selected from the fluids consisting of: fuel claim 1 , paint claim 1 , primer claim 1 , fluid chemical claim 1 , solvent claim 1 , and water.4. The fluid injector of claim 1 , further comprising a third fluid duct having a third active fluid inlet claim 1 , and wherein the carrier fluid source is further structured to flow the carrier fluid simultaneously in each of the first fluid duct claim 1 , the second fluid duct claim 1 , and the third fluid duct.5. The fluid injector of claim 4 , further comprising a third combined stream comprising the carrier fluid mixed with a third active fluid claim 4 , and wherein the convergence ...

Подробнее
07-11-2013 дата публикации

INJECTION DEVICE FOR A TURBINE ENGINE COMBUSTION CHAMBER

Номер: US20130291546A1
Принадлежит: SNECMA

A fuel injection device for an annular combustion chamber of a turbine engine, the device including a pilot circuit feeding an injector, a multipoint circuit feeding injection orifices formed in a front face of an annular chamber, and an annular ring mounted in the annular chamber and including fuel-passing orifices opening out into the injection orifices, each fuel-passing orifice formed in the annular ring including a zone of small section that is extended at least downstream or upstream by an orifice portion of increasing section. 111-. (canceled)12: A fuel injection device for an annular combustion chamber of a turbine engine , the device comprising:a pilot circuit continuously feeding an injector opening out into a first Venturi;a multipoint circuit intermittently feeding injection orifices formed in a front face of an upstream annular chamber of a second Venturi that is coaxial about the first Venturi;an annular ring mounted in the annular chamber and including fuel-passing orifices opening out into the injection orifices;wherein each fuel-passing orifice formed in the annular ring includes a zone of small section extended at least downstream or upstream by a portion of increasing section.13: A device according to claim 12 , wherein the portion of increasing section increases progressively to upstream or downstream ends of the orifice.14: A device according to claim 12 , wherein the small section zone is formed at an upstream or downstream end of the orifice.15: A device according to claim 12 , wherein the small section zone is formed between upstream and downstream ends of the orifice and is extended by respective portions of section that increases going upstream and of section that increases going downstream.16: A device according to claim 15 , wherein the small section zone is formed in a middle portion of the orifice.17: A device according to claim 12 , wherein the increasing-section orifice portion has a profile that is straight or curved.18: A device ...

Подробнее
14-11-2013 дата публикации

GAS TURBINE AND METHOD FOR OPERATING SAID GAS TURBINE

Номер: US20130298569A1
Автор: Nilsson Ulf
Принадлежит:

The present disclosure relates to gas turbine including a combustion system with several burners, a conduit system with a fuel manifold for providing the burners with liquid fuel and a system for aerating the liquid fuel with gas. The system for aerating the liquid fuel with gas is located upstream to the fuel manifold. 115-. (canceled)16. A system for aerating liquid fuel with gas for a gas turbine , comprising:a fuel feed for providing a gas turbine with liquid fuel; anda flow body with a feed providing the flow body with gas under pressure higher than a pressure of the liquid fuel, the flow body arranged in the fuel feed flown by the liquid fuel while flowing in the fuel feed, the flow body comprising a surface with an outlet opening for aerating the liquid fuel with the gas.17. The system according to claim 16 ,wherein the flow body comprises a plurality of outlet openings.18. The system according to claim 16 ,wherein the size of each of the plurality outlet openings is a function of a size of the gas turbine.19. The system according to claim 16 ,wherein the flow body is perforated,20. The system according to claim 19 ,wherein the flow body is a perforated bluff body.21. The system according to claim 19 ,wherein a grade of the perforation of the flow body is a function of a size of the gas turbine.22. The system according to claim 16 ,wherein the flow body is formed as a ball or a tube.23. The system according to claim 22 ,wherein the flow body is formed with a annular, polygon, elliptical or oval cross section,24. The system according to claim 22 ,wherein the flow body is formed in a blocker bar style or in submarine/probe style.25. The system according to claim 16 ,wherein the gas turbine comprises a Dry Low Emissions (DLE) combustion system supplied with the aerated liquid fuel.26. The system according to claim 16 ,wherein the system is located downstream of a pump pumping the liquid fuel through the fuel feed and/or wherein the system is located upstream to ...

Подробнее
21-11-2013 дата публикации

Method for preheating fuels in a gas turbine engine

Номер: US20130305730A1
Принадлежит: ICR Turbine Energy Corp USA

A method and apparatus are disclosed which are directed generally to gas turbine engine systems and specifically to a method utilizing a heat pipe or pipes associated with a thermal oxidizer for preheating a fuel-air mixture. This preheating of a fuel-air mixture allows a substantial reduction in size a thermal oxidizer used as a combustor so that it can be used with all fuels, especially natural gas.

Подробнее
21-11-2013 дата публикации

METHOD AND APPARATUS FOR INCREASING COMBUSTION EFFICIENCY AND REDUCING PARTICULATE MATTER EMISSIONS IN JET ENGINES

Номер: US20130305736A1
Автор: Owens Donald Wade
Принадлежит: HNO GreenFuels, Inc.

A portable on-demand hydrogen supplemental system producing hydrogen gas and mixing the hydrogen gas with the air used for combustion of the jet fuel to increase the combustion efficiency of said jet fuel. Hydrogen increases the laminar flame speed of the jet fuel during combustion thus causing more fuel to be burned and lowering particulate matter emissions. Hydrogen is supplied to the jet engine at levels well below it lower flammability limit in air of 4%. Hydrogen and oxygen is produced by an electrolyzer from nonelectrolyte water in a nonelectrolyte water tank. The system utilizes an onboard diagnostic (OBD) interface in communication with the jet's control systems, to regulate power to the system so that hydrogen production for the jet engine only occurs when the jet engine is running. The hydrogen gas produced is immediately consumed by the jet engine. No hydrogen is stored on, in or around the jet. 1. A portable hydrogen supplemental system for supplying hydrogen gas to a jet engine of a jet , the portable hydrogen supplemental system comprising:a housing unit;an electrolyzer mounted inside the housing unit that separates nonelectrolyte water into hydrogen and oxygen gas in response to electrical power;a nonelectrolyte water tank mounted inside the housing unit and positioned to supply nonelectrolyte water to the electrolyzer;a power supply for supplying the electrical power in the form of a voltage to the electrolyzer;an onboard diagnostic interface for interfacing with a control terminal of the jet, for detecting operation of the jet engine; anda plurality of hydrogen gas injectors configured to inject the hydrogen gas into the jet engine,wherein the hydrogen gas travels into a combustion chamber of the jet engine, to assist with burning of fuel within the combustion chamber, andwherein an amount of particulate matter exiting the combustion chamber is reduced by a predetermined amount compared to operation of the jet engine not using hydrogen gas based on ...

Подробнее
05-12-2013 дата публикации

IMPINGEMENT COOLED COMBUSTOR

Номер: US20130318986A1
Автор: Kraemer Gilbert Otto
Принадлежит: GENERAL ELECTRIC COMPANY

The present application thus provides a combustor for use with a gas turbine engine. The combustor may include a turbine nozzle and a liner cooling system integral with the turbine nozzle. The liner cooling system may include a liner with one or more cooling features thereon and an impingement sleeve. 1. A combustor for use with a gas turbine engine , comprising:a turbine nozzle; anda liner cooling system integral with the turbine nozzle;wherein the liner cooling system comprises a liner with one or more cooling features thereon and an impingement sleeve.2. The combustor of claim 1 , wherein the turbine nozzle comprises a stage one nozzle.3. The combustor of claim 1 , wherein the turbine nozzle comprises a fuel injector.4. The combustor of claim 1 , wherein the combustor comprises a jet stirred combustor.5. The combustor of claim 1 , wherein the liner cooling system comprises an air gap between the liner and the impingement sleeve.6. The combustor of claim 1 , wherein the one or more cooling features comprise a plurality of ribs.7. The combustor of claim 1 , wherein the liner comprises an alloy with a thermal barrier coating thereon.8. The combustor of claim 1 , wherein the liner comprises one or more diffusion holes.9. The combustor of claim 1 , wherein the impingement sleeve comprises a plurality of impingement holes.10. The combustor of claim 1 , wherein the plurality of impingement holes comprises a plurality of variably shaped impingement holes.11. The combustor of claim 1 , wherein the impingement sleeve comprises a top side with a plurality of top impingement holes.12. The combustor of claim 1 , wherein the impingement sleeve comprises a bottom side with a plurality of bottom impingement holes.13. The combustor of claim 1 , wherein the impingement sleeve comprises a plurality of cooling feature impingement holes.14. The combustor of claim 1 , wherein the impingement sleeve comprises a head end with a plurality of head end impingement holes.15. A method of ...

Подробнее
12-12-2013 дата публикации

GAS TURBINE COMBUSTION CHAMBER WITH FUEL NOZZLE, BURNER WITH SUCH A FUEL NOZZLE AND FUEL NOZZLE

Номер: US20130327045A1
Принадлежит:

A gas turbine combustion chamber includes a fuel nozzle with a cylindrical nozzle tube, in which a fluid flows, and a convexly formed nozzle cover, which is arranged downstream of the nozzle tube. The nozzle cover has a central point and a plurality of through-openings through which the fluid leaves the nozzle tube. The through-openings are arranged at different radial distances from the central point at two circular lines. 110.-. (canceled)11. A gas turbine combustion chamber with a fuel nozzle , wherein the fuel nozzle comprises:a cylindrical nozzle tube, in which a fluid flows, anda convexly formed nozzle cover, which is arranged downstream of the nozzle tube and has a central point,wherein the nozzle cover has a plurality of through-openings through which the fluid leaves the nozzle tube,wherein the through-openings are arranged at different radial distances from the central point on first and second circular lines, andwherein at least one of the through-openings comprises an upstream bellmouth.12. The gas turbine combustion chamber as claimed in claim 11 , wherein the through-openings are arranged equidistantly on the first and/or second circular lines.13. The gas turbine combustion chamber as claimed in claim 11 , wherein the nozzle tube has a cylinder axis and wherein the through-openings each form a different aperture angle with the cylinder axis on the first and second circular lines.14. The gas turbine combustion chamber as claimed in claim 13 , wherein the through-openings with a smaller radial distance have a larger aperture angle than the through-openings with a greater radial distance.15. The gas turbine combustion chamber as claimed in claim 11 , wherein the through-openings of the first circular line are arranged offset by an angle with respect to the through-openings which lie on the second circular line.16. The gas turbine combustion chamber as claimed in claim 11 , wherein a fuel injector points into at least one bellmouth claim 11 , said fuel ...

Подробнее
12-12-2013 дата публикации

HYBRID SLINGER COMBUSTION SYSTEM

Номер: US20130327054A1
Принадлежит:

A hybrid combustor combines two distinct fuel injection sources to spray fuel in the combustor. The combustor combines a rotary fuel slinger for spraying fuel in a first combustion zone during high power level and cruise conditions and a set of fuel nozzles for spraying fuel in a second combustion zone during lower power level and starting conditions. 1. A method of operating a combustor of a gas turbine engine powering an aircraft , comprising: selectively using two distinct fuel injection units or a combination thereof for spraying fuel in a same combustion chamber of the combustor of the gas turbine engine , a first one of the two distinct fuel injection units being a rotary fuel slinger , whereas a second one of the two distinct fuel injection units includes a set of fuel nozzles; and controlling a fuel flow ratio between said two distinct injection units as a function of the power level demand , comprising supplying a major portion of the fuel to be atomized to said rotary fuel slinger during take-off and climb phases of a flight , and directing the major portion of the fuel flow to the fuel nozzles at ground idle.2. The method defined in claim 1 , wherein during flight claim 1 , a major portion of the fuel is atomized through the rotary fuel slinger.3. The method defined in claim 1 , comprising initiating fuel flow through the rotary fuel slinger during acceleration from ground idle to take-off.4. The method defined in claim 1 , wherein at cruise power level claim 1 , fuel is co-injected via the rotary fuel slinger and the fuel nozzles.5. The method defined in claim 1 , wherein the rotary fuel slinger injects the fuel upstream of the fuel nozzles in the combustion chamber. This application is a divisional of U.S. patent application Ser. No. 13/071,997 filed on Mar. 25, 2011, the content of which is hereby incorporated by reference.The application relates generally to gas turbine engines and, more particularly, to a hybrid system for injecting fuel into a ...

