MICROORGANISMS FOR THE PRODUCTION OF 1,4-BUTANEDIOL AND RELATED METHODS
This application is a continuation of application Ser. No. 12/794,700, filed Jun. 4, 2010, which claims the benefit of priority of U.S. application Ser. No. 61/184,311, filed Jun. 4, 2009, the entire contents of each of which is incorporated herein by reference. Incorporated herein by reference is the Sequence Listing being concurrently submitted via EFS-Web as an ASCII text file named 12207-177-999 SeqList.txt, created Jan. 27, 2012, and being 150,347 bytes in size. This invention relates generally to in silico design of organisms and engineering of organisms, more particularly to organisms having 1,4-butanediol biosynthesis capability. The compound 4-hydroxybutanoic acid (4-hydroxybutanoate, 4-hydroxybutyrate, 4-HB) is a 4-carbon carboxylic acid that has industrial potential as a building block for various commodity and specialty chemicals. In particular, 4-HB has the potential to serve as a new entry point into the 1,4-butanediol family of chemicals, which includes solvents, resins, polymer precursors, and specialty chemicals. 1,4-Butanediol (BDO) is a polymer intermediate and industrial solvent with a global market of about 3 billion lb/year. BDO is currently produced from petrochemical precursors, primarily acetylene, maleic anhydride, and propylene oxide. For example, acetylene is reacted with 2 molecules of formaldehyde in the Reppe synthesis reaction (Kroschwitz and Grant, It is desirable to develop a method for production of these chemicals by alternative means that not only substitute renewable for petroleum-based feedstocks, and also use less energy- and capital-intensive processes. The Department of Energy has proposed 1,4-diacids, and particularly succinic acid, as key biologically-produced intermediates for the manufacture of the butanediol family of products (DOE Report, “Top Value-Added Chemicals from Biomass”, 2004). However, succinic acid is costly to isolate and purify and requires high temperatures and pressures for catalytic reduction to butanediol. Thus, there exists a need for alternative means for effectively producing commercial quantities of 1,4-butanediol and its chemical precursors. The present invention satisfies this need and provides related advantages as well. The invention provides non-naturally occurring microbial organisms containing a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO. The present invention is directed to the design and production of cells and organisms having biosynthetic production capabilities for 4-hydroxybutanoic acid (4-HB), γ-butyrolactone and 1,4-butanediol (BDO). The invention, in particular, relates to the design of microbial organisms capable of producing BDO by introducing one or more nucleic acids encoding a BDO pathway enzyme. In one embodiment, the invention utilizes in silico stoichiometric models of In certain embodiments, the 4-HB biosynthesis characteristics of the designed strains make them genetically stable and particularly useful in continuous bioprocesses. Separate strain design strategies were identified with incorporation of different non-native or heterologous reaction capabilities into Strains identified via the computational component of the platform can be put into actual production by genetically engineering any of the predicted metabolic alterations which lead to the biosynthetic production of 4-HB, 1,4-butanediol or other intermediate and/or downstream products. In yet a further embodiment, strains exhibiting biosynthetic production of these compounds can be further subjected to adaptive evolution to further augment product biosynthesis. The levels of product biosynthesis yield following adaptive evolution also can be predicted by the computational component of the system. In other specific embodiments, microbial organisms were constructed to express a 4-HB biosynthetic pathway encoding the enzymatic steps from succinate to 4-HB and to 4-HB-CoA. Co-expression of succinate coenzyme A transferase, CoA-dependent succinic semialdehyde dehydrogenase, NAD-dependent 4-hydroxybutyrate dehydrogenase and 4-hydroxybutyrate coenzyme A transferase in a host microbial organism resulted in significant production of 4-HB compared to host microbial organisms lacking a 4-HB biosynthetic pathway. In a further specific embodiment, 4-HB-producing microbial organisms were generated that utilized α-ketoglutarate as a substrate by introducing nucleic acids encoding α-ketoglutarate decarboxylase and NAD-dependent 4-hydroxybutyrate dehydrogenase. In another specific embodiment, microbial organisms containing a 1,4-butanediol (BDO) biosynthetic pathway were constructed that biosynthesized BDO when cultured in the presence of 4-HB. The BDO biosynthetic pathway consisted of a nucleic acid encoding either a multifunctional aldehyde/alcohol dehydrogenase or nucleic acids encoding an aldehyde dehydrogenawse and an alcohol dehydrogenase. To support growth on 4-HB substrates, these BDO-producing microbial organisms also expressed 4-hydroxybutyrate CoA transferase or 4-butyrate kinase in conjunction with phosphotranshydroxybutyrlase. In yet a further specific embodiment, microbial organisms were generated that synthesized BDO through exogenous expression of nucleic acids encoding a functional 4-HB biosynthetic pathway and a functional BDO biosynthetic pathway. The 4-HB biosynthetic pathway consisted of succinate coenzyme A transferase, CoA-dependent succinic semialdehyde dehydrogenase, NAD-dependent 4-hydroxybutyrate dehydrogenase and 4-hydroxybutyrate coenzyme A transferase. The BDO pathway consisted of a multifunctional aldehyde/alcohol dehydrogenase. Further described herein are additional pathways for production of BDO (see As used herein, the term “non-naturally occurring” when used in reference to a microbial organism or microorganism of the invention is intended to mean that the microbial organism has at least one genetic alteration not normally found in a naturally occurring strain of the referenced species, including wild-type strains of the referenced species. Genetic alterations include, for example, modifications introducing expressible nucleic acids encoding metabolic polypeptides, other nucleic acid additions, nucleic acid deletions and/or other functional disruption of the microbial genetic material. Such modification include, for example, coding regions and functional fragments thereof, for heterologous, homologous or both heterologous and homologous polypeptides for the referenced species. Additional modifications include, for example, non-coding regulatory regions in which the modifications alter expression of a gene or operon. Exemplary metabolic polypeptides include enzymes or proteins within a biosynthetic pathway for a BDO family of compounds. A metabolic modification refers to a biochemical reaction that is altered from its naturally occurring state. Therefore, non-naturally occurring microorganisms having genetic modifications to nucleic acids encoding metabolic polypeptides or, functional fragments thereof. Exemplary metabolic modifications are disclosed herein. As used herein, the term “isolated” when used in reference to a microbial organism is intended to mean an organism that is substantially free of at least one component as the referenced microbial organism is found in nature. The term includes a microbial organism that is removed from some or all components as it is found in its natural environment. The term also includes a microbial organism that is removed from some or all components as the microbial organism is found in non-naturally occurring environments. Therefore, an isolated microbial organism is partly or completely separated from other substances as it is found in nature or as it is grown, stored or subsisted in non-naturally occurring environments. Specific examples of isolated microbial organisms include partially pure microbes, substantially pure microbes and microbes cultured in a medium that is non-naturally occurring. As used herein, the terms “microbial,” “microbial organism” or “microorganism” is intended to mean any organism that exists as a microscopic cell that is included within the domains of archaea, bacteria or eukarya. Therefore, the term is intended to encompass prokaryotic or eukaryotic cells or organisms having a microscopic size and includes bacteria, archaea and eubacteria of all species as well as eukaryotic microorganisms such as yeast and fungi. The term also includes cell cultures of any species that can be cultured for the production of a biochemical. As used herein, the term “4-hydroxybutanoic acid” is intended to mean a 4-hydroxy derivative of butyric acid having the chemical formula C4H8O3and a molecular mass of 104.11 g/mol (126.09 g/mol for its sodium salt). The chemical compound 4-hydroxybutanoic acid also is known in the art as 4-HB, 4-hydroxybutyrate, gamma-hydroxybutyric acid or GHB. The term as it is used herein is intended to include any of the compound's various salt forms and include, for example, 4-hydroxybutanoate and 4-hydroxybutyrate. Specific examples of salt forms for 4-HB include sodium 4-HB and potassium 4-HB. Therefore, the terms 4-hydroxybutanoic acid, 4-HB, 4-hydroxybutyrate, 4-hydroxybutanoate, gamma-hydroxybutyric acid and GHB as well as other art recognized names are used synonymously herein. As used herein, the term “monomeric” when used in reference to 4-HB is intended to mean 4-HB in a non-polymeric or underivatized form. Specific examples of polymeric 4-HB include poly-4-hydroxybutanoic acid and copolymers of, for example, 4-HB and 3-HB. A specific example of a derivatized form of 4-HB is 4-HB-CoA. Other polymeric 4-HB forms and other derivatized forms of 4-HB also are known in the art. As used herein, the term “γ-butyrolactone” is intended to mean a lactone having the chemical formula C4H6O2and a molecular mass of 86.089 g/mol. The chemical compound γ-butyrolactone also is know in the art as GBL, butyrolactone, 1,4-lactone, 4-butyrolactone, 4-hydroxybutyric acid lactone, and gamma-hydroxybutyric acid lactone. The term as it is used herein is intended to include any of the compound's various salt forms. As used herein, the term “1,4-butanediol” is intended to mean an alcohol derivative of the alkane butane, carrying two hydroxyl groups which has the chemical formula C4H10O2and a molecular mass of 90.12 g/mol. The chemical compound 1,4-butanediol also is known in the art as BDO and is a chemical intermediate or precursor for a family of compounds referred to herein as BDO family of compounds. As used herein, the term “tetrahydrofuran” is intended to mean a heterocyclic organic compound corresponding to the fully hydrogenated analog of the aromatic compound furan which has the chemical formula C4H8O and a molecular mass of 72.11 g/mol. The chemical compound tetrahydrofuran also is known in the art as THF, tetrahydrofuran, 1,4-epoxybutane, butylene oxide, cyclotetramethylene oxide, oxacyclopentane, diethylene oxide, oxolane, furanidine, hydrofuran, tetra-methylene oxide. The term as it is used herein is intended to include any of the compound's various salt forms. As used herein, the term “CoA” or “coenzyme A” is intended to mean an organic cofactor or prosthetic group (nonprotein portion of an enzyme) whose presence is required for the activity of many enzymes (the apoenzyme) to form an active enzyme system. Coenzyme A functions in certain condensing enzymes, acts in acetyl or other acyl group transfer and in fatty acid synthesis and oxidation, pyruvate oxidation and in other acetylation. As used herein, the term “substantially anaerobic” when used in reference to a culture or growth condition is intended to mean that the amount of oxygen is less than about 10% of saturation for dissolved oxygen in liquid media. The term also is intended to include sealed chambers of liquid or solid medium maintained with an atmosphere of less than about 1% oxygen. The non-naturally occurring microbal organisms of the invention can contain stable genetic alterations, which refers to microorganisms that can be cultured for greater than five generations without loss of the alteration. Generally, stable genetic alterations include modifications that persist greater than 10 generations, particularly stable modifications will persist more than about 25 generations, and more particularly, stable genetic modifications will be greater than 50 generations, including indefinitely. Those skilled in the art will understand that the genetic alterations, including metabolic modifications exemplified herein are described with reference to a suitable source organism such as An ortholog is a gene or genes that are related by vertical descent and are responsible for substantially the same or identical functions in different organisms. For example, mouse epoxide hydrolase and human epoxide hydrolase can be considered orthologs for the biological function of hydrolysis of epoxides. Genes are related by vertical descent when, for example, they share sequence similarity of sufficient amount to indicate they are homologous, or related by evolution from a common ancestor. Genes can also be considered orthologs if they share three-dimensional structure but not necessarily sequence similarity, of a sufficient amount to indicate that they have evolved from a common ancestor to the extent that the primary sequence similarity is not identifiable. Genes that are orthologous can encode proteins with sequence similarity of about 25% to 100% amino acid sequence identity. Genes encoding proteins sharing an amino acid similarity less that 25% can also be considered to have arisen by vertical descent if their three-dimensional structure also shows similarities. Members of the serine protease family of enzymes, including tissue plasminogen activator and elastase, are considered to have arisen by vertical descent from a common ancestor. Orthologs include genes or their encoded gene products that through, for example, evolution, have diverged in structure or overall activity. For example, where one species encodes a gene product exhibiting two functions and where such functions have been separated into distinct genes in a second species, the three genes and their corresponding products are considered to be orthologs. For the growth-coupled production of a biochemical product, those skilled in the art will understand that the orthologous gene harboring the metabolic activity to be disrupted is to be chosen for construction of the non-naturally occurring microorganism. An example of orthologs exhibiting separable activities is where distinct activities have been separated into distinct gene products between two or more species or within a single species. A specific example is the separation of elastase proteolysis and plasminogen proteolysis, two types of serine protease activity, into distinct molecules as plasminogen activator and elastase. A second example is the separation of mycoplasma 5′-3′ exonuclease and In contrast, paralogs are homologs related by, for example, duplication followed by evolutionary divergence and have similar or common, but not identical functions. Paralogs can originate or derive from, for example, the same species or from a different species. For example, microsomal epoxide hydrolase (epoxide hydrolase I) and soluble epoxide hydrolase (epoxide hydrolase II) can be considered paralogs because they represent two distinct enzymes, co-evolved from a common ancestor, that catalyze distinct reactions and have distinct functions in the same species. Paralogs are proteins from the same species with significant sequence similarity to each other suggesting that they are homologous, or related through co-evolution from a common ancestor. Groups of paralogous protein families include HipA homologs, luciferase genes, peptidases, and others. A nonorthologous gene displacement is a nonorthologous gene from one species that can substitute for a referenced gene function in a different species. Substitution includes, for example, being able to perform substantially the same or a similar function in the species of origin compared to the referenced function in the different species. Although generally, a nonorthologous gene displacement will be identifiable as structurally related to a known gene encoding the referenced function, less structurally related but functionally similar genes and their corresponding gene products nevertheless will still fall within the meaning of the term as it is used herein. Functional similarity requires, for example, at least some structural similarity in the active site or binding region of a nonorthologous gene compared to a gene encoding the function sought to be substituted. Therefore, a nonorthologous gene includes, for example, a paralog or an unrelated gene. Therefore, in identifying and constructing the non-naturally occurring microbial organisms of the invention having 4-HB, GBL and/or BDO biosynthetic capability, those skilled in the art will understand with applying the teaching and guidance provided herein to a particular species that the identification of metabolic modifications can include identification and inclusion or inactivation of orthologs. To the extent that paralogs and/or nonorthologous gene displacements are present in the referenced microorganism that encode an enzyme catalyzing a similar or substantially similar metabolic reaction, those skilled in the art also can utilize these evolutionally related genes. Orthologs, paralogs and nonorthologous gene displacements can be determined by methods well known to those skilled in the art. For example, inspection of nucleic acid or amino acid sequences for two polypeptides will reveal sequence identity and similarities between the compared sequences. Based on such similarities, one skilled in the art can determine if the similarity is sufficiently high to indicate the proteins are related through evolution from a common ancestor. Algorithms well known to those skilled in the art, such as Align, BLAST, Clustal W and others compare and determine a raw sequence similarity or identity, and also determine the presence or significance of gaps in the sequence which can be assigned a weight or score. Such algorithms also are known in the art and are similarly applicable for determining nucleotide sequence similarity or identity. Parameters for sufficient similarity to determine relatedness are computed based on well known methods for calculating statistical similarity, or the chance of finding a similar match in a random polypeptide, and the significance of the match determined. A computer comparison of two or more sequences can, if desired, also be optimized visually by those skilled in the art. Related gene products or proteins can be expected to have a high similarity, for example, 25% to 100% sequence identity. Proteins that are unrelated can have an identity which is essentially the same as would be expected to occur by chance, if a database of sufficient size is scanned (about 5%). Sequences between 5% and 24% may or may not represent sufficient homology to conclude that the compared sequences are related. Additional statistical analysis to determine the significance of such matches given the size of the data set can be carried out to determine the relevance of these sequences. Exemplary parameters for determining relatedness of two or more sequences using the BLAST algorithm, for example, can be as set forth below. Briefly, amino acid sequence alignments can be performed using BLASTP version 2.0.8 (Jan. 5, 1999) and the following parameters: Matrix: 0 BLOSUM62; gap open: 11; gap extension: 1; x_dropoff: 50; expect: 10.0; wordsize: 3; filter: on. Nucleic acid sequence alignments can be performed using BLASTN version 2.0.6 (Sep. 16, 1998) and the following parameters: Match: 1; mismatch: −2; gap open: 5; gap extension: 2; x_dropoff: 50; expect: 10.0; wordsize: 11; filter: off Those skilled in the art will know what modifications can be made to the above parameters to either increase or decrease the stringency of the comparison, for example, and determine the relatedness of two or more sequences. Disclosed herein are non-naturally occurring microbial biocatalyst or microbial organisms including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway that includes at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, CoA-independent succinic semialdehyde dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, glutamate: succinic semialdehyde transaminase, alpha-ketoglutarate decarboxylase, or glutamate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB). 4-hydroxybutanoate dehydrogenase is also referred to as 4-hydroxybutyrate dehydrogenase or 4-HB dehydrogenase. Succinyl-CoA synthetase is also referred to as succinyl-CoA synthase or succinyl-CoA ligase. Also disclosed herein is a non-naturally occurring microbial biocatalyst or microbial organism including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or α-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB). The non-naturally occurring microbial biocatalysts or microbial organisms can include microbial organisms that employ combinations of metabolic reactions for biosynthetically producing the compounds of the invention. The biosynthesized compounds can be produced intracellularly and/or secreted into the culture medium. Exemplary compounds produced by the non-naturally occurring microorganisms include, for example, 4-hydroxybutanoic acid, 1,4-butanediol and γ-butyrolactone. In one embodiment, a non-naturally occurring microbial organism is engineered to produce 4-HB. This compound is one useful entry point into the 1,4-butanediol family of compounds. The biochemical reactions for formation of 4-HB from succinate, from succinate through succinyl-CoA or from α-ketoglutarate are shown in steps 1-8 of It is understood that any combination of appropriate enzymes of a BDO pathway can be used so long as conversion from a starting component to the BDO product is achieved. Thus, it is understood that any of the metabolic pathways disclosed herein can be utilized and that it is well understood to those skilled in the art how to select appropriate enzymes to achieve a desired pathway, as disclosed herein. In another embodiment, disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, 4-aminobutyrate-CoA ligase, 4-aminobutyryl-CoA oxidoreductase (deaminating), 4-aminobutyryl-CoA transaminase, or 4-hydroxybutyryl-CoA dehydrogenase (see Example VII Table 17). The BDO pathway further can comprise 4-hydroxybutyryl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA reductase, or 1,4-butanediol dehydrogenase. It is understood by those skilled in the art that various combinations of the pathways can be utilized, as disclosed herein. For example, in a non-naturally occurring microbial organism, the nucleic acids can encode 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, or 4-aminobutyrate-CoA ligase; 4-aminobutyryl-CoA oxidoreductase (deaminating) or 4-aminobutyryl-CoA transaminase; and 4-hydroxybutyryl-CoA dehydrogenase. Other exemplary combinations are specifically describe below and further can be found in Additionally disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, 4-aminobutyrate-CoA ligase, 4-aminobutyryl-CoA reductase (alcohol forming), 4-aminobutyryl-CoA reductase, 4-aminobutan-1-ol dehydrogenase, 4-aminobutan-1-ol oxidoreductase (deaminating) or 4-aminobutan-1-ol transaminase (see Example VII and Table 18), and can further comprise 1,4-butanediol dehydrogenase. For example, the exogenous nucleic acids can encode 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, or 4-aminobutyrate-CoA ligase; 4-aminobutyryl-CoA reductase (alcohol forming); and 4-aminobutan-1-ol oxidoreductase (deaminating) or 4-aminobutan-1-ol transaminase. In addition, the nucleic acids can encode. 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, or 4-aminobutyrate-CoA ligase; 4-aminobutyryl-CoA reductase; 4-aminobutan-1-ol dehydrogenase; and 4-aminobutan-1-ol oxidoreductase (deaminating) or 4-aminobutan-1-ol transaminase. Also disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising 4-aminobutyrate kinase, 4-aminobutyraldehyde dehydrogenase (phosphorylating), 4-aminobutan-1-ol dehydrogenase, 4-aminobutan-1-oloxidoreductase (deaminating), 4-aminobutan-1-ol transaminase, [(4-aminobutanolyl)oxy]phosphonic acid oxidoreductase (deaminating), [(4-aminobutanolyl)oxy]phosphonic acid transaminase, 4-hydroxybutyryl-phosphate dehydrogenase, or 4-hydroxybutyraldehyde dehydrogenase (phosphorylating) (see Example VII and Table 19). For example, the exogenous nucleic acids can encode 4-aminobutyrate kinase; 4-aminobutyraldehyde dehydrogenase (phosphorylating); 4-aminobutan-1-ol dehydrogenase; and 4-aminobutan-1-ol oxidoreductase (deaminating) or 4-aminobutan-1-ol transaminase. Alternatively, the exogenous nucleic acids can encode 4-aminobutyrate kinase; [(4-aminobutanolyl)oxy]phosphonic acid oxidoreductase (deaminating) or [(4-aminobutanolyl)oxy]phosphonic acid transaminase; 4-hydroxybutyryl-phosphate dehydrogenase; and 4-hydroxybutyraldehyde dehydrogenase (phosphorylating). Additionally disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising alpha-ketoglutarate 5-kinase, 2,5-dioxopentanoic semialdehyde dehydrogenase (phosphorylating), 2,5-dioxopentanoic acid reductase, alpha-ketoglutarate CoA transferase, alpha-ketoglutaryl-CoA hydrolase, alpha-ketoglutaryl-CoA ligase, alpha-ketoglutaryl-CoA reductase, 5-hydroxy-2-oxopentanoic acid dehydrogenase, alpha-ketoglutaryl-CoA reductase (alcohol forming), 5-hydroxy-2-oxopentanoic acid decarboxylase, or 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation) (see Example VIII and Table 20). The BDO pathway can further comprise 4-hydroxybutyryl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA reductase, or 1,4-butanediol dehydrogenase. For example, the exogenous nucleic acids can encode alpha-ketoglutarate 5-kinase; 2,5-dioxopentanoic semialdehyde dehydrogenase (phosphorylating); 2,5-dioxopentanoic acid reductase; and 5-hydroxy-2-oxopentanoic acid decarboxylase. Alternatively, the exogenous nucleic acids can encode alpha-ketoglutarate 5-kinase; 2,5-dioxopentanoic semialdehyde dehydrogenase (phosphorylating); 2,5-dioxopentanoic acid reductase; and 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation). Alternatively, the exogenous nucleic acids can encode alpha-ketoglutarate CoA transferase, alpha-ketoglutaryl-CoA hydrolase, or alpha-ketoglutaryl-CoA ligase; alpha-ketoglutaryl-CoA reductase, 5-hydroxy-2-oxopentanoic acid dehydrogenase; and 5-hydroxy-2-oxopentanoic acid decarboxylase. In another embodiment, the exogenous nucleic acids can encode alpha-ketoglutarate CoA transferase, alpha-ketoglutaryl-CoA hydrolase, or alpha-ketoglutaryl-CoA ligase; alpha-ketoglutaryl-CoA reductase, 5-hydroxy-2-oxopentanoic acid dehydrogenase, and 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation). Alternatively, the exogenous nucleic acids can encode alpha-ketoglutarate CoA transferase, alpha-ketoglutaryl-CoA hydrolase, or alpha-ketoglutaryl-CoA ligase; alpha-ketoglutaryl-CoA reductase (alcohol forming); and 5-hydroxy-2-oxopentanoic acid decarboxylase. In yet another embodiment, the exogenous nucleic acids can encode alpha-ketoglutarate CoA transferase, alpha-ketoglutaryl-CoA hydrolase, or alpha-ketoglutaryl-CoA ligase; alpha-ketoglutaryl-CoA reductase (alcohol forming); and 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation). Further disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising glutamate CoA transferase, glutamyl-CoA hydrolase, glutamyl-CoA ligase, glutamate 5-kinase, glutamate-5-semialdehyde dehydrogenase (phosphorylating), glutamyl-CoA reductase, glutamate-5-semialdehyde reductase, glutamyl-CoA reductase (alcohol forming), 2-amino-5-hydroxypentanoic acid oxidoreductase (deaminating), 2-amino-5-hydroxypentanoic acid transaminase, 5-hydroxy-2-oxopentanoic acid decarboxylase, 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation) (see Example 1× and Table 21). For example, the exogenous nucleic acids can encode glutamate CoA transferase, glutamyl-CoA hydrolase, or glutamyl-CoA ligase; glutamyl-CoA reductase; glutamate-5-semialdehyde reductase; 2-amino-5-hydroxypentanoic acid oxidoreductase (deaminating) or 2-amino-5-hydroxypentanoic acid transaminase; and 5-hydroxy-2-oxopentanoic acid decarboxylase or 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation). Alternatively, the exogenous nucleic acids can encode glutamate 5-kinase;
