OCCUPANT PROTECTION APPARATUS
The present application claims priority from Japanese Patent Application No. 2015-191987 of Hiraiwa et al., filed on Sep. 29, 2015, the entire disclosure of which is incorporated herein by reference. 1. Field of the Invention The present invention relates to an occupant protection apparatus provided with a first airbag device having a window airbag that expands and inflates to cover the vehicle inside of a window of a vehicle, thereby protecting an occupant and a second airbag device that is disposed in the vicinity of the first airbag device and has an adjacent airbag that completes inflation to contact the window airbag, thereby protecting the occupant (including a person on board seated in the passenger seat and a driver seated in the driver seat). 2. Description of Related Art There are occupant protection apparatuses for a vehicle in the related art that are provided with a first airbag device having a window airbag and a passenger seat airbag device as a second airbag device that is provided in the vicinity of the first airbag device and that has an adjacent airbag that completes inflation to come in contact with the window airbag, thereby protecting the occupant (for example, refer to JP-A-2013-133049). In the occupant protection apparatus of the related art, there are cases where the adjacent airbag of the passenger seat airbag device, that is, the passenger seat airbag completes inflation to contact the window airbag for which inflation is completed. In this case, even though the window airbag ordinarily has a lower internal pressure than the passenger seat airbag, there are cases where the passenger seat airbag shakes so that the receiving surface for the occupant shifts, and a problem arises in suppressing the shaking. In order to resolve the above-described problems, it is an object of the invention to provide an occupant protection apparatus capable of favorably suppressing shaking in an adjacent airbag even if a window airbag is inflated coming into contact with the adjacent airbag. An occupant protection apparatus according to the invention includes a first airbag device including a window airbag that is folded and accommodated on the upper edge side of a window on the vehicle inside of a vehicle, and expands and inflates downward to cover the vehicle inside of the window during inflow of an inflation gas, thereby protecting an occupant, and a second airbag device including an adjacent airbag that is provided in the vicinity of the first airbag device, and that, during operation, protects the occupant by inflation being completed to come in contact with the window airbag for which inflation is completed. The window airbag and the adjacent airbag when inflation is completed are set satisfying the following conditions. That is, first, as condition A, P1<P2 is satisfied where the internal pressure of the inflation chamber at the contact site during contact with the adjacent airbag of the window airbag is P1, and the internal pressure of the adjacent airbag during contact with the inflation chamber is P2. As condition B, the wrap amount of the inflation chamber with the adjacent airbag is [1−{(atmospheric pressure+P1)/(atmospheric pressure+P2)}] #times 100 (%) or less, within a range in which the contact state between with the adjacent airbag of the window airbag is maintained. That is, if the internal pressure P2 of the adjacent airbag during contact is higher than the internal pressure P1 of the inflation chamber at the contact site during contact with the adjacent airbag in the window airbag, basically, it is difficult for the adjacent airbag to shake. In other words, the inflation chamber of the window airbag is crushed from a state where the volume as the internal pressure P1 at the start of inflation is V1 to the volume of V2, and if the internal pressure at this time is made lower than P2 that is the equivalent of the internal pressure of the adjacent window airbag, that is, if the volume to which the window airbag is crushed at this time is decreased, shaking in the adjacent airbag is basically suppressed. Therefore, when Boyle's law is used taking atmospheric pressure into consideration, (atmospheric pressure+P1) #times V1=(atmospheric pressure+P2) #times V2 is satisfied, and the volume V2 at this time is V2=V1 #times (atmospheric pressure+P1)/(atmospheric pressure+P2) (these are the conversion formulae for V2). The volume reduction rate VR by which the initial volume V1 is reduced to the volume V2 is (V1−V2)/(V1) #times 100 (%), and if V2 in the formula is substituted with the above conversion formula (V1−V2)/(V1) #times 100=[V1−{V1 #times (atmospheric pressure+P1)/(atmospheric pressure+P2)}]/(V1) #times 100=[1−{(atmospheric pressure+P1)/(atmospheric pressure+P2)}] #times 100 (%) is satisfied. That is, if the volume reduction rate VR is reduced than the above-described conditions, it