Подробнее
12-12-2013 дата публикации

Integrated fuel pump and control

Номер: US20130330206A1
Автор: Jeremy J. Walters
Принадлежит: Hamilton Sundstrand Corp

An integrated fuel pump and control system includes a pump assembly with an inlet and an outlet; a motor connected to the pump assembly to provide power to the pump assembly; a controller to regulate the speed of the motor; and a housing to contain the pump assembly, the motor and the controller.

Подробнее
26-12-2013 дата публикации

Gas fuel turbine engine for reduced oscillations

Номер: US20130340436A1
Автор: Mario E. Abreu
Принадлежит: Solar Turbines Inc

A gas fuel turbine engine may include a gaseous pilot fuel supply, a first main fuel supply, and a second main fuel supply. The first main fuel supply may provide gaseous fuel to a first plurality of fuel injectors, and the second main fuel supply may provide gaseous fuel to a second plurality of fuel injectors. The turbine engine may also include a flow restriction provided in the first main fuel supply. The second main fuel supply may be free of the flow restriction.

Подробнее
02-01-2014 дата публикации

LNG FUEL HANDLING FOR A GAS TURBINE ENGINE

Номер: US20140000275A1
Принадлежит: ICR Turbine Engine Corporation

An LNG fuel system for gas turbine engine systems is disclosed that allows more efficient management of cryogenic fuels such as LNG to reduce emissions and improve engine efficiency. In one configuration, an intercooled, recuperated gas turbine engine comprises an LNG tank incorporating a liquid-to-vapor LNG fuel circuit in parallel with a vapor fuel circuit. In a second configuration, an alternate vapor fuel circuit is disclosed. In either configuration, the fuel in the liquid fuel circuit is vaporized and heated by the engine's intercooler or by both the engine's intercooler and/or a heat exchanger on the exhaust. In another configuration, both the fuel in the liquid-to-vapor LNG fuel circuit and the vapor fuel circuit are heated by a heat exchanger on the exhaust. 1. An engine , comprising:a combustor operable to combust a fuel and air mixture capable of performing work;a first fuel path from a vessel containing a fuel comprised of at least two phases, to the combustor to convey a first portion of the fuel from the fuel-containing vessel to the combustor; anda separate second fuel path from the fuel-containing vessel to convey a second portion of the fuel from the fuel-containing vessel to the combustor;wherein, in the fuel-containing vessel, at least most of the first portion is in a different phase than at least most of the second portion and wherein a common fuel-containing vessel contains both the first and second portions and is in fluid communication with the first and second fuel paths.2. The engine of claim 1 , wherein the second portion of the fuel is selected when at least one of the following is true: (a) the pressure of the first portion of the fuel is outside a selected pressure range and (b) the first portion of the fuel is less than the amount of fuel required by the combustor.3. The engine of claim 1 , wherein the first portion of the fuel is substantially in a vapor phase when removed from the fuel-containing vessel and the second portion of the ...

Подробнее
02-01-2014 дата публикации

TURBOMACHINE COMPRISING A PRIVILEGED INJECTION DEVICE AND CORRESPONDING INJECTION METHOD

Номер: US20140000276A1
Принадлежит: TURBOMECA

A turbomachine including: a combustion chamber, with a fuel injection device in the combustion chamber; a supply mechanism supplying fuel to the fuel injection device; a mechanism determining instantaneous variation of fuel flow rate of the supply mechanism; and a regulation mechanism regulating the fuel flow rate of the injection device according to the instantaneous variation of the fuel flow rate of the supply mechanism determined by the determination mechanism. 114-. (canceled)15. A turbomachine comprising:a combustion chamber, with a fuel injection device in the combustion chamber;supply means for supplying fuel to the fuel injection device;means for determining instantaneous variation of the fuel flow rate of the supply means;regulation means for regulating the fuel flow rate of the injection device according to the instantaneous variation of the fuel flow rate of the supply means determined by the determination means;a gas generator shaft; andmeans for measuring instantaneous acceleration of the gas generator shaft,the fuel flow rate of the injection device being further regulated according to the measured instantaneous acceleration of the gas generator shaft.16. The turbomachine according to claim 15 , wherein the fuel injection device comprises an injection ramp comprising at least one privileged injector and at least one main injector.17. The turbomachine according to claim 16 , wherein the regulation means allows an increase in a fuel flow rate of the privileged injector relatively to a fuel flow rate of the main injector if a value of the instantaneous variation of the fuel flow rate of the supply means becomes less than a predetermined threshold.18. The turbomachine according to claim 17 , wherein the regulation means gives a possibility of distributing the fuel flow rate of the injection ramp so as to increase the fuel flow rate of the privileged injector relatively to the fuel flow rate of the main injector.19. The turbomachine according to claim 16 , ...

Подробнее
09-01-2014 дата публикации

HOT WATER INJECTION FOR TURBOMACHINE

Номер: US20140007553A1
Принадлежит: GENERAL ELECTRIC COMPANY

A turbomachine is provided and includes a combustor in which a first compressed air is combustible along with fuel and which is receptive of water. The water is provided to the combustor subsequent to the water being used to cool a second compressed air, and the water is used to cool the second compressed air prior to the second compressed air being used to atomize the fuel. 1. A turbomachine , comprising:a combustor in which a first compressed air is combustible along with fuel and which is receptive of water,the water being provided to the combustor subsequent to the water being used to cool a second compressed air, andthe water being used to cool the second compressed air prior to the second compressed air being used to atomize the fuel.2. The turbomachine according to claim 1 , wherein the water is provided form a cooling tower at ambient temperature.3. The turbomachine according to claim 1 , further comprising an atomizing air cooler in which the second compressed air is cooled by the water.4. The turbomachine according to claim 3 , further comprising an atomizing air compressor disposed downstream from the atomizing air cooler in which the second compressed air atomizes the fuel to be combusted.5. A turbomachine claim 3 , comprising:a combustor in which compressed air and fuel are combustible to produce a working fluid and into which water is injectable;an atomizing air compressor, which is configured to atomize the fuel;a supply circuit configured to supply the atomizing air compressor with compressed air for use in fuel atomization; anda cooling circuit sequentially coupled to the supply circuit and the combustor, the cooling circuit being configured to cool the compressed air to be supplied to the atomizing air compressor with water prior to the fuel atomization and to subsequently provide the water for injection into the combustor.6. The turbomachine according to claim 5 , further comprising:a turbine in which mechanical energy is derived from the working ...

Подробнее
09-01-2014 дата публикации

GAS TURBINE COMBUSTION SYSTEM

Номер: US20140007578A1
Принадлежит:

The invention concerns a gas turbine combustion system, including a gas turbine. The gas turbine includes at least one compressor, at least one combustion chamber for generating working gas, wherein the combustion chamber connected to receive compressed air from the compressor, at least one turbine connected to receive working gas from the combustion chamber. The combustion chamber consists of an individual can-combustor or comprising a number of can-combustors arranged in an annular can-architecture, wherein the can-combustor having at least one premixed burner. The ignition of the mixture starts at the premixed burner outlet and the flame is stabilized in the region of the premixed burner outlet by means of a backflow zone. The can-combustor comprising a number of premixed burners arranged uniformly or divided at least in two groups within the can-combustor. 1. A gas turbine combustion system comprising a gas turbine , wherein the gas turbine comprises:at least one compressor,at least one combustion chamber for generating working gas, wherein the combustion chamber is connected to receive compressed air from the compressor,at least one turbine connected to receive working gas from the combustion chamber, andwherein the combustion chamber consists of a single can-combustor or comprising a number of individual or interdependent can-combustors arranged in an annular can-architecture, andwherein the can-combustor having at least one premixed burner, andwherein the ignition of the mixture starts at the premixed burner outlet and the flame is stabilized in the region of the premixed burner outlet by means of a backflow zone, andwherein the can-combustor comprising a number of premixed burners arranged uniformly or divided at least in two groups within the can-combustor.2. A gas turbine combustion system , comprising a gas turbine , wherein the gas turbine comprises:at least one compressor,a first combustion chamber for generating working gas, wherein the first ...

Подробнее
09-01-2014 дата публикации

SYSTEM AND METHOD FOR REDUCING PRESSURE OSCILLATIONS WITHIN A GAS TURBINE ENGINE

Номер: US20140007584A1
Принадлежит: GENERAL ELECTRIC COMPANY

In one embodiment, a system for reducing pressure oscillations within a gas turbine engine includes at least one fuel injector configured to inject fuel into a combustor. The system also includes a valve fluidly coupled to the at least one fuel injector. The system further includes a controller communicatively coupled to the valve. The controller is configured to cycle the valve between an open position and a closed position at a first frequency and a first duty cycle while a magnitude of pressure oscillations within the combustor is less than a threshold value, to cycle the valve between the open position and the closed position at a second frequency and a second duty cycle while the magnitude of the pressure oscillations within the combustor is greater than or equal to the threshold value, and to adjust the second frequency based on a measured frequency of the pressure oscillations. 1. A system for reducing pressure oscillations within a gas turbine engine , comprising:at least one fuel injector configured to inject fuel into a combustor;a valve fluidly coupled to the at least one fuel injector, wherein the valve is configured to facilitate fuel flow to the at least one fuel injector while the valve is in an open position, and to block fuel flow to the at least one fuel injector while the valve is in a closed position; anda controller communicatively coupled to the valve, wherein the controller is configured to cycle the valve between the open position and the closed position at a first frequency and a first duty cycle while a magnitude of pressure oscillations within the combustor is less than a threshold value, to cycle the valve between the open position and the closed position at a second frequency and a second duty cycle while the magnitude of the pressure oscillations within the combustor is greater than or equal to the threshold value, and to adjust the second frequency based on a measured frequency of the pressure oscillations.2. The system of claim 1 , ...

Подробнее
09-01-2014 дата публикации

GENERATING POWER USING AN ION TRANSPORT MEMBRANE

Номер: US20140007586A1
Автор: Allam Rodney J.
Принадлежит: GTLPETROL LLC

In some implementations, a system may include a compressor, a heat exchanger and an ITM. The compressor is configured to receive an air stream and compress the air stream to generate a pressurized stream. The heat exchanger is configured to receive the pressured stream and indirectly heat the pressurized stream using heat from an oxygen stream from an Ion Transport Membrane (ITM). The ITM is configured to receive the heated pressurized stream and generate an oxygen stream and the non-permeate stream, wherein the non-permeate stream is passed to a gas turbine burner and the oxygen stream is passed to the heat exchanger. 1. (canceled)2. A method , comprising:discharging, from a turbine compressor, an air stream in connection with compressing air used during combustion in a gas turbine;compressing the air stream to generate a pressurized stream;indirectly heating the pressurized stream using heat from an oxygen stream from an Ion Transport Membrane (ITM);generating the oxygen stream and a non-permeate stream using the ITM, wherein the non-permeate stream is passed to a gas turbine burner and the oxygen stream is passed to the first heat exchanger;combusting a fuel gas in combination with the non-permeate stream to generate a heated non-permeate stream, wherein a temperature of the combination of the fuel gas and the non-permeate stream is below a predefined threshold temperature for the gas turbine burner, and a concentration of oxygen in the heated non-permeate stream is such that when mixed with a fuel gas stream results in an oxygen concentration below a lower flammable limit of the mixture;heating at least a portion of the pressurized stream using heat from the heated non-permeate stream, wherein the heated non-permeate stream is cooled during the indirect heating; andintroducing the cooled non-permeate in at least one of the fuel gas for the gas turbine or at a point between the turbine compressor and an expander.3. A method of claim 2 , wherein 40% and 60% of the ...