Also disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising 3-hydroxybutyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, vinylacetyl-CoA A-isomerase, or 4-hydroxybutyryl-CoA dehydratase (see Example X and Table 22). For example, the exogenous nucleic acids can encode 3-hydroxybutyryl-CoA dehydrogenase; 3-hydroxybutyryl-CoA dehydratase; vinylacetyl-CoA A-isomerase; and 4-hydroxybutyryl-CoA dehydratase. Further disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising homoserine deaminase, homoserine CoA transferase, homoserine-CoA hydrolase, homoserine-CoA ligase, homoserine-CoA deaminase, 4-hydroxybut-2-enoyl-CoA transferase, 4-hydroxybut-2-enoyl-CoA hydrolase, 4-hydroxybut-2-enoyl-CoA ligase, 4-hydroxybut-2-enoate reductase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, or 4-hydroxybut-2-enoyl-CoA reductase (see Example XI and Table 23). For example, the exogenous nucleic acids can encode homoserine deaminase; 4-hydroxybut-2-enoyl-CoA transferase, 4-hydroxybut-2-enoyl-CoA hydrolase, 4-hydroxybut-2-enoyl-CoA ligase; 4-hydroxybut-2-enoyl-CoA reductase. Alternatively, the exogenous nucleic acids can encode homoserine CoA transferase, homoserine-CoA hydrolase, or homoserine-CoA ligase; homoserine-CoA deaminase; and 4-hydroxybut-2-enoyl-CoA reductase. In a further embodiment, the exogenous nucleic acids can encode homoserine deaminase; 4-hydroxybut-2-enoate reductase; and 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyryl-CoA hydrolase, or 4-hydroxybutyryl-CoA ligase. Alternatively, the exogenous nucleic acids can encode homoserine CoA transferase, homoserine-CoA hydrolase, or homoserine-CoA ligase; homoserine-CoA deaminase; and 4-hydroxybut-2-enoyl-CoA reductase. Further disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BOD, the BDO pathway comprising succinyl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, 4-hydroxybutanal dehydrogenase (phosphorylating) (see Table 15). Such a BDO pathway can further comprise succinyl-CoA reductase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyrate kinase, phosphotrans-4-hydroxybutyrylase, 4-hydroxybutyryl-CoA reductase, 4-hydroxybutyryl-CoA reductase (alcohol forming), or 1,4-butanediol dehydrogenase. Additionally disclosed herein is a non-naturally occurring microbial organism, comprising a microbial organism having a BDO pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, the BDO pathway comprising glutamate dehydrogenase, 4-aminobutyrate oxidoreductase (deaminating), 4-aminobutyrate transaminase, glutamate decarboxylase, 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, 4-hydroxybutanal dehydrogenase (phosphorylating)(see Table 16). Such a BDO pathway can further comprise alpha-ketoglutarate decarboxylase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyrate kinase, phosphotrans-4-hydroxybutyrylase, 4-hydroxybutyryl-CoA reductase, 4-hydroxybutyryl-CoA reductase (alcohol forming), or 1,4-butanediol dehydrogenase. The pathways described above are merely exemplary. One skilled in the art can readily select appropriate pathways from those disclosed herein to obtain a suitable BDO pathway or other metabolic pathway, as desired. The invention provides genetically modified organisms that allow improved production of a desired product such as BDO by increasing the product or decreasing undesirable byproducts. As disclosed herein, the invention provides a non-naturally occurring microbial organism, comprising a microbial organism having a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO. In one embodiment, the microbial organism is genetically modified to express exogenous succinyl-CoA synthetase (see Example XII). For example, the succinyl-CoA synthetase can be encoded by an In another embodiment, the microbial organism is genetically modified to express exogenous alpha-ketoglutarate decarboxylase (see Example XIII). For example, the alpha-ketoglutarate decarboxylase can be encoded by the In yet another embodiment, the microbial organism is genetically modified to express exogenous 4-hydroxybutyryl-CoA reductase (see Example XIII). For example, the 4-hydroxybutyryl-CoA reductase can be encoded by In still another embodiment, the microbial organism is genetically modified to disrupt a gene encoding an aerobic respiratory control regulatory system (see Example XV). For example, the disruption can be of the arcA gene. Such an organism can further comprise disruption of a gene encoding malate dehydrogenase. In a further embodiment, the microbial organism is genetically modified to express an exogenous NADH insensitive citrate synthase (see Example XV). For example, the NADH insensitive citrate synthase can be encoded by gltA, such as an R163L mutant of gltA. In still another embodiment, the microbial organism is genetically modified to express exogenous phosphoenolpyruvate carboxykinase (see Example XVI). For example, the phosphoenolpyruvate carboxykinase can be encoded by an It is understood that any of a number of genetic modifications, as disclosed herein, can be used alone or in various combinations of one or more of the genetic modifications disclosed herein to increase the production of BDO in a BDO producing microbial organism. In a particular embodiment, the microbial organism can be genetically modified to incorporate any and up to all of the genetic modifications that lead to increased production of BDO. In a particular embodiment, the microbial organism containing a BDO pathway can be genetically modified to express exogenous succinyl-CoA synthetase; to express exogenous alpha-ketoglutarate decarboxylase; to express exogenous succinate semialdehyde dehydrogenase and 4-hydroxybutyrate dehydrogenase and optionally 4-hydroxybutyryl-CoA/acetyl-CoA transferase; to express exogenous butyrate kinase and phosphotransbutyrylase; to express exogenous 4-hydroxybutyryl-CoA reductase; and to express exogenous 4-hydroxybutanal reductase; to express exogenous pyruvate dehydrogenase; to disrupt a gene encoding an aerobic respiratory control regulatory system; to express an exogenous NADH insensitive citrate synthase; and to express exogenous phosphoenolpyruvate carboxykinase. Such strains for improved production are described in Examples XII-XIX. It is thus understood that, in addition to the modifications described above, such strains can additionally include other modifications disclosed herein. Such modifications include, but are not limited to, deletion of endogenous lactate dehydrogenase (ldhA), alcohol dehydrogenase (adhE), and/or pyruvate formate lyase (pflB)(see Examples XII-XIX and Table 28). Additionally provided is a microbial organism in which one or more genes encoding the exogenously expressed enzymes are integrated into the fimD locus of the host organism (see Example XVII). For example, one or more genes encoding a BDO pathway enzyme can be integrated into the fimD locus for increased production of BDO. Further provided is a microbial organism expressing a non-phosphotransferase sucrose uptake system that increases production of BDO. Although the genetically modified microbial organisms disclosed herein are exemplified with microbial organisms containing particular BDO pathway enzymes, it is understood that such modifications can be incorporated into any microbial organism having a BDO pathway suitable for enhanced production in the presence of the genetic modifications. The microbial organisms of the invention can thus have any of the BDO pathways disclosed herein. For example, the BDO pathway can comprise 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-butyrate kinase, phosphotransbutyrylase, alpha-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase (see Additionally, the BDO pathway can comprise 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, 4-aminobutyrate-CoA ligase, 4-aminobutyryl-CoA reductase (alcohol forming), 4-aminobutyryl-CoA reductase, 4-aminobutan-1-ol dehydrogenase, 4-aminobutan-1-ol oxidoreductase (deaminating) or 4-aminobutan-1-ol transaminase (see Table 18). Also, the BDO pathway can comprise 4-aminobutyrate kinase, 4-aminobutyraldehyde dehydrogenase (phosphorylating), 4-aminobutan-1-ol dehydrogenase, 4-aminobutan-1-oloxidoreductase (deaminating), 4-aminobutan-1-ol transaminase, [(4-aminobutanolyl)oxy]phosphonic acid oxidoreductase (deaminating), [(4-aminobutanolyl)oxy]phosphonic acid transaminase, 4-hydroxybutyryl-phosphate dehydrogenase, or 4-hydroxybutyraldehyde dehydrogenase (phosphorylating) (see Table 19). Such a pathway can further comprise 1,4-butanediol dehydrogenase. The BDO pathway can also comprise alpha-ketoglutarate 5-kinase, 2,5-dioxopentanoic semialdehyde dehydrogenase (phosphorylating), 2,5-dioxopentanoic acid reductase, alpha-ketoglutarate CoA transferase, alpha-ketoglutaryl-CoA hydrolase, alpha-ketoglutaryl-CoA ligase, alpha-ketoglutaryl-CoA reductase, 5-hydroxy-2-oxopentanoic acid dehydrogenase, alpha-ketoglutaryl-CoA reductase (alcohol forming), 5-hydroxy-2-oxopentanoic acid decarboxylase, or 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation)(see Table 20). Such a BDO pathway can further comprise 4-hydroxybutyryl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA reductase, or 1,4-butanediol dehydrogenase. Additionally, the BDO pathway can comprise glutamate CoA transferase, glutamyl-CoA hydrolase, glutamyl-CoA ligase, glutamate 5-kinase, glutamate-5-semialdehyde dehydrogenase (phosphorylating), glutamyl-CoA reductase, glutamate-5-semialdehyde reductase, glutamyl-CoA reductase (alcohol forming), 2-amino-5-hydroxypentanoic acid oxidoreductase (deaminating), 2-amino-5-hydroxypentanoic acid transaminase, 5-hydroxy-2-oxopentanoic acid decarboxylase, 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation) (see Table 21). Such a BDO pathway can further comprise 4-hydroxybutyryl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA reductase, or 1,4-butanediol dehydrogenase. Additionally, the BDO pathway can comprise 3-hydroxybutyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, vinylacetyl-CoA A-isomerase, or 4-hydroxybutyryl-CoA dehydratase (see Table 22). Also, the BDO pathway can comprise homoserine deaminase, homoserine CoA transferase, homoserine-CoA hydrolase, homoserine-CoA ligase, homoserine-CoA deaminase, 4-hydroxybut-2-enoyl-CoA transferase, 4-hydroxybut-2-enoyl-CoA hydrolase, 4-hydroxybut-2-enoyl-CoA ligase, 4-hydroxybut-2-enoate reductase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, or 4-hydroxybut-2-enoyl-CoA reductase (see Table 23). Such a BDO pathway can further comprise 4-hydroxybutyryl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA reductase, or 1,4-butanediol dehydrogenase. The BDO pathway can additionally comprise succinyl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, or 4-hydroxybutanal dehydrogenase (phosphorylating) (see Table 15). Such a pathway can further comprise succinyl-CoA reductase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyrate kinase, phosphotrans-4-hydroxybutyrylase, 4-hydroxybutyryl-CoA reductase, 4-hydroxybutyryl-CoA reductase (alcohol forming), or 1,4-butanediol dehydrogenase. Also, the BDO pathway can comprise glutamate dehydrogenase, 4-aminobutyrate oxidoreductase (deaminating), 4-aminobutyrate transaminase, glutamate decarboxylase, 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, or 4-hydroxybutanal dehydrogenase (phosphorylating) (see Table 16). Such a BDO pathway can further comprise alpha-ketoglutarate decarboxylase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyrate kinase, phosphotrans-4-hydroxybutyrylase, 4-hydroxybutyryl-CoA reductase, 4-hydroxybutyryl-CoA reductase (alcohol forming), or 1,4-butanediol dehydrogenase. The invention is described herein with general reference to the metabolic reaction, reactant or product thereof, or with specific reference to one or more nucleic acids or genes encoding an enzyme associated with or catalyzing the referenced metabolic reaction, reactant or product. Unless otherwise expressly stated herein, those skilled in the art will understand that reference to a reaction also constitutes reference to the reactants and products of the reaction. Similarly, unless otherwise expressly stated herein, reference to a reactant or product also references the reaction and that reference to any of these metabolic constitutes also references the gene or genes encoding the enzymes that catalyze the referenced reaction, reactant or product. Likewise, given the well known fields of metabolic biochemistry, enzymology and genomics, reference herein to a gene or encoding nucleic acid also constitutes a reference to the corresponding encoded enzyme and the reaction it catalyzes as well as the reactants and products of the reaction. The production of 4-HB via biosynthetic modes using the microbial organisms of the invention is particularly useful because it can produce monomeric 4-HB. The non-naturally occurring microbial organisms of the invention and their biosynthesis of 4-HB and BDO family compounds also is particularly useful because the 4-HB product can be (1) secreted; (2) can be devoid of any derivatizations such as Coenzyme A; (3) avoids thermodynamic changes during biosynthesis; (4) allows direct biosynthesis of BDO, and (5) allows for the spontaneous chemical conversion of 4-HB to γ-butyrolactone (GBL) in acidic pH medium. This latter characteristic also is particularly useful for efficient chemical synthesis or biosynthesis of BDO family compounds such as 1,4-butanediol and/or tetrahydrofuran (THF), for example. Microbial organisms generally lack the capacity to synthesize 4-HB and therefore any of the compounds disclosed herein to be within the 1,4-butanediol family of compounds or known by those in the art to be within the 1,4-butanediol family of compounds. Moreover, organisms having all of the requisite metabolic enzymatic capabilities are not known to produce 4-HB from the enzymes described and biochemical pathways exemplified herein. Rather, with the possible exception of a few anaerobic microorganisms described further below, the microorganisms having the enzymatic capability use 4-HB as a substrate to produce, for example, succinate. In contrast, the non-naturally occurring microbial organisms of the invention can generate 4-HB or BDO as a product. As described above, the biosynthesis of 4-HB in its monomeric form is not only particularly useful in chemical synthesis of BDO family of compounds, it also allows for the further biosynthesis of BDO family compounds and avoids altogether chemical synthesis procedures. The non-naturally occurring microbial organisms of the invention that can produce 4-HB or BDO are produced by ensuring that a host microbial organism includes functional capabilities for the complete biochemical synthesis of at least one 4-HB or BDO biosynthetic pathway of the invention. Ensuring at least one requisite 4-HB or BDO biosynthetic pathway confers 4-HB biosynthesis capability onto the host microbial organism. Five 4-HB biosynthetic pathways are exemplified herein and shown for purposes of illustration in The non-naturally occurring microbial organisms of the invention can be produced by introducing expressible nucleic acids encoding one or more of the enzymes participating in one or more 4-HB or BDO biosynthetic pathways. Depending on the host microbial organism chosen for biosynthesis, nucleic acids for some or all of a particular 4-HB or BDO biosynthetic pathway can be expressed. For example, if a chosen host is deficient in one or more enzymes in a desired biosynthetic pathway, for example, the succinate to 4-HB pathway, then expressible nucleic acids for the deficient enzyme(s), for example, both CoA-independent succinic semialdehyde dehydrogenase and 4-hydroxybutanoate dehydrogenase in this example, are introduced into the host for subsequent exogenous expression. Alternatively, if the chosen host exhibits endogenous expression of some pathway enzymes, but is deficient in others, then an encoding nucleic acid is needed for the deficient enzyme(s) to achieve 4-HB or BDO biosynthesis. For example, if the chosen host exhibits endogenous CoA-independent succinic semialdehyde dehydrogenase, but is deficient in 4-hydroxybutanoate dehydrogenase, then an encoding nucleic acid is needed for this enzyme to achieve 4-HB biosynthesis. Thus, a non-naturally occurring microbial organism of the invention can be produced by introducing exogenous enzyme or protein activities to obtain a desired biosynthetic pathway or a desired biosynthetic pathway can be obtained by introducing one or more exogenous enzyme or protein activities that, together with one or more endogenous enzymes or proteins, produces a desired product such as 4-HB or BDO. In like fashion, where 4-HB biosynthesis is selected to occur through the succinate to succinyl-CoA pathway (the succinyl-CoA pathway), encoding nucleic acids for host deficiencies in the enzymes succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase and/or 4-hydroxybutanoate dehydrogenase are to be exogenously expressed in the recipient host. Selection of 4-HB biosynthesis through the α-ketoglutarate to succinic semialdehyde pathway (the α-ketoglutarate pathway) can utilize exogenous expression for host deficiencies in one or more of the enzymes for glutamate:succinic semialdehyde transaminase, glutamate decarboxylase and/or 4-hydroxybutanoate dehydrogenase, or α-ketoglutarate decarboxylase and 4-hydroxybutanoate dehydrogenase. One skilled in the art can readily determine pathway enzymes for production of 4-HB or BDO, as disclosed herein. Depending on the 4-HB or BDO biosynthetic pathway constituents of a selected host microbial organism, the non-naturally occurring microbial organisms of the invention will include at least one exogenously expressed 4-HB or BDO pathway-encoding nucleic acid and up to all encoding nucleic acids for one or more 4-HB or BDO biosynthetic pathways. For example, 4-HB or BDO biosynthesis can be established in a host deficient in a pathway enzyme or protein through exogenous expression of the corresponding encoding nucleic acid. In a host deficient in all enzymes or proteins of a 4-HB or BDO pathway, exogenous expression of all enzyme or proteins in the pathway can be included, although it is understood that all enzymes or proteins of a pathway can be expressed even if the host contains at least one of the pathway enzymes or proteins. For example, 4-HB biosynthesis can be established from all five pathways in a host deficient in 4-hydroxybutanoate dehydrogenase through exogenous expression of a 4-hydroxybutanoate dehydrogenase encoding nucleic acid. In contrast, 4-HB biosynthesis can be established from all five pathways in a host deficient in all eight enzymes through exogenous expression of all eight of CoA-independent succinic semialdehyde dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, glutamate: succinic semialdehyde transaminase, glutamate decarboxylase, α-ketoglutarate decarboxylase, α-ketoglutarate dehydrogenase and 4-hydroxybutanoate dehydrogenase. Given the teachings and guidance provided herein, those skilled in the art will understand that the number of encoding nucleic acids to introduce in an expressible form will, at least, parallel the 4-HB or BDO pathway deficiencies of the selected host microbial organism. Therefore, a non-naturally occurring microbial organism of the invention can have one, two, three, four, five, six, seven, eight or up to all nucleic acids encoding the enzymes disclosed herein constituting one or more 4-HB or BDO biosynthetic pathways. In some embodiments, the non-naturally occurring microbial organisms also can include other genetic modifications that facilitate or optimize 4-HB or BDO biosynthesis or that confer other useful functions onto the host microbial organism. One such other functionality can include, for example, augmentation of the synthesis of one or more of the 4-HB pathway precursors such as succinate, succinyl-CoA, α-ketoglutarate, 4-aminobutyrate, glutamate, acetoacetyl-CoA, and/or homoserine. Generally, a host microbial organism is selected such that it produces the precursor of a 4-HB or BDOpathway, either as a naturally produced molecule or as an engineered product that either provides de novo production of a desired precursor or increased production of a precursor naturally produced by the host microbial organism. For example, succinyl-CoA, α-ketoglutarate, 4-aminobutyrate, glutamate, acetoacetyl-CoA, and homoserine are produced naturally in a host organism such as In some embodiments, a non-naturally occurring microbial organism of the invention is generated from a host that contains the enzymatic capability to synthesize 4-HB or BDO. In this specific embodiment it can be useful to increase the synthesis or accumulation of a 4-HB or BDO pathway product to, for example, drive 4-HB or BDO pathway reactions toward 4-HB or BDO production. Increased synthesis or accumulation can be accomplished by, for example, overexpression of nucleic acids encoding one or more of the 4-HB or BDO pathway enzymes disclosed herein. Over expression of the 4-HB or BDO pathway enzyme or enzymes can occur, for example, through exogenous expression of the endogenous gene or genes, or through exogenous expression of the heterologous gene or genes. Therefore, naturally occurring organisms can be readily generated to be non-naturally 4-HB or BDO producing microbial organisms of the invention through overexpression of one, two, three, four, five, six and so forth up to all nucleic acids encoding 4-HB or BDO biosynthetic pathway enzymes. In addition, a non-naturally occurring organism can be generated by mutagenesis of an endogenous gene that results in an increase in activity of an enzyme in the 4-HB or BDO biosynthetic pathway. In particularly useful embodiments, exogenous expression of the encoding nucleic acids is employed. Exogenous expression confers the ability to custom tailor the expression and/or regulatory elements to the host and application to achieve a desired expression level that is controlled by the user. However, endogenous expression also can be utilized in other embodiments such as by removing a negative regulatory effector or induction of the gene's promoter when linked to an inducible promoter or other regulatory element. Thus, an endogenous gene having a naturally occurring inducible promoter can be up-regulated by providing the appropriate inducing agent, or the regulatory region of an endogenous gene can be engineered to incorporate an inducible regulatory element, thereby allowing the regulation of increased expression of an endogenous gene at a desired time. Similarly, an inducible promoter can be included as a regulatory element for an exogenous gene introduced into a non-naturally occurring microbial organism (see Examples). “Exogenous” as it is used herein is intended to mean that the referenced molecule or the referenced activity is introduced into the host microbial organism. The molecule can be introduced, for example, by introduction of an encoding nucleic acid into the host genetic material such as by integration into a host chromosome or as non-chromosomal genetic material such as a plasmid. Therefore, the term as it is used in reference to expression of an encoding nucleic acid refers to introduction of the encoding nucleic acid in an expressible form into the microbial organism. When used in reference to a biosynthetic activity, the term refers to an activity that is introduced into the host reference organism. The source can be, for example, a homologous or heterologous encoding nucleic acid that expresses the referenced activity following introduction into the host microbial organism. Therefore, the term “endogenous” refers to a referenced molecule or activity that is present in the host. Similarly, the term when used in reference to expression of an encoding nucleic acid refers to expression of an encoding nucleic acid contained within the microbial organism. The term “heterologous” refers to a molecule or activity derived from a source other than the referenced species whereas “homologous” refers to a molecule or activity derived from the host microbial organism. Accordingly, exogenous expression of an encoding nucleic acid of the invention can utilize either or both a heterologous or homologous encoding nucleic acid. Sources of encoding nucleic acids for a 4-HB or BDO pathway enzyme can include, for example, any species where the encoded gene product is capable of catalyzing the referenced reaction. Such species include both prokaryotic and eukaryotic organisms including, but not limited to, bacteria, including archaea and eubacteria, and eukaryotes, including yeast, plant, insect, animal, and mammal, including human. Exemplary species for such sources include, for example, In some instances, such as when an alternative 4-HB or BDO biosynthetic pathway exists in an unrelated species, 4-HB or BDO biosynthesis can be conferred onto the host species by, for example, exogenous expression of a paralog or paralogs from the unrelated species that catalyzes a similar, yet non-identical metabolic reaction to replace the referenced reaction. Because certain differences among metabolic networks exist between different organisms, those skilled in the art will understand that the actual genes usage between different organisms may differ. However, given the teachings and guidance provided herein, those skilled in the art also will understand that the teachings and methods of the invention can be applied to all microbial organisms using the cognate metabolic alterations to those exemplified herein to construct a microbial organism in a species of interest that will synthesize 4-HB, such as monomeric 4-HB, or BDO. Host microbial organisms can be selected from, and the non-naturally occurring microbial organisms generated in, for example, bacteria, yeast, fungus or any of a variety of other microorganisms applicable to fermentation processes. Exemplary bacteria include species selected from Methods for constructing and testing the expression levels of a non-naturally occurring 4-HB- or BDO-producing host can be performed, for example, by recombinant and detection methods well known in the art. Such methods can be found described in, for example, Sambrook et al., Exogenous nucleic acid sequences involved in a pathway for production of 4-HB or BDO can be introduced stably or transiently into a host cell using techniques well known in the art including, but not limited to, conjugation, electroporation, chemical transformation, transduction, transfection, and ultrasound transformation. For exogenous expression in An expression vector or vectors can be constructed to harbor one or more 4-HB biosynthetic pathway and/or one or more BDO biosynthetic encoding nucleic acids as exemplified herein operably linked to expression control sequences functional in the host organism. Expression vectors applicable for use in the microbial host organisms of the invention include, for example, plasmids, phage vectors, viral vectors, episomes and artificial chromosomes, including vectors and selection sequences or markers operable for stable integration into a host chromosome. Additionally, the expression vectors can include one or more selectable marker genes and appropriate expression control sequences. Selectable marker genes also can be included that, for example, provide resistance to antibiotics or toxins, complement auxotrophic deficiencies, or supply critical nutrients not in the culture media. Expression control sequences can include constitutive and inducible promoters, transcription enhancers, transcription terminators, and the like which are well known in the art. When two or more exogenous encoding nucleic acids are to be co-expressed, both nucleic acids can be inserted, for example, into a single expression vector or in separate expression vectors. For single vector expression, the encoding nucleic acids can be operationally linked to one common expression control sequence or linked to different expression control sequences, such as one inducible promoter and one constitutive promoter. The transformation of exogenous nucleic acid sequences involved in a metabolic or synthetic pathway can be confirmed using methods well known in the art. Such methods include, for example, nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA, or immunoblotting for expression of gene products, or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product. It is understood by those skilled in the art that the exogenous nucleic acid is expressed in a sufficient amount to produce the desired product, and it is further understood that expression levels can be optimized to obtain sufficient expression using methods well known in the art and as disclosed herein. The non-naturally occurring microbial organisms of the invention are constructed using methods well known in the art as exemplified herein to exogenously express at least one nucleic acid encoding a 4-HB or BDO pathway enzyme in sufficient amounts to produce 4-HB, such as monomeric 4-HB, or BDO. It is understood that the microbial organisms of the invention are cultured under conditions sufficient to produce 4-HB or BDO. Exemplary levels of expression for 4-HB enzymes in each pathway are described further below in the Examples. Following the teachings and guidance provided herein, the non-naturally occurring microbial organisms of the invention can achieve biosynthesis of 4-HB, such as monomeric 4-HB, or BDO resulting in intracellular concentrations between about 0.1-200 mM or more, for example, 0.1-25 mM or more. Generally, the intracellular concentration of 4-HB, such as monomeric 4-HB, or BDO is between about 3-150 mM or more, particularly about 5-125 mM or more, and more particularly between about 8-100 mM, for example, about 3-20 mM, particularly between about 5-15 mM and more particularly between about 8-12 mM, including about 10 mM, 20 mM, 50 mM, 80 mM or more. Intracellular concentrations between and above each of these exemplary ranges also can be achieved from the non-naturally occurring microbial organisms of the invention. In particular embodiments, the microbial organisms of the invention, particularly strains such as those disclosed herein (see Examples XII-XIX and Table 28), can provide improved production of a desired product such as BDO by increasing the production of BDO and/or decreasing undesirable byproducts. Such production levels include, but are not limited to, those disclosed herein and including from about 1 gram to about 25 grams per liter, for example about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or even higher amounts of product per liter. In some embodiments, culture conditions include anaerobic or substantially anaerobic growth or maintenance conditions. Exemplary anaerobic conditions have been described previously and are well known in the art. Exemplary anaerobic conditions for fermentation processes are described herein and are described, for example, in U.S. patent application Ser. No. 11/891,602, filed Aug. 10, 2007. Any of these conditions can be employed with the non-naturally occurring microbial organisms as well as other anaerobic conditions well known in the art. Under such anaerobic conditions, the 4-HB or BDO producers can synthesize 4-HB or BDO at intracellular concentrations of 5-10 mM or more as well as all other concentrations exemplified herein. It is understood that, even though the above description refers to intracellular concentrations, 4-HB or BDO producing microbial organisms can produce 4-HB or BDO intracellularly and/or secrete the product into the culture medium. The culture conditions can include, for example, liquid culture procedures as well as fermentation and other large scale culture procedures. As described herein, particularly useful yields of the biosynthetic products of the invention can be obtained under anaerobic or substantially anaerobic culture conditions. As described herein, one exemplary growth condition for achieving biosynthesis of 4-HB or BDO includes anaerobic culture or fermentation conditions. In certain embodiments, the non-naturally occurring microbial organisms of the invention can be sustained, cultured or fermented under anaerobic or substantially anaerobic conditions. Briefly, anaerobic conditions refers to an environment devoid of oxygen. Substantially anaerobic conditions include, for example, a culture, batch fermentation or continuous fermentation such that the dissolved oxygen concentration in the medium remains between 0 and 10% of saturation. Substantially anaerobic conditions also includes growing or resting cells in liquid medium or on solid agar inside a sealed chamber maintained with an atmosphere of less than 1% oxygen. The percent of oxygen can be maintained by, for example, sparging the culture with an N2/CO2mixture or other suitable non-oxygen gas or gases. The invention also provides a non-naturally occurring microbial biocatalyst including a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways that include at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, CoA-independent succinic semialdehyde dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, glutamate: succinic semialdehyde transaminase, glutamate decarboxylase, CoA-independent aldehyde dehydrogenase, CoA-dependent aldehyde dehydrogenase or alcohol dehydrogenase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce 1,4-butanediol (BDO). 