MULTI-MODE POWER TRAINS WITH DIRECT-DRIVE LOCK-UP
This application is divisional of U.S. application Ser. No. 14/191,207, filed Feb. 26, 2014. Not applicable. This disclosure relates to transmissions, including transmissions for operation of work vehicles in different powered modes. It may be useful, in a variety of settings, to utilize both a traditional engine (e.g., an internal combustion engine) and a continuously variable power source (e.g., an electric or hydrostatic motor) to provide useful power. For example, in a vehicle or other powered platform having both an engine and a continuously variable power source, a portion of the engine power may be diverted to drive a power-conversion device (e.g., a hydraulic pump or an electric machine acting as a generator), which may in turn drive the continuously variable power source (e.g., a hydraulic motor or another electric machine acting as a motor). The output of the continuously variable power source may then be utilized to execute useful operations (e.g., to drive a vehicle or operate machinery associated with the vehicle). In certain applications, a vehicle or other platform may be configured to operate in various different powered modes. For example, a vehicle may be configured to operate in a direct-drive mode, in which power is utilized from the engine only, as well as in other modes in which a continuously variable power source (e.g., an electric or hydraulic motor, which may be powered, indirectly, by the engine) is utilized to varying degrees. A multi-mode power train and multi-mode vehicle are disclosed. According to one aspect of the disclosure, a power-conversion device may be in communication with an engine via a direct mechanical power-transfer connection extending from the engine to the power-conversion device. A continuously variable power source (“CVP”) may be in communication with the power conversion device via an intermediate power-transfer connection. A lock-up device with first and second engagement states may be provided between the engine and the power-conversion device or the CVP. With the lock-up device in the first engagement state, mechanical power from the engine may be converted by the power-conversion device for use by the CVP, with the CVP thereby providing mechanical power to a power-output connection. With the lock-up device in the second engagement state, the engine may transmit mechanical power through the lock-up device to the power-output connection. In certain embodiments, the power-conversion device may include a hydraulic pump or an electric generator and the CVP may include, respectively, a hydraulic motor or an electric motor. In certain embodiments, the engine, the power-conversion device, the lock-up device and the CVP may be arranged in series, with respect to the path of power transmission. The lock-up device may include a clutch device between the power-conversion device and the CVP, the clutch device being integrated with a rotor of the CVP. In certain embodiments, the lock-up device may include a clutch assembly and a gear. With the lock-up device in the first engagement state or the second engagement state, the CVP or the engine, respectively, may transmit power to the power-output connection via the clutch assembly and the gear. In certain embodiments, the lock-up device may include a first clutch device and a first gear, with a second clutch device and a second gear being included between the CVP and the power-output connection. With the lock-up device in the first engagement state and the second clutch engaging the second gear, the CVP may transmit mechanical power to the power-output connection via the second clutch and the second gear. With the lock-up device in the second engagement state, the engine may transmit mechanical power to the power-output connection via the first clutch device and the first gear. In certain embodiments, an energy storage device may in communication with the CVP and the power-conversion device. In a first mode, the energy storage device may receive energy for storage from at least one of the power-conversion device and the CVP. In a second mode, the energy storage device may provide stored energy from the energy storage device to the CVP. The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims. Like reference symbols in the various drawings indicate like elements. The following describes one or more example embodiments of the disclosed multi-mode power trains, as shown in the accompanying figures of the drawings described briefly above. Various modifications to the example embodiments may be contemplated by one of skill in the art. As noted above, in work vehicles or other platforms, a portion of mechanical power from an engine (including, potentially, all of the engine power) may sometimes be converted to another form in order to drive a continuously variable power source (“CVP”). For example, an engine may be utilized to drive an electric generator or a hydraulic pump, with the resulting electrical or hydraulic power being utilized, respectively, to drive an associated electric or hydraulic motor. In this light, it will be understood that a vehicle (or other platform) may sometimes be capable of operation in a variety of powered modes. For example, in a direct-drive or purely mechanical mode, mechanical power may be directly transmitted from the engine to a power-output connection (e.g., a transmission output shaft, differential drive shaft, power take-off shaft, and so on). In contrast, in a different mode (or modes), the same (or a different) power-output connection may alternatively (or additionally) receive mechanical power from the CVP. For example, in a purely electric (or hydraulic) mode, all of the mechanical power from the engine may be routed for conversion to electrical (or hydraulic) power in order to drive an electric (or hydraulic) motor. The motor may then act as a sole power source for operation of the vehicle (or various vehicle components). Despite the inherent efficiency losses in the conversion of engine power for the CVP in such a latter mode (or modes), the characteristics of electric or hydraulic motors (or other CVPs) may provide for improved performance of a vehicle (or other platform) during certain operations. Accordingly, in certain settings, it may be useful to provide a system that allows for efficient transition between direct-drive and other modes (e.g., purely electric or purely hydraulic modes). In certain embodiments, for example, an engine (e.g., an internal combustion engine) may provide mechanical power to a power train. The power train may also include a power-conversion device, such as an electric generator or a