is possible to make the internal pressure of the inflation chamber lower than P2 that is the equivalent to the internal pressure of the adjacent airbag, and it is possible to favorably suppress shaking in the adjacent airbag. The volume reduction rate VR has the adjacent airbag not shaking as a condition. That is, for the volume reduction rate VR, in other words, it is possible to obtain a wrap amount Wr between the inflation chamber and the adjacent airbag, and if made the wrap amount Wr with a range with a lower limit or more in which the contact between both airbags is the conditions, and a value of the conditional expression [1−{(atmospheric pressure+P1)/(atmospheric pressure+P2)}] #times 100 (%) or less, it is possible to favorably suppress shaking in the adjacent airbag, and it is possible for the adjacent airbag to receive the occupant with a predetermined receiving surface. Accordingly, in the occupant protection apparatus of the invention, if the wrap amount (also referred to as the volume reduction rate of the inflation chamber) between the window airbag and the adjacent airbag is set with the conditions of the internal pressure in the above-described A and a value of the conditional expression in the above-described B or less, it is possible to favorable suppress shaking in the adjacent airbag even if the window airbag is inflated coming into contact with the adjacent airbag. It should be noted that the wrap amount is a design value, and specifically, as a vehicle mounted state, is designed for when each of the window airbag and the adjacent airbag are independently inflated. Whichever proportion of the volume at the site at which the inflation chamber of the window airbag and the adjacent airbag overlap each other three-dimensionally that is modeled with respect to the volume of the entire inflation chamber when inflation is completed becomes the wrap amount. If the designed wrap amount increases deviating from the above value, the disposition or volume of the inflation chamber of the window airbag of the first airbag device or the adjacent airbag of the second airbag device may be redesigned so that the inflation chamber shifts to the vehicle outside or the adjacent airbag shifts to the vehicle inside so that the volume overlapping with the adjacent airbag in the inflation chamber decreases. In the occupant protection apparatus according to the invention, the adjacent airbag of the second airbag device is formed as an airbag for a passenger seat that is capable of protecting an occupant (specifically, the passenger seat occupant) seated in the passenger seat, that is accommodated folded in a position in front of the passenger seat, that expands and inflates to the rearward side from the accommodation position during inflow of the inflation gas, and that contacts the inflation chamber on the front end side of the window airbag for which inflation is completed. Alternatively, in the occupant protection apparatus according to the invention, the adjacent airbag of the second airbag device is formed as an airbag for a driver seat that is capable of protecting an occupant (specifically, the driver seat occupant) seated in the driver seat, that is accommodated folded in a position in front of the driver seat, that expands and inflates to the rearward side from the accommodation position during inflow of the inflation gas, and that contacts the inflation chamber on the front end side of the window airbag for which inflation is completed. The inflation chamber on the front end side of the window airbag is, specifically, as follows. That is, first, the window airbag is formed including a gas inflow portion that causes the inflation gas to flow in and inflates so that the vehicle inside wall portion and the vehicle outside wall portion separate and a non-inflow portion that causes the vehicle inside wall portion and the vehicle outside wall portion to be joined and does not allow inflation gas to flow in. The non-inflow portion includes a peripheral edge portion that forms an outer peripheral edge of the gas inflow portion and a closing portion that divides the gas inflow portion into a plurality of inflation portions. The inflation chamber of the window airbag is surrounded by an upper edge, lower edge and front edge in the peripheral edge portion and a boundary closing portion as the closing portion that divides a front edge side of a main inflation portion of the gas inflow portion that inflates by inflation gas flowing in, and is provided as an end side inflation portion of the front end side of the window airbag that is a downstream side of the inflation gas of the main inflation portion. The window airbag may be formed including a tension cloth that supports the vehicle outside of the end side inflation portion, that attaches the front end to a pillar portion of the front edge of the window, and that causes the