Подробнее
16-01-2014 дата публикации

SYSTEM FOR SUPPLYING A WORKING FLUID TO A COMBUSTOR

Номер: US20140013758A1
Автор: Chen Wei
Принадлежит:

A system for supplying a working fluid to a combustor includes a fuel nozzle, a combustion chamber downstream from the fuel nozzle, and a plurality of fuel injectors circumferentially arranged around the combustion chamber. The plurality of fuel injectors provide fluid communication into the combustion chamber, and a separate cap for each fuel injector defines a separate volume around a different fuel injector outside of the combustion chamber. 1. A system for supplying a working fluid to a combustor , comprising:a. a fuel nozzle;b. a combustion chamber downstream from the fuel nozzle;c. a plurality of fuel injectors circumferentially arranged around the combustion chamber, wherein the plurality of fuel injectors provide fluid communication into the combustion chamber; andd. a separate cap for each fuel injector, wherein each separate cap defines a separate volume around a different fuel injector outside of the combustion chamber.2. The system as in claim 1 , further comprising a flow passage through each separate cap.3. The system as in claim 1 , further comprising a flow sleeve that circumferentially surrounds the combustion chamber claim 1 , wherein each fuel injector provides fluid communication through the flow sleeve.4. The system as in claim 3 , wherein each separate cap is connected to the flow sleeve.5. The system as in claim 3 , further comprising a fuel passage through the flow sleeve in fluid communication with each fuel injector.6. The system as in claim 3 , further comprising a fluid passage through the flow sleeve and into each separate volume claim 3 , wherein each fluid passage provides fluid communication through the flow sleeve and into each separate volume.7. The system as in claim 3 , further comprising a plurality of fluid passages through the flow sleeve and into each separate volume.8. The system as in claim 7 , wherein the plurality of fluid passages through the flow sleeve circumferentially surround each different fuel injector.9. A system ...

Подробнее
30-01-2014 дата публикации

GAS TURBINE CONTROLLER AND A METHOD FOR CONTROLLING A GAS TURBINE

Номер: US20140026587A1
Автор: ZHANG Xiao-Yi
Принадлежит: ALSTOM Technology Ltd

Exemplary embodiments relate to a method and system for transient operating of a gas turbine. Operation of the gas turbine the controller determines command values for an inlet air mass flow, fuel mass flow, and for a water or steam mass flow. In order to allow fast transient operation with a stable premix flame at least one command value is dynamically compensated to compensate for the different system dynamics of the supply systems to synchronize the resulting changes in fuel, water, steam, and/or combustion air mass flows, which reach the combustor, so that the fuel to air ratio stays within the combustible limit. 1. A method for operating a gas turbine during transient operation , the gas turbine including a compressor with variable inlet guide vanes , a combustor , a turbine , a controller , measurement devices , actuators , inlet air supply channels and supply channels for fuel gas , and/or liquid fuel , and/or supply channels for water and/or steam , the method comprising:determining command values for an inlet air mass flow and at least one of fuel mass flow and water and/or steam mass flow,wherein at least one command value is dynamically compensated in at least one command value to compensate for differences in the system dynamics of the supply systems; andsynchronizing changes in at least two of fuel mass flow, water, steam mass flow, and combustion air mass flow entering the combustor, so that a fuel to air ratio stays within a combustible limit.2. The method according to claim 1 , wherein the at least one command value is dynamically compensated to compensate the differences in system dynamics of the supply systems and to synchronize the resulting changes in at least one of air claim 1 , fuel gas claim 1 , liquid fuel claim 1 , water claim 1 , and steam mass flows claim 1 , which enter the combustor of the gas turbine claim 1 , so that flame stability is maintained.3. The method according to claim 1 , wherein changes in the at least one command value ...

Подробнее
06-02-2014 дата публикации

UNKNOWN

Номер: US20140033723A1
Принадлежит: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

The present invention relates to a gas-turbine combustion chamber with mixing air orifices, with a combustion chamber wall, with tiles arranged on the inside of the combustion chamber wall at a certain distance from said combustion chamber wall as well as with mixing air orifices passing through the combustion chamber wall and the tiles, characterized in that the mixing air orifices are formed by chutes which are designed tube-like and pass through the tiles, and that several chutes are formed on a mixing air wall element extending at least around part of the circumference of the combustion chamber. 1. Gas-turbine combustion chamber with mixing air orifices , with a combustion chamber wall , with tiles arranged on the inside of the combustion chamber wall at a certain distance from said combustion chamber wall as well as with mixing air orifices passing through the combustion chamber wall and the tiles , characterized in that the mixing air orifices are formed by chutes which are designed tube-like and pass through the tiles , and that several chutes are formed on a mixing air wall element extending at least around part of the circumference of the combustion chamber.2. Gas-turbine combustion chamber in accordance with claim 1 , characterized in that the mixing air wall element is designed in the form of a circular segment.3. Gas-turbine combustion chamber in accordance with claim 1 , characterized in that the mixing air wall elements are connected to adjacent tile support wall elements.4. Gas-turbine combustion chamber in accordance with claim 3 , characterized in that the mixing air wall elements are connected to the tile support wall elements by means of bolts.5. Gas-turbine combustion chamber in accordance with claim 3 , characterized in that the mixing air wall elements are connected to the tile support wall elements by a welding process.6. Gas-turbine combustion chamber in accordance with claim 1 , characterized in that the mixing air wall elements are ...

Подробнее
06-02-2014 дата публикации

Method for fuel temperature control of a gas turbine

Номер: US20140033731A1
Автор: RACKWITZ Leif
Принадлежит: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

The present invention relates to a method for controlling the fuel temperature of a gas turbine, where parameters are determined as input values, where the parameters are compared with emission-optimized nominal values and an optimum fuel temperature is determined, and where the fuel to be supplied to a combustion chamber is heated or cooled. 1. Method for controlling the fuel temperature of a gas turbine , where parameters are determined as input values , where the parameters are compared with emission-optimized nominal values and an optimum fuel temperature is determined , and where the fuel to be supplied to a combustion chamber is heated or cooled.2. Method in accordance with claim 1 , characterized in that when an acceleration or deceleration state of the gas turbine is detected claim 1 , the nominal value of the fuel temperature is set to the value prevailing before implementation of the method claim 1 , and/or the additional fuel heating or fuel cooling is switched off.3. Method for controlling the fuel temperature of a gas turbine claim 1 , where the issue of an ignition command by a pilot or by an electronic engine control system is determined claim 1 , where the maximum permissible temperature of the fuel is determined for an ignition process and the fuel is heated to the maximum temperature.4. Method for controlling the fuel temperature of an aircraft gas turbine claim 1 , in particular in accordance with claim 1 , where the issue of an ignition command by a pilot or by an electronic engine control system is determined claim 1 , where the maximum permissible temperature of the fuel is determined for an ignition process and the fuel is heated or cooled to the maximum temperature.5. Method in accordance with claim 1 , characterized in that the optimum or the maximum nominal temperature of the fuel is then compared with a maximum permissible fuel temperature claim 1 , and when the maximum permissible fuel temperature is exceeded the fuel is not heated to a ...

Подробнее
13-02-2014 дата публикации

Aircraft Fuel System Test Unit

Номер: US20140041388A1
Принадлежит: Tronair Inc

This aircraft maintenance equipment is a fuel system leak test unit, designed to insure installation integrity of fuel system lines and hoses and to insure that the system is free from any debris generated during the assembly and maintenance process for an aircraft. The unit is designed to check for leaks using vacuum or pressure while monitoring for fuel leaks or bubbles through a clear tube section.

Подробнее
27-02-2014 дата публикации

FUEL METERING SYSTEM ELECTRICALLY SERVOED METERING PUMP

Номер: US20140053530A1
Автор: Benson Dwayne Michael
Принадлежит:

A fuel metering system for supplying fuel to load includes a variable displacement piston pump having an adjustable hanger that is movable to a plurality of positions. The variable displacement piston pump is configured to receive a drive torque and, upon receipt of the drive torque, to supply fuel to the plurality of loads at a flow rate dependent on the position of the adjustable hanger. A hanger actuator is coupled to receive hanger position commands and is operable, in response thereto, to move the adjustable hanger to the commanded position. 1. A fuel metering system for supplying fuel to a load , comprising:a gas turbine engine controller adapted to receive throttle input commands and configured, in response thereto, to supply hanger position commands;a variable displacement piston pump including an adjustable hanger that is movable to a plurality of positions, the variable displacement piston pump configured to receive a drive torque and, upon receipt of the drive torque, to supply fuel to the load at a flow rate that is dependent on drive speed and adjustable hanger position; a first piston engaging the adjustable hangar and coupled to receive a first force, the first piston responsive to the first force to supply a hangar position force to the adjustable hanger;', 'a servo valve coupled to receive a spring force and configured, upon receipt thereof, to control the first force that is supplied to the first piston;', 'a second piston engaging the adjustable hangar and coupled to receive fuel at the discharge pressure, the second piston configured to supply a pressure control force to the adjustable hangar that opposes the hangar position force; and', an electric motor configured to be selectively energized and, upon being selectively energized, supply an actuation drive torque,', 'an actuator coupled to receive the actuation drive torque from the electric motor and control the first force that is supplied to the first piston, and', 'a bias spring coupled ...

Подробнее
27-02-2014 дата публикации

AIRCRAFT FUEL CELL SYSTEM, AIRCRAFT AND USE OF A SYNTHETIC FUEL

Номер: US20140053561A1
Принадлежит:

An aircraft fuel cell system is provided. The system includes a fuel tank, a reactor for generating hydrogen gas from a fuel, a heating apparatus and a fuel cell. The reactor can process a synthetic fuel produced from biomass. The use, in an aircraft, of a synthetic fuel, produced from biomass, for generating a gas that contains hydrogen is also provided. 2. The aircraft fuel cell system of claim 1 , wherein the fuel was produced bypyrolysis of the biomass in order to obtain a carbon monoxide/hydrogen mixture (synthesis gas),conversion of the synthesis gas to a mixture of liquid hydrocarbons, andprocessing of the mixture in order to obtain the fuel.3. The aircraft fuel cell system of claim 1 , wherein the fuel was produced from bio oils byextraction of oil from a biomass containing oil,processing of the oil by catalytic hydrocracking, hydration or transesterification in order to obtain a mixture of hydrocarbons, andprocessing of the mixture in order to obtain the fuel.4. The aircraft fuel cell system of claim 1 , comprising a cleaning unit arranged between the reactor and the fuel cell to separate impurities contained in the generated gas that contains hydrogen.5. The aircraft fuel cell system of claim 1 , wherein the heating apparatus comprises a burner that is supplied with at least one of the synthetic fuel and impurities which were separated claim 1 , by means of the cleaning unit claim 1 , from the generated gas that contains hydrogen.6. The aircraft fuel cell system of claim 1 , wherein the reactor is designed to carry out steam reforming claim 1 , autothermal steam reforming or catalytic partial oxidation.7. The aircraft fuel cell system of claim 6 , wherein reforming is to be carried out at a reaction temperature ranging from 500° C. to 1000° C. and at a reaction pressure ranging from 10 bar to 25 bar.8. The aircraft fuel cell system of claim 1 , wherein the reactor is designed to carry out partial dehydration.9. The aircraft fuel cell system of claim 8 , ...

Подробнее
06-03-2014 дата публикации

SYSTEMS AND METHODS FOR DRIVING AN OIL COOLING FAN OF A GAS TURBINE ENGINE

Номер: US20140060074A1
Автор: MACFARLANE Ian A.
Принадлежит: PRATT & WHITNEY CANADA CORP.

Systems and methods for driving an oil cooling fan () of a gas turbine engine () during different modes of operation of the gas turbine engine () are described. A system may include a coupling device () configured to: transmit motive power from a power turbine shaft () of the gas turbine engine () to the oil cooling fan () during a first mode of operation where the power turbine shaft () is turning, and to decouple the oil cooling fan () from the power turbine shaft () during a second mode of operation where the power turbine shaft () is prevented from turning. An alternate source () of motive power may be configured to drive the oil cooling fan () during the second mode of operation. 1. A system for driving an oil cooling fan of a gas turbine engine , the system comprising: transmit motive power from a power turbine shaft of the gas turbine engine to the oil cooling fan during a first mode of operation where the power turbine shaft is turning, and to', 'decouple the oil cooling fan from the power turbine shaft during a second mode of operation where the power turbine shaft is prevented from turning; and, 'a coupling device configured toan alternate source of motive power configured to drive the oil cooling fan during the second mode of operation.2. The system as defined in claim 1 , wherein the second mode of operation comprises a hotel mode of operation.3. The system as defined in claim 1 , wherein the alternate source of motive power includes an electric motor.4. The system as defined in claim 3 , wherein the electric motor is driven by a source of electricity powered by at least one high pressure turbine of the gas turbine engine.5. The system as defined in claim 1 , wherein the alternate source of motive power includes at least one high pressure turbine of the gas turbine engine.6. The system as defined in claim 1 , wherein an output of the alternate source of motive power can be modulated based on a cooling load on an oil cooler of the gas turbine engine.7. ...

Подробнее
01-01-2015 дата публикации

FUEL CONDITIONER, COMBUSTOR AND GAS TURBINE IMPROVEMENTS

Номер: US20150000298A1
Автор: McAlister Roy Edward
Принадлежит: ADVANCED GREEN TECHNOLOGIES, LLC

Advanced gas turbines and associated components, systems and methods are disclosed herein. A gas turbine configured in accordance with a particular embodiment includes a rotor operably coupled to a shaft and a stator positioned adjacent to the rotor. A coolant line extends at least partially through the stator to transfer heat out of an air flow within a compressor section of the gas turbine. 1. A gas turbine comprising: a rotor operably coupled to a shaft;', 'a stator positioned adjacent to the rotor; and', 'a coolant line extending at least partially through the stator to transfer heat out of an air flow within the compressor section., 'a compressor section including2. The gas turbine of claim 1 , further comprising a fuel supply system claim 1 , wherein the coolant line is operably coupled to the fuel supply system claim 1 , and wherein fuel from the fuel supply system flows through the coolant line.3. The gas turbine of claim 1 , further comprising a thermochemical regeneration system having a reactor claim 1 , wherein the reactor produces hydrogen for combustion within the gas turbine.4. The gas turbine of claim 1 , further comprising an injection port positioned to inject fuel into the compressor section.5. The gas turbine of claim 1 , further comprising:a plurality of combustors;a thermochemical regeneration system having a reactor configured to produce hydrogen-characterized fuels; anda fuel injection system operably coupled to the reactor and having a plurality of fuel injectors, wherein individual fuel injectors are positioned to inject fuel into corresponding combustors.6. The gas turbine of claim 1 , further comprising a plurality of injector-igniters positioned to inject and ignite fuel within the gas turbine.7. The gas turbine of wherein the coolant line carries fuel claim 1 , and wherein the fuel is combusted within the gas turbine after passing through the coolant line.8. A gas turbine comprising:a combustion section having a plurality of combustors; ...

Подробнее
01-01-2015 дата публикации

SYSTEM AND METHOD FOR A FUEL NOZZLE

Номер: US20150000299A1
Принадлежит:

A system includes an oxidant compressor and a gas turbine engine turbine, which includes a turbine combustor, a turbine, and an exhaust gas compressor. The turbine combustor includes a plurality of diffusion fuel nozzles, each including a first oxidant conduit configured to inject a first oxidant through a plurality of first oxidant openings configured to impart swirling motion to the first oxidant in a first rotational direction, a first fuel conduit configured to inject a first fuel through a plurality of first fuel openings configured to impart swirling motion to the first fuel in a second rotational direction, and a second oxidant conduit configured to inject a second oxidant through a plurality of second oxidant openings configured to impart swirling motion to the second oxidant in a third rotational direction. The first fuel conduit surrounds the first oxidant conduit and the second oxidant conduit surrounds the first fuel conduit. 1. A system , comprising:an oxidant compressor; and [ a first oxidant conduit configured to inject a first oxidant through a plurality of first oxidant openings, wherein the plurality of first oxidant openings are configured to impart swirling motion to the first oxidant in a first rotational direction;', 'a first fuel conduit configured to inject a first fuel through a plurality of first fuel openings, wherein the first fuel conduit surrounds the first oxidant conduit, and the plurality of first fuel openings are configured to impart swirling motion to the first fuel in a second rotational direction; and', 'a second oxidant conduit configured to inject a second oxidant through a plurality of second oxidant openings, wherein the second oxidant conduit surrounds the first fuel conduit, and the plurality of second oxidant openings are configured to impart swirling motion to the second oxidant in a third rotational direction;, 'a plurality of diffusion fuel nozzles, wherein each of the plurality of diffusion fuel nozzles comprises, 'a ...

Подробнее
07-01-2016 дата публикации

ASSEMBLY COMPRISING A GAS TURBINE

Номер: US20160003141A1
Принадлежит: SIEMENS AKTIENGESELLSCHAFT

An assembly includes a gas turbine and a heat exchanger for heating up a gas turbine process fluid by thermal energy. The gas turbine has a compressor, a combustor and a turbine downstream of the combustor, wherein the thermal energy is from the solar receiver. To improve efficiency and reduce power generation fluctuations, the assembly includes a first line to conduct the gas turbine process fluid downstream a compression by the compressor to the heat exchanger, and a second line to conduct the gas turbine process fluid from the heat exchanger to the combustor to generate hot combustion gas from the warmed up gas turbine process fluid burning fuel in the combustor. 1. An assembly (AS) comprisinga gas turbine (GT) and a heat exchanger (HE) for heating up a gas turbine process fluid (GTPF) by thermal energy, said gas turbine (GT) comprising a compressor (CO), a combustor (CB) and a turbine (TB) downstream said combustor (CB),{'b': '1', 'wherein said assembly comprises a first line (L) to conduct said gas turbine process fluid (GTPF) downstream a compression by said compressor (CO) to said heat exchanger (HE), and'}{'b': '2', 'wherein said assembly (AS) comprises a second line (L) to conduct said gas turbine process fluid (GTPF) from said heat exchanger (HE) to said combustor (CB) to generate hot combustion gas (HCG) from said warmed up gas turbine process fluid (GTPF) burning fuel (F) in said combustor (CB),'}{'b': '1', 'wherein said combustor (CB) is defined by a first shell element (SE) containing a main combustion zone (MCZ),'}{'b': 2', '1', '2', '1, 'wherein said combustor (CB) is at least partly surrounded by a second shell element (SE) to provide an annular channel between said first shell element (SE) and said second shell element (SE) as a part of said first line (L).'}2. The assembly (AS) according to claim 1 ,{'b': 1', '2, 'wherein said first line (L) and said second line (L) exchange heat (HEX).'}3. The assembly (AS) according to claim 2 ,{'b': 1', '2, ' ...

Подробнее
07-01-2016 дата публикации

GEARED TURBOFAN WITH GEARBOX SEAL

Номер: US20160003142A1
Принадлежит:

A gas turbine engine comprises a fan, a compressor section, a turbine section, and a gear reduction for driving the fan through the turbine section. A rotating element and at least one bearing compartment includes a bearing for supporting the rotating element, a seal for resisting leakage of lubricant outwardly of the bearing compartment, and for allowing pressurized air to flow from a chamber adjacent the seal into the bearing compartment. The seal has a plurality of sealing members extending radially toward a sealing surface. 1. A gas turbine engine comprising:a fan, a compressor section, a turbine section, and a gear reduction for driving said fan through said turbine section;a rotating element and at least one bearing compartment including a bearing for supporting said rotating element, a seal for resisting leakage of lubricant outwardly of said bearing compartment, and for allowing pressurized air to flow from a chamber adjacent said seal into the bearing compartment; andsaid seal having a plurality of sealing members extending radially toward a sealing surface.2. The gas turbine engine as set forth in claim 1 , wherein said seal is a labyrinth seal having a plurality of knife edges.3. The gas turbine engine as set forth in claim 2 , wherein a first radius is defined to a radial extent of said knife edges and a second radius may be defined on a drive shaft associated with said fan drive turbine at a location in a plane defined by a fuel nozzle in a combustor in said gas turbine engine claim 2 , and a diameter ratio of said first radius to said second radius being less than or equal to about 2.0.4. The gas turbine engine as set forth in claim 3 , wherein said diameter radius being less than or equal to about 1.75.5. The gas turbine engine as set forth in claim 2 , wherein said bearing compartment is associated with said gear reduction.6. The gas turbine engine as set forth in claim 2 , wherein said bearing compartment is associated with said fan.7. The gas ...

Подробнее
07-01-2016 дата публикации

METHOD AND DEVICE FOR REGULATING THE COOLING OF OIL IN A TURBOMACHINE

Номер: US20160003148A1
Принадлежит: SNECMA

A method for regulating oil cooling within an oil cooling device of a turbomachine including a first heat exchanger mounted in series with a second heat exchanger, the first heat exchanger being an oil/air exchanger while the second heat exchanger is an oil/fuel exchanger, each heat exchanger having an oil inlet and an oil outlet, a bypass directly connecting the oil inlet of the first heat exchanger to the oil outlet of the first heat exchanger, and a flow regulator to regulate the flow rate of oil flowing through the bypass. Circulation of oil though the bypass is allowed by means of the flow regulator when the oil temperature is less than or equal to a predetermined temperature comprised between 70° C. and 90° C., preferably equal to about 80° C. 17-. (canceled)8. A method for regulating oil cooling within an oil cooling device of a turbomachine including a first heat exchanger mounted in series with a second heat exchanger , the first heat exchanger being an oil/air exchanger while the second heat exchanger is an oil/fuel exchanger , each heat exchanger having an oil inlet and an oil outlet , a bypass directly connecting the oil inlet of the first heat exchanger to the oil outlet of the first heat exchanger , and a flow regulator to regulate the flow rate of oil flowing through the bypass , wherein circulation of oil through the bypass is allowed using the flow regulator when the temperature of the oil is less than or equal to a predetermined temperature comprised between 70° C. and 90° C. , preferably equal to about 80° C.9. The method according to claim 8 , wherein circulation of oil through the bypass is also allowed when the ratio between the nominal head loss of the first heat exchanger and the effective head loss between the oil inlet and the oil outlet of the first heat exchanger is less than or equal to a predetermined ratio comprised between 0.7 and 0.9 claim 8 , preferably 0.8.10. The method according to claim 9 , wherein the flow rate of oil ...

Подробнее
07-01-2016 дата публикации

TWO-SHAFT GAS TURBINE

Номер: US20160003155A1
Принадлежит:

A two-shaft gas turbine is provided which includes: a compressor; a combustor having multiple fuel systems and generating combustion gas by combusting fuels from the fuel systems and air compressed by the compressor; a high-pressure turbine coupled coaxially with the compressor and rotated by the combustion gas; a low-pressure turbine having a shaft structure independent of the high-pressure turbine and rotated by exhaust gas from the high-pressure turbine; an air extraction channel for extracting the air compressed by the compressor; an injection flow channel for feeding the air extracted through the air extraction channel back to the combustor; and a controller for controlling the flow rate of the fuel supplied to each of the fuel systems based on the air flow rate of the compressor, on the flow rate of the fuel supplied to the combustor, and on the temperature of the air in the injection flow channel. 1. A two-shaft gas turbine comprising:a compressor having an intake equipped with an inlet guide vane;a combustor having a plurality of fuel systems capable of being supplied with fuels independently of one another and generating combustion gas by combusting the fuels from the fuel systems and air compressed by the compressor;a high-pressure turbine coupled coaxially with the compressor and rotated by the combustion gas from the combustor to drive the compressor;a low-pressure turbine having a shaft structure independent of the high-pressure turbine and rotated by exhaust gas from the high-pressure turbine to drive a load;an air extraction channel for extracting the air compressed by the compressor to outside the gas turbine;an injection flow channel for feeding the air extracted through the air extraction channel back to the combustor; anda controller configured to control a flow rate of the fuel supplied to each of the fuel systems based on an air flow rate of the compressor, on a flow rate of the fuel supplied to the combustor, and on a temperature of the air in ...

Подробнее
07-01-2016 дата публикации

FUEL DISPENSING APPARATUS AND METHOD OF OPERATION

Номер: US20160003158A1
Принадлежит:

A fluid dispensing apparatus that may be additive manufactured as one unitary piece and may be a fuel injector for a gas turbine engine includes a radial displacement bellows having an outer surface that faces and may be exposed to a surrounding environment and an interior surface that faces and may define at least in-part a flowpath extending along a centerline. The radial displacement bellows is constructed and arranged to move between an expanded state when a pressure differential between the environment and the flowpath is low to a restricted state when the pressure differential is high. 1. An additive manufactured fluid dispensing apparatus comprising:a radial displacement bellows having an outer surface exposed to a surrounding environment and an interior surface defining at least in-part a flowpath extending along a centerline, and wherein the radial displacement bellows is constructed and arranged to move between an expanded state when a pressure differential between the environment and the flowpath is low to a restricted state when the pressure differential is high.2. The additive manufactured fluid dispensing apparatus set forth in claim 1 , wherein the radial displacement bellows is made of a metal.3. The additive manufactured fluid dispensing apparatus set forth in claim 2 , wherein the radial displacement bellows generally has a wall thickness of about 0.004 inches to 0.008 inches.4. The additive manufactured fluid dispensing apparatus set forth in claim 1 , wherein the radial displacement bellows has a plurality of axially displaced convolutions.5. The additive manufactured fluid dispensing apparatus set forth in further comprising:a fluid dispensing spray nozzle defining in-part the flowpath.6. The additive manufactured fluid dispensing apparatus set forth in further comprising:an axial displacement device defining in-part the flowpath, and wherein the device is axially extended when the radial displacement device is in the restricted state and ...