4-Hydroxybutyrate:CoA transferase also is known as 4-hydroxybutyryl CoA:acetyl-CoA transferase. Additional 4-HB or BDO pathway enzymes are also disclosed herein (see Examples and The invention further provides non-naturally occurring microbial biocatalyst including a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways, the pathways include at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-butyrate kinase, phosphotransbutyrylase, α-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce 1,4-butanediol (BDO). Non-naturally occurring microbial organisms also can be generated which biosynthesize BDO. As with the 4-HB producing microbial organisms of the invention, the BDO producing microbial organisms also can produce intracellularly or secret the BDO into the culture medium. Following the teachings and guidance provided previously for the construction of microbial organisms that synthesize 4-HB, additional BDO pathways can be incorporated into the 4-HB producing microbial organisms to generate organisms that also synthesize BDO and other BDO family compounds. The chemical synthesis of BDO and its downstream products are known. The non-naturally occurring microbial organisms of the invention capable of BDO biosynthesis circumvent these chemical synthesis using 4-HB as an entry point as illustrated in The additional BDO pathways to introduce into 4-HB producers include, for example, the exogenous expression in a host deficient background or the overexpression of one or more of the enzymes exemplified in Exemplary alcohol and aldehyde dehydrogenases that can be used for these in vivo conversions from 4-HB to BDO are listed below in Table 1. Other exemplary enzymes and pathways are disclosed herein (see Examples). Furthermore, it is understood that enzymes can be utilized for carry out reactions for which the substrate is not the natural substrate. While the activity for the non-natural substrate may be lower than the natural substrate, it is understood that such enzymes can be utilized, either as naturally occurring or modified using the directed evolution or adaptive evolution, as disclosed herein (see also Examples). BDO production through any of the pathways disclosed herein are based, in part, on the identification of the appropriate enzymes for conversion of precursors to BDO. A number of specific enzymes for several of the reaction steps have been identified. For those transformations where enzymes specific to the reaction precursors have not been identified, enzyme candidates have been identified that are best suited for catalyzing the reaction steps. Enzymes have been shown to operate on a broad range of substrates, as discussed below. In addition, advances in the field of protein engineering also make it feasible to alter enzymes to act efficiently on substrates, even if not a natural substrate. Described below are several examples of broad-specificity enzymes from diverse classes suitable for a BDO pathway as well as methods that have been used for evolving enzymes to act on non-natural substrates. A key class of enzymes in BDO pathways is the oxidoreductases that interconvert ketones or aldehydes to alcohols (1.1.1). Numerous exemplary enzymes in this class can operate on a wide range of substrates. An alcohol dehydrogenase (1.1.1.1) purified from the soil bacterium Lactate dehydrogenase (1.1.1.27) from Oxidoreductases that can convert 2-oxoacids to their acyl-CoA counterparts (1.2.1) have been shown to accept multiple substrates as well. For example, branched-chain 2-keto-acid dehydrogenase complex (BCKAD), also known as 2-oxoisovalerate dehydrogenase (1.2.1.25), participates in branched-chain amino acid degradation pathways, converting 2-keto acids derivatives of valine, leucine and isoleucine to their acyl-CoA derivatives and CO2. In some organisms including Members of yet another class of enzymes, namely aminotransferases (2.6.1), have been reported to act on multiple substrates. Aspartate aminotransferase (aspAT) from CoA transferases (2.8.3) have been demonstrated to have the ability to act on more than one substrate. Specifically, a CoA transferase was purified from Other enzyme classes additionally support broad substrate specificity for enzymes. Some isomerases (5.3.3) have also been proven to operate on multiple substrates. For example, L-rhamnose isomerase from In yet another class of enzymes, the phosphotransferases (2.7.1), the homoserine kinase (2.7.1.39) from Another class of enzymes useful in BDO pathways is the acid-thiol ligases (6.2.1). Like enzymes in other classes, certain enzymes in this class have been determined to have broad substrate specificity. For example, acyl CoA ligase from Interestingly, enzymes known to have one dominant activity have also been reported to catalyze a very different function. For example, the cofactor-dependent phosphoglycerate mutase (5.4.2.1) from In contrast to these examples where the enzymes naturally have broad substrate specificities, numerous enzymes have been modified using directed evolution to broaden their specificity towards their non-natural substrates. Alternatively, the substrate preference of an enzyme has also been changed using directed evolution. Therefore, it is feasible to engineer a given enzyme for efficient function on a natural, for example, improved efficiency, or a non-natural substrate, for example, increased efficiency. For example, it has been reported that the enantioselectivity of a lipase from Directed evolution methods have been used to modify an enzyme to function on an array of non-natural substrates. The substrate specificity of the lipase in The effectiveness of protein engineering approaches to alter the substrate specificity of an enzyme for a desired substrate has also been demonstrated in several studies. Isopropylmalate dehydrogenase from Numerous examples exist spanning diverse classes of enzymes where the function of enzyme was changed to favor one non-natural substrate over the natural substrate of the enzyme. A fucosidase was evolved from a galactosidase in In some cases, enzymes with different substrate preferences than either of the parent enzymes have been obtained. For example, biphenyl-dioxygenase-mediated degradation of polychlorinated biphenyls was improved by shuffling genes from two bacteria, In addition to changing enzyme specificity, it is also possible to enhance the activities on substrates for which the enzymes naturally have low activities. One study demonstrated that amino acid racemase from Directed evolution has also been used to express proteins that are difficult to express. For example, by subjecting horseradish peroxidase to random mutagenesis and gene recombination, mutants were identified that had more than 14-fold higher activity than the wild type (Lin et al., Another example of directed evolution shows the extensive modifications to which an enzyme can be subjected to achieve a range of desired functions. The enzyme lactate dehydrogenase from As disclosed herein, biosynthetic pathways to 1,4-butanediol from a number of central metabolic intermediates are can be utilized, including acetyl-CoA, succinyl-CoA, alpha-ketoglutarate, glutamate, 4-aminobutyrate, and homoserine. Acetyl-CoA, succinyl-CoA and alpha-ketoglutarate are common intermediates of the tricarboxylic acid (TCA) cycle, a series of reactions that is present in its entirety in nearly all living cells that utilize oxygen for cellular respiration and is present in truncated forms in a number of anaerobic organisms. Glutamate is an amino acid that is derived from alpha-ketoglutarate via glutamate dehydrogenase or any of a number of transamination reactions (see Pathways other than those exemplified above also can be employed to generate the biosynthesis of BDO in non-naturally occurring microbial organisms. In one embodiment, biosynthesis can be achieved using a L-homoserine to BDO pathway (see A homoserine pathway also can be engineered to generate BDO-producing microbial organisms. Homoserine is an intermediate in threonine and methionine metabolism, formed from oxaloacetate via aspartate. The conversion of oxaloacetate to homoserine requires one NADH, two NADPH, and one ATP ( The transformation of homoserine to 4-hydroxybutyrate (4-HB) can be accomplished in two enzymatic steps as described herein. The first step of this pathway is deamination of homoserine by a putative ammonia lyase. In step 2, the product alkene, 4-hydroxybut-2-enoate is reduced to 4-HB by a putative reductase at the cost of one NADH. 4-HB can then be converted to BDO. Enzymes available for catalyzing the above transformations are disclosed herein. For example, the ammonia lyase in step 1 of the pathway closely resembles the chemistry of aspartate ammonia-lyase (aspartase). Aspartase is a widespread enzyme in microorganisms, and has been characterized extensively (Viola, R. E., The succinyl-CoA pathway was found to have a higher yield due to the fact that it is more energetically efficient. The conversion of one oxaloacetate molecule to BDO via the homoserine pathway will require the expenditure of 2 ATP equivalents. Because the conversion of glucose to two oxaloacetate molecules can generate a maximum of 3 ATP molecules assuming PEP carboxykinase to be reversible, the overall conversion of glucose to BDO via homoserine has a negative energetic yield. As expected, if it is assumed that energy can be generated via respiration, the maximum yield of the homoserine pathway increases to 1.05 mol/mol glucose which is 96% of the succinyl-CoA pathway yield. The succinyl-CoA pathway can channel some of the carbon flux through pyruvate dehydrogenase and the oxidative branch of the TCA cycle to generate both reducing equivalents and succinyl-CoA without an energetic expenditure. Thus, it does not encounter the same energetic difficulties as the homoserine pathway because not all of the flux is channeled through oxaloacetate to succinyl-CoA to BDO. Overall, the homoserine pathway demonstrates a high-yielding route to BDO. An acetoacetate pathway also can be engineered to generate BDO-producing microbial organisms. Acetoacetate can be formed from acetyl-CoA by enzymes involved in fatty acid metabolism, including acetyl-CoA acetyltransferase and acetoacetyl-CoA transferase. Biosynthetic routes through acetoacetate are also particularly useful in microbial organisms that can metabolize single carbon compounds such as carbon monoxide, carbon dioxide or methanol to form acetyl-CoA. A three step route from acetoacetyl-CoA to 4-aminobutyrate (see In step 2, a putative aminomutase shifts the amine group from the 3- to the 4-position of the carbon backbone. An aminomutase performing this function on 3-aminobutanoate has not been characterized, but an enzyme from The synthetic route to BDO from acetoacetyl-CoA passes through 4-aminobutanoate, a metabolite in One consideration for selecting candidate enzymes in this pathway is the stereoselectivity of the enzymes involved in steps 2 and 3. The w-ABT in The maximum theoretical molar yield of this pathway under anaerobic conditions is 1.091 mol/mol glucose. In order to generate flux from acetoacetyl-CoA to BDO it was necessary to assume that acetyl-CoA:acetoacetyl-CoA transferase is reversible. The function of this enzyme in While the operation of acetyl-CoA:acetoacetyl-CoA transferase in the acetate-consuming direction has not been demonstrated experimentally in Therefore, in addition to any of the various modifications exemplified previously for establishing 4-HB biosynthesis in a selected host, the BDO producing microbial organisms can include any of the previous combinations and permutations of 4-HB pathway metabolic modifications as well as any combination of expression for CoA-independent aldehyde dehydrogenase, CoA-dependent aldehyde dehydrogenase or an alcohol dehydrogenase or other enzymes disclosed herein to generate biosynthetic pathways for GBL and/or BDO. Therefore, the BDO producers of the invention can have exogenous expression of, for example, one, two, three, four, five, six, seven, eight, nine, or up to all enzymes corresponding to any of the 4-HB pathway and/or any of the BDO pathway enzymes disclosed herein. Design and construction of the genetically modified microbial organisms is carried out using methods well known in the art to achieve sufficient amounts of expression to produce BDO. In particular, the non-naturally occurring microbial organisms of the invention can achieve biosynthesis of BDO resulting in intracellular concentrations between about 0.1-200 mM or more, such as about 0.1-25 mM or more, as discussed above. For example, the intracellular concentration of BDO is between about 3-20 mM, particularly between about 5-15 mM and more particularly between about 8-12 mM, including about 10 mM or more. Intracellular concentrations between and above each of these exemplary ranges also can be achieved from the non-naturally occurring microbial organisms of the invention. As with the 4-HB producers, the BDO producers also can be sustained, cultured or fermented under anaerobic conditions. The invention further provides a method for the production of 4-HB. The method includes culturing a non-naturally occurring microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway comprising at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, CoA-independent succinic semialdehyde dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, glutamate: succinic semialdehyde transaminase, α-ketoglutarate decarboxylase, or glutamate decarboxylase under substantially anaerobic conditions for a sufficient period of time to produce monomeric 4-hydroxybutanoic acid (4-HB). The method can additionally include chemical conversion of 4-HB to GBL and to BDO or THF, for example. Additionally provided is a method for the production of 4-HB. The method includes culturing a non-naturally occurring microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway including at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase or α-ketoglutarate decarboxylase under substantially anaerobic conditions for a sufficient period of time to produce monomeric 4-hydroxybutanoic acid (4-HB). The 4-HB product can be secreted into the culture medium. Further provided is a method for the production of BDO. The method includes culturing a non-naturally occurring microbial biocatalyst or microbial organism, comprising a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways, the pathways including at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-hydroxybutyrate kinase, phosphotranshydroxybutyrylase, α-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase for a sufficient period of time to produce 1,4-butanediol (BDO). The BDO product can be secreted into the culture medium. Additionally provided are methods for producing BDO by culturing a non-naturally occurring microbial organism having a BDO pathway of the invention. The BDO pathway can comprise at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, 4-aminobutyrate-CoA ligase, 4-aminobutyryl-CoA oxidoreductase (deaminating), 4-aminobutyryl-CoA transaminase, or 4-hydroxybutyryl-CoA dehydrogenase (see Example VII and Table 17). Alternatively, the BDO pathway can compare at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising 4-aminobutyrate CoA transferase, 4-aminobutyryl-CoA hydrolase, 4-aminobutyrate-CoA ligase, 4-aminobutyryl-CoA reductase (alcohol forming), 4-aminobutyryl-CoA reductase, 4-aminobutan-1-ol dehydrogenase, 4-aminobutan-1-ol oxidoreductase (deaminating) or 4-aminobutan-1-ol transaminase (see Example VII and Table 18). In addition, the invention provides a method for producing BDO, comprising culturing a non-naturally occurring microbial organism having a BDO pathway, the pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising 4-aminobutyrate kinase, 4-aminobutyraldehyde dehydrogenase (phosphorylating), 4-aminobutan-1-ol dehydrogenase, 4-aminobutan-1-oloxidoreductase (deaminating), 4-aminobutan-1-ol transaminase, [(4-aminobutanolyl)oxy]phosphonic acid oxidoreductase (deaminating), [(4-aminobutanolyl)oxy]phosphonic acid transaminase, 4-hydroxybutyryl-phosphate dehydrogenase, or 4-hydroxybutyraldehyde dehydrogenase (phosphorylating) (see Example VII and Table 19). The invention further provides a method for producing BDO, comprising culturing a non-naturally occurring microbial organism having a BDO pathway, the pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising alpha-ketoglutarate 5-kinase, 2,5-dioxopentanoic semialdehyde dehydrogenase (phosphorylating), 2,5-dioxopentanoic acid reductase, alpha-ketoglutarate CoA transferase, alpha-ketoglutaryl-CoA hydrolase, alpha-ketoglutaryl-CoA ligase, alpha-ketoglutaryl-CoA reductase, 5-hydroxy-2-oxopentanoic acid dehydrogenase, alpha-ketoglutaryl-CoA reductase (alcohol forming), 5-hydroxy-2-oxopentanoic acid decarboxylase, or 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation)(see Example VIII and Table 20). The invention additionally provides a method for producing BDO, comprising culturing a non-naturally occurring microbial organism having a BDO pathway, the pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising glutamate CoA transferase, glutamyl-CoA hydrolase, glutamyl-CoA ligase, glutamate 5-kinase, glutamate-5-semialdehyde dehydrogenase (phosphorylating), glutamyl-CoA reductase, glutamate-5-semialdehyde reductase, glutamyl-CoA reductase (alcohol forming), 2-amino-5-hydroxypentanoic acid oxidoreductase (deaminating), 2-amino-5-hydroxypentanoic acid transaminase, 5-hydroxy-2-oxopentanoic acid decarboxylase, 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation)(see Example IX and Table 21). The invention additionally includes a method for producing BDO, comprising culturing a non-naturally occurring microbial organism having a BDO pathway, the pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising 3-hydroxybutyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, vinylacetyl-CoA A-isomerase, or 4-hydroxybutyryl-CoA dehydratase (see Example X and Table 22). Also provided is a method for producing BDO, comprising culturing a non-naturally occurring microbial organism having a BDO pathway, the pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising homoserine deaminase, homoserine CoA transferase, homoserine-CoA hydrolase, homoserine-CoA ligase, homoserine-CoA deaminase, 4-hydroxybut-2-enoyl-CoA transferase, 4-hydroxybut-2-enoyl-CoA hydrolase, 4-hydroxybut-2-enoyl-CoA ligase, 4-hydroxybut-2-enoate reductase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, or 4-hydroxybut-2-enoyl-CoA reductase (see Example XI and Table 23). The invention additionally provides a method for producing BDO, comprising culturing a non-naturally occurring microbial organism having a BDO pathway, the pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising succinyl-CoA reductase (alcohol forming), 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, 4-hydroxybutanal dehydrogenase (phosphorylating). Such a BDO pathway can further comprise succinyl-CoA reductase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyrate kinase, phosphotrans-4-hydroxybutyrylase, 4-hydroxybutyryl-CoA reductase, 4-hydroxybutyryl-CoA reductase (alcohol forming), or 1,4-butanediol dehydrogenase. Also provided is a method for producing BDO, comprising culturing a non-naturally occurring microbial organism having a BDO pathway, the pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, under conditions and for a sufficient period of time to produce BDO, the BDO pathway comprising glutamate dehydrogenase, 4-aminobutyrate oxidoreductase (deaminating), 4-aminobutyrate transaminase, glutamate decarboxylase, 4-hydroxybutyryl-CoA hydrolase, 4-hydroxybutyryl-CoA ligase, 4-hydroxybutanal dehydrogenase (phosphorylating). The invention additionally provides methods of producing a desired product using the genetically modified organisms disclosed herein that allow improved production of a desired product such as BDO by increasing the product or decreasing undesirable byproducts. Thus, the invention provides a method for producing 1,4-butanediol (BDO), comprising culturing the non-naturally occurring microbial organisms disclosed herein under conditions and for a sufficient period of time to produce BDO. In one embodiment, the invention provides a method of producing BDO using a non-naturally occurring microbial organism, comprising a microbial organism having a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO. In one embodiment, the microbial organism is genetically modified to express exogenous succinyl-CoA synthetase (see Example XII). For example, the succinyl-CoA synthetase can be encoded by an In another embodiment, the microbial organism is genetically modified to express exogenous alpha-ketoglutarate decarboxylase (see Example XIII). For example, the alpha-ketoglutarate decarboxylase can be encoded by the In yet another embodiment, the microbial organism is genetically modified to express exogenous 4-hydroxybutyryl-CoA reductase (see Example XIII). For example, the 4-hydroxybutyryl-CoA reductase can be encoded by In still another embodiment, the microbial organism is genetically modified to disrupt a gene encoding an aerobic respiratory control regulatory system (see Example XV). For example, the disruption can be of the arcA gene. Such an organism can further comprise disruption of a gene encoding malate dehydrogenase. In a further embodiment, the microbial organism is genetically modified to express an exogenous NADH insensitive citrate synthase (see Example XV). For example, the NADH insensitive citrate synthase can be encoded by gltA, such as an R163L mutant of gltA. In still another embodiment, the microbial organism is genetically modified to express exogenous phosphoenolpyruvate carboxykinase (see Example XVI). For example, the phosphoenolpyruvate carboxykinase can be encoded by an It is understood that, in methods of the invention, any of the one or more exogenous nucleic acids can be introduced into a microbial organism to produce a non-naturally occurring microbial organism of the invention. The nucleic acids can be introduced so as to confer, for example, a 4-HB, BDO, THF or GBL biosynthetic pathway onto the microbial organism. Alternatively, encoding nucleic acids can be introduced to produce an intermediate microbial organism having the biosynthetic capability to catalyze some of the required reactions to confer 4-HB, BDO, THF or GBL biosynthetic capability. For example, a non-naturally occurring microbial organism having a 4-HB biosynthetic pathway can comprise at least two exogenous nucleic acids encoding desired enzymes, such as the combination of 4-hydroxybutanoate dehydrogenase and α-ketoglutarate decarboxylase; 4-hydroxybutanoate dehydrogenase and CoA-independent succinic semialdehyde dehydrogenase; 4-hydroxybutanoate dehydrogenase and CoA-dependent succinic semialdehyde dehydrogenase; CoA-dependent succinic semialdehyde dehydrogenase and succinyl-CoA synthetase; succinyl-CoA synthetase and glutamate decarboxylase, and the like. Thus, it is understood that any combination of two or more enzymes of a biosynthetic pathway can be included in a non-naturally occurring microbial organism of the invention. Similarly, it is understood that any combination of three or more enzymes of a biosynthetic pathway can be included in a non-naturally occurring microbial organism of the invention, for example, 4-hydroxybutanoate dehydrogenase, α-ketoglutarate decarboxylase and CoA-dependent succinic semialdehyde dehydrogenase; CoA-independent succinic semialdehyde dehydrogenase and succinyl-CoA synthetase; 4-hydroxybutanoate dehydrogenase, CoA-dependent succinic semialdehyde dehydrogenase and glutamate:succinic semialdehyde transaminase, and so forth, as desired, so long as the combination of enzymes of the desired biosynthetic pathway results in production of the corresponding desired product. Similarly, for example, with respect to any one or more exogenous nucleic acids introduced to confer BDO production, a non-naturally occurring microbial organism having a BDO biosynthetic pathway can comprise at least two exogenous nucleic acids encoding desired enzymes, such as the combination of 4-hydroxybutanoate dehydrogenase and α-ketoglutarate decarboxylase; 4-hydroxybutanoate dehydrogenase and 4-hydroxybutyryl CoA:acetyl-CoA transferase; 4-hydroxybutanoate dehydrogenase and butyrate kinase; 4-hydroxybutanoate dehydrogenase and phosphotransbutyrylase; 4-hydroxybutyryl CoA:acetyl-CoA transferase and aldehyde dehydrogenase; 4-hydroxybutyryl CoA:acetyl-CoA transferase and alcohol dehydrogenase; 4-hydroxybutyryl CoA:acetyl-CoA transferase and an aldehyde/alcohol dehydrogenase, 4-aminobutyrate-CoA transferase and 4-aminobutyryl-CoA transaminase; 4-aminobutyrate kinase and 4-aminobutan-1-ol oxidoreductase (deaminating), and the like. Thus, it is understood that any combination of two or more enzymes of a biosynthetic pathway can be included in a non-naturally occurring microbial organism of the invention. Similarly, it is understood that any combination of three or more enzymes of a biosynthetic pathway can be included in a non-naturally occurring microbial organism of the invention, for example, 4-hydroxybutanoate dehydrogenase, α-ketoglutarate decarboxylase and 4-hydroxybutyryl CoA:acetyl-CoA transferase; 4-hydroxybutanoate dehydrogenase, butyrate kinase and phosphotransbutyrylase; 4-hydroxybutanoate dehydrogenase, 4-hydroxybutyryl CoA:acetyl-CoA transferase and aldehyde dehydrogenase; 4-hydroxybutyryl CoA:acetyl-CoA transferase, aldehyde dehydrogenase and alcohol dehydrogenase; butyrate kinase, phosphotransbutyrylase and an aldehyde/alcohol dehydrogenase; 4-aminobutyryl-CoA hydrolase, 4-aminobutyryl-CoA reductase and 4-amino butan-1-ol transaminase; 3-hydroxybutyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase and 4-hydroxybutyryl-CoA dehydratase, and the like. Similarly, any combination of four, five or more enzymes of a biosynthetic pathway as disclosed herein can be included in a non-naturally occurring microbial organism of the invention, as desired, so long as the combination of enzymes of the desired biosynthetic pathway results in production of the corresponding desired product. Any of the non-naturally occurring microbial organisms described herein can be cultured to produce and/or secrete the biosynthetic products of the invention. For example, the 4-HB producers can be cultured for the biosynthetic production of 4-HB. The 4-HB can be isolated or be treated as described below to generate GBL, THF and/or BDO. Similarly, the BDO producers can be cultured for the biosynthetic production of BDO. The BDO can be isolated or subjected to further treatments for the chemical synthesis of BDO family compounds, as disclosed herein. The growth medium can include, for example, any carbohydrate source which can supply a source of carbon to the non-naturally occurring microorganism. Such sources include, for example, sugars such as glucose, sucrose, xylose, arabinose, galactose, mannose, fructose and starch. Other sources of carbohydrate include, for example, renewable feedstocks and biomass. Exemplary types of biomasses that can be used as feedstocks in the methods of the invention include cellulosic biomass, hemicellulosic biomass and lignin feedstocks or portions of feedstocks. Such biomass feedstocks contain, for example, carbohydrate substrates useful as carbon sources such as glucose, sucrose, xylose, arabinose, galactose, mannose, fructose and starch. Given the teachings and guidance provided herein, those skilled in the art will understand that renewable feedstocks and biomass other than those exemplified above also can be used for culturing the microbial organisms of the invention for the production of 4-HB or BDO and other compounds of the invention. Accordingly, given the teachings and guidance provided herein, those skilled in the art will understand that a non-naturally occurring microbial organism can be produced that secretes the biosynthesized compounds of the invention when grown on a carbon source such as a carbohydrate. Such compounds include, for example, 4-HB, BDO and any of the intermediates metabolites in the 4-HB pathway, the BDO pathway and/or the combined 4-HB and BDO pathways. All that is required is to engineer in one or more of the enzyme activities shown in In some embodiments, culture conditions include anaerobic or substantially anaerobic growth or maintenance conditions. Exemplary anaerobic conditions have been described previously and are well known in the art. Exemplary anaerobic conditions for fermentation processes are described below in the Examples. Any of these conditions can be employed with the non-naturally occurring microbial organisms as well as other anaerobic conditions well known in the art. Under such anaerobic conditions, the 4-HB and BDO producers can synthesize monomeric 4-HB and BDO, respectively, at intracellular concentrations of 5-10 mM or more as well as all other concentrations exemplified previously. A number of downstream compounds also can be generated for the 4-HB and BDO producing non-naturally occurring microbial organisms of the invention. With respect to the 4-HB producing microbial organisms of the invention, monomeric 4-HB and GBL exist in equilibrium in the culture medium. The conversion of 4-HB to GBL can be efficiently accomplished by, for example, culturing the microbial organisms in acid pH medium. A pH less than or equal to 7.5, in particular at or below pH 5.5, spontaneously converts 4-HB to GBL. The resultant GBL can be separated from 4-HB and other components in the culture using a variety of methods well known in the art. Such separation methods include, for example, the extraction procedures exemplified in the Examples as well as methods which include continuous liquid-liquid extraction, pervaporation, membrane filtration, membrane separation, reverse osmosis, electrodialysis, distillation, crystallization, centrifugation, extractive filtration, ion exchange chromatography, size exclusion chromatography, adsorption chromatography, and ultrafiltration. All of the above methods are well known in the art. Separated GBL can be further purified by, for example, distillation. Another down stream compound that can be produced from the 4-HB producing non-naturally occurring microbial organisms of the invention includes, for example, BDO. This compound can be synthesized by, for example, chemical hydrogenation of GBL. Chemical hydrogenation reactions are well known in the art. One exemplary procedure includes the chemical reduction of 4-HB and/or GBL or a mixture of these two components deriving from the culture using a heterogeneous or homogeneous hydrogenation catalyst together with hydrogen, or a hydride-based reducing agent used stoichiometrically or catalytically, to produce 1,4-butanediol. Other procedures well known in the art are equally applicable for the above chemical reaction and include, for example, WO No. 82/03854 (Bradley, et al.), which describes the hydrogenolysis of gamma-butyrolactone in the vapor phase over a copper oxide and zinc oxide catalyst. British Pat. No. 1,230,276, which describes the hydrogenation of gamma-butyrolactone using a copper oxide-chromium oxide catalyst. The hydrogenation is carried out in the liquid phase. Batch reactions also are exemplified having high total reactor pressures. Reactant and product partial pressures in the reactors are well above the respective dew points. British Pat. No. 1,314,126, which describes the hydrogenation of gamma-butyrolactone in the liquid phase over a nickel-cobalt-thorium oxide catalyst. Batch reactions are exemplified as having high total pressures and component partial pressures well above respective component dew points. British Pat. No. 1,344,557, which describes the hydrogenation of gamma-butyrolactone in the liquid phase over a copper oxide-chromium oxide catalyst. A vapor phase or vapor-containing mixed phase is indicated as suitable in some instances. A continuous flow tubular reactor is exemplified using high total reactor pressures. British Pat. No. 1,512,751, which describes the hydrogenation of gamma-butyrolactone to 1,4-butanediol in the liquid phase over a copper oxide-chromium oxide catalyst. Batch reactions are exemplified with high total reactor pressures and, where determinable, reactant and product partial pressures well above the respective dew points. U.S. Pat. No. 4,301,077, which describes the hydrogenation to 1,4-butanediol of gamma-butyrolactone over a Ru—Ni—Co—Zn catalyst. The reaction can be conducted in the liquid or gas phase or in a mixed liquid-gas phase. Exemplified are continuous flow liquid phase reactions at high total reactor pressures and relatively low reactor productivities. U.S. Pat. No. 4,048,196, which describes the production of 1,4-butanediol by the liquid phase hydrogenation of gamma-butyrolactone over a copper oxide-zinc oxide catalyst. Further exemplified is a continuous flow tubular reactor operating at high total reactor pressures and high reactant and product partial pressures. And U.S. Pat. No. 4,652,685, which describes the hydrogenation of lactones to glycols. A further downstream compound that can be produced form the 4-HB producing microbial organisms of the invention includes, for example, THF. This compound can be synthesized by, for example, chemical hydrogenation of GBL. One exemplary procedure well known in the art applicable for the conversion of GBL to THF includes, for example, chemical reduction of 4-HB and/or GBL or a mixture of these two components deriving from the culture using a heterogeneous or homogeneous hydrogenation catalyst together with hydrogen, or a hydride-based reducing agent used stoichiometrically or catalytically, to produce tetrahydrofuran. Other procedures well know in the art are equally applicable for the above chemical reaction and include, for example, U.S. Pat. No. 6,686,310, which describes high surface area sol-gel route prepared hydrogenation catalysts. Processes for the reduction of maleic acid to tetrahydrofuran (THF) and 1,4-butanediol (BDO) and for the reduction of gamma butyrolactone to tetrahydrofuran and 1,4-butanediol also are described. The culture conditions can include, for example, liquid culture procedures as well as fermentation and other large scale culture procedures. As described further below in the Examples, particularly useful yields of the biosynthetic products of the invention can be obtained under anaerobic or substantially anaerobic culture conditions. Suitable purification and/or assays to test for the production of 4-HB or BDO can be performed using well known methods. Suitable replicates such as triplicate cultures can be grown for each engineered strain to be tested. For example, product and byproduct formation in the engineered production host can be monitored. The final product and intermediates, and other organic compounds, can be analyzed by methods such as HPLC (High Performance Liquid Chromatography), GC-MS (Gas Chromatography-Mass Spectroscopy) and LC-MS (Liquid Chromatography-Mass Spectroscopy) or other suitable analytical methods using routine procedures well known in the art. The release of product in the fermentation broth can also be tested with the culture supernatant. Byproducts and residual glucose can be quantified by HPLC using, for example, a refractive index detector for glucose and alcohols, and a UV detector for organic acids (Lin et al., Biotechnol. Bioeng. 