rear end to be joined to the boundary closing portion. Preferred embodiments of the present invention are described below with reference to the accompanying drawings. However, the invention is not limited to the embodiment disclosed herein. All modifications within the appended claims and equivalents thereto are intended to be encompassed in the scope of the claims. An occupant protection apparatus SM1 of a first embodiment is mounted in a four seat-type left hand drive vehicle V having two windows (side windows) W1 and W2 as illustrated in The head protection airbag device (first airbag device) HM is formed provided with a window airbag 20 (below, shortened to airbag 20, for convenience), an inflator 14, attachment brackets 11 and 16, and an airbag cover 9, as illustrated in As illustrated in Since the inflator 14 supplies the inflation gas to the airbag 20, a gas discharge port, not shown, capable of discharging the inflation gas is provided in the tip side as a substantially columnar shaped cylinder type, as illustrated in Since each attachment bracket 11 is formed from two plates made of sheet metal, each attachment piece portion 60 or attachment portion 72 of the airbag 20 is attached to each attachment piece portion 60 and attachment portion 72 to be pinched from the front and rear, and each attachment piece portion 60 and attachment portion 72 is fixed to the inner panel 2 on the body 1 side using a bolt 12. The airbag 20 is provided with a bag main body 21, the attachment piece portion 60 fixed to the inner panel 2 of the roof side rail portion RR extending upwards from an upper edge side 21 Since the bag main body 21 is formed so that the inflation gas is caused to flow into the interior from the inflator 14, expands from the folded state, and covers the windows W1 and W2 or the vehicle inside of the pillar garnishes 4, 6, and 7 of each pillar portion FP, CP, and RP as shown in In the case of the embodiment, the bag main body 21 is manufactured by a woven bag using polyamide yarn, polyester yarn, or the like. As illustrated in The gas inflow portion 22 is formed including the cylindrical connection port portion 24 in which an opening 24 The supply path portion 27 is provided to follow the front-to-rear direction communicating with the connection port portion 24 in the vicinity of the center in the front-to-rear direction on the upper edge 21 The main inflation portion 29 is the front main inflation portion 29 that communicates an upper portion 29 The sub-inflation portion 32 is the front sub-inflation portion 32 that is disposed on the rear side of the front main inflation portion 29, and that inflates by the inflation gas G from the front main inflation portion 29 being caused to flow in by means of an inflow port 32 The end side inflation portion 35 is disposed on the end portion side in the front-to-rear direction of the bag main body 21 adjacent to the front main inflation portion 29, that is on the front end 21 A separate trident-like inner tube 65 for increasing heat resistance is provided on an inside site in the vicinity of the connection port portion 24 in the supply path portion 27 from the connection port portion 24 of the bag main body 21 (refer to The non-inflow portion 40 is formed including a peripheral edge portion 42 that forms the outer peripheral edge of the gas inflow portion 22, and a closing portion 44 that is disposed in order to regulate the thickness of the protection inflation portion 25 as an inflation site of the gas inflow portion 22 or divide the protection inflation portion 25. The peripheral edge portion 42 is disposed to surround entirety of the periphery of the gas inflow portion 22 excepting the opening 24 The closing portion 44 is formed including a central closing portion 45, a central front closing portion 47, a center rear closing portion 48, a boundary closing portion 50, and a thickness regulating closing portion 56. The central closing portion 45 divides the supply path portion 27 and the sub-inflation portions 32 and 33. The central closing portion 45 is provided in a T-shape in which a horizontal bar portion 45 The central front closing portion 47 divides the front sub-inflation portion 32 and the front main inflation portion 29. The central front closing portion 47 is disposed to extend linearly obliquely upwards from the site of the lower edge 42 The thickness regulating closing portion 56 is disposed to proceed from the lower edge 42 The boundary closing portion 50 is provided between the front main inflation portion 29 and the end side inflation portion 35, and divides the front main inflation portion 29 and the end side inflation portion 35. The boundary closing portion 50 is provided separating both upper and lower ends 50 The attachment piece portion 60 is a site for attaching the upper edge 21 The tension cloth 70 is formed from a sheet material having flexibility. In