Подробнее
07-01-2016 дата публикации

PREHEATING DEVICE FOR GAS TURBINE FUEL, GAS TURBINE PLANT PROVIDED THEREWITH, AND PREHEATING METHOD FOR GAS TURBINE FUEL

Номер: US20160003159A1
Автор: HOTTA Katsuhiro
Принадлежит: Mitsubishi Hitachi Power Systems, Ltd.

This fuel-preheating device is provided with the following: a cooling-steam line that supplies steam, for the purposes of cooling, to a hot part of a gas turbine, namely a combustion liner of a combustor; a superheated-steam line through which superheated steam that is steam having passed through the combustion liner of the combustor flows; and a preheater that receives the superheated steam from the superheated-steam line and preheats fuel to be supplied to the combustor by exchanging heat between the superheated steam and said fuel. 1. A preheating device for gas turbine fuel comprising:a cooling-steam line that supplies steam, for the purpose of cooling, to a hot part of either a combustor that combusts fuel to generate combustion gas or a turbine that is driven by the combustion gas, the hot part being a part that contacts the combustion gas;a superheated-steam line through which superheated steam flows, the superheated steam being the steam that has passed through the hot part; anda preheater that preheats the fuel by exchanging heat between the superheated steam supplied from the superheated-steam line and the fuel supplied to the combustor.2. The preheating device for gas turbine fuel according to claim 1 , whereinthe preheater condenses the superheated steam by heat exchange between the superheated steam and the fuel.3. The preheating device for gas turbine fuel according to claim 1 , further comprising:a plurality of the preheaters; anda fuel line that connects in series the plurality of preheaters so that the fuel sequentially flows into the plurality of preheaters;the superheated-steam line supplying the superheated steam to each of the plurality of preheaters.4. The preheating device for gas turbine fuel according to claim 1 , further comprising:a first-stage steam line through which steam that does not pass through the hot part flows;a first-stage preheater that preheats the fuel by heat exchange between the steam supplied from the first-stage steam ...

Подробнее
07-01-2016 дата публикации

REMOVING NON-HOMOGENEOUS ICE FROM A FUEL SYSTEM

Номер: US20160003160A1
Автор: Hagshenas Behzad
Принадлежит:

The presently disclosed embodiments utilize an ice separator vessel to trap ice particles in a non-homogeneous ice/fuel mixture flowing in a fuel system. A source of heat, such as heated fuel provided to the ice separator vessel, is used to melt at least a portion of the ice particles so that they do not enter the fuel system downstream of the ice separator vessel. 1. A fuel system comprising:an ice separator vessel configured to separate ice particles from a first supply of fuel comprising a non-homogeneous fuel/ice mixture, and to receive heat from a source of heat;wherein the heat melts at least a portion of the ice particles in the ice separator vessel.2. The fuel system of claim 1 , wherein the source of heat comprises a second supply of fuel.3. The fuel system of claim 2 , wherein:the first supply of fuel is at a first temperature; andthe second supply of fuel is at a second temperature greater than the first temperature.4. The fuel system of claim 2 , wherein the second supply of fuel is received from a fuel oil heat exchanger in a gas turbine engine.5. The fuel supply of claim 1 , wherein the source of heat comprises bleed air received from a gas turbine engine.6. The fuel supply of claim 1 , wherein the source of heat comprises an electric heat source.7. The fuel system of claim 1 , wherein the ice separator vessel is configured to separate the ice particles from the non-homogeneous fuel/ice mixture by centrifugation.8. The fuel system of claim 1 , wherein the ice separator vessel is configured to separate the ice particles from the non-homogeneous fuel/ice mixture by settling.9. A fuel system comprising:an ice separator vessel configured to separate ice particles from a first supply of fuel comprising a non-homogeneous fuel/ice mixture, and to receive a second supply of fuel;wherein the second supply of fuel melts at least a portion of the ice particles in the ice separator vessel.10. The fuel system of claim 9 , wherein:the first supply of fuel is at a ...

Подробнее
07-01-2016 дата публикации

PROCESS OF ASSEMBLING FUEL NOZZLE END COVER

Номер: US20160003479A1
Принадлежит:

A process of assembling a fuel nozzle end cover includes machining a base material of the fuel nozzle end cover, then positioning one or more ring inserts in contact with the base material, then welding the ring insert(s) to the base material to define one or more ledge features within the fuel nozzle end cover. The ring insert(s) have a net shape or near-net shape. 1. A process of assembling a fuel nozzle end cover , the process comprising:machining a base material of the fuel nozzle end cover to define a cylindrical region, the cylindrical region including ports for fluid transport within the fuel nozzle end cover; thenpositioning a ring insert in contact with the base material within the cylindrical region in a position that permits the fluid transport through the ports; thenwelding the ring insert to the base material to define one or more ledge features within the fuel nozzle end cover in the position that permits the fluid transport through the ports;wherein the ring insert has a net shape or near-net shape.2. The process of claim 1 , further comprising masking the ports.3. The process of claim 2 , wherein the masking includes a technique selected from the group consisting of positioning one or more copper chill blocks claim 2 , positioning sheet metal claim 2 , ceramic masking claim 2 , and combinations thereof.4. The process of claim 1 , wherein the welding is selected from the group consisting of gas tungsten arc welding claim 1 , gas metal arc welding claim 1 , cold metal transfer claim 1 , and combinations thereof.5. The process of claim 1 , wherein the welding is selected from the group consisting of beam welding claim 1 , friction welding claim 1 , and combinations thereof.6. The process of claim 1 , further comprising machining a body to form the ring insert prior to the welding of the ring insert.7. The process of claim 1 , wherein the process is devoid of generating weld spatter within the fuel nozzle end cover.8. The process of claim 1 , further ...

Подробнее
07-01-2016 дата публикации

Heat exchanger and gas turbine plant provided therewith

Номер: US20160003551A1
Принадлежит: Mitsubishi Hitachi Power Systems Ltd

The heat exchanger is provided with a body, multiple heat transfer tubes ( 20 ) which are arranged inside of the body, and multiple support plates ( 30 ) which are arranged at intervals along the longitudinal direction of the heat transfer tubes ( 20 ) and in which multiple tube insertion through-holes ( 40 ) for inserting the multiple heat transfer tubes ( 20 ) are formed. Between two support plates ( 30 ) adjacent in the longitudinal direction among the plurality of support plates ( 30 ), the shapes of the tube insertion through-holes ( 40 ) for one heat transfer tube ( 20 ) are different.

Подробнее
02-01-2020 дата публикации

DEVICE FOR DRIVING A FUEL PUMP FOR A TURBOMACHINE

Номер: US20200003126A1
Принадлежит:

A transmission device drives a fuel pump for a turbomachine using a drive shaft of said turbomachine. The transmission includes a planet reduction gearing with three elements: a central planet gear, an outer ring gear and a planet carrier. A first of the three elements connects to the drive shaft and a second of the three elements couples to a shaft of the pump. The three elements can be rotated about a shaft of the reduction gearing. First electrical means rotatably drive the third element to modify a rotational speed ratio between the first and second elements. Second electrical means are coupled to the first or the second element. The first and second electrical means are arranged to transfer electrical power reversibly from one to the other. 1. A transmission device for driving a fuel pump for a turbomachine from a drive shaft of said turbomachine , the device comprising an epicyclic gear reducer comprising the following three elements:a central sun gear;an outer ring gear; anda planet carrier, the planets of which engage with the sun gear and the ring gear,a first of the three elements being configured to be connected to the drive shaft and a second of the three elements being configured to be coupled to a shaft of the pump, wherein said three elements are configured to be rotated about a shaft of the reducer, the device further comprising first electrical means arranged to rotatably drive the third of said elements of the reducer to modify a rotational speed ratio between the first and the second of said elements, and second electrical means coupled to one of the first and the second of said elements of the reducer, the first and second electrical means being arranged to transfer electrical power reversibly from one to the other.2. The transmission device according to claim 1 , wherein the first of said elements of the reducer is the ring gear claim 1 , the second of said elements is the sun gear and the third of said elements is the planet carrier claim 1 , ...

Подробнее
04-01-2018 дата публикации

BLUFF BODY FUEL MIXER

Номер: US20180003387A1
Принадлежит: UNITED TECHNOLOGIES CORPORATION

A fuel injection system may comprise a mixer and a fuel injector disposed within the mixer. The mixer may comprise an outer housing with an exit port and a bluff body extending across the exit port of the outer housing. A flared surface of the mixer may match a contour of the bluff body. 1. A fuel and air mixer , comprising:an outer housing with an exit port; anda bluff body extending across the exit port of the outer housing.2. The fuel and air mixer of claim 1 , comprising a turbulator disposed in the outer housing.3. The fuel and air mixer of claim 1 , wherein the bluff body comprises a v-shaped gutter.4. The fuel and air mixer of claim 3 , wherein the outer housing has a cylindrical geometry.51212. The fuel and air mixer of claim 4 , wherein the bluff body comprises an outlet radius (R) at the exit port of the outer housing and an inlet radius (R) at an apex of the v-shaped gutter claim 4 , and wherein R/R ranges from 1.1 to 1.6.6111. The fuel and air mixer of claim 5 , wherein the v-shaped gutter comprises a width (W) claim 5 , and wherein W/R ranges from 0.2 to 0.45.7. The fuel and air mixer of claim 1 , wherein the bluff body comprises at least one of a circular claim 1 , multi-radial claim 1 , squared claim 1 , or irregularly shaped gutter.8. A fuel injection system claim 1 , comprising:a mixer having a bluff body at an exit port of the mixer; anda fuel injector disposed within the mixer.9. The fuel injection system of claim 8 , further comprising a turbulator disposed in the mixer.10. The fuel injection system of claim 8 , wherein the bluff body comprises a gutter.11. The fuel injection system of claim 8 , wherein the mixer comprises a flared surface matching a contour of the bluff body. This application is a divisional of and claims priority to U.S. application Ser. No. 14/601,389, filed Jan. 21, 2015 and titled “BLUFF BODY FUEL MIXER,” which is hereby incorporated by reference in its entirety.This disclosure was made with government support under contract ...

Подробнее
03-01-2019 дата публикации

MICRO GAS TURBINE SYSTEMS AND USES THEREOF

Номер: US20190003385A1
Принадлежит: Dynamo Micropower Corporation

The present disclosure describes a micro gas turbine flameless heater, in which the heat is generated by burning fuel in a gas turbine engine, and the heater output air mixture is generated by transferring the heat in the gas turbine exhaust to the cold air drawn from the ambient environment. The present disclosure also describes component geometries and system layout for a gas turbine power generation unit that is designed for simple assembly, disassembly, and component replacement. The present disclosure also allows for quick removal of the rotating components of the gas turbine engine in order to reduce assembly and maintenance time. Furthermore, the present disclosure describes features that help to maintain safe operating temperatures for the bearings and structures of the gas turbine engine power turbine. Lastly, the present disclosure describes features of a fuel capture system that allow the injection of wellhead gas, which typically is a mixture of gaseous and liquid fuels, into the combustion chamber, and also describes methods of incorporating afterburners in the gas turbine engine, such that the gas turbine engine system can use wellhead gas to power equipment and reduce emissions from flaring in oil and gas applications. 117.-. (canceled)18. A method of operating a gas turbine heater , wherein the gas turbine heater comprises a gas turbine comprising i) an air starter; ii) a compressor; iii) a turbine; and iv) a combustion unit configured to receive compressed air for combustion from the compressor , to receive a fuel from a source , to burn the fuel to produce a combustion gas , and to supply the combustion gas to the turbine , wherein the gas turbine is configured to heat an external environment directly or indirectly using combustion gas exhausted from the turbine , the method comprising:operating a fan to pump air through an enclosure of the gas turbine heater such that the air passes from an ambient air inlet of the enclosure to an outlet of the ...