90:775-779 (2005)), or other suitable assay and detection methods well known in the art. The individual enzyme or protein activities from the exogenous DNA sequences can also be assayed using methods well known in the art. The 4-HB or BDO product can be separated from other components in the culture using a variety of methods well known in the art. Such separation methods include, for example, extraction procedures as well as methods that include continuous liquid-liquid extraction, pervaporation, membrane filtration, membrane separation, reverse osmosis, electrodialysis, distillation, crystallization, centrifugation, extractive filtration, ion exchange chromatography, size exclusion chromatography, adsorption chromatography, and ultrafiltration. All of the above methods are well known in the art. The invention further provides a method of manufacturing 4-HB. The method includes fermenting a non-naturally occurring microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway comprising at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, CoA-independent succinic semialdehyde dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, glutamate: succinic semialdehyde transaminase, α-ketoglutarate decarboxylase, or glutamate decarboxylase under substantially anaerobic conditions for a sufficient period of time to produce monomeric 4-hydroxybutanoic acid (4-HB), the process comprising fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. The culture and chemical hydrogenations described above also can be scaled up and grown continuously for manufacturing of 4-HB, GBL, BDO and/or THF. Exemplary growth procedures include, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. All of these processes are well known in the art. Employing the 4-HB producers allows for simultaneous 4-HB biosynthesis and chemical conversion to GBL, BDO and/or THF by employing the above hydrogenation procedures simultaneous with continuous cultures methods such as fermentation. Other hydrogenation procedures also are well known in the art and can be equally applied to the methods of the invention. Fermentation procedures are particularly useful for the biosynthetic production of commercial quantities of 4-HB and/or BDO. Generally, and as with non-continuous culture procedures, the continuous and/or near-continuous production of 4-HB or BDO will include culturing a non-naturally occurring 4-HB or BDO producing organism of the invention in sufficient neutrients and medium to sustain and/or nearly sustain growth in an exponential phase. Continuous culture under such conditions can be include, for example, 1 day, 2, 3, 4, 5, 6 or 7 days or more. Additionally, continuous culture can include 1 week, 2, 3, 4 or 5 or more weeks and up to several months. Alternatively, organisms of the invention can be cultured for hours, if suitable for a particular application. It is to be understood that the continuous and/or near-continuous culture conditions also can include all time intervals in between these exemplary periods. It is further understood that the time of culturing the microbial organism of the invention is for a sufficient period of time to produce a sufficient amount of product for a desired purpose. Fermentation procedures are well known in the art. Briefly, fermentation for the biosynthetic production of 4-HB, BDO or other 4-HB derived products of the invention can be utilized in, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. Examples of batch and continuous fermentation procedures well known in the art are exemplified further below in the Examples. In addition, to the above fermentation procedures using the 4-HB or BDO producers of the invention for continuous production of substantial quantities of monomeric 4-HB and BDO, respectively, the 4-HB producers also can be, for example, simultaneously subjected to chemical synthesis procedures as described previously for the chemical conversion of monomeric 4-HB to, for example, GBL, BDO and/or THF. The BDO producers can similarly be, for example, simultaneously subjected to chemical synthesis procedures as described previously for the chemical conversion of BDO to, for example, THF, GBL, pyrrolidones and/or other BDO family compounds. In addition, the products of the 4-HB and BDO producers can be separated from the fermentation culture and sequentially subjected to chemical conversion, as disclosed herein. Briefly, hydrogenation of GBL in the fermentation broth can be performed as described by Frost et al., Therefore, the invention additionally provides a method of manufacturing α-butyrolactone (GBL), tetrahydrofuran (THF) or 1,4-butanediol (BDO). The method includes fermenting a non-naturally occurring microbial organism having 4-hydroxybutanoic acid (4-HB) and/or 1,4-butanediol (BDO) biosynthetic pathways, the pathways comprise at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, CoA-independent succinic semialdehyde dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, glutamate: succinic semialdehyde transaminase, α-ketoglutarate decarboxylase, glutamate decarboxylase, 4-hydroxybutanoate kinase, phosphotransbutyrylase, CoA-independent 1,4-butanediol semialdehyde dehydrogenase, CoA-dependent 1,4-butanediol semialdehyde dehydrogenase, CoA-independent 1,4-butanediol alcohol dehydrogenase or CoA-dependent 1,4-butanediol alcohol dehydrogenase, under substantially anaerobic conditions for a sufficient period of time to produce 1,4-butanediol (BDO), GBL or THF, the fermenting comprising fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. In addition to the biosynthesis of 4-HB, BDO and other products of the invention as described herein, the non-naturally occurring microbial organisms and methods of the invention also can be utilized in various combinations with each other and with other microbial organisms and methods well known in the art to achieve product biosynthesis by other routes. For example, one alternative to produce BDO other than use of the 4-HB producers and chemical steps or other than use of the BDO producer directly is through addition of another microbial organism capable of converting 4-HB or a 4-HB product exemplified herein to BDO. One such procedure includes, for example, the fermentation of a 4-HB producing microbial organism of the invention to produce 4-HB, as described above and below. The 4-HB can then be used as a substrate for a second microbial organism that converts 4-HB to, for example, BDO, GBL and/or THF. The 4-HB can be added directly to another culture of the second organism or the original culture of 4-HB producers can be depleted of these microbial organisms by, for example, cell separation, and then subsequent addition of the second organism to the fermentation broth can utilized to produce the final product without intermediate purification steps. One exemplary second organism having the capacity to biochemically utilize 4-HB as a substrate for conversion to BDO, for example, is In other embodiments, the non-naturally occurring microbial organisms and methods of the invention can be assembled in a wide variety of subpathways to achieve biosynthesis of, for example, 4-HB and/or BDO as described. In these embodiments, biosynthetic pathways for a desired product of the invention can be segregated into different microbial organisms and the different microbial organisms can be co-cultured to produce the final product. In such a biosynthetic scheme, the product of one microbial organism is the substrate for a second microbial organism until the final product is synthesized. For example, the biosynthesis of BDO can be accomplished as described previously by constructing a microbial organism that contains biosynthetic pathways for conversion of one pathway intermediate to another pathway intermediate or the product, for example, a substrate such as endogenous succinate through 4-HB to the final product BDO. Alternatively, BDO also can be biosynthetically produced from microbial organisms through co-culture or co-fermentation using two organisms in the same vessel. A first microbial organism being a 4-HB producer with genes to produce 4-HB from succinic acid, and a second microbial organism being a BDO producer with genes to convert 4-HB to BDO. Given the teachings and guidance provided herein, those skilled in the art will understand that a wide variety of combinations and permutations exist for the non-naturally occurring microbial organisms and methods of the invention together with other microbial organisms, with the co-culture of other non-naturally occurring microbial organisms having subpathways and with combinations of other chemical and/or biochemical procedures well known in the art to produce 4-HB, BDO, GBL and THF products of the invention. To generate better producers, metabolic modeling can be utilized to optimize growth conditions. Modeling can also be used to design gene knockouts that additionally optimize utilization of the pathway (see, for example, U.S. patent publications US 2002/0012939, US 2003/0224363, US 2004/0029149, US 2004/0072723, US 2003/0059792, US 2002/0168654 and US 2004/0009466, and U.S. Pat. No. 7,127,379). Modeling analysis allows reliable predictions of the effects on cell growth of shifting the metabolism towards more efficient production of BDO. One computational method for identifying and designing metabolic alterations favoring biosynthesis of a desired product is the OptKnock computational framework (Burgard et al., Briefly, OptKnock is a term used herein to refer to a computational method and system for modeling cellular metabolism. The OptKnock program relates to a framework of models and methods that incorporate particular constraints into flux balance analysis (FBA) models. These constraints include, for example, qualitative kinetic information, qualitative regulatory information, and/or DNA microarray experimental data. OptKnock also computes solutions to various metabolic problems by, for example, tightening the flux boundaries derived through flux balance models and subsequently probing the performance limits of metabolic networks in the presence of gene additions or deletions. OptKnock computational framework allows the construction of model formulations that enable an effective query of the performance limits of metabolic networks and provides methods for solving the resulting mixed-integer linear programming problems. The metabolic modeling and simulation methods referred to herein as OptKnock are described in, for example, U.S. publication 2002/0168654, filed Jan. 10, 2002, in International Patent No. PCT/US02/00660, filed Jan. 10, 2002, and U.S. patent application Ser. No. 11/891,602, filed Aug. 10, 2007. Another computational method for identifying and designing metabolic alterations favoring biosynthetic production of a product is a metabolic modeling and simulation system termed SimPheny®. This computational method and system is described in, for example, U.S. publication 2003/0233218, filed Jun. 14, 2002, and in International Patent Application No. PCT/US03/18838, filed Jun. 13, 2003. SimPheny® is a computational system that can be used to produce a network model in silico and to simulate the flux of mass, energy or charge through the chemical reactions of a biological system to define a solution space that contains any and all possible functionalities of the chemical reactions in the system, thereby determining a range of allowed activities for the biological system. This approach is referred to as constraints-based modeling because the solution space is defined by constraints such as the known stoichiometry of the included reactions as well as reaction thermodynamic and capacity constraints associated with maximum fluxes through reactions. The space defined by these constraints can be interrogated to determine the phenotypic capabilities and behavior of the biological system or of its biochemical components. These computational approaches are consistent with biological realities because biological systems are flexible and can reach the same result in many different ways. Biological systems are designed through evolutionary mechanisms that have been restricted by fundamental constraints that all living systems must face. Therefore, constraints-based modeling strategy embraces these general realities. Further, the ability to continuously impose further restrictions on a network model via the tightening of constraints results in a reduction in the size of the solution space, thereby enhancing the precision with which physiological performance or phenotype can be predicted. Given the teachings and guidance provided herein, those skilled in the art will be able to apply various computational frameworks for metabolic modeling and simulation to design and implement biosynthesis of a desired compound in host microbial organisms. Such metabolic modeling and simulation methods include, for example, the computational systems exemplified above as SimPheny® and OptKnock. For illustration of the invention, some methods are described herein with reference to the OptKnock computation framework for modeling and simulation. Those skilled in the art will know how to apply the identification, design and implementation of the metabolic alterations using OptKnock to any of such other metabolic modeling and simulation computational frameworks and methods well known in the art. The methods described above will provide one set of metabolic reactions to disrupt. Elimination of each reaction within the set or metabolic modification can result in a desired product as an obligatory product during the growth phase of the organism. Because the reactions are known, a solution to the bilevel OptKnock problem also will provide the associated gene or genes encoding one or more enzymes that catalyze each reaction within the set of reactions. Identification of a set of reactions and their corresponding genes encoding the enzymes participating in each reaction is generally an automated process, accomplished through correlation of the reactions with a reaction database having a relationship between enzymes and encoding genes. Once identified, the set of reactions that are to be disrupted in order to achieve production of a desired product are implemented in the target cell or organism by functional disruption of at least one gene encoding each metabolic reaction within the set. One particularly useful means to achieve functional disruption of the reaction set is by deletion of each encoding gene. However, in some instances, it can be beneficial to disrupt the reaction by other genetic aberrations including, for example, mutation, deletion of regulatory regions such as promoters or cis binding sites for regulatory factors, or by truncation of the coding sequence at any of a number of locations. These latter aberrations, resulting in less than total deletion of the gene set can be useful, for example, when rapid assessments of the coupling of a product are desired or when genetic reversion is less likely to occur. To identify additional productive solutions to the above described bilevel OptKnock problem which lead to further sets of reactions to disrupt or metabolic modifications that can result in the biosynthesis, including growth-coupled biosynthesis of a desired product, an optimization method, termed integer cuts, can be implemented. This method proceeds by iteratively solving the OptKnock problem exemplified above with the incorporation of an additional constraint referred to as an integer cut at each iteration. Integer cut constraints effectively prevent the solution procedure from choosing the exact same set of reactions identified in any previous iteration that obligatorily couples product biosynthesis to growth. For example, if a previously identified growth-coupled metabolic modification specifies reactions 1, 2, and 3 for disruption, then the following constraint prevents the same reactions from being simultaneously considered in subsequent solutions. The integer cut method is well known in the art and can be found described in, for example, Burgard et al., The methods exemplified herein allow the construction of cells and organisms that biosynthetically produce a desired product, including the obligatory coupling of production of a target biochemical product to growth of the cell or organism engineered to harbor the identified genetic alterations. Therefore, the computational methods described herein allow the identification and implementation of metabolic modifications that are identified by an in silico method selected from OptKnock or SimPheny®. The set of metabolic modifications can include, for example, addition of one or more biosynthetic pathway enzymes and/or functional disruption of one or more metabolic reactions including, for example, disruption by gene deletion. As discussed above, the OptKnock methodology was developed on the premise that mutant microbial networks can be evolved towards their computationally predicted maximum-growth phenotypes when subjected to long periods of growth selection. In other words, the approach leverages an organism's ability to self-optimize under selective pressures. The OptKnock framework allows for the exhaustive enumeration of gene deletion combinations that force a coupling between biochemical production and cell growth based on network stoichiometry. The identification of optimal gene/reaction knockouts requires the solution of a bilevel optimization problem that chooses the set of active reactions such that an optimal growth solution for the resulting network overproduces the biochemical of interest (Burgard et al., An in silico stoichiometric model of The methods exemplified above and further illustrated in the Examples below enable the construction of cells and organisms that biosynthetically produce, including obligatory couple production of a target biochemical product to growth of the cell or organism engineered to harbor the identified genetic alterations. In this regard, metabolic alterations have been identified that result in the biosynthesis of 4-HB and 1,4-butanediol. Microorganism strains constructed with the identified metabolic alterations produce elevated levels of 4-HB or BDO compared to unmodified microbial organisms. These strains can be beneficially used for the commercial production of 4-HB, BDO, THF and GBL, for example, in continuous fermentation process without being subjected to the negative selective pressures. Therefore, the computational methods described herein enable the identification and implementation of metabolic modifications that are identified by an in silico method selected from OptKnock or SimPheny®. The set of metabolic modifications can include, for example, addition of one or more biosynthetic pathway enzymes and/.or functional disruption of one or more metabolic reactions including, for example, disruption by gene deletion. It is understood that modifications which do not substantially affect the activity of the various embodiments of this invention are also included within the definition of the invention provided herein. Accordingly, the following examples are intended to illustrate but not limit the present invention. Any of the non-naturally occurring microbial organisms described herein can be cultured to produce and/or secrete the biosynthetic products of the invention. For example, the BDO producers can be cultured for the biosynthetic production of BDO. For the production of BDO, the recombinant strains are cultured in a medium with carbon source and other essential nutrients. It is highly desirable to maintain anaerobic conditions in the fermenter to reduce the cost of the overall process. Such conditions can be obtained, for example, by first sparging the medium with nitrogen and then sealing the flasks with a septum and crimp-cap. For strains where growth is not observed anaerobically, microaerobic conditions can be applied by perforating the septum with a small hole for limited aeration. Exemplary anaerobic conditions have been described previously and are well-known in the art. Exemplary aerobic and anaerobic conditions are described, for example, in U.S. publication 2009/0047719, filed Aug. 10, 2007. Fermentations can be performed in a batch, fed-batch or continuous manner, as disclosed herein. If desired, the pH of the medium can be maintained at a desired pH, in particular neutral pH, such as a pH of around 7 by addition of a base, such as NaOH or other bases, or acid, as needed to maintain the culture medium at a desirable pH. The growth rate can be determined by measuring optical density using a spectrophotometer (600 nm), and the glucose uptake rate by monitoring carbon source depletion over time. In addition to renewable feedstocks such as those exemplified above, the BDO producing microbial organisms of the invention also can be modified for growth on syngas as its source of carbon. In this specific embodiment, one or more proteins or enzymes are expressed in the BDO producing organisms to provide a metabolic pathway for utilization of syngas or other gaseous carbon source. Synthesis gas, also known as syngas or producer gas, is the major product of gasification of coal and of carbonaceous materials such as biomass materials, including agricultural crops and residues. Syngas is a mixture primarily of H2and CO and can be obtained from the gasification of any organic feedstock, including but not limited to coal, coal oil, natural gas, biomass, and waste organic matter. Gasification is generally carried out under a high fuel to oxygen ratio. Although largely H2and CO, syngas can also include CO2and other gases in smaller quantities. Thus, synthesis gas provides a cost effective source of gaseous carbon such as CO and, additionally, CO2. The Wood-Ljungdahl pathway catalyzes the conversion of CO and H2to acetyl-CoA and other products such as acetate. Organisms capable of utilizing CO and syngas also generally have the capability of utilizing CO2and CO2/H2mixtures through the same basic set of enzymes and transformations encompassed by the Wood-Ljungdahl pathway. H2-dependent conversion of CO2to acetate by microorganisms was recognized long before it was revealed that CO also could be used by the same organisms and that the same pathways were involved. Many acetogens have been shown to grow in the presence of CO2and produce compounds such as acetate as long as hydrogen is present to supply the necessary reducing equivalents (see for example, Drake, Hence, non-naturally occurring microorganisms possessing the Wood-Ljungdahl pathway can utilize CO2and H2mixtures as well for the production of acetyl-CoA and other desired products. The Wood-Ljungdahl pathway is well known in the art and consists of 12 reactions which can be separated into two branches: (1) methyl branch and (2) carbonyl branch. The methyl branch converts syngas to methyl-tetrahydrofolate (methyl-THF) whereas the carbonyl branch converts methyl-THF to acetyl-CoA. The reactions in the methyl branch are catalyzed in order by the following enzymes or proteins: ferredoxin oxidoreductase, formate dehydrogenase, formyltetrahydrofolate synthetase, methenyltetrahydrofolate cyclodehydratase, methylenetetrahydrofolate dehydrogenase and methylenetetrahydrofolate reductase. The reactions in the carbonyl branch are catalyzed in order by the following enzymes or proteins: methyltetrahydrofolate:corrinoid protein methyltransferase (for example, AcsE), corrinoid iron-sulfur protein, nickel-protein assembly protein (for example, AcsF), ferredoxin, acetyl-CoA synthase, carbon monoxide dehydrogenase and nickel-protein assembly protein (for example, CooC). Following the teachings and guidance provided herein for introducing a sufficient number of encoding nucleic acids to generate a BDO pathway, those skilled in the art will understand that the same engineering design also can be performed with respect to introducing at least the nucleic acids encoding the Wood-Ljungdahl enzymes or proteins absent in the host organism. Therefore, introduction of one or more encoding nucleic acids into the microbial organisms of the invention such that the modified organism contains the complete Wood-Ljungdahl pathway will confer syngas utilization ability. Accordingly, given the teachings and guidance provided herein, those skilled in the art will understand that a non-naturally occurring microbial organism can be produced that secretes the biosynthesized compounds of the invention when grown on a carbon source such as a carbohydrate. Such compounds include, for example, BDO and any of the intermediate metabolites in the BDO pathway. All that is required is to engineer in one or more of the required enzyme or protein activities to achieve biosynthesis of the desired compound or intermediate including, for example, inclusion of some or all of the BDO biosynthetic pathways. Accordingly, the invention provides a non-naturally occurring microbial organism that produces and/or secretes BDO when grown on a carbohydrate or other carbon source and produces and/or secretes any of the intermediate metabolites shown in the BDO pathway when grown on a carbohydrate or other carbon source. The BDO producing microbial organisms of the invention can initiate synthesis from an intermediate in a BDO pathway, as disclosed herein. To generate better producers, metabolic modeling can be utilized to optimize growth conditions. Modeling can also be used to design gene knockouts that additionally optimize utilization of the pathway (see, for example, U.S. patent publications US 2002/0012939, US 2003/0224363, US 2004/0029149, US 2004/0072723, US 2003/0059792, US 2002/0168654 and US 2004/0009466, and U.S. Pat. No. 7,127,379). Modeling analysis allows reliable predictions of the effects on cell growth of shifting the metabolism towards more efficient production of BDO. One computational method for identifying and designing metabolic alterations favoring biosynthesis of a desired product is the OptKnock computational framework (Burgard et al., Briefly, OptKnock is a term used herein to refer to a computational method and system for modeling cellular metabolism. The OptKnock program relates to a framework of models and methods that incorporate particular constraints into flux balance analysis (FBA) models. These constraints include, for example, qualitative kinetic information, qualitative regulatory information, and/or DNA microarray experimental data. OptKnock also computes solutions to various metabolic problems by, for example, tightening the flux boundaries derived through flux balance models and subsequently probing the performance limits of metabolic networks in the presence of gene additions or deletions. OptKnock computational framework allows the construction of model formulations that enable an effective query of the performance limits of metabolic networks and provides methods for solving the resulting mixed-integer linear programming problems. The metabolic modeling and simulation methods referred to herein as OptKnock are described in, for example, U.S. publication 2002/0168654, filed Jan. 10, 2002, in International Patent No. PCT/US02/00660, filed Jan. 10, 2002, and U.S. patent application Ser. No. 11/891,602, filed Aug. 10, 2007. Another computational method for identifying and designing metabolic alterations favoring biosynthetic production of a product is a metabolic modeling and simulation system termed SimPheny®. This computational method and system is described in, for example, U.S. publication 2003/0233218, filed Jun. 14, 2002, and in International Patent Application No. PCT/US03/18838, filed Jun. 13, 2003. SimPheny® is a computational system that can be used to produce a network model in silico and to simulate the flux of mass, energy or charge through the chemical reactions of a biological system to define a solution space that contains any and all possible functionalities of the chemical reactions in the system, thereby determining a range of allowed activities for the biological system. This approach is referred to as constraints-based modeling because the solution space is defined by constraints such as the known stoichiometry of the included reactions as well as reaction thermodynamic and capacity constraints associated with maximum fluxes through reactions. The space defined by these constraints can be interrogated to determine the phenotypic capabilities and behavior of the biological system or of its biochemical components. These computational approaches are consistent with biological realities because biological systems are flexible and can reach the same result in many different ways. Biological systems are designed through evolutionary mechanisms that have been restricted by fundamental constraints that all living systems must face. Therefore, constraints-based modeling strategy embraces these general realities. Further, the ability to continuously impose further restrictions on a network model via the tightening of constraints results in a reduction in the size of the solution space, thereby enhancing the precision with which physiological performance or phenotype can be predicted. Given the teachings and guidance provided herein, those skilled in the art will be able to apply various computational frameworks for metabolic modeling and simulation to design and implement biosynthesis of a desired compound in host microbial organisms. Such metabolic modeling and simulation methods include, for example, the computational systems exemplified above as SimPheny® and OptKnock. For illustration of the invention, some methods are described herein with reference to the OptKnock computation framework for modeling and simulation. Those skilled in the art will know how to apply the identification, design and implementation of the metabolic alterations using OptKnock to any of such other metabolic modeling and simulation computational frameworks and methods well known in the art. The methods described above will provide one set of metabolic reactions to disrupt. Elimination of each reaction within the set or metabolic modification can result in a desired product as an obligatory product during the growth phase of the organism. Because the reactions are known, a solution to the bilevel OptKnock problem also will provide the associated gene or genes encoding one or more enzymes that catalyze each reaction within the set of reactions. Identification of a set of reactions and their corresponding genes encoding the enzymes participating in each reaction is generally an automated process, accomplished through correlation of the reactions with a reaction database having a relationship between enzymes and encoding genes. Once identified, the set of reactions that are to be disrupted in order to achieve production of a desired product are implemented in the target cell or organism by functional disruption of at least one gene encoding each metabolic reaction within the set. One particularly useful means to achieve functional disruption of the reaction set is by deletion of each encoding gene. However, in some instances, it can be beneficial to disrupt the reaction by other genetic aberrations including, for example, mutation, deletion of regulatory regions such as promoters or cis binding sites for regulatory factors, or by truncation of the coding sequence at any of a number of locations. These latter aberrations, resulting in less than total deletion of the gene set can be useful, for example, when rapid assessments of the coupling of a product are desired or when genetic reversion is less likely to occur. To identify additional productive solutions to the above described bilevel OptKnock problem which lead to further sets of reactions to disrupt or metabolic modifications that can result in the biosynthesis, including growth-coupled biosynthesis of a desired product, an optimization method, termed integer cuts, can be implemented. This method proceeds by iteratively solving the OptKnock problem exemplified above with the incorporation of an additional constraint referred to as an integer cut at each iteration. Integer cut constraints effectively prevent the solution procedure from choosing the exact same set of reactions identified in any previous iteration that obligatorily couples product biosynthesis to growth. For example, if a previously identified growth-coupled metabolic modification specifies reactions 1, 2, and 3 for disruption, then the following constraint prevents the same reactions from being simultaneously considered in subsequent solutions. The integer cut method is well known in the art and can be found described in, for example, Burgard et al., The methods exemplified herein allow the construction of cells and organisms that biosynthetically produce a desired product, including the obligatory coupling of production of a target biochemical product to growth of the cell or organism engineered to harbor the identified genetic alterations. Therefore, the computational methods described herein allow the identification and implementation of metabolic modifications that are identified by an in silico method selected from OptKnock or SimPheny®. The set of metabolic modifications can include, for example, addition of one or more biosynthetic pathway enzymes and/or functional disruption of one or more metabolic reactions including, for example, disruption by gene deletion. As discussed above, the OptKnock methodology was developed on the premise that mutant microbial networks can be evolved towards their computationally predicted maximum-growth phenotypes when subjected to long periods of growth selection. In other words, the approach leverages an organism's ability to self-optimize under selective pressures. The OptKnock framework allows for the exhaustive enumeration of gene deletion combinations that force a coupling between biochemical production and cell growth based on network stoichiometry. The identification of optimal gene/reaction knockouts requires the solution of a bilevel optimization problem that chooses the set of active reactions such that an optimal growth solution for the resulting network overproduces the biochemical of interest (Burgard et al., An in silico stoichiometric model of It is understood that modifications which do not substantially affect the activity of the various embodiments of this invention are also provided within the definition of the invention provided herein. Accordingly, the following examples are intended to illustrate but not limit the present invention. This example describes exemplary biochemical pathways for 4-HB production. Previous reports of 4-HB synthesis in microbes have focused on this compound as an intermediate in production of the biodegradable plastic poly-hydroxyalkanoate (PHA) (U.S. Pat. No. 6,117,658). The use of 4-HB/3-HB copolymers over poly-3-hydroxybutyrate polymer (PHB) can result in plastic that is less brittle (Saito and Doi, 4-HB can be produced in two enzymatic reduction steps from succinate, a central metabolite of the TCA cycle, with succinic semialdehyde as the intermediate ( The second enzyme of the pathway, 4-hydroxybutanoate dehydrogenase, is not native to The microbial production capabilities of 4-hydroxybutyrate were explored in two microbes, A first step in the 4-HB production pathway from succinate involves the conversion of succinate to succinic semialdehyde via an NADH- or NADPH-dependant succinic semialdehyde dehydrogenase. In The pathway from succinyl-CoA to 4-hydroxybutyrate was described in U.S. Pat. No. 6,117,658 as part of a process for making polyhydroxyalkanoates comprising 4-hydroxybutyrate monomer units. This example illustrates the construction and biosynthetic production of 4-HB and BDO from microbial organisms. Pathways for 4-HB and BDO are disclosed herein. There are several alternative enzymes that can be utilized in the pathway described above. The native or endogenous enzyme for conversion of succinate to succinyl-CoA (Step 1 in BDO also can be produced via α-ketoglutarate in addition to or instead of through succinate. A described previously, and exemplified further