the case of the embodiment, the tension cloth 70 is formed from a woven cloth formed of polyamide yarn, polyester yarn, or the like. As illustrated in In the bag main body 21 of the embodiment, when inflation is completed when mounted in a vehicle, the protection inflation portion 25 inflates to contract the width dimension in the front-to-rear direction from the non-inflated state, and a tension T that substantially follows the front-to-rear direction is generated, as illustrated in In the case of the embodiment, in a state where the tension cloth 70 supports the vehicle outside O of the end side inflation portion 35, a wrap amount Wr1 in which the end side inflation portion 35 when inflation is completed overlaps the passenger seat airbag 85, described later, during inflation, and is formed, in terms of design, as approximately 12% of a volume V1 during inflation of the end side inflation portion 35 as an inflation chamber divided by the boundary closing portion 50. It should be noted that, in practice, if the end side inflation portion 35 when inflation is completed comes in contact with the passenger seat airbag 85, described later, during inflation, even through the end side inflation portion 35 is mainly recessed, the passenger seat airbag 85 is also in a slightly recessed state. Mounting of the head protection airbag device HM to the vehicle V is accomplished by folding using roll folding or accordion folding so that the airbag 20 in which the attachment piece portion 60 and the tension cloth 70 are sewn to the bag main body 21 expands flat, and the lower edge 21 The passenger seat airbag device PM as the second airbag device is formed including the passenger seat airbag 85 as the adjacent airbag (below, simplified to airbag 85, for convenience) that inflates to be able to protect an occupant M (MP) as a top mount type mounted to the upper surface 3 The airbag cover 80 is integrally formed with the panel 3 from a synthetic resin, in the case of the embodiment, and is formed including door portions 80 The case 82 as an accommodation site that accommodates the folded airbag 85 is formed by a metal plate, in a rectangular parallelepiped shape having a square cylinder-shaped peripheral wall portion (not shown) that is opened upward and a bottom wall portion (not shown), holds the airbag 85 and the inflator 83 on the bottom wall portion side, and is supported in the bracket, not shown, that extends from the panel reinforcement of the vehicle V. A hook (not shown) that engages the side wall portion 80 As an inflation completed shape, the airbag 85 has a substantially square pyramid shape whose front end is narrowed and whose rear surface side serves as a receiving intended surface 85 Mounting of the passenger seat airbag device PM to the vehicle V is performed by folding the airbag 85 accommodating an attachment jig (retainer) to the case 82 in the interior, mounting on the bottom wall portion of the case 82, inserting the inflator 83 from below the bottom wall portion of the case 82, and attaching and fixing the airbag 85 and the inflator 83 to the bottom wall portion of the case 82 using the attachment jig. If the peripheral wall portion of the case 82 is connected to the side wall portion 80 After mounting of the head protection airbag device HM and the passenger seat airbag device PM to the vehicle V, during a side surface impact, oblique impact or during rollover of the vehicle V, an operation signal is received from the control device, thereby causing the inflator 14 to operate, the window airbag 20 inflates due to the inflation gas G discharged from the inflator 14, pushes open the airbag cover 9 formed from the lower edges 4 In an oblique impact in the vehicle V at this time, for example, the passenger seat airbag device PM also receives the operation signal from the control device, the inflator 83 is operated, and the passenger seat airbag 85 inflates by means of the inflation gas G discharged from the inflator 83, pushes open the door portions 80 At this time, in the first embodiment, for the window airbag 20 and the passenger seat airbag 85, the vehicle inside wall portion 22 However, in the first embodiment, the wrap amount Wr1 of the end side inflation portion 35 with the passenger seat airbag 85 as the adjacent airbag is set in advance to approximately 12%. In the first embodiment, a state is attained in which the end side inflation portion 35 as the inflation chamber of the window airbag 20 during inflation reaches an internal pressure P1 of 30 kpa after 30 ms from the operation start, the passenger seat airbag 85 during inflation reaches an internal pressure P2 of 50 kpa after 30 ms from the operation start, and the end side inflation portion 35 and the passenger seat airbag 85 as the adjacent airbag interfere with each other after 30 ms after the operation start for both. The volume V1 of the end side inflation