Подробнее
03-01-2019 дата публикации

Aircraft thermal management system

Номер: US20190003391A1
Принадлежит: United Technologies Corp

An aircraft thermal management system includes a first fluid system containing a first fluid, a fluid loop containing a thermally neutral heat transfer fluid, a second fluid system containing a second fluid, a first heat exchanger configured to transfer heat from the first fluid to the thermally neutral heat transfer fluid, and a second heat exchanger configured to transfer heat from the thermally neutral heat transfer fluid to the second fluid. The fluid loop is configured to provide the thermally neutral heat transfer fluid to the first heat exchanger at a pressure that matches the pressure of the first fluid.

Подробнее
03-01-2019 дата публикации

LOW NITROGEN OXIDE EMISSION WATER HEATER

Номер: US20190003426A1
Принадлежит:

A water heater has a gas burner in a combustion chamber below a tank. The burner has a venturi tube oriented in a collection housing, which receives a mixture of air and fuel from a duct at least partially protruding from a periphery of an exterior wall of the water heater. In some embodiments, the duct abuts the venturi tube within a collection housing in the combustion chamber. 1. A water heater comprising:a tank defining a first volume for holding water and having a lower tank wall beneath the first volume, wherein the lower tank wall defines a first surface opposite the first volume;at least one side wall extending below the lower tank wall about a periphery of the tank, thereby defining a second surface;a bottom wall adjoining the at least one side wall opposite the lower tank wall, thereby defining a third surface, so that the first surface, the second surface, and the third surface define a second volume;a duct in communication with an ambient air source external to the second volume so that a third volume at least partially bounded by the duct receives air from the ambient air source, wherein the duct is in fluid communication with a pressurized fuel gas source so that the third volume receives a flow of fuel gas from the pressurized fuel gas source and so that the ambient air and fuel gas flow out of the third volume at least partially bounded by the duct in an output flow, and wherein at least a portion of the volume at least partially bounded by the duct is disposed outward of the second volume and the periphery; anda burner assembly partially disposed within the second volume, wherein the burner assembly comprisesa collection housing defining an inlet that receives the output flow and that defines an enclosure in fluid communication with the inlet so that the enclosure receives the ambient air and the fuel gas from the output flow for mixture in the enclosure, wherein the collection housing bounds the ambient air and fuel gas within the enclosure except ...

Подробнее
08-01-2015 дата публикации

COMBUSTION DEVICE

Номер: US20150007547A1
Принадлежит:

The combustion device includes a burner, a combustion chamber downstream of the burner, a lance projecting into the burner for fuel and air injection, and a plenum that at least partly houses the burner. The plenum is connected to the inside of the lance to supply an oxidiser to it. 1. A combustion device comprising:a burner,a combustion chamber downstream of the burner,a lance projecting into the burner for fuel and air injection, anda plenum that at least partly houses the burner, wherein the plenum is connected to the inside of the lance to supply an oxidiser to it.2. The combustion device according to claim 1 , wherein the lance comprises a duct for oxidiser and at least a duct for fuel claim 1 , wherein the plenum is connected to the duct for oxidiser.3. The combustion device according to claim 2 , wherein the duct for oxidiser encircles the at least a duct for fuel.4. The combustion device according to claim 2 , wherein the lance has a portion housed in the plenum claim 2 , wherein the duct for oxidiser has at least an opening connecting it to the plenum.5. The combustion device according to claim 4 , further comprising an outer plenum and an inner plenum that are connected by a cooling path for the combustion chamber.6. The combustion device according to claim 5 , wherein the duct for oxidiser is connected to the outer plenum.7. The combustion device according to claim 5 , wherein the duct for oxidiser is connected to the inner plenum.8. The combustion device according to claim 5 , wherein the outer plenum at least partly houses the inner plenum.9. The combustion device according to claim 2 , wherein the duct for oxidiser has nozzles with sleeves protruding outwardly from the duct for oxidiser.10. The combustion device according to claim 2 , wherein the at least a duct for fuel has nozzles claim 2 , and the nozzles for the duct for oxidiser are substantially coaxial with the nozzles of the at least a duct for fuel.11. The combustion device according to claim ...

Подробнее
08-01-2015 дата публикации

FUEL INJECTOR FOR A TURBINE ENGINE

Номер: US20150007572A1
Принадлежит: SNECMA

A fuel injector for a turbine engine, the injector including a body including a mechanism for admitting fuel under pressure, a stop valve for feeding a primary fuel circuit, and a metering valve mounted downstream from the stop valve for feeding a secondary fuel circuit. The injector further includes at least one leakage channel, that can be formed by a thread, that extends from a zone situated downstream from the stop valve and upstream from the metering valve to a zone situated downstream from the metering valve to generate a permanent leakage flow in the secondary circuit. 18-. (canceled)9. A fuel injector for a turbine engine or an airplane turboprop or turbojet , the injector comprising:a body including an admission means for admitting fuel under pressure;a stop valve mounted in the body downstream from the admission means and configured to open at a first determined fuel pressure and to remain open beyond the first pressure to feed a primary fuel circuit;a metering valve mounted in the body downstream from the stop valve and configured to open beyond a second determined fuel pressure greater than the first pressure, and to remain open beyond the second pressure to feed a secondary fuel circuit; andat least one leakage channel extending from a zone situated downstream from the stop valve and upstream from the metering valve to a zone situated downstream from the metering valve to generate a permanent leakage flow in the secondary circuit.10. An injector according to claim 9 , wherein the leakage channel is in a form of a coil or a labyrinth.11. An injector according to claim 10 , wherein the leakage channel is of helical or spiral shape.12. An injector according to claim 11 , wherein the leakage channel extends around an axis coinciding with the axis of the metering valve.13. An injector according to claim 11 , wherein the leakage channel includes a thread of a cylindrical surface.14. An injector according to claim 11 , wherein the metering valve is movably ...

Подробнее
27-01-2022 дата публикации

Fuel distribution manifold

Номер: US20220026069A1
Принадлежит: General Electric Co

Fuel distribution manifolds and combustors are provided. A fuel distribution manifold includes a main body and a fuel circuit that is defined within the main body. The fuel circuit includes an inlet section extending generally axially from an inlet to a first branch section and a second branch section. The first branch section and the second branch section diverge circumferentially away from each other as they extend axially from the inlet section to a respective first outlet and a respective second outlet.

Подробнее
12-01-2017 дата публикации

Method and apparatus for detecting breakage of piping in combined power plants

Номер: US20170010176A1
Автор: Masakazu Inoue
Принадлежит: Mitsubishi Hitachi Power Systems Ltd

A method and an apparatus for detecting breakage of piping, the method including the steps of: closing an outlet of heat exchanger tubes with an outlet-side shutoff valve; supplying high-temperature water into the heat exchanger tubes with a desalinated water pump; closing an inlet of the heat exchanger tubes with an inlet-side main shutoff valve and an inlet-side auxiliary shutoff valve with the heat exchanger tubes filled with the high-temperature water; and determining breakage of the heat exchanger tubes based on a change in the pressure of the high-temperature water in the heat exchanger tubes with the inlet and the outlet closed.

Подробнее
14-01-2016 дата публикации

VARIABLE FUEL GAS MOISTURE CONTROL FOR GAS TURBINE COMBUSTOR

Номер: US20160010509A1
Принадлежит:

In one or more of the inventive aspects, when a gas turbine system of a power plant operates at part load, a moisture content of fuel gas provided to the gas turbine system may be controlled so as to minimize combustion dynamics and/or to comply with emission requirements. The fuel gas moisture content may be controlled by modulating a flow of heated water to a fuel moisturizer. By using heated water from a heat recovery steam generator to moisturize the fuel gas, heat energy from the water may be transferred to the fuel gas, and the overall mass flow maybe enhanced to thereby increase overall combined cycle efficiency. 1. A fuel gas moisturization system of a power plant , the system comprising:a heat recovery steam generator (HRSG) configured to heat water using exhaust heat of a gas turbine system, and output the heated water via a heater water conduit;a fuel moisturizer configured to receive dry fuel gas via a dry fuel gas conduit, receive heated water from the HRSG via the heater water conduit, moisturize the dry fuel gas with the heated water, and output the moisturized fuel gas via a pre-superheated fuel gas conduit; anda performance heater configured to receive the moisturized fuel gas from the fuel moisturizer via the pre-superheated fuel gas conduit, superheat the moisturized fuel gas, and provide the superheated fuel gas to the gas turbine system via a superheated fuel gas conduit,wherein when the gas turbine system is operating at a part load, the fuel moisturizer is configured such that a moisture content of the moisturized fuel gas is varied in accordance with a generator output of the gas turbine system, the part load being less than a base load, andwherein the moisture content of the moisturized fuel gas is not constant throughout a range of the part load operation.2. The system of claim 1 , wherein when the gas turbine system is operating at the part load claim 1 , the fuel moisturizer is configured such that the moisture content of the moisturized ...

Подробнее
14-01-2016 дата публикации

FLUID NOZZLE AND METHOD OF DISTRIBUTING FLUID THROUGH A NOZZLE

Номер: US20160010556A1
Автор: Tibbs Andy W.
Принадлежит:

A fluid nozzle includes, a body having an annular cavity that extends out one axial end of the fluid nozzle. At least one port fluidically connects to an annular chamber of the annular cavity and the annular cavity is defined between a radially inner surface of the body and a radially outer surface of the body. A first portion of the radially outer surface has a first radial dimension smaller than a greatest radial dimension of the at least one port and a second portion of the radially outer surface further from the annular chamber than the first portion has a second radial dimension greater than the first radial dimension and so forth. 1. A fluid nozzle , comprising a body having an annular cavity that extends out one axial end of the fluid nozzle , at least one port fluidically connected to an annular chamber of the annular cavity , the annular cavity being defined between a radially inner surface of the body and an radially outer surface of the body , a first portion of the radially outer surface having a first radial dimension smaller than a greatest radial dimension of the at least one port and a second portion of the radially outer surface further from the annular chamber than the first portion having a second radial dimension greater than the first radial dimension.2. The fluid nozzle of claim 1 , wherein the radially outer surface includes at least one approximately sharp dimensional transition.3. The fluid nozzle of claim 1 , wherein the first radial dimension is smaller than a smallest radial dimension of the at least one port.4. The fluid nozzle of claim 1 , wherein a wall of the radially outer surface is substantially perpendicular to an axis of the fluid nozzle.5. The fluid nozzle of claim 1 , wherein a wall of the radially outer surface is facing radially outwardly.6. The fluid nozzle of claim 1 , wherein a majority of the annular cavity has a generally frustoconical shape.7. The fluid nozzle of claim 6 , wherein radial dimensions of the annular cavity ...

Подробнее
09-01-2020 дата публикации

SHAFT ACTUATED SWIRLING COMBUSTION SYSTEM

Номер: US20200011239A1

A combustor having an ion transport membrane therein and an adjustable swirler, which is mechanically connected at an inlet of a combustion zone of the combustor; a combustion system comprising the combustor, a feedback control system adapted to adjust swirler blades of the combustor based on a compositional variation of a fuel stream, and a plurality of feedback control systems to control operational variables within the combustor for an efficient oxy-combustion; and a process for combusting a fuel stream via the combustion system. Various embodiments of the combustor, the combustion system, and the process for combusting the fuel stream are disclosed. 14-. (canceled)5. A shaft actuated swirling combustion system , comprising: a cylindrical vessel with an internal cavity,', 'an ion transport membrane that divides the internal cavity of said cylindrical vessel into a first and a second concentric cylindrical zone, wherein the first concentric cylindrical zone is a feed zone and the second concentric cylindrical zone is a combustion zone,', 'a first inlet and a first outlet located in the feed zone, and a second inlet and a second outlet located in the combustion zone, and', 'a swirler that is connected to the second inlet, wherein the swirler has a plurality of adjustable blades with adjustable angles, a shaft, an outer casing and an actuator that rotates the blades and is secured inside the shaft;, 'a combustor of comprising'}an oxygen supplier located upstream of and fluidly connected to the first inlet via a feed line for supplying an oxygen-containing stream;a fuel supplier located upstream of and fluidly connected to the second inlet via a fuel line for supplying a fuel stream;an expander located downstream of and fluidly connected to the second outlet via an exhaust line for expanding an exhaust stream to generate power;a recycle line that fluidly connects the exhaust line to the fuel line;a mixer located upstream of the combustor and fluidly connected to the ...

Подробнее
09-01-2020 дата публикации

PROCESS FOR COMBUSTION USING A SHAFT ACTUATED SWIRLING COMBUSTOR

Номер: US20200011240A1

A combustor having an ion transport membrane therein and an adjustable swirler, which is mechanically connected at an inlet of a combustion zone of the combustor; a combustion system comprising the combustor, a feedback control system adapted to adjust swirler blades of the combustor based on a compositional variation of a fuel stream, and a plurality of feedback control systems to control operational variables within the combustor for an efficient oxy-combustion; and a process for combusting a fuel stream via the combustion system. Various embodiments of the combustor, the combustion system, and the process for combusting the fuel stream are disclosed. 116-: (canceled)17: A process for combusting a fuel stream with a shaft actuated swirling combustor comprising:a cylindrical vessel with an internal cavity;an ion transport membrane that divides the internal cavity of said cylindrical vessel into a first and a second concentric cylindrical zone, wherein the first concentric cylindrical zone is a feed zone and the second concentric cylindrical zone is a combustion zone;a first inlet and a first outlet located in the feed zone, and a second inlet and a second outlet located in the combustion zone;a swirler that is connected to the second inlet, wherein the swirler has a plurality of adjustable blades with adjustable angles, a shaft, a casing and an actuator disposed in the shaft;a third concentric cylindrical zone which is sandwiched between the first and the second concentric cylindrical zones, defining a sweep zone; anda third inlet and a third outlet located in the sweep zone, the process comprising:combusting the fuel stream with molecular oxygen in the combustion zone to form an exhaust stream comprising water vapor and carbon dioxide;delivering an oxygen-containing stream to the first inlet of the combustor, wherein molecular oxygen present in the oxygen-containing stream is transported to the sweep zone through the ion transport membrane;flowing a portion of the ...

Подробнее
09-01-2020 дата публикации

FUEL INJECTOR WITH A CENTER BODY ASSEMBLY

Номер: US20200011533A1
Принадлежит: Solar Turbines Incorporated

A center body assembly for a lean direct injection fuel injector is disclosed. The center body assembly defines a primary liquid passage, a liquid gallery, a liquid main first passage, a liquid main second passage, and an atomizer assembly. The primary liquid passage supplies liquid fuel to the liquid gallery. The liquid gallery aligns with the primary liquid passage and distributes fuel to the liquid main first passage, and subsequently to the liquid main second passage. The atomizer assembly is in flow communication with the liquid main second passage and provides atomized fuel for combustion. 1. A center body assembly for a lean direct injection fuel injector of a gas turbine engine , the center body assembly comprising: an assembly axis, including a longitudinal axis to the center body assembly,', 'an assembly axis radial, perpendicular and radiating outward from the assembly axis,', 'a base end,', 'a liquid main end distal to the base end,', 'a middle portion extending from the base end to the liquid main end,', 'a liquid tube port extending into the base end,', 'a liquid main port extending into the liquid main end, the liquid main port being concentric to the liquid main end, the liquid main port including a liquid main port surface that is a bottom surface of the liquid main port, and', 'a primary liquid passage extending from the liquid tube port to the liquid main port and in flow communication with the liquid tube port; and, 'a center body including'} a liquid main base located in the liquid main port and abutting the liquid main port surface,', 'a liquid main base flange that extends from the liquid main base towards the base end and adjacent the liquid main port for joining the liquid main assembly to the center body,', 'a liquid main body adjacent the liquid main base,', 'a liquid gallery comprising a channel located in the liquid main base, extending around the liquid main base, and abutting the liquid main port surface, adjacent and in flow ...

Подробнее
03-02-2022 дата публикации

COMBUSTOR AND GAS TURBINE INCLUDING THE SAME

Номер: US20220034510A1
Принадлежит:

A combustor includes: a fuel nozzle for injecting fuel; a combustion liner surrounding a combustion space for combusting the fuel and having an internal passage having an outlet communicating with the combustion space; and an air-fuel mixture line, connected to an inlet of the internal passage of the combustion liner, for introducing an air-fuel mixture containing the fuel and compressed air to the internal passage. The combustion liner is configured to be cooled by the air-fuel mixture flowing through the internal passage. 1. A combustor , comprising:a fuel nozzle for injecting fuel;a combustion liner surrounding a combustion space for combusting the fuel, the combustion liner having an internal passage having an outlet communicating with the combustion space; andan air-fuel mixture line for introducing an air-fuel mixture containing the fuel and compressed air to the internal passage, the air-fuel mixture line being connected to an inlet of the internal passage of the combustion liner,wherein the combustion liner is configured to be cooled by the air-fuel mixture flowing through the internal passage.2. The combustor according to claim 1 , comprising:a compressed air line through which the compressed air flows; anda fuel supply part for supplying the fuel to the compressed air flowing through the compressed air line, the fuel supply part being disposed on the compressed air line,wherein the air-fuel mixture line is configured such that the air-fuel mixture containing the fuel supplied from the fuel supply part and the compressed air flowing through the compressed air line is introduced to the internal passage.3. The combustor according to claim 2 ,wherein the compressed air line is configured to extract the compressed air from an intermediate stage of a compressor of a gas turbine that includes the combustor or a casing interior space of the gas turbine.4. The combustor according to claim 2 , a leading edge portion positioned on an upstream side in a flow direction ...

Подробнее
18-01-2018 дата публикации

ELECTRIC HEATING FOR FUEL SYSTEM COMPONENTS

Номер: US20180016024A1
Автор: Stearns Ethan K.
Принадлежит:

A fuel system for use with a gas turbine engine with a fuel flow and an oil flow includes a fuel-oil cooler in fluid communication with the fuel flow and the oil flow, the fuel-oil cooler to transfer heat between the fuel flow and the oil flow, a fuel filter associated with the fuel-oil cooler, the fuel filter in fluid communication with the fuel flow, and an electric heating element disposed adjacent to at least one of the fuel-oil cooler and the fuel filter. 1. An electrically heated fuel filter , comprising:a fuel filter; andan electric heating element disposed around the fuel filter.2. The electrically heated fuel filter of claim 1 , further comprising an insulation layer disposed around the electric heating element.3. The electrically heated fuel filter of claim 1 , further comprising a housing disposed around the electric heating element.4. The electrically heated fuel filter of claim 3 , wherein the housing is a metal housing.5. A fuel system for use with a gas turbine engine with a fuel flow and an oil flow claim 3 , the fuel system comprising:a fuel-oil cooler in fluid communication with the fuel flow and the oil flow, the fuel-oil cooler to transfer heat between the fuel flow and the oil flow;a fuel filter associated with the fuel-oil cooler, the fuel filter in fluid communication with the fuel flow; andan electric heating element disposed adjacent to at least one of the fuel-oil cooler and the fuel filter.6. The fuel system of claim 5 , further comprising an integrated fuel pump and control module to pressurize the fuel flow.7. The fuel system of claim 6 , wherein the integrated fuel pump and control module selectively provides a fuel return flow to the fuel-oil cooler.8. The fuel system of claim 5 , further comprising an oil bypass valve to bypass the oil flow beyond the fuel-oil cooler.9. The fuel system of claim 5 , wherein the electric heating element is disposed adjacent to the fuel-oil cooler.10. The fuel system of claim 5 , wherein the electric ...

Подробнее
21-01-2016 дата публикации

COMPACT DOSING DEVICE FOR AN INJECTOR WITH TWO FUEL CIRCUITS FOR AN AIRCRAFT TURBOMACHINE

Номер: US20160017808A1
Принадлежит: SNECMA

A fuel dosing device for a fuel injector of an aircraft turbomachine, including an opening, a movable member for sealing the opening, and elastic return, with the member able to be displaced under the effect of the fuel pressure. The device includes a first outlet communicating with a primary circuit of the injector as well as a second outlet communicating with a secondary circuit. In addition, it is designed such that up to a defined level of displacement of the sealing member, the latter allows the fuel coming from the opening to reach the first outlet and, only beyond the defined level of displacement, the member allows the fuel coming from the opening to reach the second outlet.

Подробнее
18-01-2018 дата публикации

FILTER SCREENS AND METHODS OF MAKING FILTER SCREENS

Номер: US20180016986A1
Принадлежит:

A filter screen includes a plate body with an upstream surface, an opposed downstream surface, and an array of apertures extending between the upstream surface and the downstream surface. A polytetrafluoroethylene-based layer overlays the upstream surface between apertures of the aperture array, the polytetrafluorethylene-based layer being conformally disposed over the upstream surface of the plate body and spanning the upstream surface between the apertures of the aperture array to slow deposition of carbonaceous deposits on the filter screen. 1. A filter screen , comprising:a plate body having an upstream surface, a downstream surface, and an array of apertures extending between the upstream surface and the downstream surface; anda polytetrafluoroethylene (PTFE)-based layer overlaying the upstream surface between apertures of the aperture array, wherein the PTFE-based layer is conformally disposed over the upstream surface of the plate body and spans the upstream surface between the apertures of the aperture array.2. The filter screen as recited in claim 1 , wherein the plate body comprises a perforated sheet body formed from stainless steel.3. The filter screen as recited in claim 1 , wherein the apertures have aperture widths that are within a range between about 40 microns (0.0016 inches) and about 200 microns (0.01 inches).4. The filter screen as recited in claim 1 , wherein the PTFE-based coating has a thickness that is less than about 50 microns (0.002 inches).5. The filter screen as recited in claim 1 , further comprising a PTFE-based layer overlaying the downstream surface between the apertures of the aperture array.6. The filter screen as recited in claim 5 , wherein the PTFE-based layer overlaying the downstream surface is conformally disposed over the downstream surface of the plate body.7. The filter screen as recited in claim 5 , wherein the PTFE-based layer overlaying the downstream surface is conformally disposed over the downstream surface and ...

Подробнее
17-04-2014 дата публикации

EXHAUST HEAT RECOVERY FOR A GAS TURBINE SYSTEM

Номер: US20140102113A1
Принадлежит: GENERAL ELECTRIC COMPANY

A system includes a gas turbine and an anti-icing system coupled to the gas turbine. The gas turbine is configured to receive air and fuel and to combust a mixture of the air and the fuel into exhaust gases. The anti-icing system is configured to use heat from the exhaust gases to heat a heat transfer fluid (HTF) and to selectively heat the fuel and the air via the HTF. 1. A system , comprising:a gas turbine configured to receive air and fuel and to combust a mixture of the air and the fuel into exhaust gases; andan anti-icing system coupled to the gas turbine and configured to use heat from the exhaust gases to heat a heat transfer fluid (HTF) and to selectively heat the fuel and the air via the HTF.2. The system of claim 1 , wherein the anti-icing system comprises:an exhaust heat exchanger disposed downstream of the gas turbine along an exhaust gas flow path and configured to selectively heat the HTF using the exhaust gases;an air heat exchanger disposed upstream of the gas turbine along an air flow path and configured to selectively heat the air using the HTF; anda fuel heat exchanger disposed upstream of the gas turbine along a fuel flow path and configured to selectively heat the fuel using the HTF.3. The system of claim 2 , wherein the anti-icing system comprises a first loop having a first HTF flow path claim 2 , wherein the HTF along the first HTF flow path is configured to bypass the fuel and air heat exchangers and to exchange heat with the exhaust gases to increase a temperature of the HTF above an HTF temperature setpoint.4. The system of claim 3 , wherein the HTF temperature setpoint is between approximately 15 and 76 degrees Celsius.5. The system of claim 3 , wherein the first loop comprises:a pump disposed along the first HTF flow path and configured to pump the HTF between a skid and the exhaust heat exchanger;a control valve disposed downstream of the pump, wherein the control valve is configured to throttle a flow rate of the HTF;a flow meter ...