hydraulic pump, and an associated CVP, such as an electric or hydraulic motor. The engine may provide mechanical power to the power-conversion device, which may convert the received power to a form that may be used by the CVP (e.g., electricity for an electric motor, or hydraulic pressure or flow for a hydraulic motor). In certain embodiments, the engine may provide mechanical power to the power-conversion device over a direct mechanical power-transfer connection that extends from the power source to the power-conversion device. For example, the engine may provide mechanical power to the power-conversion device over various mechanical shafts and gears, without the use of a torque converter or other fluid coupling. (As used herein, “direct mechanical” power transmission may include transmission of mechanical power by direct physical connection, through various integrally formed parts, or via various intervening mechanical elements such as a gear set to modify rotational speeds. In contrast, for example, power transmission using a torque converter or other fluid coupling may not be considered a “direct mechanical” transmission.) Continuing, a lock-up device may be provided as part of the power train, in order to allow for transition between direct-drive and other powered modes (e.g., purely electric or hydraulic modes). A lock-up device may be configured in various ways, and may be located in various places within the power train. In certain embodiments, a lock-up device may include a clutch device (or similar mechanism) located between the engine and either of the power-conversion device or the CVP. (As used herein, “between” may refer to a location with respect to a flow of power, rather than an actual physical location. As such, for example, a clutch device may be viewed as located “between” an engine and a power-conversion device if power is routed, at least in part, from the engine through the clutch device in order to reach the power-conversion device.) In certain embodiments, when a clutch device (or another lock-up device) is in a first engagement state, it may provide a direct-drive (i.e., direct mechanical) connection between the engine and various downstream components of the power train. In this way, for example, the clutch device may allow for direct mechanical transmission of power from the engine to a downstream power-output connection (e.g., an output shaft of a power-shift transmission, a differential drive shaft, a power take-off shaft, and so on), and, correspondingly, for direct-drive operation of the vehicle. Continuing, when the clutch device (or another lock-up device) is in a second engagement state, the direct mechanical connection between the engine and the power-output connection may be may severed, and an alternative path provided for power transmission between the CVP and the power-output connection. In this way, through the transition of the clutch device (or other lock-up device) between different engagement states, a power train may be transitioned between a direct-drive mode (i.e., a mode in which power is provided to an output connection solely from the engine) and a CVP mode (i.e., a mode in which power is provided to the output connection solely from the CVP). (It will be understood that even in the CVP mode, the engine may still provide power to the output connection indirectly, as the engine may continue to provide power, via the power-conversion device, to drive the CVP.) Among other benefits, such a multi-mode power train may usefully allow for a combination of control and efficiency, without the need for a torque converter or other fluid coupling between the engine and various other components of the power train. For example, it will be understood that a torque-converter (or other similar mechanisms) may provide for relatively effective torque control (e.g., via actuation of a throttle pedal). However, it will also be understood that a torque-converter may lead to relative low system efficiency, particularly at high-load/low-speed applications. For example, in a vehicle applying large draw-bar force with low or zero wheel speed (e.g., when a heavily-loaded vehicle is starting from a stop or otherwise trying to shift a heavy, stationary load), large amounts of energy may be wasted by thermal/fluidic dissipation within a torque-converter. In contrast, a CVP (e.g., an electric motor) may provide relatively high, and relatively loss-free, torque at low wheel speeds. However, a CVP may introduce inefficiencies because of the need to convert mechanical power from an engine to a form compatible with the CVP (e.g., electrical power), so overall system efficiency may be increased by switching from CVP mode to direct-drive mode for certain operations. In this light, by providing for a system which may easily switch between a CVP mode (e.g., for operations at low vehicle speeds) and a direct-drive mechanical mode (e.g., for operations at higher vehicle speeds), high system efficiency and useful torque control may be attained without requiring the use of a torque converter (and the losses inherent thereto). Additionally, such a system may allow for optimization of an included CVP (and the power-conversion device) to a relatively narrow speed range (e.g., through selection of a high torque/low speed CVP), thereby allowing for potentially significant cost savings. As will become apparent from the discussion herein, the disclosed power train configurations may be used advantageously in a variety of settings and with a variety of machinery. For example, referring now to Referring now to In order to control transition between various powered modes of power train 12, lock-up device 24 may also be provided. In certain embodiments, as depicted in Referring also to In certain embodiments, direct mechanical connection 22 The configuration of It will be understood that other configurations may be possible, including other configurations with engine 14, power-conversion device 18, lock-up device 24, and CVP 26 arranged in series. Referring also to As depicted, lock-up device 24 In the configuration depicted in Various non-series arrangements may also be possible. Referring also to Accordingly, through selective activation of the various clutches, power train 12 As depicted in Referring also to At a particular speed (e.g., 12 kph, as indicated by line 138), then, in order to increase the efficiency of vehicle operation, a transition may be made to direct-drive mode. For example, clutch 84 may be disengaged to sever the power-transfer connection between motor 26 It will be understood that various combinations and variations of aspects of the examples above may be employed in