portion 35 is made 9 liters. That is, in the first embodiment, the internal pressure P2 of the adjacent airbag 85 is greater than the internal pressure P1 of the inflation chamber 35 of the window airbag 20, and P1<P2 is satisfied (the condition A, described above, is satisfied). The wrap amount Wr1 of the inflation chamber 35 with the adjacent airbag 85 is 12% of a value of [1−{(atmospheric pressure+P1)/(atmospheric pressure+P2)}] #times 100 (%) of the previously described conditional expression B or less, within a range in which the contact state with the adjacent airbag 85 of the window airbag 20 is maintained. That is, when numerical values are entered into the conditional expression B, if the atmospheric pressure is 101 kpa, [1−{(101+30)/(101+50)}] #times 100 (%)=13.2% is satisfied, and a lower wrap amount Wr1 of 12% is set. Incidentally, the wrap amount of 13.2% becomes, if the volume of the volume V1 (nine liters) is crushed and the volume after change becomes V2, according to Boyle's law, ((atmospheric pressure+30) #times V1)=((atmospheric pressure+50) #times V2), and becomes V2=[{(101+30) #times 9/(101+50)=7.81 liters. In other words, if the end side inflation portion 35 as the inflation chamber is reduced to 87% of the volume change rate (reaches 7.81/9=0.87) until 7.81 liters at which the volume V1 (9 liters) becomes the volume V2 (13.2% as the wrap amount), the value of the conditional expression B is reached, and in the embodiment, is approximately 12% of the value or less. Therefore, in the embodiment, the passenger seat airbag 85 as the adjacent airbag suppresses shaking such as shifting of the receiving intended surface 85 Accordingly, in the occupant protection apparatus SM1 of the embodiment, as the conditions of the internal pressure in the above-described A and the value or less of the conditional expression of the above-described B, the wrap amount Wr1 between the airbag 20 as the window airbag and the passenger seat airbag 85 as the adjacent airbag is set, and even if the airbag 20 inflates coming into contact with the airbag 85, it is possible to favorably suppress shaking of the airbag 85, and it is possible for the passenger seat airbag 85 to accurately receive and protect the occupant MP with the receiving intended surface 85 It should be noted that if the wrap amount Wr1 set as above deviates greatly from the value of the conditional expression of the above-described B, this is addressed to reduce the volume by which the end side inflation portion 35 as the inflation chamber and the passenger seat airbag 85 overlap. In this case, for example, this may be addressed by redesigning the arrangement or volume of the end side inflation portion 35 or the airbag 85 so that the end side inflation portion 35 is shifted to the vehicle outside O or the passenger seat airbag 85 as the adjacent airbag is shifted to the vehicle inside I. Incidentally, in the airbag 20 of the embodiment, the length dimension in the front-to-rear direction of the tension cloth 70 that supports the vehicle outside O of the end side inflation portion 35 may be increased. This is because it is possible for the tension cloth 70 to weaken the support force with which the end side inflation portion 35 is pushed to the vehicle inside I, and it is possible to shift the end side inflation portion 35 to the vehicle outside O. Naturally, if the wrap amount Wr1 set as above is excessively small, the wrap amount Wr1 may be increased so that the end side inflation portion 35 pushes into the vehicle inside I within the range of the conditional expression of the above B. In this case, if the end side inflation portion 35 is disposed to be shifted to the vehicle inside I by shortening the length dimension in the front-to-rear direction of the tension cloth 70, it is possible to increase the wrap amount Wr1. Naturally, in the configuration of the airbag 20 in which the end side inflation portion 35 is shifted to protrude to the vehicle inside I, it is possible for the end side inflation portion 35 to favorably receive an occupant that is moving obliquely forward to the vehicle outside O. Alternatively, the passenger seat airbag 85 as the adjacent airbag shifts to the vehicle outside O, and the wrap amount Wr1 may increase. An occupant protection apparatus SM2 of a second embodiment is mounted to a right-hand drive vehicle VA and protects a driver MD as the occupant M as illustrated in The head protection airbag device HM is the same as that of the first embodiment, and in the second embodiment the same references as the first embodiment are applied, and description thereof will not be repeated. The driver seat airbag device DM is provided on the upper portion side on a boss portion B in the center of a ring portion R grasped during steering with the steering wheel SW. The steering wheel SW is formed including the annular ring portion R that is grasped