below, one pathway to accomplish product biosynthesis is with the production of succinic semialdehyde via α-ketoglutarate using the endogenous enzymes ( For the construction of different strains of BDO-producing microbial organisms, a list of applicable genes was assembled for corroboration. Briefly, one or more genes within the 4-HB and/or BDO biosynthetic pathways were identified for each step of the complete BDO-producing pathway shown in Expression Vector Construction for BDO Pathway. Vector backbones and some strains were obtained from Dr. Rolf Lutz of Expressys (expressys.de/). The vectors and strains are based on the pZ Expression System developed by Dr. Rolf Lutz and Prof. Hermann Bujard (Lutz, R. and H. Bujard, Nucleic Acids Res 25:1203-1210 (1997)). Vectors obtained were pZE13luc, pZA33luc, pZS* 13luc and pZE22luc and contained the luciferase gene as a stuffer fragment. To replace the luciferase stuffer fragment with a lacZ-alpha fragment flanked by appropriate restriction enzyme sites, the luciferase stuffer fragment was first removed from each vector by digestion with EcoRI and XbaI. The lacZ-alpha fragment was PCR amplified from pUC19 with the following primers: This generated a fragment with a 5′ end of EcoRI site, NheI site, a Ribosomal Binding Site, a SalI site and the start codon. On the 3′ end of the fragment contained the stop codon, XbaI, HindIII, and AvrII sites. The PCR product was digested with EcoRI and AvrII and ligated into the base vectors digested with EcoRI and XbaI (XbaI and AvrII have compatible ends and generate a non-site). Because NheI and XbaI restriction enzyme sites generate compatible ends that can be ligated together (but generate a NheI/XbaI non-site that is not digested by either enzyme), the genes cloned into the vectors could be “Biobricked” together (openwetware.org/wiki/Synthetic_Biology:BioBricks). Briefly, this method enables joining an unlimited number of genes into the vector using the same 2 restriction sites (as long as the sites do not appear internal to the genes), because the sites between the genes are destroyed after each addition. All vectors have the pZ designation followed by letters and numbers indication the origin of replication, antibiotic resistance marker and promoter/regulatory unit. The origin of replication is the second letter and is denoted by E for ColE1, A for p15A and S for pSC101-based origins. The first number represents the antibiotic resistance marker (1 for Ampicillin, 2 for Kanamycin, 3 for Chloramphenicol, 4 for Spectinomycin and 5 for Tetracycline). The final number defines the promoter that regulated the gene of interest (1 for PLtetO-1, 2 for PLlacO-1, 3 for PA1lacO-1, and 4 for Plac/ara-1). The MCS and the gene of interest follows immediately after. For the work discussed here we employed two base vectors, pZA33 and pZE13, modified for the biobricks insertions as discussed above. Once the gene(s) of interest have been cloned into them, resulting plasmids are indicated using the four digit gene codes given in Table 6; e.g., pZA33-XXXX-YYYY-. Host Strain Construction. The parent strain in all studies described here is Production of 4-HB From Succinate. For construction of a 4-HB producer from succinate, genes encoding steps from succinate to 4-HB and 4-HB-CoA (1, 6, 7, and 9 in Activity of the heterologous enzymes were first tested in in vitro assays, using strain MG1655 lacIQas the host for the plasmid constructs containing the pathway genes. Cells were grown aerobically in LB media (Difco) containing the appropriate antibiotics for each construct, and induced by addition of IPTG at 1 mM when the optical density (OD600) reached approximately 0.5. Cells were harvested after 6 hours, and enzyme assays conducted as discussed below. In Vitro Enzyme Assays. To obtain crude extracts for activity assays, cells were harvested by centrifugation at 4,500 rpm (Beckman-Coulter, Allegera X-15R) for 10 min. The pellets were resuspended in 0.3 mL BugBuster (Novagen) reagent with benzonase and lysozyme, and lysis proceeded for 15 minutes at room temperature with gentle shaking. Cell-free lysate was obtained by centrifugation at 14,000 rpm (Eppendorf centrifuge 5402) for 30 min at 4° C. Cell protein in the sample was determined using the method of Bradford et al., Succinyl-CoA transferase (Cat1) activity was determined by monitoring the formation of acetyl-CoA from succinyl-CoA and acetate, following a previously described procedure Sohling and Gottschalk, Alcohol (ADH) and aldehyde (ALD) dehydrogenase was assayed in the reductive direction using a procedure adapted from several literature sources (Durre et al., The enzyme activity of PTB is measured in the direction of butyryl-CoA to butyryl-phosphate as described in Cary et al. Analysis of CoA Derivatives by HPLC. An HPLC based assay was developed to monitor enzymatic reactions involving coenzyme A (CoA) transfer. The developed method enabled enzyme activity characterization by quantitative determination of CoA, acetyl CoA (AcCoA), butyryl CoA (BuCoA) and 4-hydroxybutyrate CoA (4-HBCoA) present in in-vitro reaction mixtures. Sensitivity down to low μM was achieved, as well as excellent resolution of all the CoA derivatives of interest. Chemical and sample preparation was performed as follows. Briefly, CoA, AcCoA, BuCoA and all other chemicals, were obtained from Sigma-Aldrich. The solvents, methanol and acetonitrile, were of HPLC grade. Standard calibration curves exhibited excellent linearity in the 0.01-1 mg/mL concentration range. Enzymatic reaction mixtures contained 100 mM Tris HCl buffer (pH 7), aliquots were taken at different time points, quenched with formic acid (0.04% final concentration) and directly analyzed by HPLC. HPLC analysis was performed using an Agilent 1100 HPLC system equipped with a binary pump, degasser, thermostated autosampler and column compartment, and diode array detector (DAD), was used for the analysis. A reversed phase column, Kromasil 100 5 um C18, 4.6×150 mm (Peeke Scientific), was employed. 25 mM potassium phosphate (pH 7) and methanol or acetonitrile, were used as aqueous and organic solvents at 1 mL/min flow rate. Two methods were developed: a short one with a faster gradient for the analysis of well-resolved CoA, AcCoA and BuCoA, and a longer method for distinguishing between closely eluting AcCoA and 4-HBCoA. Short method employed acetonitrile gradient (0 min-5%, 6 min-30%, 6.5 min-5%, 10 min-5%) and resulted in the retention times 2.7, 4.1 and 5.5 min for CoA, AcCoA and BuCoA, respectively. In the long method methanol was used with the following linear gradient: 0 min-5%, 20 min-35%, 20.5 min-5%, 25 min-5%. The retention times for CoA, AcCoA, 4-HBCoA and BuCoA were 5.8, 8.4, 9.2 and 16.0 min, respectively. The injection volume was 5 μL, column temperature 30° C., and UV absorbance was monitored at 260 nm. The results demonstrated activity of each of the four pathway steps (Table 7), though activity is clearly dependent on the gene source, position of the gene in the vector, and the context of other genes with which it is expressed. For example, gene 0035 encodes a succinic semialdehyde dehydrogenase that is more active than that encoded by 0008, and 0036 and 0010n are more active 4-HB dehydrogenase genes than 0009. There also seems to be better 4-HB dehydrogenase activity when there is another gene preceding it on the same operon. Recombinant strains containing genes in the 4-HB pathway were then evaluated for the ability to produce 4-HB in vivo from central metabolic intermediates. Cells were grown anaerobically in LB medium to OD600 of approximately 0.4, then induced with 1 mM IPTG. One hour later, sodium succinate was added to 10 mM, and samples taken for analysis following an additional 24 and 48 hours. 4-HB in the culture broth was analyzed by GC-MS as described below. The results indicate that the recombinant strain can produce over 2 mM 4-HB after 24 hours, compared to essentially zero in the control strain (Table 8). An alternate to using a CoA transferase (cat1) to produce succinyl-CoA from succinate is to use the native Production of 4-HB from Glucose. Although the above experiments demonstrate a functional pathway to 4-HB from a central metabolic intermediate (succinate), an industrial process would require the production of chemicals from low-cost carbohydrate feedstocks such as glucose or sucrose. Thus, the next set of experiments was aimed to determine whether endogenous succinate produced by the cells during growth on glucose could fuel the 4-HB pathway. Cells were grown anaerobically in M9 minimal medium (6.78 g/L Na2HPO4, 3.0 g/L KH2PO4, 0.5 g/L NaCl, 1.0 g/L NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2) supplemented with 20 g/L glucose, 100 mM 3-(N-morpholino)propanesulfonic acid (MOPS) to improve the buffering capacity, 10 μg/mL thiamine, and the appropriate antibiotics. 0.25 mM IPTG was added when OD600 reached approximately 0.2, and samples taken for 4-HB analysis every 24 hours following induction. In all cases 4-HB plateaued after 24 hours, with a maximum of about 1 mM in the best strains ( An alternate pathway for the production of 4-HB from glucose is via α-ketoglutarate. We explored the use of an α-ketoglutarate decarboxylase from Production of BDO from 4-HB. The production of BDO from 4-HB required two reduction steps, catalyzed by dehydrogenases. Alcohol and aldehyde dehydrogenases (ADH and ALD, respectively) are NAD+/H and/or NADP+/H-dependent enzymes that together can reduce a carboxylic acid group on a molecule to an alcohol group, or in reverse, can perform the oxidation of an alcohol to a carboxylic acid. This biotransformation has been demonstrated in wild-type Gene candidates for the 4-HB to BDO conversion pathway were next tested for activity when expressed in the For the BDO production experiments, cat2 from As discussed above, it may be advantageous to use a route for converting 4-HB to 4-HB-CoA that does not generate acetate as a byproduct. To this aim, we tested the use of phosphotransbutyrylase (ptb) and butyrate kinase (bk) from Production of BDO from Glucose. The final step of pathway corroboration is to express both the 4-HB and BDO segments of the pathway in Analysis of BDO, 4-HB and Succinate by GCMS. BDO, 4-HB and succinate in fermentation and cell culture samples were derivatized by silylation and quantitatively analyzed by GCMS using methods adapted from literature reports ((Simonov et al., Sample preparation was performed as follows: 100 μL filtered (0.2 μm or 0.45 μm syringe filters) samples, e.g. fermentation broth, cell culture or standard solutions, were dried down in a Speed Vac Concentrator (Savant SVC-100H) for approximately 1 hour at ambient temperature, followed by the addition of 20 μL 10 mM cyclohexanol solution, as an internal standard, in dimethylformamide. The mixtures were vortexed and sonicated in a water bath (Branson 3510) for 15 min to ensure homogeneity. 100 μL silylation derivatization reagent, N,O-bis(trimethylsilyl)trifluoro-acetimide (BSTFA) with 1% trimethylchlorosilane, was added, and the mixture was incubated at 70° C. for 30 min. The derivatized samples were centrifuged for 5 min, and the clear solutions were directly injected into GCMS. All the chemicals and reagents were from Sigma-Aldrich, with the exception of BDO which was purchased from J. T. Baker. GCMS was performed on an Agilent gas chromatograph 6890N, interfaced to a mass-selective detector (MSD) 5973N operated in electron impact ionization (EI) mode has been used for the analysis. A DB-5MS capillary column (J&W Scientific, Agilent Technologies), 30m×0.25 mm i.d.×0.25 μm film thickness, was used. The GC was operated in a split injection mode introducing 1 μL of sample at 20:1 split ratio. The injection port temperature was 250° C. Helium was used as a carrier gas, and the flow rate was maintained at 1.0 mL/min. A temperature gradient program was optimized to ensure good resolution of the analytes of interest and minimum matrix interference. The oven was initially held at 80° C. for 1 min, then ramped to 120° C. at 2° C./min, followed by fast ramping to 320° C. at 100° C./min and final hold for 6 min at 320° C. The MS interface transfer line was maintained at 280° C. The data were acquired using ‘lowmass’ MS tune settings and 30-400 m/z mass-range scan. The total analysis time was 29 min including 3 min solvent delay. The retention times corresponded to 5.2, 10.5, 14.0 and 18.2 min for BSTFA-derivatized cyclohexanol, BDO, 4-HB and succinate, respectively. For quantitative analysis, the following specific mass fragments were selected (extracted ion chromatograms): m/z 157 for internal standard cyclohexanol, 116 for BDO, and 147 for both 4-HB and succinate. Standard calibration curves were constructed using analyte solutions in the corresponding cell culture or fermentation medium to match sample matrix as close as possible. GCMS data were processed using Environmental Data Analysis ChemStation software (Agilent Technologies). The results indicated that most of the 4-HB and BDO produced were labeled with13C ( Production of BDO from 4-HB using Alternate Pathways. The various alternate pathways were also tested for BDO production. This includes use of the native This Example describes the biosynthetic production of 4-hydroxybutanoic acid, γ-butyrolactone and 1,4-butanediol using fermentation and other bioprocesses. Methods for the integration of the 4-HB fermentation step into a complete process for the production of purified GBL, 1,4-butanediol (BDO) and tetrahydrofuran (THF) are described below. Since 4-HB and GBL are in equilibrium, the fermentation broth will contain both compounds. At low pH this equilibrium is shifted to favor GBL. Therefore, the fermentation can operate at pH 7.5 or less, generally pH 5.5 or less. After removal of biomass, the product stream enters into a separation step in which GBL is removed and the remaining stream enriched in 4-HB is recycled. Finally, GBL is distilled to remove any impurities. The process operates in one of three ways: 1) fed-batch fermentation and batch separation; 2) fed-batch fermentation and continuous separation; 3) continuous fermentation and continuous separation. The first two of these modes are shown schematically in Fermentation Protocol to Produce 4-HB/GBL (Batch): The production organism is grown in a 10 L bioreactor sparged with an N2/CO2mixture, using 5 L broth containing 5 g/L potassium phosphate, 2.5 g/L ammonium chloride, 0.5 g/L magnesium sulfate, and 30 g/L corn steep liquor, and an initial glucose concentration of 20 g/L. As the cells grow and utilize the glucose, additional 70% glucose is fed into the bioreactor at a rate approximately balancing glucose consumption. The temperature of the bioreactor is maintained at 30 degrees C. Growth continues for approximately 24 hours, until 4-HB reaches a concentration of between 20-200 g/L, with the cell density being between 5 and 10 g/L. The pH is not controlled, and will typically decrease to pH 3-6 by the end of the run. Upon completion of the cultivation period, the fermenter contents are passed through a cell separation unit (e.g., centrifuge) to remove cells and cell debris, and the fermentation broth is transferred to a product separations unit. Isolation of 4-HB and/or GBL would take place by standard separations procedures employed in the art to separate organic products from dilute aqueous solutions, such as liquid-liquid extraction using a water immiscible organic solvent (e.g., toluene) to provide an organic solution of 4-HB/GBL. The resulting solution is then subjected to standard distillation methods to remove and recycle the organic solvent and to provide GBL (boiling point 204-205° C.) which is isolated as a purified liquid. Fermentation Protocol to Produce 4-HB/GBL (Fully Continuous): The production organism is first grown up in batch mode using the apparatus and medium composition described above, except that the initial glucose concentration is 30-50 g/L. When glucose is exhausted, feed medium of the same composition is supplied continuously at a rate between 0.5 L/hr and 1 L/hr, and liquid is withdrawn at the same rate. The 4-HB concentration in the bioreactor remains constant at 30-40 g/L, and the cell density remains constant between 3-5 g/L. Temperature is maintained at 30 degrees C., and the pH is maintained at 4.5 using concentrated NaOH and HCl, as required. The bioreactor is operated continuously for one month, with samples taken every day to assure consistency of 4-HB concentration. In continuous mode, fermenter contents are constantly removed as new feed medium is supplied. The exit stream, containing cells, medium, and products 4-HB and/or GBL, is then subjected to a continuous product separations procedure, with or without removing cells and cell debris, and would take place by standard continuous separations methods employed in the art to separate organic products from dilute aqueous solutions, such as continuous liquid-liquid extraction using a water immiscible organic solvent (e.g., toluene) to provide an organic solution of 4-HB/GBL. The resulting solution is subsequently subjected to standard continuous distillation methods to remove and recycle the organic solvent and to provide GBL (boiling point 204-205° C.) which is isolated as a purified liquid. GBL Reduction Protocol: Once GBL is isolated and purified as described above, it will then be subjected to reduction protocols such as those well known in the art (references cited) to produce 1,4-butanediol or tetrahydrofuran (THF) or a mixture thereof. Heterogeneous or homogeneous hydrogenation catalysts combined with GBL under hydrogen pressure are well known to provide the products 1,4-butanediol or tetrahydrofuran (THF) or a mixture thereof. It is important to note that the 4-HB/GBL product mixture that is separated from the fermentation broth, as described above, may be subjected directly, prior to GBL isolation and purification, to these same reduction protocols to provide the products 1,4-butanediol or tetrahydrofuran or a mixture thereof. The resulting products, 1,4-butanediol and THF are then isolated and purified by procedures well known in the art. Fermentation and Hydrogenation Protocol to Produce BDO or THF Directly (Batch): Cells are grown in a 10 L bioreactor sparged with an N2/CO2mixture, using 5 L broth containing 5 g/L potassium phosphate, 2.5 g/L ammonium chloride, 0.5 g/L magnesium sulfate, and 30 g/L corn steep liquor, and an initial glucose concentration of 20 g/L. As the cells grow and utilize the glucose, additional 70% glucose is fed into the bioreactor at a rate approximately balancing glucose consumption. The temperature of the bioreactor is maintained at 30 degrees C. Growth continues for approximately 24 hours, until 4-HB reaches a concentration of between 20-200 g/L, with the cell density being between 5 and 10 g/L. The pH is not controlled, and will typically decrease to pH 3-6 by the end of the run. Upon completion of the cultivation period, the fermenter contents are passed through a cell separation unit (e.g., centrifuge) to remove cells and cell debris, and the fermentation broth is transferred to a reduction unit (e.g., hydrogenation vessel), where the mixture 4-HB/GBL is directly reduced to either 1,4-butanediol or THF or a mixture thereof. Following completion of the reduction procedure, the reactor contents are transferred to a product separations unit. Isolation of 1,4-butanediol and/or THF would take place by standard separations procedures employed in the art to separate organic products from dilute aqueous solutions, such as liquid-liquid extraction using a water immiscible organic solvent (e.g., toluene) to provide an organic solution of 1,4-butanediol and/or THF. The resulting solution is then subjected to standard distillation methods to remove and recycle the organic solvent and to provide 1,4-butanediol and/or THF which are isolated as a purified liquids. Fermentation and Hydrogenation Protocol to Produce BDO or THF Directly (Fully Continuous): The cells are first grown up in batch mode using the apparatus and medium composition described above, except that the initial glucose concentration is 30-50 g/L. When glucose is exhausted, feed medium of the same composition is supplied continuously at a rate between 0.5 L/hr and 1 L/hr, and liquid is withdrawn at the same rate. The 4-HB concentration in the bioreactor remains constant at 30-40 g/L, and the cell density remains constant between 3-5 g/L. Temperature is maintained at 30 degrees C., and the pH is maintained at 4.5 using concentrated NaOH and HCl, as required. The bioreactor is operated continuously for one month, with samples taken every day to assure consistency of 4-HB concentration. In continuous mode, fermenter contents are constantly removed as new feed medium is supplied. The exit stream, containing cells, medium, and products 4-HB and/or GBL, is then passed through a cell separation unit (e.g., centrifuge) to remove cells and cell debris, and the fermentation broth is transferred to a continuous reduction unit (e.g., hydrogenation vessel), where the mixture 4-HB/GBL is directly reduced to either 1,4-butanediol or THF or a mixture thereof. Following completion of the reduction procedure, the reactor contents are transferred to a continuous product separations unit. Isolation of 1,4-butanediol and/or THF would take place by standard continuous separations procedures employed in the art to separate organic products from dilute aqueous solutions, such as liquid-liquid extraction using a water immiscible organic solvent (e.g., toluene) to provide an organic solution of 1,4-butanediol and/or THF. The resulting solution is then subjected to standard continuous distillation methods to remove and recycle the organic solvent and to provide 1,4-butanediol and/or THF which are isolated as a purified liquids. Fermentation Protocol to Produce BDO Directly (Batch): The production organism is grown in a 10 L bioreactor sparged with an N2/CO2mixture, using 5 L broth containing 5 g/L potassium phosphate, 2.5 g/L ammonium chloride, 0.5 g/L magnesium sulfate, and 30 g/L corn steep liquor, and an initial glucose concentration of 20 g/L. As the cells grow and utilize the glucose, additional 70% glucose is fed into the bioreactor at a rate approximately balancing glucose consumption. The temperature of the bioreactor is maintained at 30 degrees C. Growth continues for approximately 24 hours, until BDO reaches a concentration of between 20-200 g/L, with the cell density generally being between 5 and 10 g/L. Upon completion of the cultivation period, the fermenter contents are passed through a cell separation unit (e.g., centrifuge) to remove cells and cell debris, and the fermentation broth is transferred to a product separations unit. Isolation of BDO would take place by standard separations procedures employed in the art to separate organic products from dilute aqueous solutions, such as liquid-liquid extraction using a water immiscible organic solvent (e.g., toluene) to provide an organic solution of BDO. The resulting solution is then subjected to standard distillation methods to remove and recycle the organic solvent and to provide BDO (boiling point 228-229° C.) which is isolated as a purified liquid. Fermentation Protocol to Produce BDO Directly (Fully Continuous): The production organism is first grown up in batch mode using the apparatus and medium composition described above, except that the initial glucose concentration is 30-50 g/L. When glucose is exhausted, feed medium of the same composition is supplied continuously at a rate between 0.5 L/hr and 1 L/hr, and liquid is withdrawn at the same rate. The BDO concentration in the bioreactor remains constant at 30-40 g/L, and the cell density remains constant between 3-5 g/L. Temperature is maintained at 30 degrees C., and the pH is maintained at 4.5 using concentrated NaOH and HCl, as required. The bioreactor is operated continuously for one month, with samples taken every day to assure consistency of BDO concentration. In continuous mode, fermenter contents are constantly removed as new feed medium is supplied. The exit stream, containing cells, medium, and the product BDO, is then subjected to a continuous product separations procedure, with or without removing cells and cell debris, and would take place by standard continuous separations methods employed in the art to separate organic products from dilute aqueous solutions, such as continuous liquid-liquid extraction using a water immiscible organic solvent (e.g., toluene) to provide an organic solution of BDO. The resulting solution is subsequently subjected to standard continuous distillation methods to remove and recycle the organic solvent and to provide BDO (boiling point 228-229° C.) which is isolated as a purified liquid (mpt 20° C.). This example describes exemplary enzymes and corresponding genes for 1,4-butandiol (BDO) synthetic pathways. Exemplary BDO synthetic pathways are shown in Aldehyde to alcohol. Exemplary genes encoding enzymes that catalyze the conversion of an aldehyde to alcohol, that is, alcohol dehydrogenase or equivalently aldehyde reductase, include alrA encoding a medium-chain alcohol dehydrogenase for C2-C14 (Tani et al. Enzymes exhibiting 4-hydroxybutyrate dehydrogenase activity (EC 1.1.1.61) also fall into this category. Such enzymes have been characterized in Another exemplary enzyme is 3-hydroxyisobutyrate dehydrogenase which catalyzes the reversible oxidation of 3-hydroxyisobutyrate to methylmalonate semialdehyde. This enzyme participates in valine, leucine and isoleucine degradation and has been identified in bacteria, eukaryotes, and mammals. The enzyme encoded by P84067 from Several 3-hydroxyisobutyrate dehydrogenase enzymes have also been shown to convert malonic semialdehyde to 3-hydroxyproprionic acid (3-HP). Three gene candidates exhibiting this activity are mmsB from The conversion of malonic semialdehyde to 3-HP can also be accomplished by two other enzymes: NADH-dependent 3-hydroxypropionate dehydrogenase and NADPH-dependent malonate semialdehyde reductase. An NADH-dependent 3-hydroxypropionate dehydrogenase is thought to participate in beta-alanine biosynthesis pathways from propionate in bacteria and plants (Rathinasabapathi, B. Ketone to hydroxyl. There exist several exemplary alcohol dehydrogenases that convert a ketone to a hydroxyl functional group. Two such enzymes from Exemplary 3-hydroxyacyl dehydrogenases which convert acetoacetyl-CoA to 3-hydroxybutyryl-CoA include hbd from Exemplary 2-step oxidoreductases that convert an acyl-CoA to alcohol include those that transform substrates such as acetyl-CoA to ethanol (for example, adhE from Another exemplary enzyme can convert malonyl-CoA to 3-HP. An NADPH-dependent enzyme with this activity has characterized in Longer chain acyl-CoA molecules can be reduced by enzymes such as the jojoba ( Several acyl-CoA dehydrogenases are capable of reducing an acyl-CoA to its corresponding aldehyde. Exemplary genes that encode such enzymes include the An additional enzyme type that converts an acyl-CoA to its corresponding aldehyde is malonyl-CoA reductase which transforms malonyl-CoA to malonic semialdehyde. Malonyl-CoA reductase is a key enzyme in autotrophic carbon fixation via the 3-hydroxypropionate cycle in thermoacidophilic archael bacteria (Berg et al. Science 318:1782-1786 (2007); Thauer, R. K. Enzymes in this family include 1) branched-chain 2-keto-acid dehydrogenase, 2) alpha-ketoglutarate dehydrogenase, and 3) the pyruvate dehydrogenase multienzyme complex (PDHC). These enzymes are multi-enzyme complexes that catalyze a series of partial reactions which result in acylating oxidative decarboxylation of 2-keto-acids. Each of the 2-keto-acid dehydrogenase complexes occupies key positions in intermediary metabolism, and enzyme activity is typically tightly regulated (Fries et al. Activity of enzymes in the 2-keto-acid dehydrogenase family is normally low or limited under anaerobic conditions in Alpha-ketoglutarate dehydrogenase (AKGD) converts alpha-ketoglutarate to succinyl-CoA and is the primary site of control of metabolic flux through the TCA cycle (Hansford, R. G. Branched-chain 2-keto-acid dehydrogenase complex (BCKAD), also known as 2-oxoisovalerate dehydrogenase, participates in branched-chain amino acid degradation pathways, converting 2-keto acids derivatives of valine, leucine and isoleucine to their acyl-CoA derivatives and CO2. The complex has been studied in many organisms including The pyruvate dehydrogenase complex, catalyzing the conversion of pyruvate to acetyl-CoA, has also been extensively studied. In the As an alternative to the large multienzyme 2-keto-acid dehydrogenase complexes described above, some anaerobic organisms utilize enzymes in the 2-ketoacid oxidoreductase family (OFOR) to catalyze acylating oxidative decarboxylation of 2-keto-acids. Unlike the dehydrogenase complexes, these enzymes contain iron-sulfur clusters, utilize different cofactors, and use ferredoxin or flavodixin as electron acceptors in lieu of NAD(P)H. While most enzymes in this family are specific to pyruvate as a substrate (POR) some 2-keto-acid:ferredoxin oxidoreductases have been shown to accept a broad range of 2-ketoacids as substrates including alpha-ketoglutarate and 2-oxobutanoate (Fukuda and Wakagi Exemplary enzymes in this class include glyceraldehyde 3-phosphate dehydrogenase which converts glyceraldehyde-3-phosphate into D-glycerate 1,3-bisphosphate (for example, An exemplary enoyl-CoA reductase is the gene product of bcd from Exemplary 2-enoate reductase (EC 1.3.1.31) enzymes are known to catalyze the NADH-dependent reduction of a wide variety of α,β-unsaturated carboxylic acids and aldehydes (Rohdich et al. Most oxidoreductases operating on amino acids catalyze the oxidative deamination of alpha-amino acids with NAD+ or NADP+ as acceptor. Exemplary oxidoreductases operating on amino acids include glutamate dehydrogenase (deaminating), encoded by gdhA, leucine dehydrogenase (deaminating), encoded by ldh, and aspartate dehydrogenase (deaminating), encoded by nadX. The gdhA gene product from The lysine 6-dehydrogenase (deaminating), encoded by lysDH gene, catalyze the oxidative deamination of the ε-amino group of L-lysine to form 2-aminoadipate-6-semialdehyde, which in turn nonenzymatically cyclizes to form Δ1-piperideine-6-carboxylate (Misono and Nagasaki Exemplary phosphate transferring acyltransferases include phosphotransacetylase, encoded by pta, and phosphotransbutyrylase, encoded by ptb. The pta gene from Aspartate aminotransferase transfers an amino group from aspartate to alpha-ketoglutarate, forming glutamate and oxaloacetate. This conversion is catalyzed by, for example, the gene products of aspC from Cargill has developed a beta-alanine/alpha-ketoglutarate aminotransferase for producing 3-HP from beta-alanine via malonyl-semialdehyde (PCT/US2007/076252 (Jessen et al)). The gene product of SkPYD4 in The X-ray crystal structures of 2.7.2.a—Phosphotransferase, Carboxyl Group Acceptor Exemplary kinases include the In the CoA-transferase family, Similar transformations are catalyzed by the gene products of cat1, cat2, and cat3 of The glutaconate-CoA-transferase (EC 2.8.3.12) enzyme from anaerobic bacterium In the CoA hydrolase family, the enzyme 3-hydroxyisobutyryl-CoA hydrolase is specific for 3-HIBCoA and has been described to efficiently catalyze the desired transformation during valine degradation (Shimomura et al. The conversion of adipyl-CoA to adipate can be carried out by an acyl-CoA hydrolase or equivalently a thioesterase. The top Other potential Several eukaryotic acetyl-CoA hydrolases (EC 3.1.2.1) have broad substrate specificity. The enzyme from An exemplary carboxy-lyase is acetolactate decarboxylase which participates in citrate catabolism and branched-chain amino acid biosynthesis, converting 2-acetolactate to acetoin. In Aconitate decarboxylase catalyzes the final step in itaconate biosynthesis in a strain of 4-oxalocronate decarboxylase has been isolated from numerous organisms and characterized. Genes encoding this enzyme include dmpH and dmpE in An additional class of decarboxylases has been characterized that catalyze the conversion of cinnamate (phenylacrylate) and substituted cinnamate derivatives to the corresponding styrene derivatives. These enzymes are common in a variety of organisms and specific genes encoding these enzymes that have been cloned and expressed in Additional decarboxylase enzymes can form succinic semialdehyde from alpha-ketoglutarate. These include the alpha-ketoglutarate decarboxylase enzymes from Euglena gracilis (Shigeoka et al. Pyruvate decarboxylase (PDC, EC 4.1.1.1), also termed keto-acid decarboxylase, is a key enzyme in alcoholic fermentation, catalyzing the decarboxylation of pyruvate to acetaldehyde. This enzyme has a broad substrate range for aliphatic 2-keto acids including 2-ketobutyrate, 2-ketovalerate, 3-hydroxypyruvate and 2-phenylpyruvate (Berg et al. Like PDC, benzoylformate decarboxylase (EC 4.1.1.7) has a broad substrate range and has been the target of enzyme engineering studies. The enzyme from The 2-(hydroxymethyl)glutarate dehydratase of A second exemplary hydro-lyase is fumarate hydratase, an enzyme catalyzing the dehydration of malate to fumarate. A wealth of structural information is available for this enzyme and researchers have successfully engineered the enzyme to alter activity, inhibition and localization (Weaver, T. Citramalate hydrolyase, also called 2-methylmalate dehydratase, converts 2-methylmalate to mesaconate. 