Подробнее
21-01-2021 дата публикации

FUEL STAGING SYSTEM

Номер: US20210017908A1
Принадлежит: ROLLS-ROYCE PLC

A fuel staging system for a gas turbine engine has a plurality of fuel injectors each having a mains burner. The system has a mains manifold connected to a mains delivery line and configured to distribute fuel from the mains delivery line to the mains burner of each of the plurality of fuel injectors, and a check valve disposed in the mains delivery line upstream of the mains manifold. The check valve is configured to permit flow of fuel from the mains delivery line to the mains manifold when the pressure of fuel in the mains delivery line exceeds a threshold pressure. 1. A fuel staging system for a gas turbine engine , the fuel staging system comprising:a plurality of fuel injectors each comprising a mains burner;a mains manifold connected to a mains delivery line and configured to distribute fuel from the mains delivery line to the mains burner of each of the plurality of fuel injectors; anda check valve disposed in the mains delivery line upstream of the mains manifold, the check valve being configured to permit flow of fuel from the mains delivery line to the mains manifold when the pressure of fuel in the mains delivery line exceeds a threshold pressure.2. The fuel staging system according to claim 1 , comprising a splitter valve for splitting a fuel supply between the mains delivery line and a pilot delivery line; wherein the plurality of fuel injectors each comprise a pilot burner which is configured to receive fuel through the pilot delivery line.3. The fuel staging system according to claim 2 , wherein the splitter valve is configured to variably split the fuel supply between the mains delivery line and the pilot delivery line.4. The fuel staging system according to claim 2 , comprising a pilot manifold connected to the pilot delivery line and configured to distribute fuel from the pilot delivery line to the pilot burner of each of the plurality of injectors.5. The fuel staging system according to claim 4 , wherein each fuel injector is provided with a ...

Подробнее
16-01-2020 дата публикации

ENHANCED HEAT SINK AVAILABILITY ON GAS TURBINE ENGINES THROUGH THE USE OF COOLERS

Номер: US20200018233A1
Автор: Snyder Douglas J.
Принадлежит:

A cooling assembly for a gas turbine engine may include a heat source, a heat sink, and a heat pump coupled to the heat source and the heat sink, wherein the heat pump may be configured to convey a quantity of heat from the heat source to the heat sink. The heat pump may be mounted to an inner surface of an inner fan casing, and the heat sink may be mounted to an outer surface of the inner fan casing such that heat may convey from the heat sink to a bypass air stream passing over the inner fan casing through or past the heat sink. 120-. (canceled)21. A cooling assembly for a gas turbine engine comprising:a heat source;a heat sink; anda heat pump coupled to the heat source and the heat sink, wherein the heat pump is configured to convey a quantity of heat from the heat source to the heat sink;wherein the heat pump is mounted to an inner surface of an inner fan casing, the heat sink is mounted to an outer surface of the inner fan casing such that heat conveys from the heat sink to a bypass air stream passing over the inner fan casing through or past the heat sink.22. The cooling assembly of claim 21 , wherein the heat source is a heat exchanger having a material passing therethrough.23. The cooling assembly of claim 22 , wherein the material is a heat transfer fluid or gas.24. The cooling assembly of claim 23 , wherein the heat transfer fluid or gas is one of compressor air claim 23 , oil claim 23 , fuel claim 23 , or coolant.25. The cooling assembly of claim 21 , wherein the heat pump is a generator.26. The cooling assembly of claim 21 , wherein the heat sink is a surface cooler heat exchanger.27. A heat transfer system for a gas turbine engine comprising:a surface cooler heat exchanger;a generator; anda heat exchanger heat source coupled to the generator, wherein the heat exchanger heat source is configured to remove heat from a material passing therethrough, and wherein the generator is configured to cause a quantity of heat to pass from the heat exchanger heat ...

Подробнее
16-01-2020 дата публикации

COOLED FUEL INJECTOR SYSTEM FOR A GAS TURBINE ENGINE AND A METHOD FOR OPERATING THE SAME

Номер: US20200018234A1
Автор: Xu JinQuan
Принадлежит:

A cooled fuel injector system of a combustor section of a gas turbine engine is provided. At least a part of the fuel injector system is exposed to core gas flow traveling through the engine. The cooled fuel injector system includes a source of a first cooling fluid and a fuel injector system component. The first cooling fluid is at a temperature lower than a temperature of the core gas flow proximate the fuel injector system. The fuel injector system component includes a vascular engineered structure lattice (VESL) structure, which VESL structure is in fluid communication with the source of the cooling fluid. 1. A cooled fuel injector system of a combustor section of a gas turbine engine , at least a part of the fuel injector system exposed to a core gas flow traveling through the gas turbine engine , the cooled fuel injector system comprising:a first source of a first cooling fluid, the first cooling fluid at a temperature lower than a temperature of the core gas flow proximate the fuel injector system; and a plurality of nodes, each node of the plurality of nodes comprising a solid node structure; and', 'a plurality of branches extending from each node of the plurality of nodes, each branch of the plurality of branches comprising a solid branch structure, wherein only a single branch of the plurality of branches extends between and connects adjacent nodes of the plurality of nodes,, 'a fuel injector system component including a vascular engineered structure lattice (VESL) structure disposed between a first wall and a second wall of the fuel injector system component, the first wall spaced from the second wall, the VESL structure in fluid communication with the source of the first cooling fluid, the VESL structure comprisingwherein a space between the first wall and the second wall of the fuel injector system component and exterior surfaces of the plurality of nodes and the plurality of branches defines a plurality of open passages and wherein the plurality of ...

Подробнее
16-01-2020 дата публикации

INTERNAL MANIFOLD FOR MULTIPOINT INJECTION

Номер: US20200018237A1
Принадлежит:

A multipoint injection system includes a manifold with a plurality of flow passages defined through the manifold in the circumferential direction. The flow passages are spaced apart from one another in an axial direction. A plurality of feed arms extends radially inward from the manifold. Feed arm portions of the flow passages extend through each of the feed arms to respective outlets. The feed arm portions of the flow passages are within the axial width of the manifold. A plurality of injection nozzles are included, each in fluid communication with a respective one of the outlets. Each injection nozzle includes an air passage therethrough with an air inlet. The feed arms each follow a path that is circumferentially offset from the air inlets so each of the feed arms is clear from a flow path directly upstream in the axial direction of each of the air inlets. 1. A multipoint injection system comprising:a manifold extending in a circumferential direction wherein a plurality of flow passages each having a main portion defined through the manifold in the circumferential direction, wherein the flow passages are in fluid isolation from one another and are spaced apart from one another in an axial direction along an axial width extending from a first axial end of the manifold to a second axial end of the manifold; anda plurality of feed arms extending radially inward from the manifold, wherein feed arm portions of the flow passages extend through each of the feed arms, wherein the feed arm portions of the flow passages are within the axial width of the manifold.2. The system as recited in claim 1 , wherein each of the feed arm portions of the flow passages includes a respective outlet opening in an axial direction toward the combustor side of the manifold claim 1 , wherein the outlets are within the axial width of the manifold.3. The system as recited in claim 2 , further comprising a plurality of injection nozzles claim 2 , with a respective one of the injection nozzles ...

Подробнее
16-01-2020 дата публикации

INTERNAL MANIFOLD FOR MULTIPOINT INJECTION

Номер: US20200018238A1
Принадлежит:

A multipoint injection system includes a manifold with a plurality of flow passages defined through the manifold in the circumferential direction. The flow passages are spaced apart from one another in an axial direction. A plurality of feed arms extends radially inward from the manifold. Feed arm portions of the flow passages extend through each of the feed arms to respective outlets. The feed arm portions of the flow passages are within the axial width of the manifold. A plurality of injection nozzles are included, each in fluid communication with a respective one of the outlets. Each injection nozzle includes an air passage therethrough with an air inlet. The feed arms each follow a path that is circumferentially offset from the air inlets so each of the feed arms is clear from a flow path directly upstream in the axial direction of each of the air inlets. 1. A multipoint injection system comprising:a manifold extending in a circumferential direction wherein a plurality of flow passages each having a main portion defined through the manifold in the circumferential direction;a plurality of feed arms extending radially inward from the manifold, wherein feed arm portions of the flow passages extend through each of the feed arms; anda plurality of injection nozzles, wherein each of the feed arm portions of the flow passages includes a respective outlet opening in an axial direction toward a combustor side of the manifold with a respective one of the injection nozzles in fluid communication with each of the outlets, wherein each injection nozzle includes an air passage therethrough with an air inlet, and wherein the feed arms each follow a path that is circumferentially offset from the air inlets so each of the feed arms is clear from a flow path directly upstream in the axial direction of each of the air inlets.2. The system as recited in claim 1 , wherein each of the feed arms follows a path that is oblique relative to a purely radial direction defined by the ...

Подробнее
21-01-2021 дата публикации

COMBUSTION STAGING SYSTEM

Номер: US20210018177A1
Принадлежит: ROLLS-ROYCE PLC

A combustion staging system for fuel injectors of a multi-stage combustor of a gas turbine engine. The system includes plural fuel injectors, each having respective pilot and mains injection stages. It further includes a splitting unit which, to perform staging control of the combustor, receives a metered fuel flow and, for pilot and mains operation, controllably splits the received fuel flow into a pilot flow for injecting at the pilot stages of the injectors and a mains flow for injecting at the mains stages of the injectors, and for pilot-only operation, controllably splits the received fuel flow into a first part of the pilot flow for injecting at the pilot stages of a first portion of the injectors and a second part of the pilot flow for injecting at the pilot stages of a second portion of the injectors. 1. A combustion staging system for fuel injectors of a multi-stage combustor of a gas turbine engine , the combustion staging system including:plural fuel injectors, each having respective pilot and mains injection stages;a splitting unit (FSU) which, to perform staging control of the combustor, receives a metered fuel flow and, for pilot and mains operation, controllably splits the received fuel flow into a pilot flow for injecting at the pilot stages of the injectors and a mains flow for injecting at the mains stages of the injectors, and for pilot-only operation, controllably splits the received fuel flow into a first part of the pilot flow for injecting at the pilot stages of a first portion (Pilot 1) of the injectors and a second part of the pilot flow for injecting at the pilot stages of a second portion (Pilot 2) of the injectors; andpilot (Pilot) and mains (Mains) fuel manifolds distributing respective fuel flows from the splitting unit to the injectors;wherein each of the fuel injectors has a respective first solenoid valve which is movable between (i) a pilot-only operation position which shuts off the mains fuel manifold from the injector's mains ...

Подробнее
21-01-2021 дата публикации

GAS TURBINE ENGINE WITH TRANSCRITICAL VAPOR CYCLE COOLING

Номер: US20210018228A1
Принадлежит:

A gas turbine engine has a compressor section, a combustor, and a turbine section. An associated fluid is to be cooled and an associated fluid is to be heated. A transcritical vapor cycle heats the fluid to be heated, and cools the fluid to be cooled. The transcritical vapor cycle includes a gas cooler in which the fluid to be heated is heated by a refrigerant in the transcritical vapor cycle. An evaporator heat exchanger at which the fluid to be cooled is cooled by the refrigerant in the transcritical vapor cycle. A compressor upstream of the gas cooler compresses the refrigerant to a pressure above a critical point for the refrigerant. An expansion device expands the refrigerant downstream of the gas cooler, with the evaporator heat exchanger being downstream of the expansion device, and such that the refrigerant passing through the gas cooler to heat the fluid to be heated is generally above the critical point. 1. A gas turbine engine comprising:a compressor section, a combustor, and a turbine section;a fuel supply system for supplying fuel to said combustor, and including a fuel heating heat exchanger, with a bypass line downstream of said fuel heating heat exchanger for bypassing fuel back to a fuel tank; andfuel in said bypass line being a fluid to be cooled, an associated fluid to be heated, and a transcritical vapor cycle for heating said fluid to be heated, and for cooling said fluid to be cooled, said transcritical vapor cycle including a gas cooler, in which said fluid to be heated is heated by a refrigerant in said transcritical vapor cycle and an evaporator heat exchanger at which said fluid to be cooled is cooled by the refrigerant in said transcritical vapor cycle, a compressor upstream of said gas cooler for compressing the refrigerant to a pressure above a critical point for the refrigerant, and an expansion device for expanding the refrigerant downstream of said gas cooler, with said evaporator heat exchanger being downstream of said expansion ...

Подробнее