during steering, a boss portion B that is disposed in the center of the ring portion R and connected to a steering shaft SS, and a plurality of spoke portions S that link the ring portion R and the boss portion B. The driver seat airbag device DM of the upper portion of the boss portion B is formed including an airbag 95 as the adjacent airbag, an inflator 93 that supplies the inflation gas G to the airbag 95, a case 92 that accommodates and holds the folded airbag 95 and the inflator 93, and an airbag cover 90 as a pad disposed on the upper surface side of the boss portion B. The airbag 90 is provided with a door portion 90 The case 92 is formed in a parallelepiped shape that is opened upward in which the airbag 95 and the inflator 93 are attached and fixed to the bottom wall portion, and is held to a predetermined core site of the steering wheel SW. As an inflation completed shape, the airbag 95 as an adjacent airbag has an elliptical shape whose rear surface side serves as the receiving intended surface 95 In the occupant protection apparatus SM2, a state is attained in which the end side inflation portion 35 as the inflation chamber of the window airbag 20 during inflation reaches an internal pressure P1 of 30 kpa after 30 ms from the operation start, the driver seat airbag 95 during inflation reaches an internal pressure P2 of 50 kpa after 30 ms from the operation start, and the end side inflation portion 35 and the driver seat airbag 95 as the adjacent airbag interfere with each other after 30 ms from the operation start for both, and a wrap amount Wr2 of the end side inflation portion 35 with the window airbag 95 during contact is 12%. The volume V1 of the end side inflation portion 35 is made 9 liters. That is, in the first embodiment, the internal pressure P2 of the adjacent airbag 95 is greater than the internal pressure P1 of the inflation chamber 35 of the window airbag 20, and P1<P2 is satisfied (the condition A, described above, is satisfied). The wrap amount Wr2 of the inflation chamber 35 with the adjacent airbag 85 is 12% of a value of [1−{(atmospheric pressure+P1)/(atmospheric pressure+P2)}] #times 100 (%) of the previously described conditional expression B or less, within a range in which the contact state with the adjacent airbag 85 of the window airbag 20 is maintained. That is, when numerical values are entered into the conditional expression B, if the atmospheric pressure is 101 kpa, [1−{(101+30)/(101+50)}] #times 100 (%) =13% is satisfied, and a lower wrap amount Wr2 of 12% is set. Therefore, in the occupant protection apparatus SM2 of the second embodiment, as the conditions of the internal pressure in the above-described A and the value or less of the conditional expression of the above-described B, the wrap amount Wr2 between the airbag 20 as the window airbag and the driver seat airbag 95 as the adjacent airbag is set, and even if the airbag 20 inflates coming into contact with the airbag 95, it is possible to favorably suppress shaking of the airbag 95, and it is possible for the driver seat airbag 95 to accurately receive and protect the occupant MD with the receiving surface 95 It should be noted that, in the embodiments, although the airbag 20 with a configuration in which the end side inflation portion 35 as the inflation chamber is disposed on the front end side 21 As long as the adjacent airbag is an airbag that completes inflation to contact the window airbag, there is no limitation to the passenger seat airbag 85 or the driver seat airbag 95 as in the embodiments, and the adjacent airbag may be an airbag of a side airbag device mounted in the seat, and various side airbags and the like can be applied as the second airbag device in addition to the passenger seat airbag device and the driver seat airbag device. An occupant protection apparatus is provided with a first airbag device having a window airbag that protects an occupant in a vehicle and a second airbag device having an adjacent airbag that completes inflation to contact the window airbag for which inflation is completed, thereby protecting the occupant. Where the internal pressure of an inflation chamber at the contact site during contact with the adjacent airbag by the window airbag is P1 and the internal pressure of the adjacent airbag is P2, P1<P2 is satisfied. The wrap amount of the inflation chamber with the adjacent airbag is set as a proportion of a calculated value or less of a predetermined numeric expression. 1. An occupant protection apparatus comprising:
a first airbag device including a window airbag that is folded and accommodated on an upper edge side of a window on the vehicle inside of a vehicle, and expands and inflates downwards to cover the vehicle inside of the window during inflow of an inflation gas thereby protecting an occupant; and a second airbag device that including an adjacent airbag is provided in the vicinity of the first airbag device, and that, during operation, protects the occupant by inflation being completed to come in contact with the window airbag for which inflation is completed, wherein the window airbag and the adjacent airbag when inflation is completed are set satisfying conditions of
A. P1<P2, and B. A wrap amount of the inflation chamber with the adjacent airbag is set satisfying conditions where [1−{(atmospheric pressure+P1)/(atmospheric pressure+P2)}] #times 100 (%) or less within a range in which the contact state between the window airbag and the adjacent airbag is maintained, where an internal pressure of an inflation chamber at the contact site during contact with the adjacent airbag of the window airbag is P1, and an internal pressure of the adjacent airbag during contact with the inflation chamber is P2, 2. The occupant protection apparatus according to wherein the adjacent airbag of the second airbag device is formed as an airbag for a passenger seat that is capable of protecting an occupant seated in the passenger seat, that is accommodated folded in a position in front of the passenger seat, that expands and inflates to the rearward side from the accommodation position during inflow of the inflation gas, and that contacts the inflation chamber on the front end side of the window airbag for which inflation is completed. 3. The occupant protection apparatus according to wherein the adjacent airbag of the second airbag device is formed as an airbag for a driver seat that is capable of protecting an occupant seated in the driver seat, that is accommodated folded in a position in front of the driver seat, that expands and inflates to the rearward side from the accommodation position during inflow of the inflation gas, and that contacts the inflation chamber on the front end side of the window airbag for which inflation is completed. 4. The occupant protection apparatus according to claim wherein the window airbag includes
a gas inflow portion that inflates to separate a vehicle inside wall portion and a vehicle outside wall portion while the inflation gas is caused to flow in, and a non-inflow portion which causes the vehicle inside wall portion and the vehicle outside wall portion to be joined, thereby not allowing the inflation gas to flow in, and the non-inflow portion includes
a peripheral edge portion that forms an outer peripheral edge of the gas inflow portion, and a closing portion that divides the gas inflow portion into a plurality of inflation portions and the inflation chamber of the window airbag is surrounded by an upper edge, lower edge and front edge in the peripheral edge portion and a boundary closing portion as the closing portion that divides a front edge side of a main inflation portion of the gas inflow portion that inflates by inflation gas flowing in, and is provided as an end side inflation portion of the front end side of the window airbag that is a downstream side of the inflation gas of the main inflation portion. 5. The occupant protection apparatus according to wherein the window airbag includes a tension cloth that supports the vehicle outside of the end side inflation portion, that attaches the front end to a pillar portion of the front edge of the window, and causes the rear end to be joined to the boundary closing portion. 6. The occupant protection apparatus according to wherein the window airbag includes
a gas inflow portion that inflates to separate a vehicle inside wall portion and a vehicle outside wall portion while the inflation gas is caused to flow in, and a non-inflow portion which causes the vehicle inside wall portion and the vehicle outside wall portion to be joined, thereby not allowing the inflation gas to flow in, and the non-inflow portion includes
a peripheral edge portion that forms an outer peripheral edge of the gas inflow portion, and a closing portion that divides the gas inflow portion into a plurality of inflation portions, and the inflation chamber of the window airbag is surrounded by an upper edge, lower edge and front edge in the peripheral edge portion and a boundary closing portion as a closing portion that divides a front edge side of a main inflation portion of the gas inflow portion that inflates by inflation gas flowing in, and is provided as an end side inflation portion of the front end side of the window airbag that is a downstream side of the inflation gas of the main inflation portion. 7. The occupant protection apparatus according to wherein the window airbag includes a tension cloth that supports the vehicle outside of the end side inflation portion, that attaches the front end to a pillar portion of the front edge of the window, and causes the rear end to be joined to the boundary closing portion.CROSS REFERENCE TO RELATED APPLICATIONS
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DESCRIPTION OF THE PREFERRED EMBODIMENTS