2-Methylmalate dehydratase activity was detected in The gene product of crt from The Aspartase (EC 4.3.1.1), catalyzing the deamination of aspartate to fumarate, is a widespread enzyme in microorganisms, and has been characterized extensively (Viola, R. E. 3-methylaspartase (EC 4.3.1.2), also known as beta-methylaspartase or 3-methylaspartate ammonia-lyase, catalyzes the deamination of threo-3-methylasparatate to mesaconate. The 3-methylaspartase from Ammonia-lyase enzyme candidates that form enoyl-CoA products include beta-alanyl-CoA ammonia-lyase (EC 4.3.1.6), which deaminates beta-alanyl-CoA, and 3-aminobutyryl-CoA ammonia-lyase (EC 4.3.1.14). Two beta-alanyl-CoA ammonia lyases have been identified and characterized in The 4-hydroxybutyryl-CoA dehydratases from both Lysine 2,3-aminomutase (EC 5.4.3.2) is an exemplary aminomutase that converts lysine to (3S)-3,6-diaminohexanoate, shifting an amine group from the 2- to the 3-position. The enzyme is found in bacteria that ferment lysine to acetate and butyrate, including as A second aminomutase, beta-lysine 5,6-aminomutase (EC 5.4.3.3), catalyzes the next step of lysine fermentation to acetate and butyrate, which transforms (3S)-3,6-diaminohexanoate to (3S,5S)-3,5-diaminohexanoate, shifting a terminal amine group from the 6- to the 5-position. This enzyme also catalyzes the conversion of lysine to 2,5-diaminohexanoate and is also called lysine-5,6-aminomutase (EC 5.4.3.4). The enzyme has been crystallized in Ornithine 4,5-aminomutase (EC 5.4.3.5) converts D-ornithine to 2,4-diaminopentanoate, also shifting a terminal amine to the adjacent carbon. The enzyme from Tyrosine 2,3-aminomutase (EC 5.4.3.6) participates in tyrosine biosynthesis, reversibly converting tyrosine to 3-amino-3-(4-hdyroxyphenyl)propanoate by shifting an amine from the 2- to the 3-position. In Leucine 2,3-aminomutase (EC 5.4.3.7) converts L-leucine to beta-leucine during leucine degradation and biosynthesis. An assay for leucine 2,3-aminomutase detected activity in many organisms (Poston, J. M. Cargill has developed a novel 2,3-aminomutase enzyme to convert L-alanine to β-alanine, thus creating a pathway from pyruvate to 3-HP in four biochemical steps (Liao et al., U.S. Publication No. 2005-0221466). 6.2.1.a—Acid-Thiol Ligase An exemplary acid-thiol ligase is the gene products of sucCD of This example describes exemplary BDO pathways from succinyl-CoA. BDO pathways from succinyl-CoA are described herein and have been described previously (see U.S. application Ser. No. 12/049,256, filed Mar. 14, 2008, and PCT application serial No. US08/57168, filed Mar. 14, 2008, each of which is incorporated herein by reference). Additional pathways are shown in Briefly, succinyl-CoA can be converted to succinic semialdehyde by succinyl-CoA reductase (or succinate semialdehyde dehydrogenase) (EC 1.2.1.b). Succinate semialdehyde can be converted to 4-hydroxybutyrate by 4-hydroxybutyrate dehydrogenase (EC 1.1.1.a), as previously described. Alternatively, succinyl-CoA can be converted to 4-hydroxybutyrate by succinyl-CoA reductase (alcohol forming) (EC 1.1.1.c). 4-Hydroxybutyrate can be converted to 4-hydroxybutyryl-CoA by 4-hydroxybutyryl-CoA transferase (EC 2.8.3.a), as previously described, or by 4-hydroxybutyryl-CoA hydrolase (EC 3.1.2.a) or 4-hydroxybutyryl-CoA ligase (or 4-hydroxybutyryl-CoA synthetase) (EC 6.2.1.a). Alternatively, 4-hydroxybutyrate can be converted to 4-hydroxybutyryl-phosphate by 4-hydroxybutyrate kinase (EC 2.7.2.a), as previously described. 4-Hydroxybutyryl-phosphate can be converted to 4-hydroxybutyryl-CoA by phosphotrans-4-hydroxybutyrylase (EC 2.3.1.a), as previously described. Alternatively, 4-hydroxybutyryl-phosphate can be converted to 4-hydroxybutanal by 4-hydroxybutanal dehydrogenase (phosphorylating) (EC 1.2.1.d). 4-Hydroxybutyryl-CoA can be converted to 4-hydroxybutanal by 4-hydroxybutyryl-CoA reductase (or 4-hydroxybutanal dehydrogenase) (EC 1.2.1.b). Alternatively, 4-hydroxybutyryl-CoA can be converted to 1,4-butanediol by 4-hydroxybutyryl-CoA reductase (alcohol forming) (EC 1.1.1.c). 4-Hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a), as previously described. This example describes exemplary BDO pathways from alpha-ketoglutarate. BDO pathways from succinyl-CoA are described herein and have been described previously (see U.S. application Ser. No. 12/049,256, filed Mar. 14, 2008, and PCT application serial No. US08/57168, filed Mar. 14, 2008, each of which is incorporated herein by reference). Additional pathways are shown in Briefly, alpha-ketoglutarate can be converted to succinic semialdehyde by alpha-ketoglutarate decarboxylase (EC 4.1.1.a), as previously described. Alternatively, alpha-ketoglutarate can be converted to glutamate by glutamate dehydrogenase (EC 1.4.1.a). 4-Aminobutyrate can be converted to succinic semialdehyde by 4-aminobutyrate oxidoreductase (deaminating) (EC 1.4.1.a) or 4-aminobutyrate transaminase (EC 2.6.1.a). Glutamate can be converted to 4-aminobutyrate by glutamate decarboxylase (EC 4.1.1.a). Succinate semialdehyde can be converted to 4-hydroxybutyrate by 4-hydroxybutyrate dehydrogenase (EC 1.1.1.a), as previously described. 4-Hydroxybutyrate can be converted to 4-hydroxybutyryl-CoA by 4-hydroxybutyryl-CoA transferase (EC 2.8.3.a), as previously described, or by 4-hydroxybutyryl-CoA hydrolase (EC 3.1.2.a), or 4-hydroxybutyryl-CoA ligase (or 4-hydroxybutyryl-CoA synthetase) (EC 6.2.1.a). 4-Hydroxybutyrate can be converted to 4-hydroxybutyryl-phosphate by 4-hydroxybutyrate kinase (EC 2.7.2.a). 4-Hydroxybutyryl-phosphate can be converted to 4-hydroxybutyryl-CoA by phosphotrans-4-hydroxybutyrylase (EC 2.3.1.a), as previously described. Alternatively, 4-hydroxybutyryl-phosphate can be converted to 4-hydroxybutanal by 4-hydroxybutanal dehydrogenase (phosphorylating) (EC 1.2.1.d). 4-Hydroxybutyryl-CoA can be converted to 4-hydroxybutanal by 4-hydroxybutyryl-CoA reductase (or 4-hydroxybutanal dehydrogenase) (EC 1.2.1.b), as previously described. 4-Hydroxybutyryl-CoA can be converted to 1,4-butanediol by 4-hydroxybutyryl-CoA reductase (alcohol forming) (EC 1.1.1.c). 4-Hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a), as previously described. This example describes exemplary BDO pathway d from 4-aminobutyrate. Briefly, 4-aminobutyrate can be converted to 4-aminobutyryl-CoA by 4-aminobutyrate CoA transferase (EC 2.8.3.a), 4-aminobutyryl-CoA hydrolase (EC 3.1.2.a), or 4-aminobutyrate-CoA ligase (or 4-aminobutyryl-CoA synthetase) (EC 6.2.1.a). 4-aminobutyryl-CoA can be converted to 4-oxobutyryl-CoA by 4-aminobutyryl-CoA oxidoreductase (deaminating) (EC 1.4.1.a) or 4-aminobutyryl-CoA transaminase (EC 2.6.1.a). 4-oxobutyryl-CoA can be converted to 4-hydroxybutyryl-CoA by 4-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.a). 4-hydroxybutyryl-CoA can be converted to 1,4-butanediol by 4-hydroxybutyryl-CoA reductase (alcohol forming) (EC 1.1.1.c). Alternatively, 4-hydroxybutyryl-CoA can be converted to 4-hydroxybutanal by 4-hydroxybutyryl-CoA reductase (or 4-hydroxybutanal dehydrogenase) (EC 1.2.1.b). 4-hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a). Enzymes for another exemplary BDO pathway converting 4-aminobutyrate to BDO is shown in Briefly, 4-aminobutyrate can be converted to 4-aminobutyryl-CoA by 4-aminobutyrate CoA transferase (EC 2.8.3.a), 4-aminobutyryl-CoA hydrolase (EC 3.1.2.a) or 4-aminobutyrate-CoA ligase (or 4-aminobutyryl-CoA synthetase) (EC 6.2.1.a). 4-aminobutyryl-CoA can be converted to 4-aminobutan-1-ol by 4-aminobutyryl-CoA reductase (alcohol forming) (EC 1.1.1.c). Alternatively, 4-aminobutyryl-CoA can be converted to 4-aminobutanal by 4-aminobutyryl-CoA reductase (or 4-aminobutanal dehydrogenase) (EC 1.2.1.b), and 4-aminobutanal converted to 4-aminobutan-1-ol by 4-aminobutan-1-ol dehydrogenase (EC 1.1.1.a). 4-aminobutan-1-ol can be converted to 4-hydroxybutanal by 4-aminobutan-1-ol oxidoreductase (deaminating) (EC 1.4.1.a) or 4-aminobutan-1-ol transaminase (EC 2.6.1.a). 4-hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a). Briefly, 4-aminobutyrate can be converted to [(4-aminobutanolyl)oxy]phosphonic acid by 4-aminobutyrate kinase (EC 2.7.2.a). [(4-aminobutanolyl)oxy]phosphonic acid can be converted to 4-aminobutanal by 4-aminobutyraldehyde dehydrogenase (phosphorylating) (EC 1.2.1.d). 4-aminobutanal can be converted to 4-aminobutan-1-ol by 4-aminobutan-1-ol dehydrogenase (EC 1.1.1.a). 4-aminobutan-1-ol can be converted to 4-hydroxybutanal by 4-aminobutan-1-ol oxidoreductase (deaminating) (EC 1.4.1.a) or 4-aminobutan-1-ol transaminase (EC 2.6.1.a). Alternatively, [(4-aminobutanolyl)oxy]phosphonic acid can be converted to [(4-oxobutanolyl)oxy]phosphonic acid by [(4-aminobutanolyl)oxy]phosphonic acid oxidoreductase (deaminating) (EC 1.4.1.a) or [(4-aminobutanolyl)oxy]phosphonic acid transaminase (EC 2.6.1.a). [(4-oxobutanolyl)oxy]phosphonic acid can be converted to 4-hydroxybutyryl-phosphate by 4-hydroxybutyryl-phosphate dehydrogenase (EC 1.1.1.a). 4-hydroxybutyryl-phosphate can be converted to 4-hydroxybutanal by 4-hydroxybutyraldehyde dehydrogenase (phosphorylating) (EC 1.2.1.d). 4-hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a). This example describes exemplary BDO pathways from alpha-ketoglutarate. Briefly, alpha-ketoglutarate can be converted to alpha-ketoglutaryl-phosphate by alpha-ketoglutarate 5-kinase (EC 2.7.2.a). Alpha-ketoglutaryl-phosphate can be converted to 2,5-dioxopentanoic acid by 2,5-dioxopentanoic semialdehyde dehydrogenase (phosphorylating) (EC 1.2.1.d). 2,5-dioxopentanoic acid can be converted to 5-hydroxy-2-oxopentanoic acid by 2,5-dioxopentanoic acid reductase (EC 1.1.1.a). Alternatively, alpha-ketoglutarate can be converted to alpha-ketoglutaryl-CoA by alpha-ketoglutarate CoA transferase (EC 2.8.3.a), alpha-ketoglutaryl-CoA hydrolase (EC 3.1.2.a) or alpha-ketoglutaryl-CoA ligase (or alpha-ketoglutaryl-CoA synthetase) (EC 6.2.1.a). Alpha-ketoglutaryl-CoA can be converted to 2,5-dioxopentanoic acid by alpha-ketoglutaryl-CoA reductase (or 2,5-dioxopentanoic acid dehydrogenase) (EC 1.2.1.b). 2,5-Dioxopentanoic acid can be converted to 5-hydroxy-2-oxopentanoic acid by 5-hydroxy-2-oxopentanoic acid dehydrogenase. Alternatively, alpha-ketoglutaryl-CoA can be converted to 5-hydroxy-2-oxopentanoic acid by alpha-ketoglutaryl-CoA reductase (alcohol forming) (EC 1.1.1.c). 5-hydroxy-2-oxopentanoic acid can be converted to 4-hydroxybutanal by 5-hydroxy-2-oxopentanoic acid decarboxylase (EC 4.1.1.a). 4-hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a). 5-hydroxy-2-oxopentanoic acid can be converted to 4-hydroxybutyryl-CoA by 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation) (EC 1.2.1.c). This example describes exemplary BDO pathways from glutamate. Briefly, glutamate can be converted to glutamyl-CoA by glutamate CoA transferase (EC 2.8.3.a), glutamyl-CoA hydrolase (EC 3.1.2.a) or glutamyl-CoA ligase (or glutamyl-CoA synthetase) (EC 6.2.1.a). Alternatively, glutamate can be converted to glutamate-5-phosphate by glutamate 5-kinase (EC 2.7.2.a). Glutamate-5-phosphate can be converted to glutamate-5-semialdehyde by glutamate-5-semialdehyde dehydrogenase (phosphorylating) (EC 1.2.1.d). Glutamyl-CoA can be converted to glutamate-5-semialdehyde by glutamyl-CoA reductase (or glutamate-5-semialdehyde dehydrogenase) (EC 1.2.1.b). Glutamate-5-semialdehyde can be converted to 2-amino-5-hydroxypentanoic acid by glutamate-5-semialdehyde reductase (EC 1.1.1.a). Alternatively, glutamyl-CoA can be converted to 2-amino-5-hydroxypentanoic acid by glutamyl-CoA reductase (alcohol forming) (EC 1.1.1.c). 2-Amino-5-hydroxypentanoic acid can be converted to 5-hydroxy-2-oxopentanoic acid by 2-amino-5-hydroxypentanoic acid oxidoreductase (deaminating) (EC 1.4.1.a) or 2-amino-5-hydroxypentanoic acid transaminase (EC 2.6.1.a). 5-Hydroxy-2-oxopentanoic acid can be converted to 4-hydroxybutanal by 5-hydroxy-2-oxopentanoic acid decarboxylase (EC 4.1.1.a). 4-Hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a). Alternatively, 5-hydroxy-2-oxopentanoic acid can be converted to 4-hydroxybutyryl-CoA by 5-hydroxy-2-oxopentanoic acid dehydrogenase (decarboxylation) (EC 1.2.1.c). This example describes an exemplary BDO pathway from acetoacetyl-CoA. Briefly, acetoacetyl-CoA can be converted to 3-hydroxybutyryl-CoA by 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.a). 3-Hydroxybutyryl-CoA can be converted to crotonoyl-CoA by 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.a). Crotonoyl-CoA can be converted to vinylacetyl-CoA by vinylacetyl-CoA A-isomerase (EC 5.3.3.3). Vinylacetyl-CoA can be converted to 4-hydroxybutyryl-CoA by 4-hydroxybutyryl-CoA dehydratase (EC 4.2.1.a). 4-Hydroxybutyryl-CoA can be converted to 1,4-butanediol by 4-hydroxybutyryl-CoA reductase (alcohol forming) (EC 1.1.1.c). Alternatively, 4-hydroxybutyryl-CoA can be converted to 4-hydroxybutanal by 4-hydroxybutyryl-CoA reductase (or 4-hydroxybutanal dehydrogenase) (EC 1.2.1.b). 4-Hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a). This example describes an exemplary BDO pathway from homoserine. Briefly, homoserine can be converted to 4-hydroxybut-2-enoate by homoserine deaminase (EC 4.3.1.a). Alternatively, homoserine can be converted to homoserine-CoA by homoserine CoA transferase (EC 2.8.3.a), homoserine-CoA hydrolase (EC 3.1.2.a) or homoserine-CoA ligase (or homoserine-CoA synthetase) (EC 6.2.1.a). Homoserine-CoA can be converted to 4-hydroxybut-2-enoyl-CoA by homoserine-CoA deaminase (EC 4.3.1.a). 4-Hydroxybut-2-enoate can be converted to 4-hydroxybut-2-enoyl-CoA by 4-hydroxybut-2-enoyl-CoA transferase (EC 2.8.3.a), 4-hydroxybut-2-enoyl-CoA hydrolase (EC 3.1.2.a), or 4-hydroxybut-2-enoyl-CoA ligase (or 4-hydroxybut-2-enoyl-CoA synthetase) (EC 6.2.1.a). Alternatively, 4-hydroxybut-2-enoate can be converted to 4-hydroxybutyrate by 4-hydroxybut-2-enoate reductase (EC 1.3.1.a). 4-Hydroxybutyrate can be converted to 4-hydroxybutyryl-coA by 4-hydroxybutyryl-CoA transferase (EC 2.8.3.a), 4-hydroxybutyryl-CoA hydrolase (EC 3.1.2.a), or 4-hydroxybutyryl-CoA ligase (or 4-hydroxybutyryl-CoA synthetase) (EC 6.2.1.a). 4-Hydroxybut-2-enoyl-CoA can be converted to 4-hydroxybutyryl-CoA by 4-hydroxybut-2-enoyl-CoA reductase (EC 1.3.1.a). 4-Hydroxybutyryl-CoA can be converted to 1,4-butanediol by 4-hydroxybutyryl-CoA reductase (alcohol forming) (EC 1.1.1.c). Alternatively, 4-hydroxybutyryl-CoA can be converted to 4-hydroxybutanal by 4-hydroxybutyryl-CoA reductase (or 4-hydroxybutanal dehydrogenase) (EC 1.2.1.b). 4-Hydroxybutanal can be converted to 1,4-butanediol by 1,4-butanediol dehydrogenase (EC 1.1.1.a). This example describes increased production of BDO in BDO producing strains expressing succinyl-CoA synthetase. As discussed above, succinate can be a precursor for production of BDO by conversion to succinyl-CoA (see also WO2008/115840, WO 2009/023493, U.S. publication 2009/0047719, U.S. publication 2009/0075351). Therefore, the host strain was genetically modified to overexpress the The This example describes the expression of various non-native pathway enzymes to provide improved production of BDO. Alpha-Ketoglutarate Decarboxylase. The To construct the Functional expression of the alpha-ketoglutarate decarboxylase was demonstrated using both in vitro and in vivo assays. The SucA enzyme activity was measured by following a previously reported method (Tian et al., A separate experiment demonstrated that the alpha-ketoglutarate decarboxylase pathway functions independently of the reductive TCA cycle. Further support for the contribution of alpha-ketoglutarate decarboxylase to production of 4HB and BDO was provided by flux analysis experiments. Cultures of ECKh-432, which contains both sucCD-sucD and sucA on the chromosome, were grown in M9 minimal medium containing a mixture of 1-13C-glucose (60%) and U-13C-glucose (40%). The biomass was harvested, the protein isolated and hydrolyzed to amino acids, and the label distribution of the amino acids analyzed by gas chromatography-mass spectrometry (GCMS) as described previously (Fischer and Sauer, These results demonstrate 4-hydroxybutyrate producing strains that contain the sucA gene from Succinate semialdehyde dehydrogenase (CoA-dependent), 4-hydroxybutyrate dehydrogenase, and 4-hydroxybutyryl-CoA/acetyl-CoA transferase. The genes from Briefly, the genes from The Butyrate Kinase and Phosphotransbutyrylase. Butyrate kinase (BK) and phosphotransbutyrylase (PTB) enzymes can be utilized to produce 4-hydroxybutyryl-CoA (see also WO2008/115840, WO 2009/023493, U.S. publication 2009/0047719, U.S. publication 2009/0075351). In particular, the Initial experiments involved the cloning and expression of the native The PTB and BK genes exist in Expression of the two proteins from these vector constructs was found to be low in comparison with other exogenously expressed genes due to the high incidence of codons in the The improvement in expression of the BK and PTB proteins resulting from codon optimization is shown in The codon optimized operons were expressed on a plasmid in strain ECKh-432 (ΔadhE ΔldhA ΔpflB ΔlpdA::K.p.lpdA322 Δmdh ΔarcA gltAR163L fimD:: These results demonstrate that butyrate kinase (BK) and phosphotransbutyrylase (PTB) enzymes can be employed to convert 4-hydroxybutyrate to 4-hydroxybutyryl-CoA. This eliminates the need for a transferase enzyme such as 4-hydroxybutyryl-CoA/Acetyl-CoA transferase, which would generate one mole of acetate per mol of 4-hydroxybutyryl-CoA produced. The enzymes from 4-hydroxybutyryl-CoA Reductase. The The native The native and codon-optimized genes were expressed on a plasmid along with The 4-hydroxybutanal Reductase. 4-hydroxybutanal reductase activity of adhl from Multiple alcohol dehydrogenases were screened for their ability to catalyze the reduction of 4-hydroxybutanal to BDO. Most alcohol dehydrogenases with high activity on butyraldehyde exhibited far lower activity on 4-hydroxybutyraldehyde. One notable exception is the adhl gene from The native gene sequence and encoded protein sequence if the adhl gene from The Adhl enzyme (084) expressed very well from its native gene in The 084 enzyme was tested for its ability to boost BDO production when coupled with the This example describes the utilization of pyruvate dehydrogenase (PDH) to enhance BDO production. Heterologous expression of the Computationally, the NADH-generating conversion of pyruvate to acetyl-CoA is required to reach the maximum theoretical yield of 1,4-butanediol (see also WO2008/115840, WO 2009/023493, U.S. publication 2009/0047719, U.S. publication 2009/0075351; WO 2008/018930; Kim et al., PDH is one of the most complicated enzymes of central metabolism and is comprised of 24 copies of pyruvate decarboxylase (E1) and 12 molecules of dihydrolipoyl dehydrogenase (E3), which bind to the outside of the dihydrolipoyl transacetylase (E2) core. PDH is inhibited by high NADH/NAD, ATP/ADP, and Acetyl-CoA/CoA ratios. The enzyme naturally exhibits very low activity under oxygen-limited or anaerobic conditions in organisms such as Replacement of the Native lpdA. The pyruvate dehydrogenase operon of The chromosomal gene replacement was performed using a non-replicative plasmid and the sacB gene from The The sequence of the ECKh-138 region encompassing the aceF and lpdA genes is shown in To evaluate the benefit of using Cells were grown anaerobically at 37° C. in M9 minimal medium (6.78 g/L Na2HPO4, 3.0 g/L KH2PO4, 0.5 g/L NaCl, 1.0 g/L NH4C1, 1 mM MgSO4, 0.1 mM CaCl2) supplemented with 20 g/L glucose, 100 mM 3-(N-morpholino)propanesulfonic acid (MOPS) to improve the buffering capacity, 10 μg/mL thiamine, and the appropriate antibiotics. Microaerobic conditions were established by initially flushing capped anaerobic bottles with nitrogen for 5 minutes, then piercing the septum with a 23G needle following inoculation. The needle was kept in the bottle during growth to allow a small amount of air to enter the bottles. 0.25 mM IPTG was added when OD600 reached approximately 0.2 to induce the pathway genes, and samples taken for analysis every 24 hours following induction. The culture supernatants were analyzed for BDO, 4HB, and other by-products as described in Example II and in WO2008/115840. BDO and 4HB production in ECKh-138 was significantly higher after 48 hours than in AB3 or the host used in previous work, MG1655 ΔldhA ( PDH Promoter Replacement. It was previously shown that the replacement of the pdhR repressor by a transcriptional fusion containing the Fnr binding site, one of the pflB promoters, and its ribosome binding site (RBS), thus leading to expression of the aceEF-lpd operon by an anaerobic promoter, should increase pdh activity anaerobically (Zhou et al., lpdA Promoter Replacement. The promoter region containing the fnr binding site, the pflB-p6 promoter and the RBS of the pflB gene was amplified by PCR using chromosomal DNA template and primers aceF-pflBp6-fwd (5′-agacaaatcggttgccgtttgttaagccaggcgagatatgatctatatc-3′) (SEQ ID NO:27) and lpdA-RBS-B-rev (5′-gagttttgatttcagtactcatcatgtaacacctaccttcttgctgtgatatag-3′) (SEQ ID NO:28). Plasmid 2-4a was amplified by PCR using primers B-RBS-lpdA fwd (5′-ctatatcacagcaagaaggtaggtgttacatgatgagtactgaaatcaaaactc-3′) (SEQ ID NO:29) and pflBp6-aceF-rev (5′-gatatagatcatatctcgcctggcttaacaaacggcaaccgatttgtct-3′) (SEQ ID NO:30). The two resulting fragments were assembled using the BPS cloning kit (BPS Bioscience; San Diego Calif.). The resulting construct was sequenced verified and introduced into strain ECKh-439 using the pRE118-V2 method described above. The nucleotide sequence encompassing the aceF-lpdA region in the resulting strain ECKh-456 is shown in The host strain ECKh-439 (ΔadhE ΔldhA ΔpflB ΔlpdA::K.p.lpdA322 Δmdh ΔarcA gltAR163L ackA fimD:: These results demonstrated that expression of pyruvate dehydrogenase increased production of BDO in BDO producing strains. This example describes increasing activity of citrate synthase and aconitase to increase production of BDO. An R163L mutation into gltA was found to improve BDO production. Additionally, an arcA knockout was used to improve BDO production. Computationally, it was determined that flux through citrate synthase (CS) and aconitase (ACONT) is required to reach the maximum theoretical yield of 1,4-butanediol (see also WO2008/115840, WO 2009/023493, U.S. publication 2009/0047719, U.S. publication 2009/0075351). Lack of CS or ACONT activity would reduce the maximum theoretical yield by 14% under anaerobic conditions. In the presence of an external electron acceptor, the maximum yield is reduced by 9% or by 6% without flux through CS or ACONT assuming the absence or presence of PEPCK activity, respectively. As with pyruvate dehydrogenase (PDH), the importance of CS and ACONT is greatly amplified in the knockout strain background in which ADHEr, ASPT, LDH_D, MDH and PFLi are knocked out (design #439)(see WO 2009/023493 and U.S. publication 2009/0047719, which is incorporated herein by reference). The minimal OptKnock strain design described in WO 2009/023493 and U.S. publication 2009/0047719 had one additional deletion beyond ECKh-138, the mdh gene, encoding malate dehydrogenase. Deletion of this gene is intended to prevent flux to succinate via the reductive TCA cycle. The mdh deletion was performed using the λ red homologeous recombination method (Datsenko and Wanner, Recombinants were selected for chloramphenicol resistance and streak purified. Loss of the mdh gene and insertion of CAT was verified by diagnostic PCR. To remove the CAT gene, a temperature sensitive plasmid pCP20 containing a FLP recombinase (Datsenko and Wanner, CS and ACONT are not highly active or highly expressed under anaerobic conditions. To this end, the arcA gene, which encodes for a global regulator of the TCA cycle, was deleted. ArcA works during microaerobic conditions to induce the expression of gene products that allow the activity of central metabolism enzymes that are sensitive to low oxygen levels, aceE, pflB and adhE. It was shown that microaerobically, a deletion in arcA/arcB increases the specific activities of ldh, icd, gltA, mdh, and gdh genes (Salmon et al., The gltA gene of Crude extracts of the strains ECKh-401 and the gltAR163L mutant ECKh-422 were then evaluated for citrate synthase activity. Cells were harvested by centrifugation at 4,500 rpm (Beckman-Coulter, Allegera X-15R; Fullerton Calif.) for 10 min. The pellets were resuspended in 0.3 mL BugBuster (Novagen/EMD; San Diego Calif.) reagent with benzonase and lysozyme, and lysis proceeded for 15 minutes at room temperature with gentle shaking Cell-free lysate was obtained by centrifugation at 14,000 rpm (Eppendorf centrifuge 5402; Hamburg Germany) for 30 min at 4° C. Cell protein in the sample was determined using the method of Bradford (Bradford, Citrate synthase activity was determined by following the formation of free coenzyme A (HS-CoA), which is released from the reaction of acetyl-CoA with oxaloacetate. The free thiol group of HS-CoA reacts with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) to form 5-thio-2-nitrobenzoic acid (TNB). The concentration of TNB is then monitored spectrophotometrically by measuring the absorbance at 410 nm (maximum at 412 nm). The assay mixture contained 100 mM Tris/HCl buffer (pH 7.5), 20 mM acetyl-CoA, 10 mM DTNB, and 20 mM oxaloacetate. For the evaluation of NADH inhibition, 0.4 mM NADH was also added to the reaction. The assay was started by adding 5 microliters of the cell extract, and the rate of reaction was measured by following the absorbance change over time. A unit of specific activity is defined as the μmol of product converted per minute per mg protein. Strains ECKh-401 and ECKh-422 were transformed with plasmids expressing the entire BDO pathway. The host strain modifications described in this section were intended to redirect carbon flux through the oxidative TCA cycle, which is consistent with the OptKnock strain design described in WO 2009/023493 and U.S. publication 2009/0047719. To demonstrate that flux was indeed routed through this pathway,13C flux analysis was performed using the strain ECKh-432, which is a version of ECKh-422 in which the upstream pathway is integrated into the chromosome (as described in Example XVII). To complete the BDO pathway, 1. 80 mol % unlabeled, 20 mol % uniform-13C 2. 10 mol % unlabeled, 90 mol % uniform-13C 3. 90 mol %13C, 10 mol % uniform-13C 4. 40 mol %13C, 60 mol % uniform-13C Parallel unlabeled cultures were grown in duplicate, from which frequent samples were taken to evaluate growth rate, glucose uptake rate, and product formation rates. In late exponential phase, the labeled cultures were harvested, the protein isolated and hydrolyzed to amino acids, and the label distribution of the amino acids analyzed by gas chromatography-mass spectrometry (GCMS) as described previously (Fischer and Sauer, The advantage of using a knockout strain such as strains designed using OptKnock for BDO production (see WO 2009/023493 and U.S. publication 2009/0047719) can be observed by comparing typical fermentation profiles of ECKh-422 with that of the original strain ECKh-138, in which BDO is produced from succinate via the reductive TCA cycle (see This example describes the utilization of phosphoenolpyruvate carboxykinase (PEPCK) to enhance BDO production. The Computationally, it was demonstrated that the ATP-generating conversion of oxaloacetate to phosphoenolpyruvate is required to reach the maximum theoretical yield of 1,4-butanediol (see also WO2008/115840, WO 2009/023493, U.S. publication 2009/0047719, U.S. publication 2009/0075351). Lack of PEPCK activity was shown to reduce the maximum theoretical yield of BDO by 12% assuming anaerobic conditions and by 3% assuming an external electron acceptor such as nitrate or oxygen is present. In organisms such as Growth complementation studies involved plasmid based expression of the candidate genes in Δppc mutant Pre-cultures were grown aerobically in M9 minimal media with 4 g/L glucose. All pre-cultures were supplemented with aspartate (2 mM) to provide the Δppc mutants with a source for generating TCA cycle intermediates independent of PEPCK expression. M9 minimal media was also used in the test conditions with 4 g/L glucose, but no aspartate was added and IPTG was added to 0.5 mM. Table 27 shows the results of the growth complementation studies. Techniques for adaptive evolution were applied to improve the growth rate of the The ppc/pepck gene replacement procedure described above was then repeated, this time using the BDO-producing strains ECKh-432 (ΔadhE ΔldhA ΔpflB ΔlpdA::K.p.lpdA322 Δmdh ΔarcA gltAR163L ΔackA fimD:: The Δppc::H. inf pepCK derivative of ECKh-439, called ECKh-453, was run in a fermentation. The downstream BDO pathway was supplied by pZS*13 containing A key feature of OptKnock strains is that production of the metabolite of interest is generally coupled to growth, and further, that, production should occur during exponential growth as well as in stationary phase. The growth coupling potential of ECKh-432 and ECKh-453 was evaluated by growth in microaerobic bottles with frequent sampling during the exponential phase. M9 medium containing 4 g/L glucose and either 10 mM NaHCO3(for ECKh-432) or 50 mM NaHCO3(for ECKh-453) was used, and 0.2 mM IPTG was included from inoculation. 18G needles were used for microaerobic growth of ECKh-432, while both 18G and 27G needles were tested for ECKh-453. The higher gauge needles result in less aeration. As shown in This example describes integration of various BDO pathway genes into the fimD locus to provide more efficient expression and stability. The entire upstream BDO pathway, leading to 4HB, has been integrated into the Following DpnI treatment and DNA electrophoresis, the purified PCR product was used to transform The alpha-ketoglutarate branch of the upstream pathway was integrated into the chromosome by homologeous recombination. The plasmid used in this modification was derived from vector pRE118-V2, as referenced in Example XIV, which contains a kanamycin-resistant gene, a gene encoding the levansucrase (sacB) and a R6K conditional replication ori. The integration plasmid also contained a polycistronic sequence with a promoter, the sucA gene, the The resulting upstream pathway integration strain ECKh-432 was transformed with a plasmid harboring the downstream pathway genes. The construct was able to produce BDO from glucose in minimal medium (see This example describes the utilization of a non-phosphotransferase (PTS) sucrose uptake system to reduce pyruvate as a byproduct in the conversion of sucrose to BDO. Strains engineered for the utilization of sucrose via a phosphotransferase (PTS) system produce significant amounts of pyruvate as a byproduct. Therefore, the use of a non-PTS sucrose system can be used to decrease pyruvate formation because the import of sucrose would not be accompanied by the conversion of phosphoenolpyruvate (PEP) to pyruvate. This will increase the PEP pool and the flux to oxaloacetate through PPC or PEPCK. Insertion of a non-PTS sucrose operon into the rrnC region was performed. To generate a PCR product containing the non-PTS sucrose genes flanked by regions of homology to the rrnC region, two oligos were used to PCR amplify the csc genes from Mach1™ (Invitrogen, Carlsbad, Calif.). This strain is a descendent of W strain which is an After purification, the PCR product was electroporated into MG1655 electrocompetent cells which had been transformed with pRedET (tet) and prepared according to manufacturer's instructions (genebridges.com/gb/pdf/K001%20Q%20E%20BAC%20Modification%20Kit-version2.6-2007-screen.pdf). The PCR product was designed so that it integrated into genome into the rrnC region of the chromosome. It effectively deleted 191 nucleotides upstream of rrlC (23S rRNA), all of the rrlC rRNA gene and 3 nucleotides downstream of rrlC and replaced it with the sucrose operon, as shown in Transformants were grown on M9 minimal salts medium with 0.4% sucrose and individual colonies tested for presence of the sucrose operon by diagnostic PCR. The entire rrnC::crcAKB region was transferred into the BDO host strain ECKh-432 by P1 transduction (Sambrook et al., ECKh-463 was transformed with pZS*13 containing This example describes various BDO producting strains. Table 28 summarizes various BDO producing strains disclosed above in Examples XII-XVIII. The strains summarized in Table 28 are as follows. Strain 1: Single deletion derivative of Strain 3: Host strain ECKh-138, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of Strain 5: Host strain ECKh-401, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of Strain 7: Host strain ECKh-422, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of Strain 10: host strain ECKh-426, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of Strain 13: host strain ECKh-439, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of Strain 15: host strain ECKh-456, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of Strain 17: host strain ECKh-459, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of Strain 19: host strain ECKh-463, deletion of endogenous adhE, ldhA, pflB, deletion of endogenous lpdA and chromosomal insertion of In addition to the BDO producing strains disclosed herein, including those disclosed in Table 28, it is understood that additional modifications can be incorporated that further increase production of BDO and/or decrease undesirable byproducts. For example, a BDO producing strain, or a strain of Table 28, can incorporate additional knockouts to further increase the production of BDO or decrease an undesirable byproduct. Exemplary knockouts have been described previously (see U.S. publication 2009/0047719). Such knockout strains include, but are not limited to, ADHEr, NADH6; ADHEr, PPCK; ADHEr, SUCD4; ADHEr, ATPS4r; ADHEr, FUM; ADHEr, MDH; ADHEr, PFLi, PPCK; ADHEr, PFLi, SUCD4; ADHEr, ACKr, NADH6; ADHEr, NADH6, PFLi; ADHEr, ASPT, MDH; ADHEr, NADH6, PPCK; ADHEr, PPCK, THD2; ADHEr, ATPS4r, PPCK; ADHEr, MDH, THD2; ADHEr, FUM, PFLi; ADHEr, PPCK, SUCD4; ADHEr, GLCpts, PPCK; ADHEr, GLUDy, MDH; ADHEr, GLUDy, PPCK; ADHEr, FUM, PPCK; ADHEr, MDH, PPCK; ADHEr, FUM, GLUDy; ADHEr, FUM, HEX1; ADHEr, HEX1, PFLi; ADHEr, HEX1, THD2; ADHEr, FRD2, LDH_D, MDH; ADHEr, FRD2, LDH_D, ME2; ADHEr, MDH, PGL, THD2; ADHEr, G6PDHy, MDH, THD2; ADHEr, PFLi, PPCK, THD2; ADHEr, ACKr, AKGD, ATPS4r; ADHEr, GLCpts, PFLi, PPCK; ADHEr, ACKr, ATPS4r, SUCOAS; ADHEr, GLUDy, PFLi, PPCK; ADHEr, ME2, PFLi, SUCD4; ADHEr, GLUDy, PFLi, SUCD4; ADHEr, ATPS4r, LDH_D, SUCD4; ADHEr, FUM, HEX1, PFLi; ADHEr, MDH, NADH6, THD2; ADHEr, ATPS4r, MDH, NADH6; ADHEr, ATPS4r, FUM, NADH6; ADHEr, ASPT, MDH, NADH6; ADHEr, ASPT, MDH, THD2; ADHEr, ATPS4r, GLCpts, SUCD4; ADHEr, ATPS4r, GLUDy, MDH; ADHEr, ATPS4r, MDH, PPCK; ADHEr, ATPS4r, FUM, PPCK; ADHEr, ASPT, GLCpts, MDH; ADHEr, ASPT, GLUDy, MDH; ADHEr, ME2, SUCD4, THD2; ADHEr, FUM, PPCK, THD2; ADHEr, MDH, PPCK, THD2; ADHEr, GLUDy, MDH, THD2; ADHEr, HEX1, PFLi, THD2; ADHEr, ATPS4r, G6PDHy, MDH; ADHEr, ATPS4r, MDH, PGL; ADHEr, ACKr, FRD2, LDH_D; ADHEr, ACKr, LDH_D, SUCD4; ADHEr, ATPS4r, FUM, GLUDy; ADHEr, ATPS4r, FUM, HEX1; ADHEr, ATPS4r, MDH, THD2; ADHEr, ATPS4r, FRD2, LDH_D; ADHEr, ATPS4r, MDH, PGDH; ADHEr, GLCpts, PPCK, THD2; ADHEr, GLUDy, PPCK, THD2; ADHEr, FUM, HEX1, THD2; ADHEr, ATPS4r, ME2, THD2; ADHEr, FUM, ME2, THD2; ADHEr, GLCpts, GLUDy, PPCK; ADHEr, ME2, PGL, THD2; ADHEr, G6PDHy, ME2, THD2; ADHEr, ATPS4r, FRD2, LDH_D, ME2; ADHEr, ATPS4r, FRD2, LDH_D, MDH; ADHEr, ASPT, LDH_D, MDH, PFLi; ADHEr, ATPS4r, GLCpts, NADH6, PFLi; ADHEr, ATPS4r, MDH, NADH6, PGL; ADHEr, ATPS4r, G6PDHy, MDH, NADH6; ADHEr, ACKr, FUM, GLUDy, LDH_D; ADHEr, ACKr, GLUDy, LDH_D, SUCD4; ADHEr, ATPS4r, G6PDHy, MDH, THD2; ADHEr, ATPS4r, MDH, PGL, THD2; ADHEr, ASPT, G6PDHy, MDH, PYK; ADHEr, ASPT, MDH, PGL, PYK; ADHEr, ASPT, LDH_D, MDH, SUCOAS; ADHEr, ASPT, FUM, LDH_D, MDH; ADHEr, ASPT, LDH_D, MALS, MDH; ADHEr, ASPT, ICL, LDH_D, MDH; ADHEr, FRD2, GLUDy, LDH_D, PPCK; ADHEr, FRD2, LDH_D, PPCK, THD2; ADHEr, ACKr, ATPS4r, LDH_D, SUCD4; ADHEr, ACKr, ACS, PPC, PPCK; ADHEr, GLUDy, LDH_D, PPC, PPCK; ADHEr, LDH_D, PPC, PPCK, THD2; ADHEr, ASPT, ATPS4r, GLCpts, MDH; ADHEr, G6PDHy, MDH, NADH6, THD2; ADHEr, MDH, NADH6, PGL, THD2; ADHEr, ATPS4r, G6PDHy, GLCpts, MDH; ADHEr, ATPS4r, GLCpts, MDH, PGL; ADHEr, ACKr, LDH_D, MDH, SUCD4. Table 29 shows the reactions of corresponding genes to be knocked out of a host organism such as Throughout this application various publications have been referenced. The disclosures of these publications in their entireties are hereby incorporated by reference in this application in order to more fully describe the state of the art to which this invention pertains. Although the invention has been described with reference to the examples provided above, it should be understood that various modifications can be made without departing from the spirit of the invention. The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO. 1. A non-naturally occurring microbial organism, comprising a microbial organism having a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, wherein said microbial organism is genetically modified to express exogenous succinyl-CoA synthetase; to express exogenous alpha-ketoglutarate decarboxylase; to express exogenous succinate semialdehyde dehydrogenase and 4-hydroxybutyrate dehydrogenase and optionally 4-hydroxybutyryl-CoA/acetyl-CoA transferase; to express exogenous butyrate kinase and phosphotransbutyrylase; to express exogenous 4-hydroxybutyryl-CoA reductase; and to express exogenous 4-hydroxybutanal reductase; to express exogenous pyruvate dehydrogenase; to disrupt a gene encoding an aerobic respiratory control regulatory system; to express an exogenous NADH insensitive citrate synthase; to express exogenous phosphoenolpyruvate carboxykinase. 2. The non-naturally occurring microbial organism of 3. The non-naturally occurring microbial organism of 4. The non-naturally occurring microbial organism of 5. The non-naturally occurring microbial organism of 6. The non-naturally occurring microbial organism of 7. The non-naturally occurring microbial organism of 8. The non-naturally occurring microbial organism of 9. The non-naturally occurring microbial organism of 10. The non-naturally occurring microbial organism of 11. The non-naturally occurring microbial organism of 12. The non-naturally occurring microbial organism of 13. The non-naturally occurring microbial organism of 14. The non-naturally occurring microbial organism of 15. The non-naturally occurring microbial organism of 16. The non-naturally occurring microbial organism of 17. The non-naturally occurring microbial organism of 18. The non-naturally occurring microbial organism of 19-35. (canceled) 36. A non-naturally occurring microbial organism, comprising a microbial organism having a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO, wherein said microbial organism is genetically modified as in any of strains 3-20 of Table 28. 37. A method for producing 1,4-butanediol (BDO), comprising culturing the non-naturally occurring microbial organism of any of claims BACKGROUND OF THE INVENTION
SUMMARY OF INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION
ALCOHOL DEHYDROGENASES ec: 1.1.1.1 alcohol dehydrogenase ec: 1.1.1.2 alcohol dehydrogenase (NADP+) ec: 1.1.1.4 (R,R)-butanediol dehydrogenase ec: 1.1.1.5 acetoin dehydrogenase ec: 1.1.1.6 glycerol dehydrogenase ec: 1.1.1.7 propanediol-phosphate dehydrogenase ec: 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) ec: 1.1.1.11 D-arabinitol 4-dehydrogenase ec: 1.1.1.12 L-arabinitol 4-dehydrogenase ec: 1.1.1.13 L-arabinitol 2-dehydrogenase ec: 1.1.1.14 L-iditol 2-dehydrogenase ec: 1.1.1.15 D-iditol 2-dehydrogenase ec: 1.1.1.16 galactitol 2-dehydrogenase ec: 1.1.1.17 mannitol-1-phosphate 5- dehydrogenase ec: 1.1.1.18 inositol 2-dehydrogenase ec: 1.1.1.21 aldehyde reductase ec: 1.1.1.23 histidinol dehydrogenase ec: 1.1.1.26 glyoxylate reductase ec: 1.1.1.27 L-lactate dehydrogenase ec: 1.1.1.28 D-lactate dehydrogenase ec: 1.1.1.29 glycerate dehydrogenase ec: 1.1.1.30 3-hydroxybutyrate dehydrogenase ec: 1.1.1.31 3-hydroxyisobutyrate dehydrogenase ec: 1.1.1.35 3-hydroxyacyl-CoA dehydrogenase ec: 1.1.1.36 acetoacetyl-CoA reductase ec: 1.1.1.37 malate dehydrogenase ec: 1.1.1.38 malate dehydrogenase (oxaloacetate-decarboxylating) ec: 1.1.1.39 malate dehydrogenase (decarboxylating) ec: 1.1.1.40 malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) ec: 1.1.1.41 isocitrate dehydrogenase (NAD+) ec: 1.1.1.42 isocitrate dehydrogenase (NADP+) ec: 1.1.1.54 allyl-alcohol dehydrogenase ec: 1.1.1.55 lactaldehyde reductase (NADPH) ec: 1.1.1.56 ribitol 2-dehydrogenase ec: 1.1.1.59 3-hydroxypropionate dehydrogenase ec: 1.1.1.60 2-hydroxy-3-oxopropionate reductase ec: 1.1.1.61 4-hydroxybutyrate dehydrogenase ec: 1.1.1.66 omega-hydroxydecanoate dehydrogenase ec: 1.1.1.67 mannitol 2-dehydrogenase ec: 1.1.1.71 alcohol dehydrogenase [NAD(P)+] ec: 1.1.1.72 glycerol dehydrogenase (NADP+) ec: 1.1.1.73 octanol dehydrogenase ec: 1.1.1.75 (R)-aminopropanol dehydrogenase ec: 1.1.1.76 (S,S)-butanediol dehydrogenase ec: 1.1.1.77 lactaldehyde reductase ec: 1.1.1.78 methylglyoxal reductase (NADH- dependent) ec: 1.1.1.79 glyoxylate reductase (NADP+) ec: 1.1.1.80 isopropanol dehydrogenase (NADP+) ec: 1.1.1.81 hydroxypyruvate reductase ec: 1.1.1.82 malate dehydrogenase (NADP+) ec: 1.1.1.83 D-malate dehydrogenase (decarboxylating) ec: 1.1.1.84 dimethylmalate dehydrogenase ec: 1.1.1.85 3-isopropylmalate dehydrogenase ec: 1.1.1.86 ketol-acid reductoisomerase ec: 1.1.1.87 homoisocitrate dehydrogenase ec: 1.1.1.88 hydroxymethylglutaryl-CoA reductase ec: 1.1.1.90 aryl-alcohol dehydrogenase ec: 1.1.1.91 aryl-alcohol dehydrogenase (NADP+) ec: 1.1.1.92 oxaloglycolate reductase (decarboxylating) ec: 1.1.1.94 glycerol-3-phosphate dehydrogenase [NAD(P)+] ec: 1.1.1.95 phosphoglycerate dehydrogenase ec: 1.1.1.97 3-hydroxybenzyl-alcohol dehydrogenase ec: 1.1.1.101 acylglycerone-phosphate reductase ec: 1.1.1.103 L-threonine 3-dehydrogenase ec: 1.1.1.104 4-oxoproline reductase ec: 1.1.1.105 retinol dehydrogenase ec: 1.1.1.110 indolelactate dehydrogenase ec: 1.1.1.112 indanol dehydrogenase ec: 1.1.1.113 L-xylose 1-dehydrogenase ec: 1.1.1.129 L-threonate 3-dehydrogenase ec: 1.1.1.137 ribitol-5-phosphate 2- dehydrogenase ec: 1.1.1.138 mannitol 2-dehydrogenase (NADP+) ec: 1.1.1.140 sorbitol-6-phosphate 2- dehydrogenase ec: 1.1.1.142 D-pinitol dehydrogenase ec: 1.1.1.143 sequoyitol dehydrogenase ec: 1.1.1.144 perillyl-alcohol dehydrogenase ec: 1.1.1.156 glycerol 2-dehydrogenase (NADP+) ec: 1.1.1.157 3-hydroxybutyryl-CoA dehydrogenase ec: 1.1.1.163 cyclopentanol dehydrogenase ec: 1.1.1.164 hexadecanol dehydrogenase ec: 1.1.1.165 2-alkyn-1-ol dehydrogenase ec: 1.1.1.166 hydroxycyclohexanecarboxylate dehydrogenase ec: 1.1.1.167 hydroxymalonate dehydrogenase ec: 1.1.1.174 cyclohexane-1,2-diol dehydrogenase ec: 1.1.1.177 glycerol-3-phosphate 1- dehydrogenase (NADP+) ec: 1.1.1.178 3-hydroxy-2-methylbutyryl-CoA dehydrogenase ec: 1.1.1.185 L-glycol dehydrogenase ec: 1.1.1.190 indole-3-acetaldehyde reductase (NADH) ec: 1.1.1.191 indole-3-acetaldehyde reductase (NADPH) ec: 1.1.1.192 long-chain-alcohol dehydrogenase ec: 1.1.1.194 coniferyl-alcohol dehydrogenase ec: 1.1.1.195 cinnamyl-alcohol dehydrogenase ec: 1.1.1.198 (+)-borneol dehydrogenase ec: 1.1.1.202 1,3-propanediol dehydrogenase ec: 1.1.1.207 (−)-menthol dehydrogenase ec: 1.1.1.208 (+)-neomenthol dehydrogenase ec: 1.1.1.216 farnesol dehydrogenase ec: 1.1.1.217 benzyl-2-methyl-hydroxybutyrate dehydrogenase ec: 1.1.1.222 (R)-4-hydroxyphenyllactate dehydrogenase ec: 1.1.1.223 isopiperitenol dehydrogenase ec: 1.1.1.226 4-hydroxycyclohexanecarboxylate dehydrogenase ec: 1.1.1.229 diethyl 2-methyl-3-oxosuccinate reductase ec: 1.1.1.237 hydroxyphenylpyruvate reductase ec: 1.1.1.244 methanol dehydrogenase ec: 1.1.1.245 cyclohexanol dehydrogenase ec: 1.1.1.250 D-arabinitol 2-dehydrogenase ec: 1.1.1.251 galactitol 1-phosphate 5- dehydrogenase ec: 1.1.1.255 mannitol dehydrogenase ec: 1.1.1.256 fluoren-9-ol dehydrogenase ec: 1.1.1.257 4- (hydroxymethyl)benzenesulfonate dehydrogenase ec: 1.1.1.258 6-hydroxyhexanoate dehydrogenase ec: 1.1.1.259 3-hydroxypimeloyl-CoA dehydrogenase ec: 1.1.1.261 glycerol-1-phosphate dehydrogenase [NAD(P)+] ec: 1.1.1.265 3-methylbutanal reductase ec: 1.1.1.283 methylglyoxal reductase (NADPH- dependent) ec: 1.1.1.286 isocitrate-homoisocitrate dehydrogenase ec: 1.1.1.287 D-arabinitol dehydrogenase (NADP+) butanol dehydrogenase ALDEHYDE DEHYDROGENASES ec: 1.2.1.2 formate dehydrogenase ec: 1.2.1.3 aldehyde dehydrogenase (NAD+) ec: 1.2.1.4 aldehyde dehydrogenase (NADP+) ec: 1.2.1.5 aldehyde dehydrogenase [NAD(P)+] ec: 1.2.1.7 benzaldehyde dehydrogenase (NADP+) ec: 1.2.1.8 betaine-aldehyde dehydrogenase ec: 1.2.1.9 glyceraldehyde-3-phosphate dehydrogenase (NADP+) ec: 1.2.1.10 acetaldehyde dehydrogenase (acetylating) ec: 1.2.1.11 aspartate-semialdehyde dehydrogenase ec: 1.2.1.12 glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) ec: 1.2.1.13 glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating) ec: 1.2.1.15 malonate-semialdehyde dehydrogenase ec: 1.2.1.16 succinate-semialdehyde dehydrogenase [NAD(P)+] ec: 1.2.1.17 glyoxylate dehydrogenase (acylating) ec: 1.2.1.18 malonate-semialdehyde dehydrogenase (acetylating) ec: 1.2.1.19 aminobutyraldehyde dehydrogenase ec: 1.2.1.20 glutarate-semialdehyde dehydrogenase ec: 1.2.1.21 glycolaldehyde dehydrogenase ec: 1.2.1.22 lactaldehyde dehydrogenase ec: 1.2.1.23 2-oxoaldehyde dehydrogenase (NAD+) ec: 1.2.1.24 succinate-semialdehyde dehydrogenase ec: 1.2.1.25 2-oxoisovalerate dehydrogenase (acylating) ec: 1.2.1.26 2,5-dioxovalerate dehydrogenase ec: 1.2.1.27 methylmalonate-semialdehyde dehydrogenase (acylating) ec: 1.2.1.28 benzaldehyde dehydrogenase (NAD+) ec: 1.2.1.29 aryl-aldehyde dehydrogenase ec: 1.2.1.30 aryl-aldehyde dehydrogenase (NADP+) ec: 1.2.1.31 L-aminoadipate-semialdehyde dehydrogenase ec: 1.2.1.32 aminomuconate-semialdehyde dehydrogenase ec: 1.2.1.36 retinal dehydrogenase ec: 1.2.1.39 phenylacetaldehyde dehydrogenase ec: 1.2.1.41 glutamate-5-semialdehyde dehydrogenase ec: 1.2.1.42 hexadecanal dehydrogenase (acylating) ec: 1.2.1.43 formate dehydrogenase (NADP+) ec: 1.2.1.45 4-carboxy-2-hydroxymuconate-6- semialdehyde dehydrogenase ec: 1.2.1.46 formaldehyde dehydrogenase ec: 1.2.1.47 4-trimethylammoniobutyraldehyde dehydrogenase ec: 1.2.1.48 long-chain-aldehyde dehydrogenase ec: 1.2.1.49 2-oxoaldehyde dehydrogenase (NADP+) ec: 1.2.1.51 pyruvate dehydrogenase (NADP+) ec: 1.2.1.52 oxoglutarate dehydrogenase (NADP+) ec: 1.2.1.53 4-hydroxyphenylacetaldehyde dehydrogenase ec: 1.2.1.57 butanal dehydrogenase ec: 1.2.1.58 phenylglyoxylate dehydrogenase (acylating) ec: 1.2.1.59 glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+) (phosphorylating) ec: 1.2.1.62 4-formylbenzenesulfonate dehydrogenase ec: 1.2.1.63 6-oxohexanoate dehydrogenase ec: 1.2.1.64 4-hydroxybenzaldehyde dehydrogenase ec: 1.2.1.65 salicylaldehyde dehydrogenase ec: 1.2.1.66 mycothiol-dependent formaldehyde dehydrogenase ec: 1.2.1.67 vanillin dehydrogenase ec: 1.2.1.68 coniferyl-aldehyde dehydrogenase ec: 1.2.1.69 fluoroacetaldehyde dehydrogenase ec: 1.2.1.71 succinylglutamate-semialdehyde dehydrogenase Relative activities of an alcohol dehydrogenase from KU to oxidize various alcohols. Relative Activity Km Substrate (0%) (mM) 2-Phenylethanol 100* 0.025 (S)-2-Phenylpropanol 156 0.157 (R)-2-Phenylpropanol 63 0.020 Bynzyl alcohol 199 0.012 3-Phenylpropanol 135 0.033 Ethanol 76 1-Butanol 111 1-Octanol 101 1-Dodecanol 68 1-Phenylethanol 46 2-Propanol 54 *The activity of 2-phenylethanol, corresponding to 19.2 U/mg, was taken as 100%. Relative activities of an alcohol dehydrogenase from KU 1309 to reduce various carbonyl compounds. Relative Activity Km Substrate (%) (mM) Phenylacetaldehyde 100 0.261 2-Phenylpropionaldehyde 188 0.864 1-Octylaldehyde 87 Acetophenone 0 The in vitro activity of 1983) on different substrates and compared with that on pyruvate. Activity (%) of L(+)-lactate D(−)-lactate L(+)-lactate dehydrogenase dehydrogenase dehydrogenase from rabbit from Substrate from muscle Glyoxylate 8.7 23.9 5.0 Pyruvate 100.0 100.0 100.0 2-Oxobutyrate 107.0 18.6 1.1 2-Oxovalerate 125.0 0.7 0.0 3-Methyl-2- 28.5 0.0 0.0 oxobutyrate 3-Methyl-2- 5.3 0.0 0.0 oxovalerate 4-Methyl-2- 39.0 1.4 1.1 oxopentanoate Oxaloacetate 0.0 33.1 23.1 2-Oxoglutarate 79.6 0.0 0.0 3-Fluoropyruvate 33.6 74.3 40.0 The substrate specificity of homoserine kinase. Substrate kcat % kcat Km(mM) kcat/Km L-homoserine 18.3 ± 0.1 100 0.14 ± 0.04 184 ± 17 D-homoserine 8.3 ± 1.1 32 31.8 ± 7.2 0.26 ± 0.03 L-aspartate β- 2.1 ± 0.1 8.2 0.28 ± 0.02 7.5 ± 0.3 semialdehyde L-2-amino-1,4- 2.0 ± 0.5 7.9 11.6 ± 6.5 0.17 ± 0.06 butanediol L-2-amino-5- 2.5 ± 0.4 9.9 1.1 ± 0.5 2.3 ± 0.3 hydroxyvalerate L-homoserine methyl 14.7 ± 2.6 80 4.9 ± 2.0 3.0 ± 0.6 ester L-homoserine ethyl 13.6 ± 0.8 74 1.9 ± 0.5 7.2 ± 1.7 ester L-homoserine 13.6 ± 1.4 74 1.2 ± 0.5 11.3 ± 1.1 isopropyl ester L-homoserine n- 14.0 ± 0.4 76 3.5 ± 0.4 4.0 ± 1.2 propyl ester L-homoserine isobutyl 16.4 ± 0.8 84 6.9 ± 1.1 2.4 ± 0.3 ester L-homserine n-butyl 29.1 ± 1.2 160 5.8 ± 0.8 5.0 ± 0.5 ester
2CO2+4H2Example I
Biosynthesis of 4-Hydroxybutanoic Acid
Example II
Biosynthesis of 1,4-Butanediol from Succinate and Alpha-ketoglutarate
Genes expressed in host BDO-producting microbial organisms. Reaction Gene ID number Gene Source number (FIG. 1) name organism Enzyme name Link to protein sequence Reference 0001 9 Cat2 4-hydroxybutyrate ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=1228100 1 coenzyme A DSM 555 transferase 0002 12/13 adhE Aldehyde/alcohol ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=15004739 2 dehydrogenase ATCC 824 0003 12/13 adhE2 Aldehyde/alcohol ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_149325.1 2 dehydrogenase ATCC 824 0004 1 Cat1 Succinate ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=1228100 1 coenzyme A DSM 555 transferase 0008 6 sucD Succinic ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=1228100 1 semialdehyde DSM 555 dehydrogenase (CoA-dependent) 0009 7 4-HBd 4-hydroxybutyrate ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=YP_726053.1 2 dehydrogenase (NAD-dependent) 0010 7 4-HBd 4-hydroxybutyrate ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=1228100 1 dehydrogenase DSM 555 (NAD-dependent) 0011 12/13 adhE Aldehyde/alcohol shigen.nig.ac.jp/ecoli/pec/genes.List.DetailAction.do? dehydrogenase fromListFlag=true&featureType=1&orfId=1219 0012 12/13 yqhD Aldehyde/alcohol shigen.nig.ac.jp/ecoli/pec/genes.List.DetailAction.do dehydrogenase 0013 13 bdhB Butanol ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_349891.1 2 dehydrogenase II ATCC 824 0020 11 ptb Phospho- ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=15896327 2 transbutyrylase ATCC 824 0021 10 buk1 Butyrate kinase I ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=20137334 2 ATCC 824 0022 10 buk2 Butyrate kinase II ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=20137415 2 ATCC 824 0023 13 adhEm isolated from Alcohol (37)d} metalibrary dehydrogenase of anaerobic sewage digester microbial consortia 0024 13 adhE Alcohol genome.jp/dbget-bin/www_bget?cth:Cthe_0423 dehydrogenase 0025 13 ald Coenzyme A- ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=49036681 (31)d} acylating aldehyde dehydrogenase 0026 13 bdhA Butanol ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_349892.1 2 dehydrogenase ATCC 824 0027 12 bld Butyraldehyde ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=31075383 4 dehydrogenase 0028 13 bdh Butanol ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=124221917 4 dehydrogenase 0029 12/13 adhE Aldehyde/alcohol genome.jp/dbget-bin/www_bget?ctc:CTC01366 dehydrogenase 0030 12/13 adhE Aldehyde/alcohol genome.jp/dbget-bin/www_bget?cpe:CPE2531 dehydrogenase 0031 12/13 adhE Aldehyde/alcohol genome.jp/dbget-bin/www_bget?cdf:CD2966 dehydrogenase 0032 8 sucA α-ketoglutarate ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=YP_977400.1 5 decarboxylase BCG, Pasteur 0033 9 cat2 4-hydroxybutyrate ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=6249316 coenzyme A transferase 0034 9 cat2 4-hydroxybutyrate ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=34541558 coenzyme A W83 transferase 0035 6 sucD Succinic ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_904963.1 semialdehyde W83 dehydrogenase (CoA-dependent) 0036 7 4-HBd NAD-dependent ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NP_904964.1 4-hydroxybutyrate W83 dehydrogenase 0037 7 gbd Uncultured 4-hydroxybutyrate ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=5916168 6 bacterium dehydrogenase 0038 1 sucCD Succinyl-CoA shigen.nig.ac.jp/ecoli/pec/genes.List.DetailAction.do synthetase 1 Sohling and Gottschalk, 2 Nolling et al., J., 3 Pohlmann et al., 4 Kosaka et al., 5 Brosch et al., 6 Henne et al., lacZalpha-RI (SEQ ID NO: 1) 5′GACGAATTCGCTAGCAAGAGGAGAAGTCGACATGTCCAATTCACTGG CCGTCGTTTTAC3′ lacZalpha 3′BB (SEQ ID NO: 2) 5′-GACCCTAGGAAGCTTTCTAGAGTCGACCTATGCGGCATCAGAGCAG A-3′. In vitro enzyme activities in cell extracts from MG1655 lacIQcontaining the plasmidsexpressing genes in the 4-HB-CoA pathway. Activities are reported in Units/mg protein, where a unit of activity is defined as the amount of enzyme required to convert 1 μmol of substrate in 1 min. at room temperature. Sample # pZE13 (a) pZA33 (b) OD600 Cell Prot (c) Cat1 SucD 4HBd Cat2 1 cat1 (0004) 2.71 6.43 1.232 0.00 2 cat1 (0004)-sucD (0035) 2.03 5.00 0.761 2.57 3 cat1 (0004)-sucD (0008) 1.04 3.01 0.783 0.01 4 sucD (0035) 2.31 6.94 2.32 5 sucD (0008) 1.10 4.16 0.05 6 4hbd (0009) 2.81 7.94 0.003 0.25 7 4hbd (0036) 2.63 7.84 3.31 8 4hbd (0010n) 2.00 5.08 2.57 9 cat1 (0004)-sucD (0035) 4hbd (0009) 2.07 5.04 0.600 1.85 0.01 10 cat1 (0004)-sucD (0035) 4hbd (0036) 2.08 5.40 0.694 1.73 0.41 11 cat1 (0004)-sucD (0035) 4hbd (0010n) 2.44 4.73 0.679 2.28 0.37 12 cat1 (0004)-sucD (0008) 4hbd (0009) 1.08 3.99 0.572 −0.01 0.02 13 cat1 (0004)-sucD (0008) 4hbd (0036) 0.77 2.60 0.898 −0.01 0.04 14 cat1 (0004)-sucD (0008) 4hbd (0010n) 0.63 2.47 0.776 0.00 0.00 15 cat2 (0034) 2.56 7.86 1.283 16 cat2(0034)-4hbd(0036) 3.13 8.04 24.86 0.993 17 cat2(0034)-4hbd(0010n) 2.38 7.03 7.45 0.675 18 4hbd(0036)-cat2(0034) 2.69 8.26 2.15 7.490 19 4hbd(0010n)-cat2(0034) 2.44 6.59 0.59 4.101 (a) Genes expressed from Plac on pZE13, a high-copy plasmid with colE1 origin and ampicillin resistance. Gene identification numbers are as given in Table 6 (b) Genes expressed from Plac on pZA33, a medium-copy plasmid with pACYC origin and chloramphenicol resistance. (c) Cell protein given as mg protein per mL extract. Production of 4-HB from succinate in Sample 24 Hours 48 Hours # Host Strain pZE13 pZA33 OD600 4HB, μM 4HB norm. (a) OD600 4HB, μM 4HB norm. (a) 1 MG1655 laclq cat1 (0004)-sucD (0035) 4hbd (0009) 0.47 487 1036 1.04 1780 1711 2 MG1655 laclq cat1 (0004)-sucD (0035) 4hbd (0027) 0.41 111 270 0.99 214 217 3 MG1655 laclq cat1 (0004)-sucD (0035) 4hbd (0036) 0.47 863 1835 0.48 2152 4484 4 MG1655 laclq cat1 (0004)-sucD (0035) 4hbd (0010n) 0.46 956 2078 0.49 2221 4533 5 MG1655 laclq cat1 (0004)-sucD (0008) 4hbd (0009) 0.38 493 1296 0.37 1338 3616 6 MG1655 laclq cat1 (0004)-sucD (0008) 4hbd (0027) 0.32 26 81 0.27 87 323 7 MG1655 laclq cat1 (0004)-sucD (0008) 4hbd (0036) 0.24 506 2108 0.31 1448 4672 8 MG1655 laclq cat1 (0004)-sucD (0008) 4hbd (0010n) 0.24 78 324 0.56 233 416 9 MG1655 laclq gabD cat1 (0004)-sucD (0035) 4hbd (0009) 0.53 656 1237 1.03 1643 1595 10 MG1655 laclq gabD cat1 (0004)-sucD (0035) 4hbd (0027) 0.44 92 209 0.98 214 218 11 MG1655 laclq gabD cat1 (0004)-sucD (0035) 4hbd (0036) 0.51 1072 2102 0.97 2358 2431 12 MG1655 laclq gabD cat1 (0004)-sucD (0035) 4hbd (0010n) 0.51 981 1924 0.97 2121 2186 13 MG1655 laclq gabD cat1 (0004)-sucD (0008) 4hbd (0009) 0.35 407 1162 0.77 1178 1530 14 MG1655 laclq gabD cat1 (0004)-sucD (0008) 4hbd (0027) 0.51 19 36 1.07 50 47 15 MG1655 laclq gabD cat1 (0004)-sucD (0008) 4hbd (0036) 0.35 584 1669 0.78 1350 1731 16 MG1655 laclq gabD cat1 (0004)-sucD (0008) 4hbd (0010n) 0.32 74 232 0.82 232 283 17 MG1655 laclq vector only vector only 0.8 1 2 1.44 3 2 18 MG1655 laclq gabD vector only vector only 0.89 1 2 1.41 7 5 (a) Normalized 4-HB concentration, μM/OD600 units In vitro enzyme activities in cell extracts from MG1655 lacIQ containing pZA33 expressing gene candidates for aldehyde and alcohol dehydrogenases. Aldehyde dehydrogenase Alcohol dehydrogenase Substrate Gene Butyryl-CoA Acetyl-CoA Butyraldehyde Acetaldehyde 0002 0.0076 0.0046 0.0264 0.0247 0003n 0.0060 0.0072 0.0080 0.0075 0011 0.0069 0.0095 0.0265 0.0093 0013 N.D. N.D. 0.0130 0.0142 0023 0.0089 0.0137 0.0178 0.0235 0025 0 0.0001 N.D. N.D. 0026 0 0.0005 0.0024 0.0008 Activities are expressed in μmol min−1mg cell protein−1. N.D., not determined. Absolute and normalized BDO concentrations from cultures of cells expressing adhE2 from or sucD from in FIG. 3), as well as the negative control (experiment 1). Gene BDO OD expressed Conditions (μM) (600 nm) BDO/OD none Aerobic 0 13.4 0 none Microaerobic 0.5 6.7 0.09 none Anaerobic 2.2 1.26 1.75 0002 Aerobic 138.3 9.12 15.2 0002 Microaerobic 48.2 5.52 8.73 0002 Anaerobic 54.7 1.35 40.5 0008n Aerobic 255.8 5.37 47.6 0008n Microaerobic 127.9 3.05 41.9 0008n Anaerobic 60.8 0.62 98.1 0035 Aerobic 21.3 14.0 1.52 0035 Microaerobic 13.1 4.14 3.16 0035 Anaerobic 21.3 1.06 20.1 Absolute and normalized BDO concentrations from cultures of cells expressing adhE2 from either cat2 from or MG1655 ΔadhE lacIQ. BDO OD Genes Host Strain (μM) (600 nm) BDO/OD 0034 MG1655 lacIQ 0.827 19.9 0.042 0020 + 0021 MG1655 lacIQ 0.007 9.8 0.0007 0034 MG1655 ΔadhE 2.084 12.5 0.166 lacIQ 0020 + 0021 MG1655 ΔadhE 0.975 18.8 0.052 lacIQ Production of BDO, 4-HB, and succinate in recombinant pathway genes, grown in minimal medium supplemented with 20 g/L glucose. Concentrations are given in mM. 24 Hours 48 Hours Induction OD600 OD600 Sample pZE13 pZA33 OD nm Su 4HB BDO nm Su 4HB BDO 1 cat1(0004)-sucD(0035) 4hbd (0036)-cat2(0034) 0.92 1.29 5.44 1.37 0.240 1.24 6.42 1.49 0.280 2 cat1(0004)-sucD(0008N) 4hbd (0036)-cat2(0034) 0.36 1.11 6.90 1.24 0.011 1.06 7.63 1.33 0.011 3 adhE(0002)-cat1(0004)-sucD(0035) 4hbd (0036)-cat2(0034) 0.20 0.44 0.34 1.84 0.050 0.60 1.93 2.67 0.119 4 cat1(0004)-sucD(0035)-adhE(0002) 4hbd (0036)-cat2(0034) 1.31 1.90 9.02 0.73 0.073 1.95 9.73 0.82 0.077 5 adhE(0002)-cat1(0004)-sucD(0008N) 4hbd (0036)-cat2(0034) 0.17 0.45 1.04 1.04 0.008 0.94 7.13 1.02 0.017 6 cat1(0004)-sucD(0008N)-adhE(0002) 4hbd (0036)-cat2(0034) 1.30 1.77 10.47 0.25 0.004 1.80 11.49 0.28 0.003 7 cat1(0004)-sucD(0035) cat2(0034)-4hbd(0036) 1.09 1.29 5.63 2.15 0.461 1.38 6.66 2.30 0.520 8 cat1(0004)-sucD(0008N) cat2(0034)-4hbd(0036) 1.81 2.01 11.28 0.02 0.000 2.24 11.13 0.02 0.000 9 adhE(0002)-cat1(0004)-sucD(0035) cat2(0034)-4hbd(0036) 0.24 1.99 2.02 2.32 0.106 0.89 4.85 2.41 0.186 10 cat1(0004)-sucD(0035)-adhE(0002) cat2(0034)-4hbd(0036) 0.98 1.17 5.30 2.08 0.569 1.33 6.15 2.14 0.640 11 adhE(0002)-cat1(0004)-sucD(0008N) cat2(0034)-4hbd(0036) 0.20 0.53 1.38 2.30 0.019 0.91 8.10 1.49 0.034 12 cat1(0004)-sucD(0008N)-adhE(0002) cat2(0034)-4hbd(0036) 2.14 2.73 12.07 0.16 0.000 3.10 11.79 0.17 0.002 13 vector only vector only 2.11 2.62 9.03 0.01 0.000 3.00 12.05 0.01 0.000 Production of BDO, 4-HB, and succinate in recombinant genes for different BDO pathway variants, grown anaerobically in minimal medium supplemented with 20 g/L glucose, and harvested 24 hours after induction with 0.1 mM IPTG. Concentrations are given in mM. Genes on pZE13 Genes on pZA33 Succinate 4-HB BDO 0002 + 0004 + 0035 0020n-0021n-0036 0.336 2.91 0.230 0038 + 0035 0034-0036 0.814 2.81 0.126 0038 + 0035 0036-0034 0.741 2.57 0.114 0035 + 0032 0034-0036 5.01 0.538 0.154 Example III
Biosynthesis of 4-Hydroxybutanoic Acid, γ-Butyrolactone and 1,4-Butanediol
Example IV
Exemplary BDO Pathways
Enzyme types required to convert common central metabolic intermediates into 1,4-butanediol. The first three digits of each label correspond to the first three Enzyme Commission number digits which denote the general type of transformation independent of substrate specificity. Label Function 1.1.1.a Oxidoreductase (ketone to hydroxyl or aldehyde to alcohol) 1.1.1.c Oxidoreductase (2 step, acyl-CoA to alcohol) 1.2.1.b Oxidoreductase (acyl-CoA to aldehyde) 1.2.1.c Oxidoreductase (2-oxo acid to acyl-CoA, decarboxylation) 1.2.1.d Oxidoreductase (phosphorylating/dephosphorylating) 1.3.1.a Oxidoreductase operating on CH—CH donors 1.4.1.a Oxidoreductase operating on amino acids 2.3.1.a Acyltransferase (transferring phosphate group) 2.6.1.a Aminotransferase 2.7.2.a Phosphotransferase, carboxyl group acceptor 2.8.3.a Coenzyme-A transferase 3.1.2.a Thiolester hydrolase (CoA specific) 4.1.1.a Carboxy-lyase 4.2.1.a Hydro-lyase 4.3.1.a Ammonia-lyase 5.3.3.a Isomerase 5.4.3.a Aminomutase 6.2.1.a Acid-thiol ligase
1.1.1.a—Oxidoreductase (Aldehyde to Alcohol or Ketone to Hydroxyl)
alrA BAB12273.1 ADH2 NP_014032.1 yqhD NP_417484.1 bdh I NP_349892.1 bdh II NP_349891.1 4hbd YP_726053.1 4hbd L21902.1 4hbd Q94B07 P84067 P84067 mmsb P28811.1 dhat Q59477.1 3hidh P31937.2 3hidh P32185.1 mmsB AAA25892.1 mmsB NP_252259.1 mmsB NP_746775.1 mmsB JC7926 orfB1 AAL26884 mdh AAC76268.1 ldhA NP_415898.1 ldh YP_725182.1 bdh AAA58352.1 adh AAA23199.2 adh P14941.1 hbd NP_349314.1 hbd AAM14586.1 Msed_1423 YP_001191505 Msed_0399 YP_001190500 Msed_0389 YP_001190490 Msed_1993 YP_001192057
1.1.1.c—Oxidoredutase (2 Step, acyl-CoA to Alcohol)
adhE NP_415757.1 adhE2 AAK09379.1 adhE AAV66076.1 mcr AAS20429.1 Rcas_2929 YP_001433009.1 NAP1_02720 ZP_01039179.1 MGP2080_00535 ZP_01626393.1 marine gamma proteobacterium HTCC2080 FAR AAD38039.1
1.2.1.b—Oxidoreductase (acyl-CoA to Aldehyde)
acr1 YP_047869.1 acr1 AAC45217 acr1 BAB85476.1 sucD P38947.1 sucD NP_904963.1 bphG BAA03892.1 Msed_0709 YP_001190808.1 mcr NP_378167.1 asd-2 NP_343563.1 Saci_2370 YP_256941.1
1.2.1.c—Oxidoreductase (2-oxo Acid to acyl-CoA, Decarboxylation)
sucA NP_415254.1 sucB NP_415255.1 lpd NP_414658.1 odhA P23129.2 odhB P16263.1 pdhD P21880.1 KGD1 NP_012141.1 KGD2 NP_010432.1 LPD1 NP_116635.1 bfmBB NP_390283.1 bfmBAA NP_390285.1 bfmBAB NP_390284.1 pdhD P21880.1 lpdV P09063.1 bkdB P09062.1 bkdA1 NP_746515.1 bkdA2 NP_746516.1 Bckdha NP_036914.1 Bckdhb NP_062140.1 Dbt NP_445764.1 Dld NP_955417.1 aceE NP_414656.1 aceF NP_414657.1 lpd NP_414658.1 pdhA P21881.1 pdhB P21882.1 pdhC P21883.2 pdhD P21880.1 aceE YP_001333808.1 aceF YP_001333809.1 lpdA YP_001333810.1 Pdha1 NP_001004072.2 Pdha2 NP_446446.1 Dlat NP_112287.1 Dld NP_955417.1 ST2300 NP_378302.1
1.2.1.d—Oxidoreductase (Phosphorylating/Dephosphorylating)
gapA P0A9B2.2 asd NP_417891.1 argC NP_418393.1 proA NP_414778.1
1.3.1.a—Oxidoreductase Operating on CH—CH Donors
bcd NP_349317.1 etfA NP_349315.1 etfB NP_349316.1 TER Q5EU90.1 TDE0597 NP_971211.1 fadH NP_417552.1 enr ACA54153.1 enr CAA71086.1 enr CAA76083.1 enr YP_430895.1
1.4.1.a—Oxidoreductase Operating on Amino Acids
gdhA P00370 gdh P96110.4 gdhA1 NP_279651.1 ldh P0A393 nadX NP_229443.1 lysDH AB052732 lysDH NP_147035.1 ldh P0A393
2.3.1.a—Acyltransferase (Transferring Phosphate Group)
pta NP_416800.1 ptb NP_349676 ptb AAR19757.1 butyrate-producing bacterium L2-50 ptb CAC07932.1
2.6.1.a—Aminotransferase
aspC NP_415448.1 AAT2 P23542.3 ASP5 P46248.2 avtA YP_026231.1 serC NP_415427.1 SkyPYD4 ABF58893.1 SkUGA1 ABF58894.1 UGA1 NP_011533.1 Abat P50554.3 Abat P80147.2 Gta-1 Q21217.1 gabT P94427.1 gabT P22256.1 puuE NP_415818.1 ackA NP_416799.1 buk1 NP_349675 buk2 Q97II1 proB NP_414777.1
2.8.3.a—Coenzyme-A Transferase
atoA P76459.1 atoD P76458.1 actA YP_226809.1 13032 cg0592 YP_224801.1 13032 atoA ABE07971.1 atoD ABE07970.1 cat1 P38946.1 cat2 P38942.2 cat3 EDK35586.1 gctA CAA57199.1 gctB CAA57200.1
3.1.2.a—Thiolester Hydrolase (CoA Specific)
hibch Q5XIE6.2 hibch Q6NVY1.2 hibch P28817.2 BC_2292 Q81DR3 tesB NP_414986 acot8 CAA15502 acot8 NP_570112 tesA NP_415027 ybgC NP_415264 paaI NP_415914 ybdB NP_415129 acot12 NP_570103.1
4.1.1.a—Carboxy-Lyase
aldB NP_267384.1 aldC Q8L208 aldB P23616.1 budA P05361.1 dmpH CAA43228.1 dmpE CAA43225.1 xylII YP_709328.1 xylIII YP_709353.1 Reut_B5691 YP_299880.1 Reut_B5692 YP_299881.1 pad1 AB368798 pdc U63827 pofK (pad) AB330293 padC AF017117 pad AJ276891 pad AJ278683 kgd O50463.4 gadA NP_417974 gadB NP_416010 Keto-Acid Decarboxylases
pdc P06672.1 pdc1 P06169 pdc Q8L388 pdc1 Q12629 mdlC P20906.2 mdlC Q9HUR2.1 dpgB ABN80423.1 ilvB-1 YP_260581.1
4.2.1.a—Hydro-Lyase
hmd ABC88407.1 BACCAP_02294 ZP_02036683.1 ATCC 29799 ANACOL_02527 ZP_02443222.1 DSM 17241 NtherDRAFT_2368 ZP_02852366.1 JW/NM-WN-LF fumC P05042.1 fumC O69294.1 fumC P84127 fumH P14408.1 fum1 P93033.2 fumC Q8NRN8.1 maoC NP_415905.1 paaF NP_415911.1 paaG NP_415912.1 crt NP_349318.1 paaA NP_745427.1 paaB NP_745426.1 phaA ABF82233.1 phaB ABF82234.1 fadA YP_026272.1 fadB NP_418288.1 fadI NP_416844.1 fadJ NP_416843.1 fadR NP_415705.1
4.3.1.a—Ammonia-Lyase
aspA NP_418562 aspA P44324.1 aspA P07346.1 ansB P26899.1 aspA P33109.1 MAL AAB24070.1 BAA28709 BAA28709.1 CTC_02563 NP_783085.1 ECs0761 BAB34184.1 ac12 CAG29275.1 acl1 CAG29274.1 MXAN_4385 YP_632558.1
5.3.3.a—Isomerase
abfD YP_001396399.1 abfD P55792 abfD YP_001928843
5.4.3.a—Aminomutase
yodO O34676.1 kamA Q9XBQ8.1 kamA Q8RHX4 kamD AAC79717.1 kamE AAC79718.1 kamD NC_002950.2 kamE NC_002950.2 oraE AAK72502 oraS AAK72501 sucC NP_415256.1 sucD AAC73823.1 phl CAJ15517.1 phlB ABS19624.1 paaF AAC24333.2 bioW NP_390902.2 Example V
Exemplary BDO Pathway from Succinyl-CoA
BDO pathway from succinyl-CoA. EC Desired GenBank ID FIG. class substrate Desired product Enzyme name Gene name (if available) Organism Known Substrates 8A 1.2.1.b succinyl-CoA succinic succinyl-CoA sucD P38947.1 succinyl-CoA semialdehyde reductase (or succinate semialdehyde dehydrogenase) sucD NP_904963.1 succinyl-CoA Msed_0709 YP_001190808.1 malonyl-CoA 8A 1.1.1.a succinate 4- 4- 4hbd YP_726053.1 4-hydroxybutyrate semialdehyde hydroxybutyrate hydroxybutyrate H16 dehydrogenase 4hbd L21902.1 4-hydroxybutyrate DSM 555 4hbd Q94B07 4-hydroxybutyrate 8A 1.1.1.c succinyl-CoA 4- succinyl-CoA adhE2 AAK09379.1 butanoyl-CoA hydroxybutyrate reductase (alcohol forming) mcr AAS20429.1 malonyl-CoA FAR AAD38039.1 long chain acyl- CoA 8A 2.8.3.a 4- 4-hydroxybutyryl- 4-hydroxybutyryl- cat1, cat2, P38946.1, succinate, 4- hydroxybutyrate CoA CoA cat3 P38942.2, hydroxybutyrate, transferase EDK35586.1 butyrate gctA, gctB CAA57199.1, glutarate CAA57200.1 atoA, atoD P76459.1, butanoate P76458.1 8A 3.1.2.a 4- 4- 4-hydroxybutyryl- tesB NP_414986 adipyl-CoA hydroxybutyrate hydroxybutyryl- CoA CoA hydrolase acot12 NP_570103.1 butyryl-CoA hibch Q6NVY1.2 3- hydroxypropanoyl- CoA 8A 6.2.1.a 4- 4- 4-hydroxybutyryl- sucCD NP_415256.1, succinate hydroxybutyrate hydroxybutyryl- CoA ligase AAC73823.1 CoA (or 4- hydroxybutyryl- CoA synthetase) phl CAJ15517.1 phenylacetate bioW NP_390902.2 6-carboxyhexanoate 8A 2.7.2.a 4- 4- 4- ackA NP_416799.1 acetate, propionate hydroxybutyrate hydroxybutyryl- hydroxybutyrate phosphate kinase buk1 NP_349675 butyrate buk2 Q97II1 butyrate 8A 2.3.1.a 4- 4- phosphotrans-4- ptb NP_349676 butyryl-phosphate hydroxybutyryl- hydroxybutyryl- hydroxy- phosphate CoA butyrylase ptb AAR19757.1 butyrate-producing butyryl-phosphate ptb CAC07932.1 butyryl-phosphate 8A 1.2.1.d 4- 4-hydroxybutanal 4-hydroxybutanal asd NP_417891.1 L-4-aspartyl- hydroxybutyryl- dehydrogenase phosphate phosphate (phosphorylating) proA NP_414778.1 L-glutamyl-5- phospate gapA P0A9B2.2 Glyceraldehyde-3- phosphate 8A 1.2.1.b 4- 4-hydroxybutanal 4- sucD P38947.1 succinyl-CoA hydroxybutyryl- hydroxybutyryl- CoA CoA reductase (or 4- hydroxybutanal dehydrogenase) sucD NP_904963.1 succinyl-CoA Msed_0709 YP_001190808.1 malonyl-CoA 8A 1.1.1.c 4- 1,4-butanediol 4- adhE2 AAK09379.1 butanoyl-CoA hydroxybutyryl- hydroxybutyryl- CoA CoA reductase (alcohol forming) mcr AAS20429.1 malonyl-CoA FAR AAD38039.1 long chain acyl- CoA 8A 1.1.1.a 4- 1,4-butanediol 1,4-butanediol ADH2 NP_014032.1 general hydroxybutanal dehydrogenase yqhD NP_417484.1 >C3 4hbd L21902.1 Succinate DSM 555 semialdehyde Example VI
Additional Exemplary BDO Pathways from Alpha-Ketoglutarate
BDO pathway from alpha-ketoglutarate. EC Desired Desired Gene GenBank ID Known FIG. class substrate product Enzyme name name (if available) Organism Substrates 8B 4.1.1.a alpha- succinic alpha- kgd O50463.4 alpha- ketoglutarate semialdehyde ketoglutarate ketoglutarate decarboxylase gadA NP_417974 glutamate gadB NP_416010 glutamate 8B 1.4.1.a alpha- glutamate glutamate gdhA P00370 glutamate ketoglutarate dehydrogenase gdh P96110.4 glutamate gdhA1 NP_279651.1 glutamate 8B 1.4.1.a 4-aminobutyrate succinic 4-aminobutyrate lysDH AB052732 lysine semialdehyde oxidoreductase (deaminating) lysDH NP_147035.1 lysine ldh P0A393 leucine, isoleucine, valine, 2- aminobutanoate 8B 2.6.1.a 4-aminobutyrate succinic 4-aminobutyrate gabT P22256.1 4- semialdehyde transaminase aminobutyryate puuE NP_415818.1 4- aminobutyryate UGA1 NP_011533.1 4- aminobutyryate 8B 4.1.1.a glutamate 4-aminobutyrate glutamate gadA NP_417974 glutamate decarboxylase gadB NP_416010 glutamate kgd O50463.4 alpha- ketoglutarate 8B 1.1.1.a succinate 4- 4- 4hbd YP_726053.1 4- semialdehyde hydroxybutyrate hydroxybutyrate hydroxybutyrate dehydrogenase 4hbd L21902.1 4- hydroxybutyrate 4hbd Q94B07 4- hydroxybutyrate 8B 2.8.3.a 4- 4- 4-hydroxybutyryl- cat1, cat2, P38946.1, succinate, 4- hydroxybutyrate hydroxybutyryl- CoA transferase cat3 P38942.2, hydroxybutyrate, CoA EDK35586.1 butyrate gctA, gctB CAA57199.1, glutarate CAA57200.1 atoA, atoD P76459.1, butanoate P76458.1 8B 3.1.2.a 4- 4- 4-hydroxybutyryl- tesB NP_414986 adipyl-CoA hydroxybutyrate hydroxybutyryl- CoA hydrolase CoA acot12 NP_570103.1 butyryl-CoA hibch Q6NVY1.2 3- hydroxypropanoyl- CoA 8B 6.2.1.a 4- 4- 4-hydroxybutyryl- sucCD NP_415256.1, succinate hydroxybutyrate hydroxybutyryl- CoA ligase (or 4- AAC73823.1 CoA hydroxybutyryl- CoA synthetase) phl CAJ15517.1 phenylacetate bioW NP_390902.2 6- carboxyhexanoate 8B 2.7.2.a 4- 4- 4- ackA NP_416799.1 acetate, hydroxybutyrate hydroxybutyryl- hydroxybutyrate propionate phosphate kinase buk1 NP_349675 butyrate buk2 Q97II1 butyrate 8B 2.3.1.a 4- 4- phosphotrans-4- ptb NP_349676 butyryl- hydroxybutyryl- hydroxybutyryl- hydroxy- phosphate phosphate CoA butyrylase ptb AAR19757.1 butyrate-producing butyryl- phosphate ptb CAC07932.1 butyryl- phosphate 8B 1.2.1.d 4- 4- 4-hydroxybutanal asd NP_417891.1 L-4-aspartyl- hydroxybutyryl- hydroxybutanal dehydrogenase phosphate phosphate (phosphorylating) proA NP_414778.1 L-glutamyl-5- phospate gapA P0A9B2.2 Glyceraldehyde- 3-phosphate 8B 1.2.1.b 4- 4- 4-hydroxybutyryl- sucD P38947.1 succinyl-CoA hydroxybutyryl- hydroxybutanal CoA reductase (or CoA 4-hydroxybutanal dehydrogenase) sucD NP_904963.1 succinyl-CoA Msed_0709 YP_001190808.1 malonyl-CoA 8B 1.1.1.c 4- 1,4-butanediol 4-hydroxybutyryl- adhE2 AAK09379.1 butanoyl-CoA hydroxybutyryl- CoA reductase CoA (alcohol forming) mcr AAS20429.1 malonyl-CoA FAR AAD38039.1 long chain acyl- CoA 8B 1.1.1.a 4- 1,4-butanediol 1,4-butanediol ADH2 NP_014032.1 general hydroxybutanal dehydrogenase yqhD NP_417484.1 >C3 4hbd L21902.1 Succinate semialdehyde Example VII
BDO Pathways from 4-Aminobutyrate
Desired Desired FIG. EC class substrate product Enzyme name Gene name 9A 2.8.3.a 4- 4- 4-aminobutyrate cat1, cat2, aminobutyrate aminobutyryl- CoA transferase cat3 CoA gctA, gctB atoA, atoD 9A 3.1.2.a 4- 4- 4-aminobutyryl- tesB aminobutyrate aminobutyryl- CoA hydrolase CoA acot12 hibch 9A 6.2.1.a 4- 4- 4-aminobutyrate- sucCD aminobutyrate aminobutyryl- CoA ligase (or 4- CoA aminobutyryl-CoA synthetase) phl bioW 9A 1.4.1.a 4- 4-oxobutyryl- 4-aminobutyryl- lysDH aminobutyryl- CoA CoA oxidoreductase CoA (deaminating) lysDH ldh 9A 2.6.1.a 4- 4-oxobutyryl- 4-aminobutyryl- gabT aminobutyryl- CoA CoA transaminase CoA abat SkyPYD4 9A 1.1.1.a 4-oxobutyryl- 4- 4-hydroxybutyryl- ADH2 CoA hydroxybutyryl- CoA dehydrogenase CoA yqhD 4hbd 8 1.1.1.c 4- 1,4-butanediol 4-hydroxybutyryl- adhE2 hydroxybutyryl- CoA reductase CoA (alcohol forming) mcr FAR 8 1.2.1.b 4- 4- 4-hydroxybutyryl- sucD hydroxybutyryl- hydroxybutanal CoA reductase (or CoA 4-hydroxybutanal dehydrogenase) sucD Msed_0709 8 1.1.1.a 4- 1,4-butanediol 1,4-butanediol ADH2 hydroxybutanal dehydrogenase yqhD 4hbd GenBank ID Known FIG. EC class (if available) Organism Substrates 9A 2.8.3.a P38946.1, P38942.2, succinate, 4- EDK35586.1 hydroxybutyrate, butyrate CAA57199.1, glutarate CAA57200.1 P76459.1, P76458.1 butanoate 9A 3.1.2.a NP_414986 adipyl-CoA NP_570103.1 butyryl-CoA Q6NVY1.2 3- hydroxypropanoyl- CoA 9A 6.2.1.a NP_415256.1, succinate AAC73823.1 CAJ15517.1 phenylacetate NP_390902.2 6- carboxyhexanoate 9A 1.4.1.a AB052732 lysine NP_147035.1 lysine P0A393 leucine, isoleucine, valine, 2- aminobutanoate 9A 2.6.1.a P22256.1 4-aminobutyryate P50554.3 3-amino-2- methylpropionate ABF58893.1 beta-alanine 9A 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde 8 1.1.1.c AAK09379.1 butanoyl-CoA AAS20429.1 malonyl-CoA AAD38039.1 long chain acyl- CoA 8 1.2.1.b P38947.1 Succinyl-CoA NP_904963.1 Succinyl-CoA YP_001190808.1 Malonyl-CoA 8 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde Desired Desired FIG. EC class substrate product Enzyme name Gene name 9A 2.8.3.a 4- 4- 4-aminobutyrate CoA cat1, cat2, cat3 aminobutyrate aminobutyryl- transferase CoA gctA, gctB atoA, atoD 9A 3.1.2.a 4- 4- 4-aminobutyryl-CoA tesB aminobutyrate aminobutyryl- hydrolase CoA acot12 hibch 9A 6.2.1.a 4- 4- 4-aminobutyrate-CoA sucCD aminobutyrate aminobutyryl- ligase (or 4- CoA aminobutyryl-CoA synthetase) phl bioW 9A 1.1.1.c 4- 4-aminobutan- 4-aminobutyryl-CoA adhE2 aminobutyryl- 1-ol reductase (alcohol CoA forming) mcr FAR 9A 1.2.1.b 4- 4-aminobutanal 4-aminobutyryl-CoA sucD aminobutyryl- reductase (or 4- CoA aminobutanal dehydrogenase) sucD Msed_0709 9A 1.1.1.a 4-aminobutanal 4-aminobutan- 4-aminobutan-1-ol ADH2 1-ol dehydrogenase yqhD 4hbd 9A 1.4.1.a 4-aminobutan- 4- 4-aminobutan-1-ol lysDH 1-ol hydroxybutanal oxidoreductase (deaminating) lysDH ldh 9A 2.6.1.a 4-aminobutan- 4- 4-aminobutan-1-ol gabT 1-ol hydroxybutanal transaminase abat SkyPYD4 9A 1.1.1.a 4- 1,4-butanediol 1,4-butanediol ADH2 hydroxybutanal dehydrogenase yqhD 4hbd GenBank ID (if Known FIG. EC class available) Substrate 9A 2.8.3.a P38946.1, P38942.2, succinate, 4- EDK35586.1 hydroxybutyrate, butyrate CAA57199.1, glutarate CAA57200.1 P76459.1, P76458.1 butanoate 9A 3.1.2.a NP_414986 adipyl-CoA NP_570103.1 butyryl-CoA Q6NVY1.2 3- hydroxypropanoyl- CoA 9A 6.2.1.a NP_415256.1, succinate AAC73823.1 CAJ15517.1 phenylacetate NP_390902.2 6- carboxyhexanoate 9A 1.1.1.c AAK09379.1 butanoyl-CoA AAS20429.1 malonyl-CoA AAD38039.1 long chain acyl-CoA 9A 1.2.1.b P38947.1 Succinyl-CoA NP_904963.1 Succinyl-CoA YP_001190808.1 Malonyl-CoA 9A 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde 9A 1.4.1.a AB052732 lysine NP_147035.1 lysine K1 P0A393 leucine, isoleucine, valine, 2- aminobutanoate 9A 2.6.1.a P22256.1 4- aminobutyryate P50554.3 3-amino-2- methylpropionate ABF58893.1 beta-alanine 9A 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde Desired Desired FIG. EC class substrate product Enzyme name Gene name 9B 2.7.2.a 4- [(4- 4- ackA aminobutyrate aminobutanolyl) aminobutyrate oxy] kinase phosphonic acid buk1 proB 9B 1.2.1.d [(4- 4- 4- asd aminobutanolyl) aminobutanal aminobutyraldehyde oxy] dehydrogenase phosphonic (phosphorylating) acid proA gapA 9B 1.1.1.a 4-aminobutanal 4-aminobutan- 4-aminobutan- ADH2 1-ol 1-ol dehydrogenase yqhD 4hbd 9B 1.4.1.a 4-aminobutan- 4- 4-aminobutan- lysDH 1-ol hydroxybutanal 1-ol oxidoreductase (deaminating) lysDH ldh 9B 2.6.1.a 4-aminobutan- 4- 4-aminobutan- gabT 1-ol hydroxybutanal 1-ol transaminase abat SkyPYD4 9B 1.4.1.a [(4- [(4- [(4- lysDH aminobutanolyl) oxobutanolyl) aminobutanolyl) oxy] oxy] oxy]phosphonic phosphonic phosphonic acid acid acid oxidoreductase (deaminating) lysDH ldh 9B 2.6.1.a [(4- [(4- [(4- gabT aminobutanolyl) oxobutanolyl) aminobutanolyl) oxy] oxy] oxy]phosphonic phosphonic phosphonic acid acid acid transaminase SkyPYD4 serC 9B 1.1.1.a [(4- 4- 4- ADH2 oxobutanolyl)oxy] hydroxybutyryl- hydroxybutyryl- phosphonic phosphate phosphate acid dehydrogenase yqhD 4hbd 9B 1.2.1.d 4- 4- 4- asd hydroxybutyryl- hydroxybutanal hydroxybutyraldehyde phosphate dehydrogenase (phosphorylating) proA gapA 9B 1.1.1.a 4- 1,4-butanediol 1,4-butanediol ADH2 hydroxybutanal dehydrogenase yqhD 4hbd GenBank ID FIG. EC class (if available) Known Substrate 9B 2.7.2.a NP_416799.1 acetate, propionate NP_349675 butyrate NP_414777.1 glutamate 9B 1.2.1.d NP_417891.1 L-4-aspartyl-phosphate NP_414778.1 L-glutamyl-5-phospate P0A9B2.2 Glyceraldehyde-3- phosphate 9B 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate semialdehyde DSM 555 9B 1.4.1.a AB052732 lysine NP_147035.1 lysine K1 P0A393 leucine, isoleucine, valine, 2-aminobutanoate 9B 2.6.1.a P22256.1 4-aminobutyryate P50554.3 3-amino-2- methylpropionate ABF58893.1 beta-alanine 9B 1.4.1.a AB052732 lysine NP_147035.1 lysine K1 P0A393 leucine, isoleucine, valine, 2-aminobutanoate 9B 2.6.1.a P22256.1 4-aminobutyryate ABF58893.1 beta-alanine NP_415427.1 phosphoserine, phosphohydroxythreonine 9B 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate semialdehyde DSM 555 9B 1.2.1.d NP_417891.1 L-4-aspartyl-phosphate NP_414778.1 L-glutamyl-5-phospate P0A9B2.2 Glyceraldehyde-3- phosphate 9B 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate semialdehyde DSM 555 Example VIII
Exemplary BDO Pathways from Alpha-Ketoglutarate
Desired Desired FIG. EC class substrate product Enzyme name Gene name 10 2.7.2.a alpha- alpha- alpha- ackA ketoglutarate ketoglutaryl- ketoglutarate 5- phosphate kinase buk1 proB 10 1.2.1.d alpha- 2,5- 2,5- proA ketoglutaryl- dioxopentanoic dioxopentanoic phosphate acid semialdehyde dehydrogenase (phosphorylating) asd gapA 10 1.1.1.a 2,5- 5-hydroxy-2- 2,5- ADH2 dioxopentanoic oxopentanoic dioxopentanoic acid acid acid reductase yqhD 4hbd 10 2.8.3.a alpha- alpha- alpha- cat1, cat2, ketoglutarate ketoglutaryl- ketoglutarate cat3 CoA CoA transferase gctA, gctB atoA, atoD 10 3.1.2.a alpha- alpha- alpha- tesB ketoglutarate ketoglutaryl- ketoglutaryl- CoA CoA hydrolase acot12 hibch 10 6.2.1.a alpha- alpha- alpha- sucCD ketoglutarate ketoglutaryl- ketoglutaryl- CoA CoA ligase (or alpha- ketoglutaryl- CoA synthetase) phl bioW 10 1.2.1.b alpha- 2,5- alpha- sucD ketoglutaryl- dioxopentanoic ketoglutaryl- CoA acid CoA reductase (or 2,5- dioxopentanoic acid dehydrogenase) Msed_0709 bphG 10 1.1.1.a 2,5- 5-hydroxy-2- 5-hydroxy-2- ADH2 dioxopentanoic oxopentanoic oxopentanoic yqhD acid acid acid 4hbd dehydrogenase 10 1.1.1.c alpha- 5-hydroxy-2- alpha- adhE2 ketoglutaryl- oxopentanoic ketoglutaryl- CoA acid CoA reductase (alcohol forming) mcr FAR 10 4.1.1.a 5-hydroxy-2- 4- 5-hydroxy-2- pdc oxopentanoic hydroxybutanal oxopentanoic acid acid decarboxylase mdlC pdc1 10 1.1.1.a 4- 1,4-butanediol 1,4-butanediol ADH2 hydroxybutanal dehydrogenase yqhD 4hbd 10 1.2.1.c 5-hydroxy-2- 4- 5-hydroxy-2- sucA, sucB, oxopentanoic hydroxybutyryl-CoA oxopentanoic lpd acid acid dehydrogenase (decarboxylation) bfmBB, bfmBAA, bfmBAB, bfmBAB, pdhD Bckdha, Bckdhb, Dbt, Dld GenBank ID FIG. EC class (if available) Known Substrate 10 2.7.2.a NP_416799.1 acetate, propionate NP_349675 butyrate NP_414777.1 glutamate 10 1.2.1.d NP_414778.1 L-glutamyl-5-phospate NP_417891.1 L-4-aspartyl-phosphate P0A9B2.2 Glyceraldehyde-3-phosphate 10 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate semialdehyde 555 10 2.8.3.a P38946.1, succinate, 4-hydroxybutyrate, P38942.2, butyrate EDK35586.1 CAA57199.1, glutarate CAA57200.1 P76459.1, butanoate P76458.1 10 3.1.2.a NP_414986 adipyl-CoA NP_570103.1 butyryl-CoA Q6NVY1.2 3-hydroxypropanoyl-CoA 10 6.2.1.a NP_415256.1, succinate AAC73823.1 CAJ15517.1 phenylacetate NP_390902.2 6-carboxyhexanoate 10 1.2.1.b P38947.1 Succinyl-CoA YP_001190808.1 Malonyl-CoA BAA03892.1 Acetaldehyde, Propionaldehyde, Butyraldehyde, Isobutyraldehyde and Formaldehyde 10 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate semialdehyde 555 10 1.1.1.c AAK09379.1 butanoyl-CoA AAS20429.1 malonyl-CoA AAD38039.1 long chain acyl-CoA 10 4.1.1.a P06672.1 2-oxopentanoic acid P20906.2 2-oxopentanoic acid P06169 pyruvate 10 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate semialdehyde 555 10 1.2.1.c NP_415254.1, Alpha-ketoglutarate NP_415255.1, NP_414658.1 NP_390283.1, 2-keto acids derivatives of NP_390285.1, valine, leucine and NP_390284.1, isoleucine P21880.1 NP_036914.1, 2-keto acids derivatives of NP_062140.1, valine, leucine and NP_445764.1, isoleucine NP_955417.1 Example IX
Exemplary BDO Pathways from Glutamate
Desired Desired FIG. EC class substrate product Enzyme name Gene name 11 2.8.3.a glutamate glutamyl-CoA glutamate CoA cat1, cat2, cat3 transferase gctA, gctB atoA, atoD 11 3.1.2.a glutamate glutamyl-CoA glutamyl-CoA tesB hydrolase acot12 hibch 11 6.2.1.a glutamate glutamyl-CoA glutamyl-CoA sucCD ligase (or glutamyl- CoA synthetase) phl bioW 11 2.7.2.a glutamate glutamate-5- glutamate 5-kinase ackA phosphate buk1 proB 11 1.2.1.d glutamate-5- glutamate-5- glutamate-5- proA phosphate semialdehyde semialdehyde dehydrogenase (phosphorylating) asd gapA 11 1.2.1.b glutamyl-CoA glutamate-5- glutamyl-CoA sucD semialdehyde reductase (or glutamate-5- semialdehyde dehydrogenase) Msed_0709 bphG 11 1.1.1.a glutamate-5- 2-amino-5- glutamate-5- ADH2 semialdehyde hydroxypentanoic semialdehyde acid reductase yqhD 4hbd 11 1.1.1.c glutamyl-CoA 2-amino-5- glutamyl-CoA adhE2 hydroxypentanoic reductase (alcohol acid forming) mcr FAR 11 1.4.1.a 2-amino-5- 5-hydroxy-2- 2-amino-5- gdhA hydroxypentanoic oxopentanoic hydroxypentanoic acid acid acid oxidoreductase (deaminating) ldh nadX 11 2.6.1.a 2-amino-5- 5-hydroxy-2- 2-amino-5- aspC hydroxypentanoic oxopentanoic hydroxypentanoic acid acid acid transaminase AAT2 avtA 11 4.1.1.a 5-hydroxy-2- 4- 5-hydroxy-2- pdc oxopentanoic hydroxybutanal oxopentanoic acid acid decarboxylase mdlC pdc1 11 1.1.1.a 4- 1,4-butanediol 1,4-butanediol ADH2 hydroxybutanal dehydrogenase yqhD 4hbd 11 1.2.1.c 5-hydroxy-2- 4- 5-hydroxy-2- sucA, sucB, lpd oxopentanoic hydroxybutyryl- oxopentanoic acid acid CoA dehydrogenase (decarboxylation) bfmBB, bfmBAA, bfmBAB, bfmBAB, pdhD Bckdha, Bckdhb, Dbt, Dld GenBank ID (if FIG. EC class available) Known Substrate 11 2.8.3.a P38946.1, succinate, 4- P38942.2, hydroxybutyrate, EDK35586.1 butyrate CAA57199.1, glutarate CAA57200.1 P76459.1, P76458.1 butanoate 11 3.1.2.a NP_414986 adipyl-CoA NP_570103.1 butyryl-CoA Q6NVY1.2 3-hydroxypropanoyl- CoA 11 6.2.1.a NP_415256.1, succinate AAC73823.1 CAJ15517.1 phenylacetate NP_390902.2 6-carboxyhexanoate 11 2.7.2.a NP_416799.1 acetate, propionate NP_349675 butyrate NP_414777.1 glutamate 11 1.2.1.d NP_414778.1 L-glutamyl-5- phospate NP_417891.1 L-4-aspartyl- phosphate P0A9B2.2 Glyceraldehyde-3- phosphate 11 1.2.1.b P38947.1 Succinyl-CoA YP_001190808.1 Malonyl-CoA BAA03892.1 Acetaldehyde, Propionaldehyde, Butyraldehyde, Isobutyraldehyde and Formaldehyde 11 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde 11 1.1.1.c AAK09379.1 butanoyl-CoA AAS20429.1 malonyl-CoA AAD38039.1 long chain acyl-CoA 11 1.4.1.a P00370 glutamate P0A393 leucine, isoleucine, valine, 2- aminobutanoate NP_229443.1 aspartate 11 2.6.1.a NP_415448.1 aspartate P23542.3 aspartate YP_026231.1 valine, alpha- aminobutyrate 11 4.1.1.a P06672.1 2-oxopentanoic acid P20906.2 2-oxopentanoic acid P06169 pyruvate 11 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde 11 1.2.1.c NP_415254.1, Alpha-ketoglutarate NP_415255.1, NP_414658.1 NP_390283.1, 2-keto acids NP_390285.1, derivatives of valine, NP_390284.1, leucine and isoleucine P21880.1 NP_036914.1, 2-keto acids NP_062140.1, derivatives of valine, NP_445764.1, leucine and isoleucine NP_955417.1 Example X
Exemplary BDO from Acetoacetyl-CoA
Desired Desired FIG. EC class substrate product Enzyme name Gene name 12 1.1.1.a acetoacetyl- 3- 3-hydroxybutyryl- hbd CoA hydroxybutyryl- CoA dehydrogenase CoA hbd Msed_1423 12 4.2.1.a 3- crotonoyl- 3-hydroxybutyryl- crt hydroxybutyryl- CoA CoA dehydratase CoA maoC paaF 12 5.3.3.3 crotonoyl-CoA vinylacetyl- vinylacetyl-CoA Δ- abfD CoA isomerase abfD abfD 12 4.2.1.a vinylacetyl- 4- 4-hydroxybutyryl- abfD CoA hydroxybutyryl- CoA dehydratase CoA abfD abfD 12 1.1.1.c 4- 1,4- 4-hydroxybutyryl- adhE2 hydroxybutyryl- butanediol CoA reductase CoA (alcohol forming) mcr FAR 12 1.2.1.b 4- 4- 4-hydroxybutyryl- sucD hydroxybutyryl- hydroxybutanal CoA reductase (or CoA 4-hydroxybutanal dehydrogenase) sucD Msed_0709 12 1.1.1.a 4- 1,4- 1,4-butanediol ADH2 hydroxybutanal butanediol dehydrogenase yqhD 4hbd GenBank ID FIG. EC class (if available) Known Substrate 12 1.1.1.a NP_349314.1 3-hydroxybutyryl- CoA AAM14586.1 3-hydroxybutyryl- CoA YP_001191505 presumed 3- hydroxybutyryl-CoA 12 4.2.1.a NP_349318.1 3-hydroxybutyryl- CoA NP_415905.1 3-hydroxybutyryl- CoA NP_415911.1 3-hydroxyadipyl- CoA 12 5.3.3.3 YP_001396399.1 4-hydroxybutyryl- DSM 555 CoA P55792 4-hydroxybutyryl- CoA YP_001928843 4-hydroxybutyryl- CoA 12 4.2.1.a YP_001396399.1 4-hydroxybutyryl- DSM 555 CoA P55792 4-hydroxybutyryl- CoA YP_001928843 4-hydroxybutyryl- CoA 12 1.1.1.c AAK09379.1 butanoyl-CoA AAS20429.1 malonyl-CoA AAD38039.1 long chain acyl-CoA 12 1.2.1.b P38947.1 Succinyl-CoA NP_904963.1 Succinyl-CoA YP_001190808.1 Malonyl-CoA 12 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde Example XI
Exemplary BDO Pathway from Homoserine
Desired Desired FIG. EC class substrate product Enzyme name Gene name 13 4.3.1.a homoserine 4-hydroxybut-2- homoserine aspA enoate deaminase aspA aspA 13 2.8.3.a homoserine homoserine- homoserine CoA cat1, cat2, CoA transferase cat3 gctA, gctB atoA, atoD 13 3.1.2.a homoserine homoserine- homoserine-CoA tesB CoA hydrolase acot12 hibch 13 6.2.1.a homoserine homoserine- homoserine-CoA sucCD CoA ligase (or homoserine-CoA synthetase) phl bioW 13 4.3.1.a homoserine- 4-hydroxybut-2- homoserine-CoA acl1 CoA enoyl-CoA deaminase acl2 MXAN_4385 13 2.8.3.a 4-hydroxybut- 4-hydroxybut-2- 4-hydroxybut-2- cat1, cat2, 2-enoate enoyl-CoA enoyl-CoA cat3 transferase gctA, gctB atoA, atoD 13 3.1.2.a 4-hydroxybut- 4-hydroxybut-2- 4-hydroxybut-2- tesB 2-enoate enoyl-CoA enoyl-CoA hydrolase acot12 hibch 13 6.2.1.a 4-hydroxybut- 4-hydroxybut-2- 4-hydroxybut-2- sucCD 2-enoate enoyl-CoA enoyl-CoA ligase (or 4-hydroxybut-2- enoyl-CoA synthetase) phl bioW 13 1.3.1.a 4-hydroxybut- 4- 4-hydroxybut-2- enr 2-enoate hydroxybutyrate enoate reductase enr enr 13 2.8.3.a 4- 4- 4-hydroxybutyryl- cat1, cat2, hydroxybutyrate hydroxybutyryl- CoA transferase cat3 coA gctA, gctB atoA, atoD 13 3.1.2.a 4- 4- 4-hydroxybutyryl- tesB hydroxybutyrate hydroxybutyryl- CoA hydrolase coA acot12 hibch 13 6.2.1.a 4- 4- 4-hydroxybutyryl- sucCD hydroxybutyrate hydroxybutyryl- CoA ligase (or 4- coA hydroxybutyryl-CoA synthetase) phl bioW 13 1.3.1.a 4-hydroxybut-2- 4- 4-hydroxybut-2- bcd, etfA, enoyl-CoA hydroxybutyryl- enoyl-CoA reductase etfB CoA TER TDE0597 8 1.1.1.c 4- 1,4-butanediol 4-hydroxybutyryl- adhE2 hydroxybutyryl- CoA reductase CoA (alcohol forming) mcr FAR 8 1.2.1.b 4- 4- 4-hydroxybutyryl- sucD hydroxybutyryl- hydroxybutanal CoA reductase (or 4- CoA hydroxybutanal dehydrogenase) sucD Msed_0709 8 1.1.1.a 4-hydroxybutanal 1,4-butanediol 1,4-butanediol ADH2 dehydrogenase yqhD 4hbd GenBank ID Known FIG. EC class (if available) Substrate 13 4.3.1.a NP_418562 aspartate P44324.1 aspartate P07346 aspartate 13 2.8.3.a P38946.1, P38942.2, succinate, 4- EDK35586.1 hydroxybutyrate, butyrate CAA57199.1, glutarate CAA57200.1 P76459.1, P76458.1 butanoate 13 3.1.2.a NP_414986 adipyl-CoA NP_570103.1 butyryl-CoA Q6NVY1.2 3- hydroxypropanoyl- CoA 13 6.2.1.a NP_415256.1, succinate AAC73823.1 CAJ15517.1 phenylacetate NP_390902.2 6- carboxyhexanoate 13 4.3.1.a CAG29274.1 beta-alanyl-CoA CAG29275.1 beta-alanyl-CoA YP_632558.1 beta-alanyl-CoA 13 2.8.3.a P38946.1, P38942.2, succinate, 4- EDK35586.1 hydroxybutyrate, butyrate CAA57199.1, glutarate CAA57200.1 P76459.1, P76458.1 butanoate 13 3.1.2.a NP_414986 adipyl-CoA NP_570103.1 butyryl-CoA Q6NVY1.2 3- hydroxypropanoyl- CoA 13 6.2.1.a NP_415256.1, succinate AAC73823.1 CAJ15517.1 phenylacetate NP_390902.2 6- carboxyhexanoate 13 1.3.1.a CAA71086.1 CAA76083.1 YP_430895.1 13 2.8.3.a P38946.1, P38942.2, succinate, 4- EDK35586.1 hydroxybutyrate, butyrate CAA57199.1, glutarate CAA57200.1 P76459.1, P76458.1 butanoate 13 3.1.2.a NP_414986 adipyl-CoA NP_570103.1 butyryl-CoA Q6NVY1.2 3- hydroxypropanoyl- CoA 13 6.2.1.a NP_415256.1, succinate AAC73823.1 CAJ15517.1 phenylacetate NP_390902.2 6- carboxyhexanoate 13 1.3.1.a NP_349317.1, NP_349315.1, NP_349316.1 Q5EU90.1 NP_971211.1 8 1.1.1.c AAK09379.1 butanoyl-CoA AAS20429.1 malonyl-CoA AAD38039.1 long chain acyl- CoA 8 1.2.1.b P38947.1 Succinyl-CoA NP_904963.1 Succinyl-CoA YP_001190808.1 Malonyl-CoA 8 1.1.1.a NP_014032.1 general NP_417484.1 >C3 L21902.1 Succinate DSM 555 semialdehyde Example XII
BDO Producing Strains Expressing Succinyl-CoA Synthetase
Example XIII
Expression of Heterologous Genes Encoding BDO Pathway Enzymes
Primers for fragment 1: (SEQ ID NO: 3) 5′-ATGTACCGCAAGTTCCGC-3′ (SEQ ID NO: 4) 5′-CAATTTGCCGATGCCCAG-3′ Primers for fragment 2: (SEQ ID NO: 5) 5′-GCTGACCACTGAAGACTTTG-3′ (SEQ ID NO: 6) 5′-GATCAGGGCTTCGGTGTAG-3′ Primers for fragment 3: (SEQ ID NO: 7) 5′-TTGGTGCGGGCCAAGCAGGATCTGCTC-3′ (SEQ ID NO: 8) 5′-TCAGCCGAACGCCTCGTCGAGGATCTCCTG-3′ Primers for fragment 4: (SEQ ID NO: 9) 5′-TGGCCAACATAAGTTCACCATTCGGGCAAAAC-3′ (SEQ ID NO: 10) 5′-TCTCTTCAACCAGCCATTCGTTTTGCCCG-3′ Three strains containing various plasmid controls and encoding sucA and 4-hydroxybutyrate dehydrogenase. Host pZE13 pZA33 1 MG1655 laclq vector vector 2 MG1655 laclq vector 4hbd 3 MG1655 laclq sucA 4hbd Example XIV
BDO Producing Strains Expressing Pyruvate Dehydrogenase
Example XV
BDO Producing Strains Expressing Citrate Synthase and Aconitase
(SEQ ID NO: 31) S-mdh-Kan 5′ - TATTGTGCATACAGATGAATTTTTATGCAAACAGTCAGCCCT GAAGAAGGG TGT AGG CTG GAG CTG CTT C - 3′ (SEQ ID NO: 32) AS-mdh-Kan 5′ - CAAAAAACCGGAGTCTGTGCTCCGGTTTTTTATTATCCG CTAATCAATTACATA TGA ATA TCC TCC TTA G - 3′.
Underlined regions indicate homology to pKD3 plasmid and bold sequence refers to sequence homology upstream and downstream of the mdh ORF. After purification, the PCR product was electroporated into ECKh-138 electrocompetent cells that had been transformed with pRedET (tet) and prepared according to the manufacturer's instructions (genebridges.com/gb/pdf/K001%20Q%20E%20BAC%20Modification%20Kit-version2.6-2007-screen.pdf). The PCR product was designed so that it integrated into the ECKh-138 genome at a region upstream of the mdh gene, as shown in Example XVI
BDO Strains Expression Phosphoenolpyruvate Carboxykinase
Sources of phosphoenolpyruvate carboxykinase sequences. Accession Number, GenBank Reference PEPCK Source Strain Sequence NC_000907.1 YP_001343536.1 YP_089485.1 Complementation of Δppc mutants with PEPCK from vectors pZA23 or pZE13. PEPCK Source Strain Vector Time (h) OD600 pZA23BB 40 0.950 Δppc Control pZA23BB 40 0.038 pZA23BB 40 0.055 pZA23BB 40 0.214 pZE13BB 40 0.041 pZE13BB 40 0.024 Δppc Control pZE13BB 40 0.042 Example XVII
Integration of BDO Pathway Encoding Genes at Specific Integration Sites
(SEQ ID NO: 41) 5′-GTTTGCACGCTATAGCTGAGGTTGTTGTCTTCCAGCAACGTACCGT ATACAATAGGCGTATCACGAGGCCCTTTC-3′ (SEQ ID NO: 42) 5′-GCTACAGCATGTCACACGATCTCAACGGTCGGATGACCAATCTGGC TGGTATGGGAATTAGCCATGGTCC-3′ Example XVIII
Use of a Non-Phosphotransferase Sucrose Uptake System to Reduce Pyruvate Byproduct Formation
Example XIX
Summary of BDO Producing Strains
Summary of various BDO production strains. Host Strain # Strain # Host chromosome Host Description Plasmid-based 1 ΔldhA Single deletion derivative of sucD, MG1655 Cat2, AdhE2 2 AB3 ΔadhE ΔldhA ΔpflB Succinate producing strain; sucD, derivative of Cat2, MG1655 AdhE2 3 ECKh- ΔadhE ΔldhA ΔpflB Improvement of 138 ΔlpdA::K.p.lpdA322 lpdA to increase sucD, pyruvate Cat2, dehydrogenase AdhE2 flux 4 ECKh- ΔadhE ΔldhA ΔpflB 138 ΔlpdA::K.p.lpdA322 sucD, buk1, ptb, AdhE2 5 ECKh- ΔadhE ΔldhA ΔpflB Deletions in mdh 401 ΔlpdA::K.p.lpdA322 Δmdh and arcA to direct sucD, ΔarcA flux through Cat2, oxidative TCA AdhE2 cycle 6 ECKh- ΔadhE ΔldhA ΔpflB 401 ΔlpdA::K.p.lpdA322 Δmdh ΔarcA 4hbd, Cat2, AdhE2 7 ECKh- ΔadhE ΔldhA ΔpflB Mutation in citrate 422 ΔlpdA::K.p.lpdA322 Δmdh synthase to sucD, ΔarcA gltAR163L improve anaerobic Cat2, activity AdhE2 8 ECKh- ΔadhE ΔldhA ΔpflB 422 ΔlpdA::K.p.lpdA322 Δmdh ΔarcA gltAR163L 4hbd, Cat2, AdhE2 9 ECKh- ΔadhE ΔldhA ΔpflB 422 ΔlpdA::K.p.lpdA322 Δmdh ΔarcA gltAR163L 4hbd, Cat2, 10 ECKh- ΔadhE ΔldhA ΔpflB Succinate branch 426 ΔlpdA::K.p.lpdA322 Δmdh of upstream Ald ΔarcA gltAR163L fimD:: pathway integrated sucCD, into ECKh-422 4hbd 11 ECKh- ΔadhE ΔldhA ΔpflB Succinate and 432 ΔlpdA::K.p.lpdA322 Δmdh alpha-ketoglutarate Ald ΔarcA gltAR163L fimD:: upstream pathway sucCD, branches 4hbd fimD:: integrated into sucA, ECKh-422 12 ECKh- ΔadhE ΔldhA ΔpflB 432 ΔlpdA::K.p.lpdA322 Δmdh ptb, ΔarcA gltAR163L fimD:: Ald sucCD, P. gingivalis sucD, 4hbd fimD:: sucA, 13 ECKh- ΔadhE ΔldhA ΔpflB Acetate kinase 439 ΔlpdA::K.p.lpdA322 Δmdh deletion of ECKh- Ald ΔarcA gltAR163L ΔackA fimD:: 432 sucD, 14 ECKh- ΔadhE ΔldhA ΔpflB Acetate kinase 453 ΔlpdA::K.p.lpdA322 Δmdh deletion and Ald ΔarcA gltAR163L ΔackA PPC/PEPCK Δppc::H.i.ppck fimD:: replacement of sucCD, ECKh-432 4hbd fimD:: sucA, 15 ECKh- ΔadhE ΔldhA ΔpflB ΔlpdA::fnr- Replacement of 456 pflB6-K.p.lpdA322 Δmdh ΔarcA lpdA promoter Ald gltAR163L fimD:: with anaerobic sucCD, promoter in 4hbd fimD:: ECKh-432 sucA, 16 ECKh- ΔadhE ΔldhA ΔpflB ΔlpdA:: Replacement of 455 K.p.lpdA322 ΔpdhR:: fnr-pflB6 pdhR and aceEF Ald Δmdh ΔarcA gltAR163L fimD:: promoter with anaerobic sucD, P. gingivalis 4hbd fimD:: promoter in ECKh-432 17 ECKh- ΔadhE ΔldhA ΔpflB ΔlpdA:: Integration of 459 K.p.lpdA322 Δmdh ΔarcA BK/PTB into gltAR163L fimD:: ECKh-432 sucCD, 4hbd fimD:: sucA, buk1, ptb 18 ECKh- ΔadhE ΔldhA ΔpflB ΔlpdA:: 459 K.p.lpdA322 Δmdh ΔarcA adh1 gltAR163L fimD:: sucCD, 4hbd fimD:: sucA, buk1, ptb 19 ECKh- ΔadhE ΔldhA ΔpflB Non-PTS sucrose 463 ΔlpdA::K.p.lpdA322 Δmdh genes inserted into Ald ΔarcA gltAR163L fimD:: E. coli ECKh-432 sucCD, 4hbd fimD:: sucA, rrnC::cscAKB 20 ECKh- ΔadhE ΔldhA ΔpflB 463 ΔlpdA::K.p.lpdA322 Δmdh ptb, ΔarcA gltAR163L fimD:: Ald sucCD, 4hbd fimD:: sucA, rrnC::cscAKB Corresponding genes to be knocked out to prevent a particular reaction from occurring in Reaction Genes Encoding the Enzyme(s) Abbreviation Reaction Stoichiometry* Catalyzing Each Reaction& ACKr [c]: ac + atp <==> actp + adp (b3115 or b2296 or b1849) ACS [c]: ac + atp + coa --> accoa + amp + ppi b4069 ACt6 ac[p] + h[p] <==> ac[c] + h[c] Non-gene associated ADHEr [c]: etoh + nad <==> acald + h + nadh (b0356 or b1478 or b1241) [c]: acald + coa + nad <==> accoa + h + nadh (b1241 or b0351) AKGD [c]: akg + coa + nad --> co2 + nadh + succoa (b0116 and b0726 and b0727) ASNS2 [c]: asp-L + atp + nh4 --> amp + asn-L + h + ppi b3744 ASPT [c]: asp-L --> fum + nh4 b4139 ATPS4r adp[c] + (4) h[p] + pi[c] <==> atp[c] + (3) h[c] + h2o[c] (((b3736 and b3737 and b3738) and (b3731 and b3732 and b3733 and b3734 and b3735)) or ((b3736 and b3737 and b3738) and (b3731 and b3732 and b3733 and b3734 and b3735) and b3739)) CBMK2 [c]: atp + co2 + nh4 <==> adp + cbp + (2) h (b0521 or b0323 or b2874) EDA [c]: 2ddg6p --> g3p + pyr b1850 ENO [c]: 2pg <==> h2o + pep b2779 FBA [c]: fdp <==> dhap + g3p (b2097 or b2925 or b1773) FBP [c]: fdp + h2o --> f6p + pi (b4232 or b3925) FDH2 for[p] + (2) h[c] + q8[c] --> co2[c] + h[p] + q8h2[c] ((b3892 and b3893 and b3894) for[p] + (2) h[c] + mqn8[c] --> co2[c] + h[p] + mql8[c] or (b1474 and b1475 and b1476)) FRD2 [c]: fum + mql8 --> mqn8 + succ (b4151 and b4152 and b4153 [c]: 2dmmql8 + fum --> 2dmmq8 + succ and b4154) FTHFD [c]: 10fthf + h2o --> for + h + thf b1232 FUM [c]: fum + h2o <==> mal-L (b1612 or b4122 or b1611) G5SD [c]: glu5p + h + nadph --> glu5sa + nadp + pi b0243 G6PDHy [c]: g6p + nadp <==> 6pgl + h + nadph b1852 GLCpts glc-D[p] + pep[c] --> g6p[c] + pyr[c] ((b2417 and b1101 and b2415 and b2416) or (b1817 and b1818 and b1819 and b2415 and b2416) or (b2417 and b1621 and b2415 and b2416)) GLU5K [c]: atp + glu-L --> adp + glu5p b0242 GLUDy [c]: glu-L + h2o + nadp <==> akg + h + nadph + nh4 b1761 GLYCL [c]: gly + nad + thf --> co2 + mlthf + nadh + nh4 (b2904 and b2903 and b2905 and b0116) HEX1 [c]: atp + glc-D --> adp + g6p + h b2388 ICL [c]: icit --> glx + succ b4015 LDH_D [c]: lac-D + nad <==> h + nadh + pyr (b2133 or b1380) MALS [c]: accoa + glx + h2o --> coa + h + mal-L (b4014 or b2976) MDH [c]: mal-L + nad <==> h + nadh + oaa b3236 ME2 [c]: mal-L + nadp --> co2 + nadph + pyr b2463 MTHFC [c]: h2o + methf <==> 10fthf + h b0529 NADH12 [c]: h + mqn8 + nadh --> mql8 + nad b1109 [c]: h + nadh + q8 --> nad + q8h2 [c]: 2dmmq8 + h + nadh --> 2dmmql8 + nad NADH6 (4) h[c] + nadh[c] + q8[c] --> (3) h[p] + nad[c] + q8h2[c] (b2276 and b2277 and b2278 (4) h[c] + mqn8[c] + nadh[c] --> (3) h[p] + mql8[c] + and b2279 and b2280 and b2281 nad[c] and b2282 and b2283 and b2284 2dmmq8[c] + (4) h[c] + nadh[c] --> 2dmmql8[c] + (3) and b2285 and b2286 and b2287 h[p] + nad[c] and b2288) PFK [c]: atp + f6p --> adp + fdp + h (b3916 or b1723) PFLi [c]: coa + pyr --> accoa + for (((b0902 and b0903) and b2579) or (b0902 and b0903) or (b0902 and b3114) or (b3951 and b3952)) PGDH [c]: 6pgc + nadp --> co2 + nadph + ru5p-D b2029 PGI [c]: g6p <==> f6p b4025 PGL [c]: 6pgl + h2o --> 6pgc + h b0767 PGM [c]: 2pg <==> 3pg (b3612 or b4395 or b0755) PPC [c]: co2 + h2o + pep --> h + oaa + pi b3956 PPCK [c]: atp + oaa --> adp + co2 + pep b3403 PRO1z [c]: fad + pro-L --> 1pyr5c + fadh2 + h b1014 PYK [c]: adp + h + pep --> atp + pyr b1854 or b1676) PYRt2 h[p] + pyr[p] <==> h[c] + pyr[c] Non-gene associated RPE [c]: ru5p-D <==> xu5p-D (b4301 or b3386) SO4t2 so4[e] <==> so4[p] (b0241 or b0929 or b1377 or b2215) SUCD4 [c]: q8 + succ --> fum + q8h2 (b0721 and b0722 and b0723 and b0724) SUCOAS [c]: atp + coa + succ <==> adp + pi + succoa (b0728 and b0729) SULabc atp[c] + h2o[c] + so4[p] --> adp[c] + h[c] + pi[c] + ((b2422 and b2425 and b2424 so4[c] and b2423) or (b0763 and b0764 and b0765) or (b2422 and b2424 and b2423 and b3917)) TAL [c]: g3p + s7p <==> e4p + f6p (b2464 or b0008) THD2 (2) h[p] + nadh[c] + nadp[c] --> (2) h[c] + nad[c] + (b1602 and b1603) nadph[c] THD5 [c]: nad + nadph --> nadh + nadp (b3962 or (b1602 and b1603)) TPI [c]: dhap <==> g3p b3919 Metabolite names corresponding to abbreviations used in Table 29. Metabolite Abbreviation Metabolite Name 10fthf 10-Formyltetrahydrofolate 1pyr5c 1-Pyrroline-5-carboxylate 2ddg6p 2-Dehydro-3-deoxy-D-gluconate 6-phosphate 2dmmq8 2-Demethylmenaquinone 8 2dmmql8 2-Demethylmenaquinol 8 2pg D-Glycerate 2-phosphate 3pg 3-Phospho-D-glycerate 6pgc 6-Phospho-D-gluconate 6pgl 6-phospho-D-glucono-1,5-lactone ac Acetate acald Acetaldehyde accoa Acetyl-CoA actp Acetyl phosphate adp ADP akg 2-Oxoglutarate amp AMP asn-L L-Asparagine asp-L L-Aspartate atp ATP cbp Carbamoyl phosphate co2 CO2 coa Coenzyme A dhap Dihydroxyacetone phosphate e4p D-Erythrose 4-phosphate etoh Ethanol f6p D-Fructose 6-phosphate fad Flavin adenine dinucleotide oxidized fadh2 Flavin adenine dinucleotide reduced fdp D-Fructose 1,6-bisphosphate for Formate fum Fumarate g3p Glyceraldehyde 3-phosphate g6p D-Glucose 6-phosphate glc-D D-Glucose glu5p L-Glutamate 5-phosphate glu5sa L-Glutamate 5-semialdehyde glu-L L-Glutamate glx Glyoxylate gly Glycine h H+ h2o H2O icit Isocitrate lac-D D-Lactate mal-L L-Malate methf 5,10-Methenyltetrahydrofolate mlthf 5,10-Methylenetetrahydrofolate mql8 Menaquinol 8 mqn8 Menaquinone 8 nad Nicotinamide adenine dinucleotide nadh Nicotinamide adenine dinucleotide—reduced nadp Nicotinamide adenine dinucleotide phosphate nadph Nicotinamide adenine dinucleotide phosphate—reduced nh4 Ammonium oaa Oxaloacetate pep Phosphoenolpyruvate pi Phosphate ppi Diphosphate pro-L L-Proline pyr Pyruvate q8 Ubiquinone-8 q8h2 Ubiquinol-8 ru5p-D D-Ribulose 5-phosphate s7p Sedoheptulose 7-phosphate so4 Sulfate succ Succinate succoa Succinyl-CoA thf 5,6,7,8-Tetrahydrofolate xu5p-D D-Xylulose 5-phosphate




























