various alternative configurations without departing from the concepts of this disclosure. In various embodiments, for example, various configurations or combinations of gear ratios, PST types, CVP types, clutch device types (e.g., wet or dry friction clutches, dog collar clutches, or synchronizers), power-transfer connection types (e.g., various rotating shafts, or various geared connections with or without gear reductions), and so on, may be possible. In certain embodiments, for example, by implementing speed-matching algorithms for a CVP it may be possible to reduce costs and complexity by utilizing collar clutches, rather than friction clutches, with respect to power-transfer connections between a particular CVP 26 and various other power train components. Likewise, various configurations of PSTs 30 may be utilized without departing from the spirit of this disclosure, including eight-speed PSTs (e.g., PST 30 Continuing, although specific terms such as “generator” and “motor” (and the like) may be used herein to describe various example configurations, it will be understood that these (and similar) terms may be used to refer generally to an electrical machine that may be capable of operating either as a generator or as a motor. For example, electric generator 18 The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that any use of the terms “comprises” and/or “comprising” in this specification specifies the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. Explicitly referenced embodiments herein were chosen and described in order to best explain the principles of the disclosure and their practical application, and to enable others of ordinary skill in the art to understand the disclosure and recognize many alternatives, modifications, and variations on the described example(s). Accordingly, various other implementations are within the scope of the following claims. A multi-mode power train and multi-mode vehicle include a power-conversion device that is in communication with an engine via a direct mechanical power-transfer connection extending from the engine to the power-conversion device. A continuously variable power source (CVP) is in communication with the power conversion device via an intermediate power-transfer connection. A lock-up device with first and second engagement states is provided between the engine and the power-conversion device or the CVP. With the lock-up device in the first engagement state, mechanical power from the engine is converted by the power-conversion device for use by the CVP, with the CVP using the converted power to provide mechanical power to a power-output connection. With the lock-up device in the second engagement state, the engine transmits mechanical power through the lock-up device to the power-output connection. 1. A multi-mode power train for receiving and transmitting power from an engine, the multi-mode power train comprising:
a power-output connection; a power-conversion device in communication with the engine via a direct mechanical power-transfer connection that extends from the engine to the power-conversion device; a continuously variable power source in communication with the power-conversion device via an intermediate power-transfer connection; a lock-up device having a first clutch device and a first gear each located between the engine and the power-conversion device, the lock-up device having first and second engagement states; and a second clutch device and a second gear each located between the continuously variable power source and the power-output connection; wherein, with the lock-up device in the first engagement state and the second clutch engaging the second gear, the power-conversion device receives mechanical power from the engine via the direct mechanical power-transfer connection and converts the received mechanical power to a non-mechanical form, the continuously variable power source receives the non-mechanical power from the power-conversion device via the intermediate power-transfer connection and converts the received non-mechanical power to mechanical power, and the continuously variable power source transmits mechanical power to the power-output connection via the second clutch device and the second gear; and wherein, with the lock-up device in the second engagement state, the engine transmits mechanical power to the power-output connection via the first clutch device and the first gear. 2. The multi-mode power train of 3. The multi-mode power train of 4. The multi-mode power train of 5. The multi-mode power train of 6. The multi-mode power train of 7. The multi-mode power train of 8. The multi-mode power train of 9. A work vehicle for operation in multiple powered modes, the work vehicle comprising:
an engine; a power-output connection; a power-conversion device in communication with the engine via a direct mechanical power-transfer connection that extends from the engine to the power-conversion device; a continuously variable power source in communication with the power-conversion device via an intermediate power-transfer connection; a lock-up device having a first clutch device and a first gear each located between the engine and the power-conversion device, the lock-up device having first and second engagement states; and a second clutch device and a second gear each located between the continuously variable power source and the power-output connection; wherein, with the lock-up device in the first engagement state and the second clutch engaging the second gear, the power-conversion device receives mechanical power from the engine via the direct mechanical power-transfer connection and converts the received mechanical power to a non-mechanical form, the continuously variable power source receives the non-mechanical power from the power-conversion device via the intermediate power-transfer connection and converts the received non-mechanical power to mechanical power, and the continuously variable power source transmits mechanical power to the power-output connection via the second clutch device and the second gear; and wherein, with the lock-up device in the second engagement state, the engine transmits mechanical power to the power-output connection via the first clutch device and the first gear. 10. The work vehicle of 11. The work vehicle of 12. The work vehicle of 13. The work vehicle of 14. The work vehicle of 15. The work vehicle of 16. The work vehicle of CROSS-REFERENCE TO RELATED APPLICATION(S)
STATEMENT OF FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
FIELD OF THE DISCLOSURE
BACKGROUND OF THE DISCLOSURE
SUMMARY OF THE DISCLOSURE
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION





