Fragrance Compositions Comprising Ionic Liquids

04-05-2017 дата публикации
Номер:
US20170121633A1
Принадлежит:
Контакты:
Номер заявки: 94-68-1533
Дата заявки: 28-10-2016

FIELD OF THE INVENTION

[0001]

The present invention relates to fragrance compositions comprising ionic liquids. In particular, the fragrance compositions of the present invention have delayed evaporation of the fragrance component.

BACKGROUND OF THE INVENTION

[0002]

Perfume raw materials (PRMs) have their own inherent volatility as determined in part by their molecular weight (i.e., size) and in part by the interaction with their surroundings (i.e., ability to hydrogen bond with other PRMs or solvents). The volatility of the PRMs can span a wide range and impact the evaporation rate and/or release of the fragrance components from a composition into the headspace (and thus becoming olfactorily noticeable). For example, low volatile PRMs, as characterized by having a vapour pressure less than about 0.001 Torr (<0.00013 kPa) at 25° C., may smell sweet, musky and woody, and can last for several days. Alternatively, the highly volatile

[0003]

PRMs, represented by those materials having a vapour pressure greater than about 0.001 Torr (>0.00013 kPa) at 25° C., may smell citrusy, green, aquatic light and fresh, and tend to be noticeable for only a few minutes after being applied to a substrate. Other examples of highly volatile PRMs, such as floral, aromatic or fruity notes, may be noticeable for several hours after application to the substrate. Even so, it is still desirable to have the highly volatile PRMs remaining on the applied substrate for long periods of time after application (e.g., greater than 3 hrs, 4 hrs, 5 hrs, 6 hrs, 8 hrs or more all the way up to 24 hours).

[0004]

Typically, the perceived intensity of the fragrance profile, particularly those aromas attributable to the highly volatile PRMs, are initially dominant but decreases rapidly over time due to their quick evaporation. This is a problem because some consumers desire prolonged intensity of select aromas, particularly the floral, fruity or aromatic aromas derived from the highly volatile PRMs. Simply adding higher levels of highly volatile PRMs creates an initial impression of a harsh and unfinished fragrance that consumers do not find acceptable. Additionally this does not provide any significant fragrance longevity due to their fast evaporation. This approach of using higher levels of materials therefore comes at a significant cost with no improvement in performance over time. Other previous attempts to overcome the problem have been through the use of high levels of low volatile PRMs. The unfortunate consequence of using high levels of low volatile PRMs is that they may impart particularly undesirable aroma characters, such as for example, musky, woody, ambery, warm and sweet, which can overpower and dominate the more desirable fragrance characters over time, particularly over longer periods of time. Thus, the unique challenge remains of selectively extending the more desirable aromas attributable from the highly volatile PRMs, and preferably, extending these desirable aromas over long periods of time.

[0005]

Recently, ionic liquids have been used in the fragrance industry for dealing with solvent applications of the synthesis of fragrance materials or with the extractions of naturally derived PRMs (Sullivan, N., Innovations in Pharma. Tech. 2006, 20:75-77). For example, Forsyth et al. investigated the utilization of ionic liquid solvents for the synthesis of lily-of-the-valley fragrance material and fragrance intermediate Lilial (Forsyth et al., J. Mol. Cat. A. 2005, 231:61-66). Additionally, the utilization of ionic liquids to suppress evaporation of all types of fragrance materials in consumer products has also been gaining attention (Davey P., Perfumer Flavorist 2008, 33(4):34-35). For instance, ionic liquids have been used as “fixatives” with fragrance compositions to delay the rate of evaporation of the entire perfume component to impart increased stability/longevity of all types of fragrance materials in a composition (Petrat et al., US2006/0166856). Ionic liquids have also been used as pro-fragrances where PRM is appended covalently to either the cation or the anion (Rogers et al., US2012/046244; Blesic et al., RSC Advances, 2013, 3:329-333).

[0006]

Accordingly, as discussed above, where these attempts have mentioned the use of ionic liquids as fixatives, they have focused only on the use of the ionic liquids for delaying the evaporation of all types of PRMs in the composition. As such, these teachings still have limitations, and do not adequately teach how to use ionic liquids in fragrance compositions for delaying evaporation of select PRMs, preferably highly volatile PRMs. Therefore, there remains a need for a fragrance composition that comprises ionic liquids to control in a targeted manner, decreases in the evaporation and/or release of PRMs, preferably highly volatile PRMs, from the fragrance composition. There is also a need for a fragrance composition that has a substantial proportion of the PRMs, preferably the highly volatile PRMs, remaining on the applied substrate for even long periods of time after application (e.g., greater than 3 hrs, 4 hrs, 5 hrs, 6 hrs, 8 hrs or more all the way up to 24 hours).

SUMMARY OF THE INVENTION

[0007]

In a first aspect, the present invention is directed to a fragrance composition comprising (a) from 0.001% to 99.9% by weight of the total fragrance composition of a perfume raw material, wherein the perfume raw material displays a negative deviation from Raoult's Law; and (b) from 0.01% to 99% by weight of the total fragrance composition of at least one ionic liquid comprising: (i) an anion; and (ii) a cation; wherein the ionic liquid is a liquid at temperatures lower than 100° C., preferably at ambient temperature. Preferably, the perfume raw material displays a negative deviation from Raoult's Law as determined by the D2879:2010 Standard Test Method (“ASTM D2879 Isoteniscope Method”) or by the Gas-Phase Infrared Spectroscopy Method as described herein.

[0008]

In another aspect of the present invention, a fragrance composition comprising an ionic liquid as provided above and at least one highly volatile perfume raw material having a vapour pressure greater than 0.001 Torr (>0.00013 kPa) at 25° C. and the highly volatile perfume raw material is present in an amount from 0.001 wt % to 99.9 wt %, preferably from 0.01 wt % to 99 wt %, relative to the total weight of the perfume raw materials. Of this aspect, wherein the perfume raw material comprises at least 2, 3, 4, 5, 6 or more highly volatile perfume raw materials.

[0009]

In still another aspect of the present invention, use of fragrance compositions according to the present invention in various products, preferably for personal care applications, and to the preparation thereof. In yet still another aspect of the present invention, a method for treating a targeted substrate using the fragrance composition is provided. These, and other features of the present invention, will become apparent to one skilled in the art upon review of the following detailed description when taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010]

While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the invention will be better understood from the following description of the accompanying figures wherein:

[0011]

FIG. 1 provides a Gas-Phase Infrared (“IR”) spectrum for dimethyl benzyl carbinyl butyrate (“DMBCB”) at 25° C., with a path length of 8 metres and an analytical region between 4,000 and 1,000 cm−1according to the Gas-Phase Infrared Spectroscopy Method.

[0012]

FIG. 2 provides a Gas-Phase IR spectrum for Citrowanil® B at 40° C., with a path length of 8 metres and an analytical region between 4,000 and 1,000 cm−1according to the Gas-Phase Infrared Spectroscopy Method.

[0013]

FIG. 3 provides a Gas-Phase IR spectrum for an evacuated cell with an analytical region between 4,000 and 1,000 cm−1according to the Gas-Phase Infrared Spectroscopy Method.

[0014]

FIG. 4 provides1H NMR spectrum of 1-butyl-3-methylimidazolium prolinate (CDCl3, 500 MHz) from Example 2.

[0015]

FIG. 5 provides13C NMR spectrum of 1-butyl-3-methylimidazolium prolinate (CDCl3, 125 MHz) from Example 2.

[0016]

FIG. 6a) provides plots of absorbance of DMBCB in the gas phase at 25° C. for DMBCB dissolved in Ionic Liquid 8 from Example 3a.

[0017]

FIG. 6b) provides plots of absorbance of DMBCB in the gas phase at 25° C. for DMBCB dissolved in Ionic Liquid 9 from Example 3a.

[0018]

FIG. 7 provides a graph for an ideal solution that follows “Raoult's Law” such that the total vapour pressure and the partial vapour pressures are proportional to the mole fractions of the components.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

[0019]

As used herein, articles such as “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.

[0020]

As used herein, the terms “include”, “includes” and “including” are meant to be non-limiting.

[0021]

As used herein, the term “Citrowanil® B” refers to the PRM having the chemical name benzenepropanenitrile, α-ethenyl-α-methyl- and structure:

[0000]

[0022]

As used herein, the term “dimethyl benzyl carbinyl butyrate” (“DMBCB”) refers to the PRM having the chemical name 2-methyl-1-phenylpropan-2-yl butanoate and structure:

[0000]

[0023]

As used herein, the term “fragrance composition” includes a stand alone product such as, for example, a fine fragrance composition intended for application to a body surface, such as for example, skin or hair, i.e., to impart a pleasant odor thereto, or cover a malodour thereof. The fine fragrance compositions are generally in the form of perfume concentrates, perfumes, eau de parfums, eau de toilettes, aftershaves, colognes, body splashes, or body sprays. The fine fragrance compositions may be ethanol based compositions. The term “fragrance composition” may also include a composition that can be incorporated as part of another product such as, for example, a cosmetic composition which comprises a fragrance material for the purposes of delivering a pleasant smell to drive consumer acceptance of the cosmetic composition. Additional non-limiting examples of “fragrance composition” may also include facial or body powder, foundation, body/facial oil, mousse, creams (e.g., cold creams), waxes, sunscreens and blocks, deodorants, bath and shower gels, lip balms, self-tanning compositions, masks and patches.

[0024]

As used herein, the term “fragrance profile” means the description of how the fragrance is perceived by the typical human nose after it has been applied to a substrate. It is a result of the combination of the PRMs, if present, of a fragrance composition. A fragrance profile is composed of 2 characteristics: ‘intensity’ and ‘character’. The ‘intensity’ relates to the perceived strength whilst ‘character’ refers to the odor impression or quality of the perfume, i.e., fruity, floral, woody, etc.

[0025]

As used herein, the terms “perfume” refers to the component in the fragrance composition that is formed of perfume raw materials, i.e., ingredients capable of imparting or modifying the odor of skin or hair or other substrate.

[0026]

As used herein, the terms “perfume raw material” (“PRM”), “perfume raw materials” (“PRMs”), and “fragrance materials” are used interchangeably and relate to a perfume raw material, or a mixture of perfume raw materials, that are used to impart an overall pleasant odor or fragrance profile to a fragrance composition. “Perfume raw materials” can encompass any suitable perfume raw materials for fragrance uses, including materials such as, for example, alcohols, aldehydes, ketones, esters, ethers, acetates, nitriles, terpene hydrocarbons, nitrogenous or sulfurous heterocyclic compounds and essential oils. However, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are also know for use as “perfume raw materials”. The individual perfume raw materials which comprise a known natural oil can be found by reference to Journals commonly used by those skilled in the art such as “Perfume and Flavourist” or “Journal of Essential Oil Research”, or listed in reference texts such as the book by S. Arctander, Perfume and Flavor Chemicals, 1969, Montclair, N.J., USA and more recently re-published by Allured Publishing Corporation Illinois (1994). Additionally, some perfume raw materials are supplied by the fragrance houses (Firmenich, International Flavors & Fragrances, Givaudan, Symrise) as mixtures in the form of proprietary specialty accords. Non-limiting examples of the perfume raw materials useful herein include pro-fragrances such as acetal pro-fragrances, ketal pro-fragrances, ester pro-fragrances, hydrolyzable inorganic-organic pro-fragrances, and mixtures thereof. The perfume raw materials may be released from the pro-fragrances in a number of ways. For example, the fragrance may be released as a result of simple hydrolysis, or by a shift in an equilibrium reaction, or by a pH-change, or by enzymatic release or by thermal change or by photo-chemical release.

[0027]

As used herein, the term “Raoult's Law” refers to the behaviour of the vapour pressure of the components of an ideal solution (Atkins, P. W. and Paula, J. D., Atkins' Physical Chemistry, 9thEdit. (Oxford University Press Oxford, 2010). In an “ideal solution” the interaction between the different chemical species of the solution are the same as the self-interaction within the chemical species such that when the solution is formed the enthalpy of mixing is zero. The graph for an ideal solution in a 2-component system is shown in FIG. 7.

[0028]

With continued reference to FIG. 7, the partial pressure of each component, Pi, is equal to the pressure of the pure component, Pi0, multiplied by its mole fraction, Xi. Ideal mixtures, that therefore by definition obey Raoult's Law, are usually mixtures of nearly identical structures and properties.

[0029]

When mixtures do not follow Raoult's Law, they are termed non-ideal solutions. The activity coefficient, γ, describes the degree of deviation from ideality. The activity coefficient for component i at a mole fraction on X is described as:

[0000]


γiX=PiX/(PiX)ideal

[0000]


γiX=PiX/(XiPi0)

[0030]

where PiXis the measured partial vapour pressure over a solution of PRM i at mole fraction X and (PiX)idealis the calculated ideal partial vapour pressure based on the mole fraction Xiand the measured vapour pressure of the pure component Pi0.

[0031]

Alternatively the activity coefficient, γ, can also be determined by the concentrations in the gas-phase wherein,

[0000]


γiX=ciX/(ciX)ideal

[0000]


γiX=ciX/(Xici0)

[0032]

where ciXis the measured concentration over a solution of PRM i at mole fraction X and ciXidealis the calculated ideal concentration based on the mole fraction Xiand the measured concentration of the pure component ci0.

[0033]

In addition, when relative concentrations (rc) rather than absolute gas-phase concentrations are measured, as with Infrared Gas-Phase Spectroscopy, the absolute concentrations can be substituted for relative concentration into the equation above, so that γiX=rciX/(Xirci0)

[0034]

For ideal solutions, γ=1. Non-ideality can result in two alternative vapour pressure behaviours: (i) negative deviation from Raoult's Law (i.e., γ<1), wherein the vapour pressure is lower than that predicted for ideal behaviour or (ii) positive deviation from Raoult's Law (i.e., γ>1) wherein the vapour pressure is higher than predicted for ideal behaviour.

[0035]

The present invention is directed at ionic liquids that when formulated into a fragrance composition will give rise to a negative deviation from Raoult's Law for one or more of the PRMs for which the activity coefficient (γ) is less than 1 at one of the mole fractions between 0.05 and 0.8 of the PRM.

[0036]

Without wishing to be bound by theory, a negative deviation from Raoult's Law may indicate similarities of polarity and/or structure between the PRMs and the ionic liquid reducing the PRMs' ability to escape the liquid phase and go into the headspace. When this happens, the vapour pressure of the resultant mixture will be lesser than expected from Raoult's Law and thus show a negative deviation from the ideal solution behaviour, wherein the activity coefficient (γ) is less than 1.

[0037]

The negative deviation can be determined as follows:

    • 1. Determine the pure PRM vapour pressure Pi0or the pure PRM relative gas-phase concentration, rci0.
    • 2. Calculate Raoult's Law ideal PRM vapour pressure (PiX)idealor the ideal PRM relative gas-phase concentration (ciX)idealat different PRM mole fractions (e.g., Xi=0.05, 0.2, 0.4, 0.6, or 0.8).
    • 3. Measure the PRM vapour pressure PiXor relative gas-phase concentration rciXat different mole fractions (e.g., Xi=0.05, 0.2, 0.4, 0.6, or 0.8).
    • 4. Determine the activity coefficient (γ) at different mole fractions (e.g., Xi=0.05, 0.2, 0.4, 0.6, or 0.8) according to the equation above.
    • 5. A PRM is deemed to have a negative deviation if any of the activity coefficients are less than 1 for any of the mole fractions (e.g., Xi=0.05, 0.2, 0.4, 0.6 or 0.8) of the PRM.

[0043]

Whereby the vapour pressures of a PRM can be measured by the ASTM D2879:2010 Standard Test Method (“ASTM D2879 Isoteniscope Method”) for Vapour Pressure-Temperature Relationship and Initial Decomposition Temperature of Liquids by Isoteniscope with the variations as described herein. Alternatively, vapour pressure could also be measured using the vapour pressure apparatus described in Husson et al., Fluid Phase Equilibria 294 (2010) pp.98-104. Without wishing to be bound by theory, since ionic liquids exhibit effectively zero vapour pressure at room temperature, the measured vapour pressure is the vapour pressure of the volatile components (i.e., PRMs) and therefore for systems with only one volatile component these approaches measure the vapour pressure of the PRM.

[0044]

However, water may be present in either the ionic liquid or the PRM and hence can also contribute to the vapour pressure measured by the methods above. This issue can be mitigated by thoroughly drying both the ionic liquid and PRM using standard techniques known in the art as described in the methods section herein. In addition, a correction factor may be applied to the measured vapour pressure to remove the portion of the vapour pressure that is attributable to water present in the ionic liquid. This measurement is then taken as the vapour pressure of the pure ionic liquid, since this is the vapour pressure due to the presence of water in the ionic liquid, proportional to the molar fraction of ionic liquid in the sample under consideration, as explained in the methods section.

[0045]

Preferably, an alternative method that can determine the relative gas-phase concentrations of particular components involves the use of infrared (“IR”) spectroscopy. In particular, the infrared spectroscopy of the gas-phase is such a method that will distinguish between the chemicals in a simple multi-component system, in this case water and PRM. Molecules absorb specific frequencies of the electromagnetic spectrum that are characteristic of their structures. This technique is typically used to study organic compounds using radiation in the mid-IR range of 4,000-400 cm−1. This provides a well defined fingerprint for a given molecule where IR light absorbance (or transmittance) is plotted on the vertical axis vs. frequency or wavelength on the horizontal axis, in units of reciprocal centimeters (cm−1) or wavenumbers. Additionally to the materials contained in the enclosed headspace of the cell, atmospheric carbon dioxide is detected by the IR beam externally to the cell.

[0046]

A gas-phase IR cell with heating jacket enables us to create a closed headspace at equilibrium at a specific temperature. The IR spectrometer scans the headspace and provides the fingerprint of the gaseous mixture. Specific peaks at particular wavenumbers in the spectra can be identified as typical of the components, as described in the method. The absorbance at a particular wavenumber is proportional to the gas-phase concentration, and hence vapour pressure, of the specific component identified at that wavenumber. The relative concentration is obtained by normalizing the absorbance at a particular wavenumber for a given sample versus the absorbance at that same wavenumber for the pure PRM.

[0047]

If quantification is desirable, then it can be achieved by adding a known very small quantity of the volatile material (e.g., PRM), to the gas cell and taking the spectra at a temperature where all the volatile material is in the gas phase. This will then enable conversion between relative and absolute gas-phase concentrations. However, for the purposes of calculating the activity coefficient, as described above, this is not necessary as the activity coefficient is itself a ratio of concentrations.

[0048]

As used herein, and unless defined otherwise, the term “vapour pressure” or “VP” means the pressure in a vacuum of the vapour in equilibrium with its condensed phase at a defined temperature for a given chemical species. It defines a chemical species' propensity to be in the gas phase rather than the liquid or solid state. The higher the vapour pressure, the greater the proportion of the material that will, at equilibrium, be found in a closed headspace. It is also related to the rate of evaporation of a perfume raw material which is defined in an open environment where material is leaving the system. Unless defined otherwise, the pure vapour pressure of a single material is calculated according to the reference program Advanced Chemistry Development (ACD/Labs) Software Version 2015 (or preferably the latest version update).

[0049]

As used herein, and unless defined otherwise, the term “relative gas-phase concentration” means the relative concentration a vacuum of the vapour in equilibrium with its condensed phase at a defined temperature for a given chemical species. It defines a chemical species' propensity to be in the gas phase rather than the liquid or solid state. The higher the relative gas-phase concentration, the greater the proportion of the material that will, at equilibrium, be found in the gas-phase in a closed headspace. It is also related to the rate of evaporation of a perfume raw material in an open environment where material is leaving the system.

[0050]

Certain chemical functional groups named here are preceded by a shorthand notation indicating the total number of carbon atoms that are to be found in the indicated chemical group. For example: C1-C20alkyl describes an alkyl group having a total of 1 to 20 carbon atoms (e.g. C10implies C10H21). The total number of carbons in the shorthand notation does not include carbons that may exist in substituents of the group described. Unless specified to the contrary, the following terms have the following meaning:

[0051]

“Amino” refers to the —NH2functional group.

[0052]

“Cyano” refers to the —CN functional group.

[0053]

“Halo” refers to fluoro, chloro, bromo, or iodo.

[0054]

“Halide” refers to a halide atom bearing a negative charge such as for example, fluoride (F), chloride (Cl), bromide (Br), or iodide (I).

[0055]

“Hydroxyl” refers to the —OH functional group.

[0056]

“Oxo” refers to the ═O substituent.

[0057]

“Alkyl” refers to a group containing a straight or branched hydrocarbon chain consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, preferably 1 to 8, or preferably 1 to 6 carbon atoms, and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, propyl, 1-methylethyl (iso-propyl), butyl, pentyl, and the like. An alkyl may be optionally substituted.

[0058]

“Alkenyl” refers to a group containing straight or branched hydrocarbon chain consisting solely of carbon and hydrogen atoms, containing at least one carbon-carbon double bond, having from 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, or preferably 1 to 8 carbon atoms, e.g., ethenyl, prop-2-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, and the like. An alkenyl may be optionally substituted.

[0059]

“Alkynyl” refers to a group containing straight or branched hydrocarbon chain consisting solely of carbon and hydrogen atoms, containing at least one carbon-carbon triple bond, having from 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, or preferably 1 to 8 carbon atoms, e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. An alkynyl may be optionally substituted.

[0060]

“Alkylene” or “alkylene chain” refers to a group containing straight or branched hydrocarbon chain linking the rest of the molecule to a group, consisting solely of carbon and hydrogen, containing no unsaturation and having from 1 to 12 carbon atoms, e.g., methylene, ethylene, propylene, butylene, and the like. An alkylene may be optionally substituted.

[0061]

“Alkenylene” or alkenylene chain” refers to a straight or branched hydrocarbon chain linking the rest of the molecule to a group, consisting solely of carbon and hydrogen, containing at least one carbon-carbon double bond and having from 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, e.g., ethenylene, propenylene, butenylene, and the like. An alkenylene may be optionally substituted.

[0062]

“Alkynylene” or “alkynylene chain” refers to a straight or branched hydrocarbon chain linking the rest of the molecule to a group, consisting solely of carbon and hydrogen, containing at least one carbon-carbon triple bond and having from 2 to 20 carbon atoms, e.g., propynylene, butynylene, and the like. An alkynylene may be optionally substituted.

[0063]

“Alkoxy” refers to a functional group of the formula —OR, where Rais an alkyl chain as defined above containing 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms. An alkoxy may be optionally substituted.

[0064]

“Alkoxyalkyl” refers to a functional group of the formula —Ra1—O—Ra2where Ra1is an alkylene as defined above and Ra2is an alkyl chain as defined above containing 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms. An alkoxyalkyl may be optionally substituted.

[0065]

“Aryl” refers to aromatic monocyclic or multicyclic hydrocarbon ring system consisting only of hydrogen and carbon, and preferably containing from 6 to 18 carbon atoms, preferably 6 to 10 carbon atoms, where the ring system is aromatic (by the Hückel definition). Aryl groups include but are not limited to groups such as phenyl, naphthyl, anthracenyl. The term “aryl” or the prefix “ar” (such as in “aralkyl”) is meant to include aryls that may be optionally substituted.

[0066]

“Arylene” refers to a linking aryl group, and where the aryl is as defined above.

[0067]

“Cycloalkyl” refers to a stable saturated mono-cyclic or polycyclic hydrocarbon group consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from 3 to 15 carbon atoms, preferably having from 3 to 10 carbon atoms or preferably from 3 to 7 carbon atoms. A cycloalkyl may be optionally substituted.

[0068]

“Cycloalkylalkyl” refers to a functional group of the formula —RaRd, where Rais an alkylene as defined above and Rdis a cycloalkyl as defined above.

[0069]

“Haloalkyl” refers to an alkyl as defined above that is substituted by one or more halogen groups, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. A haloalkyl may be optionally substituted.

[0070]

“Heterocyclyl” refers to a stable 3- to 24-membered saturated ring which consists of 2 to 20 carbon atoms and from 1 to 6 heteroatoms selected from atoms consisting of nitrogen, oxygen, or sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl may be optionally oxidized; the nitrogen atom may be optionally quaternised. A heterocyclyl may be optionally substituted.

[0071]

“Heterocyclylalkyl” refers to a functional group of the formula —RaRewhere Rais an alkylene as defined above and Reis a heterocyclyl as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkylene at the nitrogen atom. A heterocyclylalkyl may be optionally substituted.

[0072]

“Heteroaryl” refers to a 5- to 20-membered aromatic ring which consists of 1 to 17 carbon atoms and from 1 to 3 heteroatoms selected from atoms consisting of nitrogen, oxygen and sulfur. The heteroaryl may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. A heteroaryl may be optionally substituted.

[0073]

“Heteroarylalkyl” refers to a functional group of the formula —RaRfwhere Rais an alkylene as defined above and Rfis a heteroaryl as defined above. A heteroarylalkyl may be optionally substituted.

[0074]

“Optionally substituted” means that the subsequently described event of circumstances may or may not occur and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, unless specified otherwise, “optionally substituted” means that the chemical moiety may or may not be substituted by one or more of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, —OR10b, —OC(O)—R10b, —N(R10b)2, —C(O)R10b, —C(O)OR10b, —C(O)N(R10b)2, —N(R10b)C(O)OR12b, —N(R10b)C(O)R12b, —N(R10b)S(O)tR12b(where t is 1 to 2), —S(O)tOR12b(where t is 1 to 2), —S(O)xR12b(where x is 0 to 2) and —S(O)tN(R10b)2(where t is 1 to 2) where each R10bis independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl (optionally substituted with one or more halogen groups), aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R12bis alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, and where each of the above substituents is unsubstituted unless otherwise indicated.

[0075]

It is understood that the test methods that are disclosed in the Test Methods section of the present application must be used to determine the respective values of the parameters of the present invention as described and claimed herein.

[0076]

In all embodiments of the present invention, all percentages are by weight of the total fragrance composition, as evident by the context, unless specifically stated otherwise. All ratios are weight ratios, unless specifically stated otherwise, and all measurements are made at 25° C., unless otherwise designated.

Ionic Liquids

[0077]

Surprisingly, it has been found that ionic liquids can be used to alter the display of PRMs from a fragrance composition. In particular, the applicants have discovered that fragrance compositions comprising ionic liquids will have delayed evaporation of some of the PRMs, preferably the highly volatile PRMs, from a surface in an open system. As a result, less of the PRMs, preferably the highly volatile PRMs, are present in the air directly above the application site shortly after application to a substrate. A consequence of this delayed evaporation is that PRMs, preferably the highly volatile PRMs, applied to a substrate will be exhausted after a longer period of time (i.e., greater than 3 hrs, 4 hrs, 5 hrs, 6 hrs, 8 hrs or more all the way up to 24 hrs), as compared to the same fragrance composition absent of the ionic liquids. This may be observed as some PRMs, preferably the highly volatile PRMs, being perceived as olfactively stronger at later time points (e.g., greater than 3 hrs, 4 hrs, 5 hrs, 6 hrs, 8 hrs or more all the way up to 24 hrs after application) or more long-lasting. In particular, ionic liquids, according to the present invention, appear to aid in targeted delays in the evaporation, preferably the highly volatile PRMs from the fragrance composition.

[0078]

Preferably, the ionic liquids useful in the present invention exhibit no measurable vapour pressure between 25° C. and 100° C. Thus, it is understood that the ionic liquids themselves make no measurable contribution to the vapour pressure of any mixture in which they are incorporated.

[0079]

By incorporating the ionic liquids, it is desired that the partial vapour pressure of the individual PRMs, preferably the components derived from the highly volatile perfume raw materials, of the fragrance composition is decreased as measured by the ASTM D2879 Isoteniscope Method or the vapour pressure apparatus in Husson et al., Fluid Phase Equilibria, 294 (2010) pp. 98-104 in a closed system or preferably by the Infrared Gas-Phase Spectroscopy Method. The partial vapour pressure in a closed system is an approximation for the partial vapour pressure close to the application site. While not wishing to be bound by theory, it is believed that the initially reduced partial vapour pressure of the PRMs by the ionic liquids is caused by the attraction between the polar functionalities of the PRMs and the ionic liquids. Since PRMs are neutral molecules, the dominant mechanism for association between PRMs and ionic liquids will be via hydrogen bond formation. In order to induce a negative deviation from Raoult's Law, the hydrogen bonding between the PRM and the ionic liquid should be maximized. If attraction between a PRM and an ionic liquid is desired, and the PRM contains an alcohol or phenol functional group (i.e., the PRM contains both hydrogen-bond donor and acceptor sites), then the structure of the ionic liquid should be designed to have certain properties. For example, the ionic liquid should contain hydrogen-bond acceptor sites, or more preferably contain both hydrogen-bond acceptor sites, and hydrogen-bond donor sites. If the PRM contains ether, ketone, aldehyde or ester functional groups (i.e., the PRM contains only hydrogen-bond acceptor site(s), but no hydrogen-bond donor sites), then the ionic liquid should be designed to contain hydrogen-bond donor site(s). There must be a net attractive interaction between the ionic liquid and the PRM; hence weak repulsion interactions can be tolerated as long as the sum of all the attractive interactions is greater than the sum of all the repulsion interactions.

[0080]

Thus, the ionic liquids can be designed to attract PRMs, preferably the highly volatile PRMs, and hence induce changes in the PRMs' vapour pressures as compared to the vapour pressures of an ideal mixture. It is desirable that ionic liquids when incorporated into fragrance compositions of the present invention will result in negative deviations from Raoult's Law, so that the ionic liquids attract the PRMs to delay their release into the surrounding headspace.

[0081]

In an embodiment, the PRMs, preferably the highly volatile PRMs, in the fragrance composition comprising the ionic liquids according to the present invention display a negative deviation from Raoult's Law, wherein the activity coefficient (“γ”) is less than 1. In other embodiments, the fragrance composition of the present invention will give rise to a negative deviation from Raoult's Law for one or more of the PRMs for which the activity coefficient (γ) <1.0 or 0.95 or 0.90 or 0.85 or 0.80 or 0.75 or 0.70 or 0.65 or 0.60 or 0.55 or 0.50 or 0.45 or 0.40 or 0.35 or 0.30 or 0.25 or 0.20 or 0.15 or 0.10 or 0.05 at a mole fraction between 0.05 to 0.8 of the PRM.

[0082]

Preferably, the perfume raw material displays the negative deviation from Raoult's Law having an activity coefficient (γ) less than 1 at a mole fraction between 0.05 and 0.8 of the perfume raw material, preferably at the mole fraction between 0.05 and 0.2, or preferably at the mole fraction between 0.2 and 0.4, or preferably at the mole fraction between 0.4 and 0.6, or preferably at the mole fraction between 0.6 and 0.8 of the perfume raw material.

[0083]

Preferably, the perfume raw material displays the negative deviation from Raoult's Law having an activity coefficient (γ) less than 1 is determined by the D2879:2010 Standard Test Method (“ASTM D2879 Isoteniscope Method”), and the perfume raw material is present at mole fraction between 0.2 and 0.8 of the perfume raw material.

[0084]

Preferably, the perfume raw material displays the negative deviation from Raoult's Law having an activity coefficient (γ) less than 1 is determined by the Gas-Phase Infrared Spectroscopy Method, and the perfume raw material is present at mole fraction between 0.05 and 0.8 of the perfume raw material.

[0085]

As used herein, the term “ionic liquid” refers to a liquid which consists exclusively of ions and is present in a liquid form at temperatures lower than 100° C., preferably at ambient or room temperature (i.e., from 15° C. to 30° C.). Particularly preferred ionic liquids are suitable for use in fragranced consumer products and have to be choosen so as to exclude an adverse effect in terms of health or ecology on people, nature and the environment. For example, fragrance compositions, such as for example, perfumes, which may come into direct contact with humans preferably have minimal toxic effect. For other selected applications such as deodorants, however, it may be useful if in the fragrance composition, in particular the ionic liquids, there are microbiocidal properties for killing the microorganisms for suppressing malodours.

[0086]

Ionic liquids have no effective vapour pressure (essentially zero) and may be easy to handle. Their polarity can be readily adjusted so as to be suitable to a wide range of PRMs. Furthermore, ionic liquids are odorless and will not impart an odor of their own when added into the fragrance compositions of the present invention. Particularly preferable ionic liquids are ones where the PRMs are fully miscible to form a single phase liquid. However, if the PRMs are not entirely miscible, or are immiscible, then co-solvents (e.g., triethyl citrate, or others as listed herein below) can be added to aid in the solubility of the PRMs.

[0087]

Typically, ionic liquids may have high viscosities (i.e., greater than about 1,000 mPa·s) at room temperature. High viscosities can be problematic in formulating the fragrance compositions of the present invention. Therefore, in an embodiment, the present invention is preferably directed to ionic liquids (undiluted with adjuncts, co-solvents or free water) which have viscosities of less than about 1000 mPa·s, preferably less than about 750 mPa·s, preferably less than about 500 mPa·s, as measured at 20° C. In some embodiments, the viscosity of the undiluted ionic liquids are in the range from about 1 mPa·s to about 400 mPa·s, preferably from 1 mPa·s to about 300 mPa·s, and more preferably from about 1 mPa·s to about 250 mPa·s.

[0088]

The viscosities of the ionic liquids and fragrance compositions containing therein can be measured on a Brookfield viscometer model number LVDVII+ at 20° C., with Spindle S31 at the appropriate speed to measure materials of differing viscosities. Typically, the measurement is performed at speed from 12 rpm to 60 rpm. The undiluted state is prepared by storing the ionic liquids in a desiccator containing a desiccant (e.g. anhydrous calcium chloride) at room temperature for at least 48 hrs prior to the viscosity measurement. This equilibration period unifies the amount of innate water in the undiluted samples.

[0089]

It should be understood that the terms “ionic liquid”, “ionic liquids” and “ILs” refer to ionic liquids, ionic liquid composites and mixtures (or cocktails) of ionic liquids. For example, an ionic liquid may be formed from a homogeneous combination comprising one species of anion and one species of cation, or it can be composed of more than one species of cation and/or anion. Thus, an ionic liquid may be composed of more than one species of cation and one species of anion. An ionic liquid may further be composed of one species of cation and more than one species of anion. Finally, an ionic liquid may further be composed of more than one species of cation and more than one species of anion.

[0090]

In another embodiment of the present invention, the ionic liquids may be selectively made to be hydrophobic by careful selection of the anions.

[0091]

In yet another embodiment of the present invention, the ionic liquids (i.e., cation and anion) are essentially free of any of the following chemical elements: antimony, barium, beryllium, bromine, cobalt, chromium, fluorine, iodine, lead, nickel, selenium, or thallium. By “essentially free” it is meant that no cation or anion containing any of the foregoing chemical elements are intentionally added to form the ionic liquids of the present invention.

[0092]

Preferably, the ionic liquids are essentially free of chemical materials that are prohibited for use in cosmetic products in various countries, such as for example, the European Commission, Health and Consumers, Cosmetics Regulation Annex II—“List of Substances Prohibited in Cosmetics Products” (http://ec.europa.eu/consumers/cosmetics/cosing/index.cfm?fuseaction=search.results&annex_v2=II&search), and the United States Food and Drug Administration List of “Prohibited & Restricted Ingredients” for cosmetic applications (http://www.fda.gov/cosmetics/guidanceregulation/lawsregulations/ucm127406.htm). The fragrance composition preferably has at least one ionic liquid with an anion according to the following structures.

[0093]

The fragrance composition preferably has at least one ionic liquid with an anion independently selected from a compound of formulae (I), (II), (III), (IV), (V), (VI), (VII) or (VIII):

[0000]

[0000]

wherein:

[0094]

R1and R3are independently selected from hydrogen, cyano, hydroxy, C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl;

[0095]

R2is —R4—C(O)O, —R4—C(R5)CO, —R4—C(R5)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

[0096]

R4is C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

[0097]

R5is hydrogen, hydroxy, —NH or —N(R5a)2; and

[0098]

each R5ais independently hydrogen or C1-C20alkyl;

[0000]

[0000]

wherein:

[0099]

X, Y and Z are independently selected from —CH2—, —NH—, —S—, or —O—;

[0100]

R6is hydrogen, cyano, hydroxy, C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl;

[0101]

R6ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

[0102]

R6bis hydrogen, hydroxy, —NH or —N(R6c)2;

[0103]

each R6cis independently hydrogen or C1-C20alkyl, and

[0104]

R7is —C(O)O, —R6a—C(R6b)CO, —R6a—C(R6b)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

[0000]

[0000]

wherein:

[0105]

R7is —C(R10)N(R11)2, —C(O)O, or —S—R11;

[0106]

R8is hydrogen or C1-C20alkyl;

[0107]

R9is —C(O)O or —C(O)N(R11)2;

[0108]

R10is hydroxy; and

[0109]

each R11is independently hydrogen or C1-C20alkyl;

[0000]

[0000]

wherein:

[0110]

R12is —C(R15)3;

[0111]

R13is hydrogen or —N(R16)2;

[0112]

R14is —R14a—C(O)O;

[0113]

R14ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

[0114]

each R15is independently selected from hydrogen, C1-C20alkyl or hydroxy; and

[0115]

each R16is independently selected from hydrogen or C1-C20alkyl;

[0000]

[0000]

wherein:

[0116]

R17is hydrogen, cyano, hydroxy, —C(O), C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl; and

[0117]

R18is —R18a—C(O)O; —R18a—C(R18b)CO, —R18a—C(R18b)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

[0118]

R18ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

[0119]

R18bis hydrogen, hydroxy, —NH or —N(R18c)2; and

[0120]

each R18cis independently hydrogen or C1-C20alkyl;

[0000]

[0000]

wherein:

[0121]

R19is hydrogen, cyano, hydroxyl, —C(O), C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl; and

[0122]

R20is —R20a—C(O)O, —R20a—C(R20b)CO, —R20a—C(R20b)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

[0123]

R20ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

[0124]

R20bis hydrogen, hydroxy, —NH or —N(R20c)2; and

[0125]

each R20cis independently hydrogen or C1-C20alkyl;

[0000]

[0000]

wherein:

[0126]

R19is hydrogen, cyano, alkyl, alkoxy, and alkoxyalkyl;

[0000]

[0000]

wherein:

[0127]

R20and R21are independently selected from the group consisting of alkyl or alkenyl, provided that the alkyl is not substituted with nitro, azido or halide; and

[0128]

R22is alkylene, heteroarylene, arylene, or cycloalkylene; and

    • (i) combinations thereof.

[0130]

Preferably, the anion is independently selected from the group consisting of: 3,5-dihydroxybenzoic acid; 5 -hydroxytetrahydrofuran-3-carboxylate; 5-formylcyclohex-3-ene-1-carboxylate; 4-hydroxy-1,3-thiazolidine-2-carboxylate; 3′,5′-dihydroxybiphenyl-3-carboxylate; hydroxy(phenyl)acetate; 5-amino-5-hydroxypentanoate; 4-(3,4-dihydroxyphenyl)butanoate; 5-amino-3-methyl-5-oxopentanoate; 5-hydroxydecahydroisoquinoline-7-carboxylate; 2-amino-3-phenylpropanoate; 2-amino-3-(3-hydroxyphenyl)propanoate; 2-amino-4-hydroxy-4-methylpentanoate; 2-amino-4-hydroxy-4-methylhexanoate; 2-amino-4-(methylsulfanyl)butanoate; L-prolinate; 6 methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide; 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate; and combinations thereof.

[0131]

The preparation of the anions is generally known and can take place, for example, as described in (P. Wasserscheid and T. Welton (Eds.), Ionic Liquids in Synthesis, 2ndEdition, Wiley-VCH, 2008). In addition, the alkali metal salts of many anions are also available commercially.

[0132]

The fragrance composition preferably has at least one ionic liquid with a cation according to the following structures.

[0133]

Preferably, the cation is independently selected from the group consisting of:

[0000]

[0000]

and combinations thereof;

[0134]

wherein:

    • X is CH2or O;
    • each R1a, R3a, and R4aare independently selected from hydrogen, C1-C20alkyl, C1-C20alkenyl, C1-C20alkynyl, C1-C20alkoxy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl, halo, haloC1-C20alkyl, hydroxyl, hydroxyC1-C20alkyl, or —N(R6a)2;
    • each R2ais independently selected from hydrogen, C1-C20alkyl, C1-C20alkenyl, or C1-C20alkynyl;
    • each R5ais independently selected from hydrogen, C1-C20alkyl, C1-C20alkenyl, C1-C20alkynyl, —R7a—OR8a, or —R7a—OR7a—OR8a;
    • each R6ais independently selected from hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclyalkyl, heteroaryl, or heteroarylalkyl;
    • each R7ais independently selected from a direct bond, alkylene chain, alkenylene chain, or alkynylene chain; and
    • each R8ais independently selected from a hydrogen, alkyl, alkenyl or alkynyl.

[0142]

Preferably, the cation is independently selected from the group consisting of 1-butyl-3-methylimidazolium; (N-ethyl-2-(2-methoxyethoxy)-N,N-dimethylethanaminium); 2-(2-ethoxyethoxy)-N-ethyl-N,N-dimethylethanaminium; N-benzyl-N,N-dimethyloctan-1-aminium; N-benzyl-N,N-dimethylnonan-1-aminium; 2-(2-methoxyethoxy)-N-[2-(2-methoxyethoxy)ethyl]-N,N-dimethylethan-1-aminium; 1-ethanaminium, N,N,N-tris[2-(2-methoxyethoxy)ethyl]; and combinations thereof.

[0143]

The methods for preparing the cations of the present invention are provided in the Examples section. The preparations are not intended to limit the scope of the present invention. In addition, some cations may be available commercially.

[0144]

It may be advantageous if the fragrance composition has an ionic liquid which has one or more of the abovementioned salts. It is understood that the ionic liquids can comprise either a single anionic species and a single cationic species or a plurality of different anionic and cationic species. By using different anionic species and/or different cationic species, the properties of the ionic liquids can be matched in an optimal way to the PRMs and/or other components of the fragrance composition. In an embodiment of the invention, the ionic liquids consist of more than one anionic species.

[0145]

Ionic liquids are formed by combining simply salts of a cation and an anion (e.g. sodium salt of the anion and chloride salt of the cation). Different ionic liquids can be synthesized such that the interactions between the ionic liquids and the solute (i.e., perfume raw materials) are optimized, preferably to provide for a negative deviation from Raoult's Law. Ionic liquids lend themselves to preparation via combinatorial or high-throughput chemistry. Some methods for preparing the ionic liquids of the present invention are provided in the Examples section. The preparations are not intended to limit the scope of the present invention.

Fragrance Compositions

[0146]

Applicants have surprisingly found that ionic liquids can be added to fragrance compositions to selectively delay the evaporation of some PRMs, preferably the highly volatile perfume raw materials, from solution. Such delay is desirable, for example, to decrease the initial partial pressure and concentration of certain PRMs in the headspace. This will result in less overpowering perfume materials when they are applied to the surface and more noticeable perfume materials at later time points after that. It may also lengthen the time frame in which some PRMs, preferably the highly volatile perfume raw materials, continue to be detectable in the headspace after application of the fragrance compositions.

[0147]

Specifically, in one aspect, the present invention provides for a fragrance composition comprising a perfume raw material present with a negative deviation from Raoult's Law in an amount of from about 0.001 wt % to about 99.9 wt %, preferably from about 0.01 wt % to about 90 wt %, preferably from about 0.1 wt % to about 80 wt %, preferably from about 0.2 wt % to about 70 wt %, preferably from about 0.3 wt % to about 60 wt %, preferably from about 0.4 wt % to about 50 wt %, preferably from about 0.5 wt % to about 40 wt %, preferably from about 1 wt % to about 30 wt %, relative to the total weight of the fragrance composition. Further, the perfume raw material comprises at least one highly volatile perfume raw material having a vapour pressure greater than 0.001 Torr (>0.00013 kPa) at 25° C.

[0148]

In another aspect, applicants have surprisingly discovered that by adding ionic liquids in a fragrance composition, the fragrance profile, particularly the portion of the fragrance profile which is derived from the highly volatile PRMs can be improved. For example, by “improved” it is meant that initially a lower fraction of the highly volatile PRMs are in the headspace than could be achieved in the absence of ionic liquids. The highly volatile PRMs would then be olfactively more noticeable at later time points (i.e., stronger, and/or more dominant), preferably for long periods of time after application, leading to noteable differences such as, for example, a different concentration profile and new characters, as compared to controls (i.e., compositions containing the highly volatile fragrance materials and no ionic liquids).

[0149]

Typically, it has been very difficult to formulate fragrance profiles with an accord made from PRMs having a wide range of volatility, but especially an accord characteristic of the highly volatile PRMs, whereby the fragrance profile derived from the highly volatile PRMs can be detected later after its application versus a control. The present invention will allow perfumers to formulate fragrance composition using PRMs having a wide range of volatility, particularly the highly volatile PRMs. They can now create new fragrance characters and address a re-occurring consumer issue that particular fragrance profiles, particularly fragrance compositions containing floral, citrus, green, aquatic, aromatic and fruity notes, tend to evaporate too fast.

[0150]

Such a solution as presented herein provides enhanced longevity of the fragrance profile, particularly amongst those fragrance compositions formulated from highly volatile PRMs having a vapour pressure of greater than 0.001 Torr (>0.00013 kPa) at 25° C. This provides the perfumer options to formulate accords having new fragrance profiles.

Volatile Solvents

[0151]

In yet another aspect, additional suitable solvents may be present in the fragrance composition of the present invention. For example, for perfume applications in particular, ethanol may be present in any of the fragrance compositions of the present invention, and more specifically, it will form from about 10 wt % to about 80 wt %, or even from about 25 wt % to about 75 wt % of the fragrance composition, or combinations thereof, relative to the total weight of the fragrance composition. Any acceptable quality of ethanol (preferably high-quality), compatible and safe for the specific intended use of the fragrance composition such as, for example, topical applications of fine fragrance or cosmetic compositions, and is convenient for use in the fragrance compositions according to the present invention.

Low Volatility Co-Solvents

[0152]

The fragrance composition may comprise a low volatility co-solvent or a mixture of low volatility co-solvents. As used herein, the term “low volatility co-solvents” include solvents that have a vapour pressure of less than 0.3 Torr (<0.040 kPa) at 25° C. Preferably, the low volatility co-solvents do not contribute significantly to the odor profile of the fragrance compositions. For example, for perfume applications, a low volatility co-solvent or a mixture of low volatility co-solvents may be present in any of the fragrance compositions of the present invention, and more specifically, it may form from about 0.1 wt % to about 50 wt %, or even from about 1 wt % to about 40 wt % of the fragrance composition, or combinations thereof, relative to the total weight of the fragrance composition. Non-limiting examples of suitable low volatility co-solvents include benzyl benzoate, diethyl phthalate, isopropyl myristate, propylene glycol, triethyl citrate, and mixtures thereof.

Water

[0153]

In yet another aspect, water may be present in any of the fragrance compositions of the present invention, and more specifically, it shall not exceed about 50 wt %, preferably about 40 wt % or less, relative to the total weight of the composition. Alternatively, water may be present in an amount of less than 50 wt %, less than 40 wt %, less than 30 wt %, less than 20 wt % or less than 10 wt %, wherein the wt % is relative to the total weight of the fragrance composition. When the fragrance composition is a cosmetic composition, the level of water should not be so high that the product becomes cloudy or phase separates thus negatively impacting the product aesthetics. It is understood that the amount of water present in the fragrance composition may be from the water present in the ethanol used in the fragrance composition, as the case may be.

Propellants

[0154]

The fragrance compositions described herein may include a propellant. Some examples of propellants include compressed air, nitrogen, inert gases, carbon dioxide, and mixtures thereof. Propellants may also include gaseous hydrocarbons like propane, butane, isobutene, cyclopropane, and mixtures thereof. Halogenated hydrocarbons like 1,1-difluoroethane may also be used as propellants. Some non-limiting examples of propellants include 1,1,1,2,2-pentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, trans-1,3,3,3-tetrafluoroprop-1-ene, dimethyl ether, dichlorodifluoromethane (propellant 12), 1,1-dichloro-1,1,2,2-tetrafluoroethane (propellant 114), 1-chloro-1,1-difluoro-2,2-trifluoroethane (propellant 115), 1-chloro-1,1-difluoroethylene (propellant 142B), 1,1-difluoroethane (propellant 152A), monochlorodifluoromethane, and mixtures thereof. Some other propellants suitable for use include, but are not limited to, A-46 (a mixture of isobutane, butane and propane), A-31 (isobutane), A-17 (butane), A-108 (propane), AP70 (a mixture of propane, isobutane and n-butane), AP40 (a mixture of propane, isobutene and butane), AP30 (a mixture of propane, isobutane and butane), and 152A (1,1 diflouroethane). The propellant may have a concentration from about 15%, 25%, 30%, 32%, 34%, 35%, 36%, 38%, 40%, or 42% to about 70%, 65%, 60%, 54%, 52%, 50%, 48%, 46%, 44%, or 42% by weight of the total fill of materials stored within the container.

Antiperspirant Active

[0155]

The fragrance compositions described herein may be free of, substantially free of, or may include an antiperspirant active (i.e., any substance, mixture, or other material having antiperspirant activity). Examples of antiperspirant actives include astringent metallic salts, like the inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof. Such antiperspirant actives include, for example, the aluminium and zirconium salts, such as aluminium halides, aluminium hydroxohalides, zirconyl oxohalides, zirconyl hydroxohalides, and mixtures thereof.

Other Ingredients

[0156]

In yet another aspect, the fragrance composition consists essentially of the recited ingredients but may contain small amounts (not more than about 10 wt %, preferably no more than 5 wt %, or preferably no more than 2 wt % thereof, relative to the total weight of the composition) of other ingredients that do not impact on the fragrance profile, particularly the evaporation rate and release of the fragrance materials. For example, a fragrance composition may comprise stabilising or anti-oxidant agents, UV filters or quenchers, or colouring agents, commonly used in perfumery. There are a number of other examples of additional ingredients that are suitable for inclusion in the present compositions, particularly in compositions for cosmetic use. These include, but are not limited to, alcohol denaturants such as denatonium benzoate; UV stabilisers such as benzophenone-2; antioxidants such as tocopheryl acetate; preservatives such as phenoxyethanol, benzyl alcohol, methyl paraben, and propyl paraben; dyes; pH adjusting agents such as lactic acid, citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, and sodium carbonate; deodorants and anti-microbials such as farnesol and zinc phenolsulphonate; humectants such as glycerine; oils; skin conditioning agents such as allantoin; cooling agents such as trimethyl isopropyl butanamide and menthol; hair conditioning ingredients such as panthenol, panthetine, pantotheine, panthenyl ethyl ether, and combinations thereof; silicones; solvents such as hexylene glycol; hair-hold polymers such as those described in PCT Publication WO94/08557 (Procter & Gamble); salts in general, such as potassium acetate and sodium chloride and mixtures thereof.

[0157]

In yet another aspect, the fragrance compositions for use in the present invention may take any form suitable for use, more preferably for perfumery or cosmetic use. These include, but are not limited to, vapour sprays, aerosols, emulsions, lotions, liquids, creams, gels, sticks, ointments, pastes, mousses, powders, granular products, substrates, cosmetics (e.g. semi-solid or liquid makeup, including foundations) and the like. Preferably the fragrance compositions for use in the present invention take the form of a vapour spray. Fragrance compositions of the present invention can be further added as an ingredient to other compositions, preferably fine fragrance or cosmetic compositions, in which they are compatible. As such they can be used within solid composition or applied substrates etc.

[0158]

Therefore, it goes without saying that the fragrance compositions of the present invention encompasses any composition comprising any of the ingredients cited herein, in any embodiment wherein each such ingredient is independently present in any appropriate amount as defined herein. Many such fragrance compositions, than what is specifically set out herein, can be encompassed.

Article of Manufacture

[0159]

The fragrance composition may be included in an article of manufacture comprising a spray dispenser. The spray dispenser may comprise a vessel for containing the fragrance composition to be dispensed. The spray dispenser may comprise an aerosolised fragrance composition (i.e. a fragrance composition comprising a propellant) within the vessel as well. Other non-limiting examples of spray dispensers include non-aerosol dispensers (e.g. vapour sprays), manually activated dispensers, pump-spray dispensers, or any other suitable spray dispenser available in the art.

Methods of Using the Fragrance Compositions

[0160]

The fragrance composition of the present invention according to any embodiments described herein is a useful perfuming composition, which can be advantangeously used as consumer products for personal care application intended to perfume any suitable substrate. As used herein, the term “substrate” means any surface to which the fragrance composition of the present invention may be applied to without causing any undue adverse effect. For example, this can include a wide range of surfaces including human or animal skin or hair. Preferred substrates include body surfaces such as, for example, hair and skin, most preferably skin.

[0161]

The fragrance composition of the present invention may be used in a conventional manner for fragrancing a substrate. An effective amount of the fragrance composition, typically from about 1 μL to about 10,000 μL, preferably from about 10 μL to about 1,000 μL, more preferably from about 25 μL to about 500 μL, or most preferably from about 50 μL to about 100 μL, or combinations thereof, is applied to the suitable substrate. Alternatively, an effective amount of the fragrance composition of the present invention is from about 1 μL, 10 μL, 25 μL or 50 μL to about 100 μL, 500 μL, 1,000 μL or 10,000 μL. The fragrance composition may be applied by hand or applied utilizing a delivery apparatus such as, for example, vaporizer or atomizer. Preferably, the fragrance composition is allowed to dry after its application to the substrate. The scope of the present invention should be considered to cover one or more distinct applications of the fragrance composition

[0162]

In one embodiment, present invention preferably relates to fragrance compositions in the form of product selected from the group consisting of a perfume, an eau de toilette, an eau de parfum, a cologne, a body splash, an aftershave lotion or a body spray. Therefore, according to this embodiment, the present invention provides a method of modifying or enhancing the odor properties of a body surface, preferably hair or skin, comprising contacting or treating the body surface with a fragrance composition of the present invention.

[0163]

In another aspect, the present invention is directed to a method of delaying evaporation rate of the fragrance profile of a fragrance composition, preferably by decreasing the volatility of the PRMs, preferably the components derived from the highly volatile PRMs, present in the fragrance composition. The method comprises bringing into contact or mixing at least one ionic liquid as described hereinabove with at least one highly volatile fragrance material according to the fragrance composition of the present invention.

[0164]

In one embodiment, the fragrance profile of the fragrance composition of the present invention is detectable by a consumer up to certain time points, such as for example, greater than 3 hrs, 4 hrs, 5 hrs, 6 hrs, 8 hrs or more all the way up to 24 hrs after application of the fragrance composition to a substrate as compared to controls.

Fragrance Materials

[0165]

In order that the fragrance compositions can be developed with the appropriate fragrance profile for the present invention, the PRMs have been classified by their vapour pressure. For the purpose of clarity, when the PRMs refer to a single individual compound, its vapour pressure should be determined. In the case that the PRMs are a natural oil, extract or absolute, which comprises a mixture of several compounds, the vapour pressure of the complete oil should be treated as a mixture of the individual perfume raw material components. The individual components and their level, in any given natural oil or extract, can be determined by direct injection of the oil into a GC-MS column for analysis as known by one skilled in the art. In the scenario that the PRMs are a proprietary specialty accord, so called ‘bases’, the vapour pressure should preferably be obtained from the supplier. However, it is understood by one skilled in the art that they can physically analyze the composition of a full fragrance oil available commercially to identify the PRMs and their levels using standard GC-MS techniques. This would be irrespective of whether they had been added to the fragrance oil as individual chemicals, as components of naturals or from proprietary bases. Although proprietary bases and and naturals are included in our examples, when analyzing a commercially available fragrance composition via GC-MS one could simply identify the components of the base or natural oil as part of the overall fragrance mixture and their levels, without being able to identify which proprietary base or natural oil the PRM had come from.

[0166]

The nature and type of PRMs in the fragrance compositions according to the present invention can be selected by the skilled person, on the basis of its general knowledge together with the teachings contained herein, with reference to the intended use or application of the fragrance composition and the desired fragrance profile effect. Non-limiting examples of suitable PRMs are disclosed in U.S. Pat. No. 4,145,184, U.S. Pat. No. 4,209,417, U.S. Pat. No. 4,515,705 and U.S. Pat. No. 4,152,272.

[0167]

Preferably, the fragrance composition comprises a perfume raw material, wherein the perfume raw material comprises at least one highly volatile perfume raw material having a vapour pressure greater than or equal to 0.001 Torr (≧0.00013 kPa) at 25° C. and the highly volatile perfume raw material is present in an amount from about 0.001 wt % to about 99.9 wt %, preferably from about 0.01 wt % to about 99 wt %, relative to the total weight of the fragrance composition. Preferably, the fragrance composition comprises at least 2, 3, 4, 5, 6 or more highly volatile perfume raw materials having a vapour pressure greater than or equal to 0.001 Torr (≧0.00013 kPa) at 25° C.

[0168]

Preferably non-limiting examples of highly volatile perfume raw materials are listed in Table 1.

[0000]

Highly Volatile Perfume Raw Materials for Use in the Fragrance Compositions
Vapour
CASPressure/Torr
NumberChemical NameCommon Name**at 25° C.*§
107-31-3Formic acid, methyl esterMethyl Formate732.00000000
75-18-3Methane, 1,1′-thiobis-Dimethyl Sulfide 1.0%647.00000000
In DEP
141-78-6Acetic acid ethyl esterEthyl Acetate112.00000000
105-37-3Propanoic acid, ethyl esterEthyl Propionate44.50000000
110-19-0Acetic acid, 2-methylpropylIsobutyl Acetate18.00000000
ester
105-54-4Butanoic acid, ethyl esterEthyl Butyrate13.90000000
14765-30-11-ButanolButyl Alcohol8.52000000
7452-79-1Butanoic acid, 2-methyl-, ethylEthyl-2-Methyl Butyrate7.85000000
ester
123-92-21-Butanol, 3-methyl-, 1-acetateIso Amyl Acetate5.68000000
66576-71-4Butanoic acid, 2-methyl-, 1-Iso Propyl 2-5.10000000
methylethyl esterMethylbutyrate
110-43-02-HeptanoneMethyl Amyl Ketone4.73000000
6728-26-32-Hexenal, (2E)-Trans-2 Hexenal4.62000000
123-51-31-Butanol, 3-methyl-Isoamyl Alcohol4.16000000
1191-16-82-Buten-1-ol, 3-methyl-, 1-Prenyl acetate3.99000000
acetate
57366-77-51,3-Dioxolane-2-methanamine,Methyl Dioxolan3.88000000
N-methyl-
7785-70-8Bicyclo[3.1.1]hept-2-ene, 2,6,6-Alpha Pinene3.49000000
trimethyl-, (1R,5R)-
79-92-5Bicyclo[2.2.1]heptane, 2,2-Camphene3.38000000
dimethyl-3-methylene-
94087-83-92-Butanethiol, 4-methoxy-2-4-Methoxy-2-Methyl-2-3.31000000
methyl-Butanenthiol
39255-32-8Pentanoic acid, 2-methyl-, ethylManzanate2.91000000
ester
3387-41-5Bicyclo[3.1.0]hexane, 4-Sabinene2.63000000
methylene-1-(1-methylethyl)-
127-91-3Bicyclo[3.1.1]heptane, 6,6-Beta Pinene2.40000000
dimethyl-2-methylene-
105-68-01-Butanol, 3-methyl-, 1-Amyl Propionate2.36000000
propanoate
123-35-31,6-Octadiene, 7-methyl-3-Myrcene2.29000000
methylene-
124-13-0OctanalOctyl Aldehyde2.07000000
7392-19-02H-Pyran, 2-ethenyltetrahydro-Limetol1.90000000
2,6,6-trimethyl-
111-13-72-OctanoneMethyl Hexyl Ketone1.72000000
123-66-0Hexanoic acid, ethyl esterEthyl Caproate1.66000000
470-82-62-Oxabicyclo[2.2.2]octane, 1,3,Eucalyptol1.65000000
3-trimethyl-
99-87-6Benzene, 1-methyl-4-(1-Para Cymene1.65000000
methylethyl)-
104-93-8Benzene, 1-methoxy-4-methyl-Para Cresyl Methyl1.65000000
Ether
13877-91-31,3,6-Octatriene, 3,7-dimethyl-Ocimene1.56000000
138-86-3Cyclohexene, 1-methyl-4-(1-dl-Limonene1.54000000
methylethenyl)-
5989-27-5Cyclohexene, 1-methyl-4-(1-d-limonene1.54000000
methylethenyl)-, (4R)-
106-68-33-OctanoneEthyl Amyl Ketone1.50000000
110-41-8Undecanal, 2-methyl-Methyl Nonyl1.43000000
Acetaldehyde
142-92-7Acetic acid, hexyl esterHexyl acetate1.39000000
110-93-05-Hepten-2-one, 6-methyl-Methyl Heptenone1.28000000
81925-81-72-Hepten-4-one, 5-methyl-Filbertone 1% in TEC1.25000000
3681-71-83-Hexen-1-ol, 1-acetate, (3Z)-cis-3-Hexenyl acetate1.22000000
97-64-3Propanoic acid, 2-hydroxy-,Ethyl Lactate1.16000000
ethyl ester
586-62-9Cyclohexene, 1-methyl-4-(1-Terpineolene1.13000000
methylethylidene)-
51115-64-1Butanoic acid, 2-methylbutylAmyl butyrate1.09000000
ester
106-27-4Butanoic acid, 3-methylbutylAmyl Butyrate1.09000000
ester
99-85-41,4-Cyclohexadiene, 1-methyl-Gamma Terpinene1.08000000
4-(1-methylethyl)-
18640-74-9Thiazole, 2-(2-methylpropyl)-2-Isobutylthiazole1.07000000
928-96-13-Hexen-1-ol, (3Z)-cis-3-Hexenol1.04000000
100-52-7BenzaldehydeBenzaldehyde0.97400000
141-97-9Butanoic acid, 3-oxo-, ethylEthyl Acetoacetate0.89000000
ester
928-95-02-Hexen-1-ol, (2E)-Trans-2-Hexenol0.87300000
928-94-92-Hexen-1-ol, (2Z)-Beta Gamma Hexenol0.87300000
24691-15-4Cyclohexane, 3-ethoxy-1,1,5-Herbavert0.85200000
trimethyl-, cis-(9CI)
19872-52-72-Pentanone, 4-mercapto-4-4-Methyl-4-0.84300000
methyl-Mercaptopentan-2-one
1 ppm TEC
3016-19-12,4,6-Octatriene, 2,6-dimethyl-,Allo-Ocimene0.81600000
(4E,6E)-
69103-20-4Oxirane, 2,2-dimethyl-3-(3-Myroxide0.80600000
methyl-2,4-pentadien-1-yl)-
189440-77-54,7-Octadienoic acid, methylAnapear0.77700000
ester, (4E)-
67633-96-9Carbonic acid, (3Z)-3-hexen-1-Liffarome ™0.72100000
yl methyl ester
123-68-2Hexanoic acid, 2-propen-1-ylAllyl Caproate0.67800000
ester
106-72-95-Heptenal, 2,6-dimethyl-Melonal0.62200000
106-30-9Heptanoic acid, ethyl esterEthyl Oenanthate0.60200000
68039-49-63-Cyclohexene-1-Ligustral or Triplal0.57800000
carboxaldehyde, 2,4-dimethyl-
101-48-4Benzene, (2,2-dimethoxyethyl)-Phenyl Acetaldehyde0.55600000
Dimethyl Acetal
16409-43-12H-Pyran, tetrahydro-4-methyl-Rose Oxide0.55100000
2-(2-methyl-1-propen-1-yl)-
925-78-03-NonanoneEthyl Hexyl Ketone0.55100000
100-47-0BenzonitrileBenzyl Nitrile0.52400000
589-98-03-OctanolOctanol-30.51200000
58430-94-71-Hexanol, 3,5,5-trimethyl-, 1-Iso Nonyl Acetate0.47000000
acetate
10250-45-04-Heptanol, 2,6-dimethyl-, 4-Alicate0.45400000
acetate
105-79-3Hexanoic acid, 2-methylpropylIso Butyl Caproate0.41300000
ester
2349-07-7Propanoic acid, 2-methyl-, hexylHexyl isobutyrate0.41300000
ester
23250-42-2Cyclohexanecarboxylic acid, 1,Cyprissate0.40500000
4-dimethyl-, methyl ester, trans-
122-78-1BenzeneacetaldehydePhenyl acetaldehyde0.36800000
5405-41-4Butanoic acid, 3-hydroxy-, ethylEthyl-3-Hydroxy0.36200000
esterButyrate
105-53-3Propanedioic acid, 1,3-diethylDiethyl Malonate0.34400000
ester
93-58-3Benzoic acid, methyl esterMethyl Benzoate0.34000000
16356-11-91,3,5-UndecatrieneUndecatriene0.33600000
65405-70-14-Decenal, (4E)-Decenal (Trans-4)0.33100000
54546-26-81,3-Dioxane, 2-butyl-4,4,6-Herboxane0.33000000
trimethyl-
13254-34-72-Heptanol, 2,6-dimethyl-Dimethyl-2 6-Heptan-2-0.33000000
ol
98-86-2Ethanone, 1-phenyl-Acetophenone0.29900000
93-53-8Benzeneacetaldehyde, α-methyl-Hydratropic aldehyde0.29400000
80118-06-5Propanoic acid, 2-methyl-, 1,3-Iso Pentyrate0.28500000
dimethyl-3-buten-1-yl ester
557-48-22,6-Nonadienal, (2E,6Z)-E Z-2,6-Nonadien-1-al0.28000000
24683-00-9Pyrazine, 2-methoxy-3-(2-2-Methoxy-3-Isobutyl0.27300000
methylpropyl)-Pyrazine
104-57-4Formic acid, phenylmethyl esterBenzyl Formate0.27300000
104-45-0Benzene, 1-methoxy-4-propyl-Dihydroanethole0.26600000
491-07-6Cyclohexanone, 5-methyl-2-(1-Iso Menthone0.25600000
methylethyl)-, (2R,5R)-rel-
89-80-5Cyclohexanone, 5-methyl-2-(1-Menthone Racemic0.25600000
methylethyl)-, (2R,5S)-rel-
2463-53-82-Nonenal2 Nonen-1-al0.25600000
55739-89-4Cyclohexanone, 2-ethyl-4,4-Thuyacetone0.25000000
dimethyl-
150-78-7Benzene, 1,4-dimethoxy-Hydroquinone Dimethyl0.25000000
Ether
64988-06-3Benzene, 1-(ethoxymethyl)-2-Rosacene0.24600000
methoxy-
76-22-2Bicyclo[2.2.1]heptan-2-one, 1,7,Camphor gum0.22500000
7-trimethyl-
67674-46-82-Hexene, 6,6-dimethoxy-2,5,5-Methyl Pamplemousse0.21400000
trimethyl-
112-31-2DecanalDecyl Aldehyde0.20700000
16251-77-7Benzenepropanal, β-methyl-Trifernal0.20600000
93-92-5Benzenemethanol, α-methyl-, 1-Methylphenylcarbinol0.20300000
acetateAcetate
143-13-5Acetic acid, nonyl esterNonyl Acetate0.19700000
122-00-9Ethanone, 1-(4-methylphenyl)-Para Methyl0.18700000
Acetophenone
24237-00-12H-Pyran, 6-butyl-3,6-dihydro-Gyrane0.18600000
2,4-dimethyl-
41519-23-7Propanoic acid, 2-methyl-, (3Z)-Hexenyl Isobutyrate0.18200000
3-hexen-1-yl ester
93-89-0Benzoic acid, ethyl esterEthyl Benzoate0.18000000
20780-48-73-Octanol, 3,7-dimethyl-, 3-Tetrahydro Linalyl0.18000000
acetateAcetate
101-41-7Methyl 2-phenylacetateMethylphenyl acetate0.17600000
40853-55-21-Hexanol, 5-methyl-2-(1-Tetrahydro Lavandulyl0.17300000
methylethyl)-, 1-acetateAcetate
933-48-2Cyclohexanol, 3,3,5-trimethyl-,Trimethylcyclohexanol0.17300000
(1R,5R)-rel-
35158-25-92-Hexenal, 5-methyl-2-(1-Lactone of Cis Jasmone0.17200000
methylethyl)-
18479-58-87-Octen-2-ol, 2,6-dimethyl-Dihydromyrcenol0.16600000
140-11-4Acetic acid, phenylmethyl esterBenzyl acetate0.16400000
14765-30-1Cyclohexanone, 2-(1-2-sec-Butyl Cyclo0.16300000
methylpropyl)-Hexanone
20125-84-23-Octen-1-ol, (3Z)-Octenol0.16000000
142-19-8Heptanoic acid, 2-propen-1-ylAllyl Heptoate0.16000000
ester
100-51-6BenzenemethanolBenzyl Alcohol0.15800000
10032-15-2Butanoic acid, 2-methyl-, hexylHexyl-2-Methyl0.15800000
esterButyrate
695-06-72(3H)-Furanone, 5-ethyldihydro-Gamma Hexalactone0.15200000
21722-83-8Cyclohexaneethanol, 1-acetateCyclohexyl Ethyl0.15200000
Acetate
111-79-52-Nonenoic acid, methyl esterMethyl-2-Nonenoate0.14600000
16491-36-4Butanoic acid, (3Z)-3-hexen-1-ylCis 3 Hexenyl Butyrate0.13500000
ester
111-12-62-Octynoic acid, methyl esterMethyl Heptine0.12500000
Carbonate
59323-76-11,3-Oxathiane, 2-methyl-4-Oxane0.12300000
propyl-, (2R,4S)-rel-
62439-41-2Heptanal, 6-methoxy-2,6-Methoxy Melonal0.11900000
dimethyl-
13851-11-1Bicyclo[2.2.1]heptan-2-ol, 1,3,3-Fenchyl Acetate0.11700000
trimethyl-, 2-acetate
115-95-71,6-Octadien-3-ol, 3,7-dimethyl-,Linalyl acetate0.11600000
3-acetate
18479-57-72-Octanol, 2,6-dimethyl-Tetra-Hydro Myrcenol0.11500000
78-69-33,7-dimethyloctan-3-olTetra-Hydro Linalool0.11500000
111-87-51-OctanolOctyl Alcohol0.11400000
71159-90-53-Cyclohexene-1-methanethiol,Grapefruit mercaptan0.10500000
α,α,4-trimethyl-
80-25-1Cyclohexanemethanol, α,α,4-Menthanyl Acetate0.10300000
trimethyl-, 1-acetate
88-41-5Cyclohexanol, 2-(1,1-Verdox ™0.10300000
dimethylethyl)-, 1-acetate
32210-23-4Cyclohexanol, 4-(1,1-Vertenex0.10300000
dimethylethyl)-, 1-acetate
112-44-7Undecanaln-Undecanal0.10200000
24168-70-5Pyrazine, 2-methoxy-3-(1-Methoxyisobutylpyrazine0.09950000
methylpropyl)-
89-79-2Cyclohexanol, 5-methyl-2-(1-Iso-Pulegol0.09930000
methylethenyl)-, (1R,2S,5R)-
112-12-92-UndecanoneMethyl Nonyl Ketone0.09780000
103-05-9Benzenepropanol, α,α-dimethyl-Phenyl Ethyl Dimethyl0.09770000
Carbinol
125-12-2Bicyclo[2.2.1]heptan-2-ol, 1,7,7-Iso Bornyl Acetate0.09590000
trimethyl-, 2-acetate, (1R,2R,4R)-
rel-
78-70-61,6-Octadien-3-ol, 3,7-dimethyl-Linalool0.09050000
101-97-3Benzeneacetic acid, ethyl esterEthyl Phenyl Acetate0.08970000
100-86-7Benzeneethanol, α,α-dimethyl-Dimethyl Benzyl0.08880000
Carbinol
188570-78-7Cyclopropanecarboxylic acid,Montaverdi0.08640000
(3Z)-3-hexen-1-yl ester
67634-25-73-Cyclohexene-1-methanol, 3,5-Floralate0.08500000
dimethyl-, 1-acetate
112-44-7UndecanalUndecyl Aldehyde0.08320000
32669-00-4Ethanone, 1-(3-cycloocten-1-yl)-Tanaisone ®0.08150000
98-53-3Cyclohexanone, 4-(1,1-Patchi0.07780000
dimethylethyl)-
35854-86-56-Nonen-1-ol, (6Z)-cis-6-None-1-ol0.07770000
5331-14-6Benzene, (2-butoxyethyl)-Butyl phenethyl ether0.07760000
80-57-9Bicyclo[3.1.1]hept-3-en-2-one,Verbenone0.07730000
4,6,6-trimethyl-
22471-55-2Cyclohexanecarboxylic acid, 2,Thesaron0.07670000
2,6-trimethyl-, ethyl ester, (1R,
6S)-rel-
60-12-82-phenyl ethanolPhenethyl alcohol or0.07410000
Phenylethyl alcohol
106-26-32,6-Octadienal, 3,7-dimethyl-,Neral0.07120000
(2Z)-
5392-40-52,6-Octadienal, 3,7-dimethyl-Citral0.07120000
89-48-5Cyclohexanol, 5-methyl-2-(1-Menthyl Acetate0.07070000
methylethyl)-, 1-acetate, (1R,2S,
5R)-rel-
119-36-8Benzoic acid, 2-hydroxy-,Methyl salicylate0.07000000
methyl ester
4180-23-8Benzene, 1-methoxy-4-(1E)-1-Anethol0.06870000
propen-1-yl-
7549-37-32,6-Octadiene, 1,1-dimethoxy-3,Citral Dimethyl Acetal0.06780000
7-dimethyl-
25225-08-5Cyclohexanemethanol, α,3,3-Aphermate0.06780000
trimethyl-, 1-formate
3913-81-32-Decenal, (2E)-2-Decene-1-al0.06740000
15373-31-63-Cyclopentene-1-acetonitrile, 2,Cantryl ®0.06700000
2,3-trimethyl-
6485-40-12-Cyclohexen-1-one, 2-methyl-Laevo carvone0.06560000
5-(1-methylethenyl)-, (5R)-
16587-71-6Cyclohexanone, 4-(1,1-Orivone0.06490000
dimethylpropyl)-
62406-73-96,10-Dioxaspiro[4.5]decane,Opalal CI0.06290000
8,8-dimethyl-7-(1-methylethyl)-
3720-16-92-Cyclohexen-1-one, 3-methyl-Livescone0.06270000
5-propyl-
13816-33-6Benzonitrile, 4-(1-methylethyl)-Cumin Nitrile0.06230000
67019-89-02,6-NonadienenitrileViolet Nitrile0.06200000
53398-85-9Butanoic acid, 2-methyl-, (3Z)-cis-3-Hexenyl Alpha0.06130000
3-hexen-1-yl esterMethyl Butyrate
208041-98-9Heptanenitrile, 2-propyl-Jasmonitrile0.05920000
16510-27-3Benzene, 1-(cyclopropylmethyl)-Toscanol0.05870000
4-methoxy-
111-80-82-Nonynoic acid, methyl esterMethyl Octine0.05680000
Carbonate
103-45-7Acetic acid, 2-phenylethyl esterPhenyl Ethyl Acetate0.05640000
2550-26-72-Butanone, 4-phenyl-Benzyl Acetone0.05570000
13491-79-7Cyclohexanol, 2-(1,1-Verdol0.05430000
dimethylethyl)-
7786-44-92,6-Nonadien-1-ol2,6-Nonadien-1-ol0.05370000
103-28-6Propanoic acid, 2-methyl-,Benzyl Iso Butyrate0.05130000
phenylmethyl ester
104-62-1Formic acid, 2-phenylethyl esterPhenyl Ethyl Formate0.05050000
28462-85-3Bicyclo[2.2.1]heptan-2-ol, 1,2,3,Humus Ether0.04870000
3-tetramethyl-, (1R,2R,4S)-rel-
122-03-2Benzaldehyde, 4-(1-methylethyl)-Cuminic Aldehyde0.04820000
358331-95-02,5-Octadien-4-one, 5,6,7-Pomarose0.04810000
trimethyl-, (2E)-
562-74-33-Cyclohexen-1-ol, 4-methyl-1-Terpinenol-40.04780000
(1-methylethyl)-
68527-77-53-Cyclohexene-1-methanol, 2,4,Isocyclogeraniol0.04640000
6-trimethyl-
35852-46-1Pentanoic acid, (3Z)-3-hexen-1-Cis-3-Hexenyl Valerate0.04580000
yl ester
2756-56-1Bicyclo[2.2.1]heptan-2-ol, 1,7,7-Iso Bornyl Propionate0.04540000
trimethyl-, 2-propanoate, (1R,
2R,4R)-rel-
14374-92-6Benzene, 1-methyl-4-(1-Verdoracine0.04460000
methylethyl)-2-(1-propen-1-yl)-
6784-13-03-Cyclohexene-1-propanal, β,4-Limonenal0.04380000
dimethyl-
8000-41-72-(4-methyl-1-cyclohex-3-Alpha Terpineol0.04320000
enyl)propan-2-ol
41884-28-01-Hexanol, 5-methyl-2-(1-Tetrahydro Lavandulol0.04230000
methylethyl)-, (2R)-
22457-23-43-Heptanone, 5-methyl-, oximeStemone ®0.04140000
104-50-72(3H)-Furanone, 5-Gamma Octalactone0.04080000
butyldihydro-
143-08-81-NonanolNonyl Alcohol0.04070000
3613-30-7Octanal, 7-methoxy-3,7-Methoxycitronellal0.04020000
dimethyl-
67634-00-8Acetic acid, 2-(3-methylbutoxy)-,Allyl Amyl Glycolate0.04000000
2-propen-1-yl ester
464-45-9Bicyclo[2.2.1]heptan-2-ol, 1,7,7-1-Borneol0.03980000
trimethyl-, (1S,2R,4S)-
124-76-5Bicyclo[2.2.1]heptan-2-ol, 1,7,7-1.7.7-Trimethyl-0.03980000
trimethyl-, (1R,2R,4R)-rel-Bicyclo-1.2.2-Heptanol-2
67874-72-0Cyclohexanol, 2-(1,1-Coniferan0.03980000
dimethylpropyl)-, 1-acetate
80-26-23-Cyclohexene-1-methanol, α,α,Terpinyl Acetate0.03920000
4-trimethyl-, 1-acetate
498-81-7Cyclohexanemethanol, α,α,4-Dihydro Terpineol0.03920000
trimethyl-
112-45-810-UndecenalUndecylenic aldehyde0.03900000
35044-57-62,4-Cyclohexadiene-1-Ethyl Safranate0.03880000
carboxylic acid, 2,6,6-trimethyl-,
ethyl ester
106-21-81-Octanol, 3,7-dimethyl-Dimethyl Octanol0.03860000
84560-00-9Cyclopentanol, 2-pentyl-Cyclopentol0.03790000
82461-14-1Furan, tetrahydro-2,4-dimethyl-Rhubafuran ®0.03780000
4-phenyl-
56011-02-0Benzene, [2-(3-methylbutoxy)Phenyl Ethyl Isoamyl0.03690000
ethyl]-Ether
103-37-7Butanoic acid, phenylmethylBenzyl Butyrate0.03660000
ester
6378-65-0Hexyl hexanoateHexyl hexanoate0.03490000
118-61-6Benzoic acid, 2-hydroxy-, ethylEthyl salicylate0.03480000
ester
98-52-2Cyclohexanol, 4-(1,1-Patchon0.03480000
dimethylethyl)-
115-99-11,6-Octadien-3-ol, 3,7-dimethyl-,Linalyl Formate0.03440000
3-formate
112-54-9DodecanalLauric Aldehyde0.03440000
53046-97-23,6-Nonadien-1-ol, (3Z,6Z)-3,6 Nonadien-1-ol0.03360000
76649-25-73,6-Nonadien-1-ol3,6-Nonadien-1-ol0.03360000
141-25-33,7-Dimethyloct-6-en-1-olRhodinol0.03290000
1975-78-6DecanenitrileDecanonitrile0.03250000
2216-51-5Cyclohexanol, 5-methyl-2-(1-L-Menthol0.03230000
methylethyl)-, (1R,2S,5R)-
3658-77-34-hydroxy-2,5-dimethylfuran-3-Pineapple Ketone0.03200000
one
103-93-5Propanoic acid, 2-methyl-, 4-Para Cresyl iso-Butyrate0.03120000
methylphenyl ester
24717-86-0Propanoic acid, 2-methyl-, (1R,Abierate0.03110000
2S,4R)-1,7,7-
trimethylbicyclo[2.2.1]hept-2-yl
ester, rel-
67845-46-9Acetaldehyde, 2-(4-Aldehyde XI0.03090000
methylphenoxy)-
67883-79-82-Butenoic acid, 2-methyl-, (3Z)-Cis-3-Hexenyl Tiglate0.03060000
3-hexen-1-yl ester, (2E)-
33885-51-7Bicyclo[3.1.1]hept-2-ene-2-Pino Acetaldehyde0.03040000
propanal, 6,6-dimethyl-
105-85-16-Octen-1-ol, 3,7-dimethyl-, 1-Citronellyl Formate0.03000000
formate
70214-77-62-Nonanol, 6,8-dimethyl-Nonadyl0.03010000
215231-33-7Cyclohexanol, 1-methyl-3-(2-Rossitol0.02990000
methylpropyl)-
120-72-91H-IndoleIndole0.02980000
2463-77-62-Undecenal2-Undecene-1-al0.02970000
675-09-22H-Pyran-2-one, 4,6-dimethyl-Levistamel0.02940000
98-55-53-Cyclohexene-1-methanol, α,α,Alpha-Terpineol0.02830000
4-trimethyl-
81786-73-43-Hepten-2-one, 3,4,5,6,6-Koavone0.02750000
pentamethyl-, (3Z)-
122-97-4BenzenepropanolPhenyl Propyl Alcohol0.02710000
39212-23-22(3H)-Furanone, 5-Methyl Octalactone0.02700000
butyldihydro-4-methyl-
53767-93-47-Octen-2-ol, 2,6-dimethyl-, 2-Dihydro Terpinyl0.02690000
acetateAcetate
35044-59-81,3-Cyclohexadiene-1-Ethyl Safranate0.02660000
carboxylic acid, 2,6,6-trimethyl-,
ethyl ester
104-55-22-Propenal, 3-phenyl-Cinnamic Aldehyde0.02650000
144-39-81,6-Octadien-3-ol, 3,7-dimethyl-,Linalyl Propionate0.02630000
3-propanoate
61931-80-41,6-Nonadien-3-ol, 3,7-3,7-Dimethyl-1,6-0.02630000
dimethyl-, 3-acetatenonadien-3-yl acetate
102-13-6Benzeneacetic acid, 2-Iso Butyl Phenylacetate0.02630000
methylpropyl ester
65443-14-3Cyclopentanone, 2,2,5-Veloutone0.02610000
trimethyl-5-pentyl-
141-12-82,6-Octadien-1-ol, 3,7-dimethyl-,Neryl Acetate0.02560000
1-acetate, (2Z)-
105-87-32,6-Octadien-1-ol, 3,7-dimethyl-,Geranyl acetate0.02560000
1-acetate, (2E)-
68141-17-3Undecane, 1,1-dimethoxy-2-Methyl Nonyl0.02550000
methyl-Acetaldehyde Dimethyl
Acetal
2206-94-2Benzenemethanol, α-methylene-,Indocolore0.02550000
1-acetate
10528-67-3Cyclohexanepropanol, α-methyl-Cyclohexylmagnol0.02550000
123-11-5Benzaldehyde, 4-methoxy-Anisic Aldehyde0.02490000
57576-09-7Cyclohexanol, 5-methyl-2-(1-Iso Pulegol Acetate0.02480000
methylethenyl)-, 1-acetate, (1R,
2S,5R)-
51566-62-26-Octenenitrile, 3,7-dimethyl-Citronellyl Nitrile0.02470000
60335-71-92H-Pyran, 3,6-dihydro-4-Rosyrane Super0.02470000
methyl-2-phenyl-
30385-25-26-Octen-2-ol, 2,6-dimethyl-Dihydromyrcenol0.02440000
101-84-8Benzene, 1,1′-oxybis-Diphenyl Oxide0.02230000
136-60-7Benzoic acid, butyl esterButyl Benzoate0.02170000
93939-86-75,8-Methano-2H-1-benzopyran,Rhuboflor0.02120000
6-ethylideneoctahydro-
83926-73-2Cyclohexanepropanol, α,α-Coranol0.02100000
dimethyl-
125109-85-5Benzenepropanal, β-methyl-3-Florhydral0.02070000
(1-methylethyl)-
104-21-2Benzenemethanol, 4-methoxy-,Anisyl Acetate0.02050000
1-acetate
1365-19-12-Furanmethanol, 5-Linalool Oxide0.02050000
ethenyltetrahydro-α,α,5-
trimethyl-
137-03-1Cyclopentanone, 2-heptyl-Frutalone0.02040000
2563-07-7Phenol, 2-ethoxy-4-methyl-Ultravanil0.02030000
1128-08-12-Cyclopenten-1-one, 3-methyl-Dihydrojasmone0.02020000
2-pentyl-
7493-57-4Benzene, [2-(1-propoxyethoxy)Acetaldehyde0.01990000
ethyl]-
141-25-37-Octen-1-ol, 3,7-dimethyl-Rhodinol0.01970000
216970-21-7Bicyclo[4.3.1]decane, 3-3-Methoxy-7,7-0.01960000
methoxy-7,7-dimethyl-10-dimethyl-10-
methylene-methylenebicyclo[4.3.1]decane
decane
319002-92-1Propanoic acid, 2-(1,1-Sclareolate ®0.01960000
dimethylpropoxy)-, propyl ester,
(2S)-
85-91-6Benzoic acid, 2-(methylamino)-,Dimethyl anthranilate0.01930000
methyl ester
13828-37-0Cyclohexanemethanol, 4-(1-Mayol0.01920000
methylethyl)-, cis-
26330-65-4(E)-6-ethyl-3-methyloct-6-en-1-Super Muguet0.01850000
ol
7540-51-46-Octen-1-ol, 3,7-dimethyl-,L-Citronellol0.01830000
(3S)-
106-22-96-Octen-1-ol, 3,7-dimethyl-Citronellol0.01830000
543-39-57-Octen-2-ol, 2-methyl-6-Myrcenol0.01820000
methylene-
7775-00-0Benzenepropanal, 4-(1-Cyclemax0.01820000
methylethyl)-
18479-54-44,6-Octadien-3-ol, 3,7-dimethyl-Muguol0.01800000
29214-60-6Octanoic acid, 2-acetyl-, ethylGelsone0.01790000
ester
1209-61-65-Oxatricyclo[8.2.0.04,6]Tobacarol0.01730000
dodecane, 4,9,12,12-tetramethyl-
57934-97-12-Cyclohexene-1-carboxylicGivescone0.01710000
acid, 2-ethyl-6,6-dimethyl-,
ethyl ester
14901-07-63-Buten-2-one, 4-(2,6,6-Beta-Ionone0.01690000
trimethyl-1-cyclohexen-1-yl)-,
(3E)-
64001-15-64,7-Methano-1H-inden-5-ol,Dihydro Cyclacet0.01630000
octahydro-, 5-acetate
95-41-02-Cyclopenten-1-one, 2-hexyl-Iso Jasmone T0.01600000
134-20-3Benzoic acid, 2-amino-, methylMethyl Anthranilate0.01580000
ester
100-06-1Ethanone, 1-(4-methoxyphenyl)-Para Methoxy0.01550000
Acetophenone
105-86-22,6-Octadien-1-ol, 3,7-dimethyl-,Geranyl Formate0.01540000
1-formate, (2E)-
154171-77-4Spiro[1,3-dioxolane-2,8′(5′H)-Ysamber K ®0.01470000
[2H-2,4a]methanonaphthalene],
hexahydro-1′,1′,5′,5′-tetramethyl-,
(2′S,4′aS,8′aS)-(9CI)
154171-76-3Spiro[1,3-dioxolane-2,8′(5′H)-Ysamber0.01470000
[2H-2,4a]methanonaphthalene],
hexahydro-1′,1′,5′,5′-tetramethyl-
127-41-33-Buten-2-one, 4-(2,6,6-Alpha-Ionone0.01440000
trimethyl-2-cyclohexen-1-yl)-,
(3E)-
151-05-3Benzeneethanol, α,α-dimethyl-,Dimethyl Benzyl0.01390000
1-acetateCarbinyl Acetate
2500-83-64,7-Methano-1H-inden-5-ol, 3a,Flor Acetate0.01370000
4,5,6,7,7a-hexahydro-, 5-acetate
150-84-56-Octen-1-ol, 3,7-dimethyl-, 1-Citronellyl acetate0.01370000
acetate
30310-41-92H-Pyran, tetrahydro-2-methyl-Pelargene0.01350000
4-methylene-6-phenyl-
68845-00-1Bicyclo[3.3.1]nonane, 2-ethoxy-Boisiris0.01350000
2,6,6-trimethyl-9-methylene-
106-24-12,6-Octadien-1-ol, 3,7-dimethyl-,Geraniol0.01330000
(2E)-
106-25-22,6-Octadien-1-ol, 3,7-dimethyl-,Nerol0.01330000
(2Z)-
75975-83-6Bicyclo[7.2.0]undec-4-ene, 4,11,Vetyvenal0.01280000
11-trimethyl-8-methylene-, (1R,
4E,9S)-
19870-74-71H-3a,7-Methanoazulene,Cedryl methyl ether0.01280000
octahydro-6-methoxy-3,6,8,8-
tetramethyl-, (3R,3aS,6S,7R,8aS)-
87-44-5Bicyclo[7.2.0]undec-4-ene, 4,11,Caryophyllene Extra0.01280000
11-trimethyl-8-methylene-, (1R,
4E,9S)-
54440-17-41H-Inden-1-one, 2,3-dihydro-2,Safraleine0.01260000
3,3-trimethyl-
110-98-52-Propanol, 1,1′-oxybis-Dipropylene Glycol0.01250000
41890-92-02-Octanol, 7-methoxy-3,7-Osyrol ®0.01250000
dimethyl-
71077-31-14,9-Decadienal, 4,8-dimethyl-Floral Super0.01230000
65-85-0Benzoic AcidBenzoic Acid0.01220000
61444-38-03-Hexenoic acid, (3Z)-3-hexen-cis-3-hexenyl-cis-3-0.01220000
1-yl ester, (3Z)-hexenoate
116044-44-1Bicyclo[2.2.1]hept-5-ene-2-Herbanate0.01210000
carboxylic acid, 3-(1-
methylethyl)-, ethyl ester, (1R,
2S,3S,4S)-rel-
104-54-12-Propen-1-ol, 3-phenyl-Cinnamic Alcohol0.01170000
78-35-3Propanoic acid, 2-methyl-, 1-Linalyl Isobutyrate0.01170000
ethenyl-1,5-dimethyl-4-hexen-1-
yl ester
23495-12-7Ethanol, 2-phenoxy-, 1-Phenoxy Ethyl0.01130000
propanoatePropionate
103-26-42-Propenoic acid, 3-phenyl-,Methyl Cinnamate0.01120000
methyl ester
67634-14-4Benzenepropanal, 2-ethyl-α,α-Florazon (ortho-isomer)0.01110000
dimethyl-
5454-19-3Propanoic acid, decyl esterN-Decyl Propionate0.01100000
93-16-3Benzene, 1,2-dimethoxy-4-(1-Methyl Iso Eugenol0.01100000
propen-1-yl)-
81782-77-63-Decen-5-ol, 4-methyl-4-Methyl-3-decen-5-ol0.01070000
67845-30-1Bicyclo[2.2.2]oct-5-ene-2-Maceal0.01060000
carboxaldehyde, 6-methyl-8-(1-
methylethyl)-
97-53-0Phenol, 2-methoxy-4-(2-propen-Eugenol0.01040000
1-yl)-
120-57-01,3-Benzodioxole-5-Heliotropin0.01040000
carboxaldehyde
93-04-9Naphthalene, 2-methoxy-Beta Naphthyl Methyl0.01040000
Ether Extra 99
4826-62-42-Dodecenal2 Dodecene-1-al0.01020000
20407-84-52-Dodecenal, (2E)-Aldehyde Mandarin0.01020000
5462-06-6Benzenepropanal, 4-methoxy-α-Canthoxal0.01020000
methyl-
94-60-01,4-CyclohexanedicarboxylicDimethyl 1,4-0.01020000
acid, 1,4-dimethyl estercyclohexanedicarboxylate
57378-68-42-Buten-1-one, 1-(2,6,6-delta-Damascone0.01020000
trimethyl-3-cyclohexen-1-yl)-
17283-81-72-Butanone, 4-(2,6,6-trimethyl-Dihydro Beta Ionone0.01020000
1-cyclohexen-1-yl)-
1885-38-72-Propenenitrile, 3-phenyl-, (2E)-Cinnamalva0.01010000
103-48-0Propanoic acid, 2-methyl-, 2-Phenyl Ethyl Iso0.00994000
phenylethyl esterButyrate
488-10-82-Cyclopenten-1-one, 3-methyl-Cis Jasmone0.00982000
2-(2Z)-2-penten-1-yl-
7492-67-3Acetaldehyde, 2-[(3,7-dimethyl-Citronellyloxyacetaldehyde0.00967000
6-octen-1-yl)oxy]-
68683-20-51-Cyclohexene-1-ethanol, 4-(1-Iso Bergamate0.00965000
methylethyl)-, 1-formate
3025-30-72,4-Decadienoic acid, ethylEthyl 2,4-Decadienoate0.00954000
ester, (2E,4Z)-
103-54-82-Propen-1-ol, 3-phenyl-, 1-Cinnamyl Acetate0.00940000
acetate
18127-01-0Benzenepropanal, 4-(1,1-Bourgeonal0.00934000
dimethylethyl)-
3738-00-9Naphtho[2,1-b]furan,Ambrox ® or Cetalox ® or0.00934000
dodecahydro-3a,6,6,9a-Synambran
tetramethyl-
51519-65-41,4-Methanonaphthalen-5(1H)-Tamisone0.00932000
one, 4,4a,6,7,8,8a-hexahydro-
148-05-1Dodecanoic acid, 12-hydroxy-,Dodecalactone0.00931000
λ-lactone (6CI,7CI); 1,12-
6790-58-5(3aR,5aS,9aS,9bR)-3a,6,6,9a-Ambronat ® or0.00930000
tetramethyl-2,4,5,5a,7,8,9,9b-Ambroxan ®
octahydro-1H-
benzo[e][1]benzofuran
86-26-01,1′-Biphenyl, 2-methoxy-Methyl Diphenyl Ether0.00928000
68738-94-32-Naphthalenecarboxaldehyde,Cyclomyral ®0.00920000
octahydro-8,8-dimethyl
2705-87-5Cyclohexanepropanoic acid, 2-Allyl Cyclohexane0.00925000
propen-1-yl esterPropionate
7011-83-82(3H)-Furanone, 5-Lactojasmone ®0.00885000
hexyldihydro-5-methyl-
61792-11-82,6-Nonadienenitrile, 3,7-Lemonile ®0.00884000
dimethyl-
692-86-410-Undecenoic acid, ethyl esterEthyl Undecylenate0.00882000
103-95-7Benzenepropanal,α-methyl-4-Cymal0.00881000
(1-methylethyl)-
13019-22-29-Decen-1-olRosalva0.00879000
94201-19-11-Oxaspiro[4.5]decan-2-one, 8-Methyl Laitone 10%0.00872000
methyl-TEC
104-61-02(3H)-Furanone, dihydro-5-γ-Nonalactone0.00858000
pentyl-
706-14-92(3H)-Furanone, 5-γ-Decalactone0.00852000
hexyldihydro-
24720-09-02-Buten-1-one, 1-(2,6,6-α-Damascone0.00830000
trimethyl-2-cyclohexen-1-yl)-,
(2E)-
39872-57-62-Buten-1-one, 1-(2,4,4-Isodamascone0.00830000
trimethyl-2-cyclohexen-1-yl)-,
(2E)-
705-86-22H-Pyran-2-one, tetrahydro-6-Decalactone0.00825000
pentyl-
67634-15-5Benzenepropanal, 4-ethyl-α,α-Floralozone0.00808000
dimethyl-
40527-42-21,3-Benzodioxole, 5-Heliotropin Diethyl0.00796000
(diethoxymethyl)-Acetal
56973-85-44-Penten-1-one, 1-(5,5-Neobutenone α0.00763000
dimethyl-1-cyclohexen-1-yl)-
128-51-8Bicyclo[3.1.1]hept-2-ene-2-Nopyl Acetate0.00751000
ethanol, 6,6-dimethyl-, 2-acetate
103-36-62-Propenoic acid, 3-phenyl-,Ethyl Cinnamate0.00729000
ethyl ester
5182-36-51,3-Dioxane, 2,4,6-trimethyl-4-Floropal ®0.00709000
phenyl-
42604-12-6Cyclododecane,Boisambrene0.00686000
(methoxymethoxy)-
33885-52-8Bicyclo[3.1.1]hept-2-ene-2-Pinyl Iso Butyrate Alpha0.00685000
propanal, α,α,6,6-tetramethyl-
92015-65-12(3H)-Benzofuranone,Natactone0.00680000
hexahydro-3,6-dimethyl-
63767-86-2Cyclohexanemethanol, α-Mugetanol0.00678000
methyl-4-(1-methylethyl)-
3288-99-1Benzeneacetonitrile, 4-(1,1-Marenil CI0.00665000
dimethylethyl)-
35044-68-92-Buten-1-one, 1-(2,6,6-beta-Damascone0.00655000
trimethyl-1-cyclohexen-1-yl)-
41724-19-01,4-Methanonaphthalen-6(2H)-Plicatone0.00652000
one, octahydro-7-methyl-
75147-23-8Bicyclo[3.2.1]octan-8-one, 1,5-Buccoxime ®0.00647000
dimethyl-, oxime
25634-93-92-Methyl-5-phenylpentan-1-olRosaphen ® 6000640.00637000
55066-48-33-Methyl-5-phenylpentanolPhenyl Hexanol0.00637000
495-62-5Cyclohexene, 4-(1,5-dimethyl-4-Bisabolene0.00630000
hexen-1-ylidene)-1-methyl-
2785-87-7Phenol, 2-methoxy-4-propyl-Dihydro Eugenol0.00624000
87-19-4Benzoic acid, 2-hydroxy-, 2-Iso Butyl Salicylate0.00613000
methylpropyl ester
4430-31-32H-1-Benzopyran-2-one,Octahydro Coumarin0.00586000
octahydro-
38462-22-5Cyclohexanone, 2-(1-mercapto-Ringonol 50 TEC0.00585000
1-methylethyl)-5-methyl-
77-83-82-Oxiranecarboxylic acid, 3-Ethyl Methyl0.00571000
methyl-3-phenyl-, ethyl esterPhenyl Glycidate
37677-14-83-Cyclohexene-1-Iso Hexenyl0.00565000
carboxaldehyde, 4-(4-methyl-3-Cyclohexenyl
penten-1-yl)-Carboxaldehyde
103-60-6Propanoic acid, 2-methyl-, 2-Phenoxy Ethyl iso-0.00562000
phenoxyethyl esterButyrate
18096-62-3Indeno[1,2-d]-1,3-dioxin, 4,4a,5,Indoflor ®0.00557000
9b-tetrahydro-
63500-71-02H-Pyran-4-ol, tetrahydro-4-Florosa Q0.00557000
methyl-2-(2-methylpropyl)-
65405-84-7Cyclohexanebutanal, α,2,6,6-Cetonal ®0.00533000
tetramethyl-
171102-41-34,7-Methano-1H-inden-6-ol, 3a,Flor Acetate0.00530000
4,5,6,7,7a-hexahydro-8,8-
dimethyl-, 6-acetate
10339-55-61,6-Nonadien-3-ol, 3,7-Ethyl linalool0.00520000
dimethyl-
23267-57-43-Buten-2-one, 4-(2,2,6-Ionone Epoxide Beta0.00520000
trimethyl-7-oxabicyclo[4.1.0]
hept-1-yl)-
97-54-1Phenol, 2-methoxy-4-(1-propen-Isoeugenol0.00519000
1-yl)-
67663-01-82(3H)-Furanone, 5-Peacholide0.00512000
hexyldihydro-4-methyl-
33885-52-8Bicyclo[3.1.1]hept-2-ene-2-Pinyl Iso Butyrate Alpha0.00512000
propanal, α,α,6,6-tetramethyl-
23696-85-72-Buten-1-one, 1-(2,6,6-Damascenone0.00503000
trimethyl-1,3-cyclohexadien-1-
yl)-
80-71-72-Cyclopenten-1-one, 2-Maple Lactone0.00484000
hydroxy-3-methyl-
67662-96-8Propanoic acid, 2,2-dimethyl-, 2-Pivarose Q0.00484000
phenylethyl ester
2437-25-4DodecanenitrileClonal0.00480000
141-14-06-Octen-1-ol, 3,7-dimethyl-, 1-Citronellyl Propionate0.00469000
propanoate
54992-90-43-Buten-2-one, 4-(2,2,3,6-Myrrhone0.00460000
tetramethylcyclohexyl)-
55066-49-4Benzenepentanal, β-methyl-Mefranal0.00455000
7493-74-5Acetic acid, 2-phenoxy-, 2-Allyl Phenoxy Acetate0.00454000
propen-1-yl ester
80-54-6Benzenepropanal, 4-(1,1-Lilial ®0.00444000
dimethylethyl)-α-methyl-
86803-90-94,7-Methano-1H-indene-2-Scentenal ®0.00439000
carboxaldehyde, octahydro-5-
methoxy-
68991-97-92-Naphthalenecarboxaldehyde,Melafleur0.00436000
1,2,3,4,5,6,7,8-octahydro-8,8-
dimethyl-
18871-14-2Pentitol, 1,5-anhydro-2,4-Jasmal0.00434000
dideoxy-2-pentyl-, 3-acetate
58567-11-6Cyclododecane,Boisambren Forte0.00433000
(ethoxymethoxy)-
94400-98-3Naphth[2,3-b]oxirene,Molaxone0.00425000
1a,2,3,4,5,6,7,7a-octahydro-
1a,3,3,4,6,6-hexamethyl-,
(1aR,4S,7aS)-rel-
79-69-63-Buten-2-one, 4-(2,5,6,6-alpha-Irone0.00419000
tetramethyl-2-cyclohexen-1-yl)-
65442-31-1Quinoline, 6-(1-methylpropyl)-Iso Butyl Quinoline0.00408000
87731-18-8Carbonic acid, 4-cycloocten-1-ylVioliff0.00401000
methyl ester
173445-65-31H-Indene-5-propanal, 2,3-Hivernal (A-isomer)0.00392000
dihydro-3,3-dimethyl-
23911-56-0Ethanone, 1-(3-methyl-2-Nerolione0.00383000
benzofuranyl)-
52474-60-93-Cyclohexene-1-Precyclemone B0.00381000
carboxaldehyde, 1-methyl-3-(4-
methyl-3-penten-1-yl)-
139539-66-56-Oxabicyclo[3.2.1]octane, 5-Cassifix0.00381000
methyl-1-(2,2,3-trimethyl-3-
cyclopenten-1-yl)-
80858-47-5Benzene, [2-(cyclohexyloxy)Phenafleur0.00380000
ethyl]-
32764-98-02H-Pyran-2-one, tetrahydro-6-Jasmolactone0.00355000
(3-penten-1-yl)-
78417-28-42,4,7-Decatrienoic acid, ethylEthyl 2,4,7-0.00353000
esterdecatrienoate
140-26-1Butanoic acid, 3-methyl-, 2-Beta Phenyl Ethyl0.00347000
phenylethyl esterIsovalerate
105-90-82,6-Octadien-1-ol, 3,7-dimethyl-,Geranyl Propionate0.003360000
1-propanoate, (2E)-
41816-03-9Spiro[1,4-methanonaphthalene-Rhubofix ®0.00332000
2(1H), 2′-oxirane], 3,4,4a,5,8,8a-
hexahydro-3′,7-dimethyl-
7070-15-7Ethanol, 2-[[(1R,2R,4R)-1,7,7-Arbanol0.00326000
trimethylbicyclo[2.2.1]hept-2-yl]
oxy]-, rel-
93-29-8Phenol, 2-methoxy-4-(1-propen-Iso Eugenol Acetate0.00324000
1-yl)-, 1-acetate
476332-65-72H-Indeno[4,5-b]furan,Amber Xtreme0.00323000
decahydro-2,2,6,6,7,8,8-Compound 1
heptamethyl-
68901-15-5Acetic acid, 2-(cyclohexyloxy)-,Cyclogalbanate0.00323000
2-propen-1-yl ester
107-75-5Octanal, 7-hydroxy-3,7-Hydroxycitronellal0.00318000
dimethyl-
68611-23-4Naphtho[2,1-b]furan, 9b-Grisalva0.00305000
ethyldodecahydro-3a,7,7-
trimethyl-
313973-37-41,6-Heptadien-3-one, 2-Pharaone0.00298000
cyclohexyl-
137-00-85-Thiazoleethanol, 4-methyl-Sulfurol0.00297000
7779-30-81-Penten-3-one, 1-(2,6,6-Methyl Ionone0.00286000
trimethyl-2-cyclohexen-1-yl)-
127-51-53-Buten-2-one, 3-methyl-4-Isoraldeine Pure0.00282000
(2,6,6-trimethyl-2-cyclohexen-1-
yl)-
72903-27-61,4-CyclohexanedicarboxylicFructalate ™0.00274000
acid, 1,4-diethyl ester
7388-22-93-Buten-2-one, 4-(2,2-dimethyl-Ionone Gamma Methyl0.00272000
6-methylenecyclohexyl)-3-
methyl-
104-67-62(3H)-Furanone, 5-gamma-Undecalactone0.00271000
heptyldihydro-(racemic)
1205-17-01,3-Benzodioxole-5-propanal, α-Helional0.00270000
methyl-
33704-61-94H-Inden-4-one, 1,2,3,5,6,7-Cashmeran0.00269000
hexahydro-1,1,2,3,3-
pentamethyl-
36306-87-3Cyclohexanone, 4-(1-Kephalis0.00269000
ethoxyethenyl)-3,3,5,5-
tetramethyl-
97384-48-0Benzenepropanenitrile, α-Citrowanil ® B0.00265000
ethenyl-α-methyl-
141-13-99-Undecenal, 2,6,10-trimethyl-Adoxal0.00257000
2110-18-1Pyridine, 2-(3-phenylpropyl)-Corps Racine VS0.00257000
27606-09-3Indeno[1,2-d]-1,3-dioxin, 4,4a,5,Magnolan0.00251000
9b-tetrahydro-2,4-dimethyl-
67634-20-2Propanoic acid, 2-methyl-, 3a,4,Cyclabute0.00244000
5,6,7,7a-hexahydro-4,7-
methano-1H-inden-5-yl ester
65405-72-31-Naphthalenol, 1,2,3,4,4a,7,8,Oxyoctaline Formate0.00236000
8a-octahydro-2,4a,5,8a-
tetramethyl-, 1-formate
122-40-7Heptanal, 2-(phenylmethylene)-Amyl Cinnamic0.00233000
Aldehyde
103694-68-42,2-dimethyl-3-(3-Majantol ®0.00224000
methylphenyl)propan-1-ol
13215-88-82-Cyclohexen-1-one, 4-(2-buten-Tabanone Coeur0.00223000
1-ylidene)-3,5,5-trimethyl-
25152-85-63-Hexen-1-ol, 1-benzoate, (3Z)-Cis-3-Hexenyl Benzoate0.00203000
406488-30-02-Ethyl-N-methyl-N-(m-Paradisamide0.00200000
tolyl)butanamide
121-33-5Benzaldehyde, 4-hydroxy-3-Vanillin0.00194000
methoxy-
77-54-31H-3a,7-Methanoazulen-6-ol,Cedac0.00192000
octahydro-3,6,8,8-tetramethyl-,
6-acetate, (3R,3aS,6R,7R,8aS)-
76842-49-44,7-Methano-1H-inden-6-ol, 3a,Frutene0.00184000
4,5,6,7,7a-hexahydro-8,8-
dimethyl-, 6-propanoate
121-39-12-Oxiranecarboxylic acid, 3-Ethyl Phenyl Glycidate0.00184000
phenyl-, ethyl ester
211299-54-64H-4a,9-Methanoazuleno[5,6-d]-Ambrocenide ®0.00182000
1,3-dioxole, octahydro-2,2,5,8,
8,9a-hexamethyl-, (4aR,5R,7aS,
9R)-
285977-85-7(2,5-Dimethyl-1,3-dihydroinden-Lilyflore0.00180000
2-yl)methanol
10094-34-5Butanoic acid, 1,1-dimethyl-2-Dimethyl Benzyl0.00168000
phenylethyl esterCarbinyl Butyrate
40785-62-4Cyclododeca[c]furan, 1,3,3a,4,5,Muscogene0.00163000
6,7,8,9,10,11,13a-dodecahydro-
75490-39-0Benzenebutanenitrile, α,α,γ-Khusinil0.00162000
trimethyl-
55418-52-52-Butanone, 4-(1,3-benzodioxol-Dulcinyl0.00161000
5-yl)-
3943-74-6Benzoic acid, 4-hydroxy-3-Carnaline0.00157000
methoxy-, methyl ester
72089-08-83-Cyclopentene-1-butanol, β,2,2,Brahmanol ®0.00154000
3-tetramethyl-
2-Methyl-4-(2,2,3-trimethyl-3-
cyclopenten-1-yl)butanol
3155-71-32-Butenal, 2-methyl-4-(2,6,6-Boronal0.00147000
trimethyl-1-cyclohexen-1-yl)-
2050-08-0Benzoic acid, 2-hydroxy-, pentylAmyl Salicylate0.00144000
ester
41199-20-62-Naphthalenol, decahydro-2,5,Ambrinol0.00140000
5-trimethyl-
12262-03-2ndecanoic acid, 3-methylbutylIso Amyl Undecylenate0.00140000
ester
107-74-41,7-Octanediol, 3,7-dimethyl-Hydroxyol0.00139000
91-64-52H-1-Benzopyran-2-oneCoumarin0.00130000
68901-32-61,3-Dioxolane, 2-[6-methyl-8-Glycolierral0.00121000
(1-methylethyl)bicyclo[2.2.2]
oct-5-en-2-yl]-
68039-44-1Propanoic acid, 2,2-dimethyl-,Pivacyclene0.00119000
3a,4,5,6,7,7a-hexahydro-4,7-
methano-1H-inden-6-yl ester
106-29-6Butanoic acid, (2E)-3,7-Geranyl Butyrate0.00116000
dimethyl-2,6-octadien-1-yl ester
5471-51-22-Butanone, 4-(4-Raspberry ketone0.00106000
hydroxyphenyl)-
109-42-210-Undecenoic acid, butyl esterButyl Undecylenate0.00104000
*Vapour Pressures were acquired from Scifinder, which utilises the ACD Software Version 2015, as described in the Test Methods Section.
**Origin: The highly volatile PRMs may be obtained from one or more of the following companies: Firmenich (Geneva, Switzerland), Symrise AG (Holzminden, Germany), Givaudan (Argenteuil, France), IFF (Hazlet, New Jersey), Bedoukian (Danbury, Connecticut), Sigma Aldrich (St. Louis, Missouri), Millennium Speciality Chemicals (Olympia Fields, Illinois), Polarone International (Jersey City, New Jersey), and Aroma & Flavor Specialities (Danbury, Connecticut).
§Torr can be converted into kPa units by multiplying the Torr value by 0.133.

[0169]

Exemplary highly volatile PRMs selected from the group consisting of the ingredients mentioned in Table 1 are preferred. However, it is understood by one skilled in the art that other highly volatile perfume raw materials, not recited in Table 1, would also fall within the scope of the present invention, so long as they have a vapour pressure greater than 0.001 Torr (>0.00013 kPa) at 25° C. Preferably, the highly volatile perfume raw material is selected from the group consisting of 2,2-dimethyl-3-(3-methylphenyl)propan-1-ol, and 2-phenyl-ethanol.

[0170]

Furthermore, the fragrance composition comprises a perfume raw material, wherein the perfume raw material further comprises at least one, two, three, four or more low volatility perfume raw materials having a vapour pressure less than 0.001 Torr (<0.00013 kPa) at 25° C., and the low volatility perfume raw material is present in an amount from 0.001 wt % to 50 wt %, preferably less than 40 wt %, or preferably less than 30 wt %, wherein the wt % is relative to the total weight of the perfume raw material. Preferable non-limiting examples of low volatility perfume raw materials having a vapour pressure less than 0.001 Torr (<0.00013 kPa) at 25° C. are listed in Table 2.

[0000]

Low Volatility Perfume Raw Materials for Use in the Fragrance Compositions
CASVapor Pressure
NumberChemical NameCommon Name**(Torr at 25° C.) *§
1211-29-6Cyclopentaneacetic acid, 3-oxo-2-Methyl jasmonate0.00096500
(2Z)-2-penten-1-yl-, methyl ester,
(1R,2R)-
28219-60-52-Buten-1-ol, 2-methyl-4-(2,2,3-Hindinol0.00096100
trimethyl-3-cyclopenten-1-yl)-
93-08-3Ethanone, 1-(2-naphthalenyl)-Methyl beta-naphthyl0.00095700
ketone
67633-95-83-Decanone, 1-hydroxy-Methyl Lavender0.00095100
Ketone
198404-98-7Cyclopropanemethanol, 1-methyl-Javanol ®0.00090200
2-[(1,2,2-trimethylbicyclo[3.1.0]
hex-3-yl)methyl]-
121-32-4Benzaldehyde, 3-ethoxy-4-Ethyl vanillin0.00088400
hydroxy-
72403-67-93-Cyclohexene-1-methanol, 4-(4-Myraldylacetate0.00087900
methyl-3-penten-1-yl)-, 1-acetate
28940-11-62H-1,5-Benzodioxepin-3(4H)-one,Calone0.00083100
7-methyl-
139504-68-02-Butanol, 1-[[2-(1,1-Amber core0.00080300
dimethylethyl)cyclohexyl]oxy]-
502847-01-0Spiro[5.5]undec-8-en-1-one, 2,2,7,Spiro[5.5]undec-8-en-1-0.00073100
9-tetramethyl-one, 2,2,7,9-
tetramethyl-
2570-03-8Cyclopentaneacetic acid, 3-oxo-2-trans-Hedione0.00071000
pentyl-, methyl ester, (1R,2R)-rel-
24851-98-7 (orCyclopentaneacetic acid, 3-oxo-2-Methyl0.00071000
128087-96-7)pentyl-, methyl esterdihydrojasmonate or
alternatives 1
101-86-0Octanal, 2-(phenylmethylene)-Hexyl cinnamic0.00069700
aldehyde
365411-50-3Indeno[4,5-d]-1,3-dioxin, 4,4a,5,6,Nebulone0.00069200
7,8,9,9b-octahydro-7,7,8,9,9-
pentamethyl-
37172-53-5Cyclopentanecarboxylic acid, 2-Dihydro Iso Jasmonate0.00067500
hexyl-3-oxo-, methyl ester
65113-99-73-Cyclopentene-1-butanol, α,β,2,2,Sandalore ®0.00062500
3-pentamethyl-
68133-79-9Cyclopentanone, 2-(3,7-dimethyl-2,Apritone0.00062000
6-octadien-1-yl)-
7212-44-41,6,10-Dodecatrien-3-ol, 3,7,11-Nerolidol0.00061600
trimethyl-
53243-59-72-Pentenenitrile, 3-methyl-5-Citronitril0.00061500
phenyl-, (2Z)-
134123-93-6Benzenepropanenitrile, 4-ethyl-α,α-Fleuranil0.00057600
dimethyl-
77-53-21H-3a,7-Methanoazulen-6-ol,Cedrol Crude0.00056900
octahydro-3,6,8,8-tetramethyl-,
(3R,3aS,6R,7R,8aS)-
68155-66-8Ethanone, 1-(1,2,3,5,6,7,8,8a-Iso Gamma Super0.00056500
octahydro-2,3,8,8-tetramethyl-2-
naphthalenyl)-
54464-57-2Ethanone, 1-(1,2,3,4,5,6,7,8-Iso-E Super ®0.00053800
octahydro-2,3,8,8-tetramethyl-2-
naphthalenyl)-
774-55-0Ethanone, 1-(5,6,7,8-tetrahydro-2-Florantone0.00053000
naphthalenyl)-
141-92-42-Octanol, 8,8-dimethoxy-2,6-Hydroxycitronellal0.00052000
dimethyl-Dimethyl Acetal
20665-85-4Propanoic acid, 2-methyl-, 4-Vanillin isobutyrate0.00051200
formyl-2-methoxyphenyl ester
79-78-71,6-Heptadien-3-one, 1-(2,6,6-Hexalon0.00049800
trimethyl-2-cyclohexen-1-yl)-
6259-76-3Benzoic acid, 2-hydroxy-, hexylHexyl Salicylate0.00049100
ester
93-99-2Benzoic acid, phenyl esterPhenyl Benzoate0.00047900
153859-23-5Cyclohexanepropanol, 2,2,6-Norlimbanol0.00046900
trimethyl-α-propyl-, (1R,6S)-
70788-30-6Cyclohexanepropanol, 2,2,6-Timberol0.00046900
trimethyl-α-propyl-
68555-58-8Benzoic acid, 2-hydroxy-, 3-Prenyl Salicylate0.00045700
methyl-2-buten-1-yl ester
950919-28-52H-1,5-Benzodioxepin-3(4H)-one,Cascalone0.00045500
7-(1-methylethyl)-
30168-23-1Butanal, 4-(octahydro-4,7-Dupical0.00044100
methano-5H-inden-5-ylidene)-
1222-05-5Cyclopenta[g]-2-benzopyran, 1,3,4,Galaxolide ®0.00041400
6,7,8-hexahydro-4,6,6,7,8,8-
hexamethyl-
4602-84-02,6,10-Dodecatrien-1-ol, 3,7,11-Farnesol0.00037000
trimethyl-
95962-14-4Cyclopentanone, 2-[2-(4-methyl-3-Nectaryl0.00036700
cyclohexen-1-yl)propyl]-
4674-50-42(3H)-Naphthalenone, 4,4a,5,6,7,8-Nootkatone0.00035800
hexahydro-4,4a-dimethyl-6-(1-
methylethenyl)-, (4R,4aS,6R)-
3487-99-82-Propenoic acid, 3-phenyl-, pentylAmyl Cinnamate0.00035200
ester
10522-41-52-hydroxy-2-phenylethy acetatehydroxyphenethyl0.00033900
acetate
118-71-84H-Pyran-4-one, 3-hydroxy-2-Maltol0.00033700
methyl-
128119-70-01-Propanol, 2-methyl-3-[(1-7,7-Bornafix0.00033400
trimethylbicyclo[2.2.1]hept-2-yl)
oxy]-
103614-86-41-Naphthalenol, 1,2,3,4,4a,5,8,8a-Octalynol0.00033200
octahydro-2,2,6,8-tetramethyl-
7785-33-32-Butenoic acid, 2-methyl-, (2E)-3,Geranyl Tiglate0.00033200
7-dimethyl-2,6-octadien-1-yl ester,
(2E)-
117933-89-81,3-Dioxane, 2-(2,4-dimethyl-3-Karanal0.00033100
cyclohexen-1-yl)-5-methyl-5-(1-
methylpropyl)-
629-92-5NonadecaneNonadecane0.00032500
67801-20-14-Penten-2-ol, 3-methyl-5-(2,2,3-Ebanol0.00028100
trimethyl-3-cyclopenten-1-yl)-
65416-14-0Propanoic acid, 2-methyl-, 2-Maltol Isobutyrate0.00028000
methyl-4-oxo-4H-pyran-3-yl ester
28219-61-62-Buten-1-ol, 2-ethyl-4-(2,2,3-Laevo Trisandol0.00028000
trimethyl-3-cyclopenten-1-yl)-
5986-55-01,6-Methanonaphthalen-1(2H)-ol,Healingwood0.00027800
octahydro-4,8a,9,9-tetramethyl-,
(1R,4S,4aS,6R,8a5)-
195251-91-32H-1,5-Benzodioxepin-3(4H)-one,Transluzone0.00026500
7-(1,1-dimethylethyl)-
120-51-4Benzoic acid, phenylmethyl esterBenzyl Benzoate0.00025400
3100-36-58-Cyclohexadecen-1-oneCyclohexadecenone0.00025300
65405-77-8Benzoic acid, 2-hydroxy-, (3Z)-3-cis-3-Hexenyl salicylate0.00024600
hexen-1-yl ester
4940-11-84H-Pyran-4-one, 2-ethyl-3-Ethyl Maltol0.00022800
hydroxy-
541-91-3Cyclopentadecanone, 3-methyl-Muskone0.00017600
118-58-1Benzoic acid, 2-hydroxy-,Benzyl salicylate0.00017500
phenylmethyl ester
81783-01-96,8-Nonadien-3-one, 2,4,4,7-Labienoxime0.00017300
tetramethyl-, oxime
25485-88-5Benzoic acid, 2-hydroxy-,Cyclohexyl Salicylate0.00017300
cyclohexyl ester
91-87-2Benzene, [2-(dimethoxymethyl)-1-Amyl Cinnamic0.00016300
hepten-1-yl]-Aldehyde Dimethyl
Acetal
104864-90-63-Cyclopentene-1-butanol, β,2,2,3-Firsantol0.00016000
tetramethyl-δ-methylene-
224031-70-34-Penten-1-one, 1-spiro[4.5]dec-7-Spirogalbanone0.00015300
en-7-yl-
134-28-15-Azulenemethanol,Guaiyl Acetate0.00013400
1,2,3,4,5,6,7,8-octahydro-α,α,3,8-
tetramethyl-, 5-acetate, (3S,5R,8S)-
236391-76-7Acetic acid, 2-(1-oxopropoxy)-, 1-Romandolide ®0.00012400
(3,3-dimethylcyclohexyl)ethyl ester
115-71-92-Penten-1-ol, 5-[(1R,3R,6S)-2,3-cis-alpha-Santalol0.00011800
dimethyltricyclo[2.2.1.02,6]hept-3-
yl]-2-methyl-, (2Z)-
107898-54-44-Penten-2-ol, 3,3-dimethyl-5-(2,2,Polysantol ®0.00011700
3-trimethyl-3-cyclopenten-1-yl)-
69486-14-25,8-Methano-2H-1-benzopyran-2-Florex ®0.00011000
one, 6-ethylideneoctahydro-
84697-09-6Heptanal, 2-[(4-methylphenyl)Acalea0.00010100
methylene]-
14595-54-14-Cyclopentadecen-1-one, (Z)-Exaltenone0.00009640
32388-55-9Ethanone, 1-[(3R,3aR,7R,8aS)-2,3,Vertofix ®0.00008490
4,7,8,8a-hexahydro-3,6,8,8-
tetramethyl-1H-3a,7-
methanoazulen-5-yl]-
131812-67-41,3-Dioxolane, 2,4-dimethyl-2-(5,6,Okoumal ®0.00007600
7,8-tetrahydro-5,5,8,8-tetramethyl-
2-naphthalenyl)-
106-02-5Oxacyclohexadecan-2-oneExaltolide ®0.00006430
141773-73-11-Propanol, 2-[1-(3,3-Helvetolide ®0.00005790
dimethylcyclohexyl)ethoxy]-2-
methyl-, 1-propanoate
63314-79-45-Cyclopentadecen-1-one, 3-Delta Muscenone0.00005650
methyl-
77-42-92-Penten-1-ol, 2-methyl-5-cis-beta-Santalol0.00004810
[(1S,2R,4R)-2-methyl-3-
methylenebicyclo[2.2.1]hept-2-yl]-,
(2Z)-
362467-67-22H-1,5-Benzodioxepin-3(4H)-one,Azurone0.00004770
7-(3-methylbutyl)-
28371-99-5Ethanone, 1-(2,6,10-trimethyl-2,5,Trimofix O0.00004580
9-cyclododecatrien-1-yl)-
16223-63-51H-3a,6-Methanoazulene-3-Khusimol0.00004400
methanol, octahydro-7,7-dimethyl-
8-methylene-, (3S,3aR,6R,8aS)-
10461-98-0Benzeneacetonitrile, α-Peonile0.00004290
cyclohexylidene-
50607-64-2Benzoic acid, 2-[(2-Mevantraal0.00004070
methylpentylidene)amino]-, methyl
ester
29895-73-65-Hydroxy-2-benzyl-1,3-dioxaneAcetal CD0.00004050
94-47-3Benzoic acid, 2-phenylethyl esterPhenyl Ethyl Benzoate0.00003480
3100-36-5Cyclohexadec-8-en-1-oneGlobanone ®0.00003310
37609-25-95-Cyclohexadecen-1-OneAmbretone0.00003310
66072-32-0Cyclohexanol, 4-(1,7,7-Iso Bornyl0.00003010
trimethylbicyclo[2.2.1]hept-2-yl)-Cyclohexanol
31906-04-43-Cyclohexene-1-carboxaldehyde,Lyral ®0.00002940
4-(4-hydroxy-4-methylpentyl)-
21145-77-7Ethanone, 1-(5,6,7,8-tetrahydro-Musk Plus0.00002860
3,5,5,6,8,8-hexamethyl-2-
naphthalenyl)-
21145-77-7Ethanone, 1-(5,6,7,8-tetrahydro-3,Fixolide0.00002860
5,5,6,8,8-hexamethyl-2-
naphthalenyl)-
22442-01-92-Cyclopentadecen-1-one, 3-Muscenone0.00002770
methyl-
109-29-5Oxacycloheptadecan-2-oneSilvanone Ci0.00002600
101-94-0Benzeneacetic acid, 4-Para Cresyl Phenyl0.00002330
methylphenyl esterAcetate
102-20-5Benzeneacetic acid, 2-phenylethylPhenyl Ethyl Phenyl0.00002300
esterAcetate
118562-73-5Cyclododecaneethanol, β-methyl-Hydroxyambran0.00001800
103-41-32-Propenoic acid, 3-phenyl-,Benzyl Cinnamate0.00001050
phenylmethyl ester
4707-47-5Benzoic acid, 2,4-dihydroxy-3,6-Veramoss0.00001050
dimethyl-, methyl ester
183551-83-9Naphtho[2,1-b]furan-6(7H)-one, 8,Myrrhone0.00000977
9-dihydro-1,5,8-trimethyl-, (8R)-
102-17-0Benzeneacetic acid, (4-Para Anisyl Phenyl0.00000813
methoxyphenyl)methyl esterAcetate
120-11-6Benzene, 2-methoxy-1-Benzyl Iso Eugenol0.00000676
(phenylmethoxy)-4-(1-propen-1-yl)-
102-22-7Benzeneacetic acid, (2E)-3,7-Geranyl Phenylacetate0.00000645
dimethyl-2,6-octadien-1-yl ester
111879-80-2Oxacyclohexadec-12-en-2-one,Habanolide 100%0.00000431
(12E)-
87-22-9Benzoic acid, 2-hydroxy-, 2-Phenyl Ethyl Salicylate0.00000299
phenylethyl ester
78-37-52-Propenoic acid, 3-phenyl-, 1-Linalyl Cinnamate0.00000174
ethenyl-1,5-dimethyl-4-hexen-1-yl
ester
28645-51-4Oxacycloheptadec-10-en-2-oneAmbrettolide0.00000139
123-69-3Oxacycloheptadec-8-en-2-one, (8Z)-Ambrettolide0.00000136
3391-83-11,7-Dioxacycloheptadecan-8-oneMusk RI0.00000057
68527-79-77-Octen-2-ol, 8-(1H-indol-1-yl)-Indolene0.000000445
2,6-dimethyl-
89-43-0Methyl 2-[(7-hydroxy-3,7-Aurantinol0.0000000100
dimethyloctylidene)amino]benzoate
54982-83-11,4-Dioxacyclohexadecane-5,16-Zenolide0.00000000834
dione
105-95-31,4-Dioxacycloheptadecane-5,17-Ethylene Brassylate0.00000000313
dione
3681-73-0Hexadecanoic acid, (2E)-3,7-Hexarose0.00000000300
dimethyl-2,6-octadien-1-yl ester
4159-29-9Phenol, 4-[3-(benzoyloxy)-1-Coniferyl benzoate0.00000000170
propen-1-yl]-2-methoxy-
144761-91-1Benzoic acid, 2-[(1-hydroxy-3-Trifone DIPG0.00000000093
phenylbutyl)amino]-, methyl ester
* Vapour Pressures were acquired from Scifinder, which utilises the ACD Software Version 2015, as described in the Test Methods Section.
**Origin: same as above for Table 1.
§ Torr can be converted into kPa units by multiplying the Torr value by 0.133.

Test Methods

[0171]

The following assays set forth must be used in order that the invention described and claimed herein may be more fully understood.

Test Method 1: Calculated/Predicted Vapour Pressure of the Perfume Raw Materials

[0172]

In order to determine the vapour pressure for the pure perfume raw materials, go to the website https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf and follow these steps to acquire the predicted vapour pressure.

[0173]

1. Input the CAS registry number for the particular fragrance material.

[0174]

2. Select the vapour pressure from the search results.

[0175]

3. Record the vapour pressure (given in Torr at 25° C.). SciFinder uses Advanced Chemistry Development (ACD/Labs) Software Version 2015 (or preferably the latest version update) to calculate a predicted vapour pressure for the particular pure material. If the CAS number for the particular PRM is unknown or does not exist, you can utilize the ACD/Labs reference program to directly determine the vapour pressure. Vapour Pressure is expressed in Torr, wherein 1 Torr is equal to 0.133 kilopascal (kPa).

Test Method 2: Isoteniscope Vapour Pressure

[0176]

Prior to beginning the isoteniscope measurements, all ionic liquids are purified by vacuum evaporation to remove the last traces of volatile impurities and water. The PRMs are dried over molecular sieves. All mixtures are prepared gravimetrically. Samples with PRMs and ionic liquids are checked visually for miscibility prior to use. Any samples found to contain more than a single phase are not measured in this method, which typically can occur at higher levels of PRMs (e.g., 0.6 and 0.8 mole fractions).

[0177]

The Isoteniscope Vapour Pressure Test Method used to experimentally determine the vapour pressure of the pure perfume raw materials and the perfume raw materials in combination with the ionic liquids is a modified version of ASTM D2879-10 wherein the following alterations are made:

Section 6: Apparatus

[0000]

    • 6.2: in place of a constant-temperature air bath, a constant-temperature silicone oil bath is used.
    • 6.3: a hot plate with temperature sensor (IKA RCT basic) and mercury thermometer is used.

[0180]

6.4: a vacuum pump Edwards model RV8 is used.

[0181]

6.5: a Schlenk manifold is used.

[0182]

6.6: an Edwards APG100 active pirani vacuum gauge is used.

[0183]

6.7: an active digital controller Edwards (output of pressure gauge) is used.

[0184]

6.10: air is used in place of nitrogen throughout.

[0185]

6.12: the alcohol lamp is substituted for warming by holding via in the palm of the hands.

Section 8: Procedure

[0186]

Add to the isoteniscope a quantity of sample to fill the reservoir and have a similar level in the U-bend. Attach the isoteniscope to the Schlenk manifold and evacuate the bulb system and isoteniscope to 0.1 Torr (0.013 kPa). The pressure is maintained to degas the system. Expose the material to a continuous vacuum for several minutes with gentle warming (e.g., rubbing by hand) and tilting of the isoteniscope to spread out the material.

[0187]

Place the filled isoteniscope vertically into the oil bath and allow to equilibrate. The method used herein uses a lower pressure ((0.1 Torr; 0.013 kPa) rather than the 1 Torr (0.13 kPa) in ASTM D2879-10) and longer exposure time (5 minutes rather than 1 min in ASTM D2879-10) to degas the sample. The U-tube levels are adjusted by controlling the strength of the vacuum rather than by adding nitrogen as in ASTM D2879-10. Repeat measurements at intervals of 5K rather than 25K.

[0188]

Vapour pressures for the pure PRMs and for the mixtures of ionic liquid and PRM are reported as described in section 9.2 of the ASTM D2879-10 method. The measured vapour pressures are used to calculate the activity coefficients as specified herein.

Test Method 3: Gas-Phase Infrared Spectroscopy Method

[0189]

This method determines the relative gas-phase concentration (rc) of a given volatile material in a composition. In particular, the method correlates the relative gas-phase concentrations of a PRM and the IR absorbances of its vapour phase in a gas-phase IR cell. Infrared spectroscopy is well known analytical technique with details provided in references such as Williams, D. H., Fleming, I., & Pretsch, E. (1989). Spectroscopic Methods. Organic Chemistry, (1989); Skoog, D. A., & West, D. M. (1980). Principles of instrumental analysis (Vol. 158). Philadelphia: Saunders College; and Alpert, N. L., Keiser, W. E., & Szymanski, H. A. (2012). IR: theory and practice of infrared spectroscopy. Springer Science & Business Media.

[0190]

The method requires the equipment as listed in Table 3.

[0000]

Equipment
EquipmentSupplier
IR gas cell: 8 metres path-length Specac Cyclone C5 gasSpecac
cell
Heating mantle: Heating jacket and 4000 series temperatureSpecac
controller
Spectrometer: Spectrum 100 FT-IRPerkin Elmer

[0191]

The method includes the following steps:

[0192]

Step 1—Registration of the Background

[0193]

This step is to be completed before each new sample measurement to evacuate all impurities.

    • a) The IR gas cell is heated with a heating mantle, under vacuum (VP: 675 Torr/90 kPa), to 150° C. and held for 25 mins at that temperature.
    • b) The IR gas cell is cleaned by being flushed with N2gas for another 20 mins while keeping the temperature of the system at 150° C. with the heating mantle.
    • c) After the cleaning step, the gas phase is checked by running an IR scan of the background in the evacuated IR gas cell in order to determine if there is any residual PRM at the characteristic wavenumber of interest. See FIG. 5 for a typical trace. If a signal is detected, i.e. if the baseline is not flat, the cleaning procedure is repeated until no signal is detected.

[0197]

Any other volatile component which might affect the spectra has been registered in the background so it can be taken into account in the quantification of the PRM signal.

[0198]

Step 2—Identification of the Characteristic Peak for a Given Perfume Raw Material

[0199]

The identification of the fingerprint of the PRM is done by running a mid-IR scan of the vapour phase of the pure PRM in the temperature range of 30-100° C. under vacuum (VP: 675 Torr/90 kPa). The mid-IR range is between about 4,000 and 400 cm−1. See FIG. 1 for an example IR spectrum for a PRM (e.g., dimethyl benzyl carbinyl butyrate (DMBCB)). With continued reference to FIG. 1, the wavenumber is given on the x-axis and the absorbance intensity in Absorbance Unit (A.U.) on the y-axis.

[0200]

Carbon dioxide in the atmosphere external to the cell is seen in a broad structure band at about 2,400 cm−1, water exhibits a vibrational-rotational spectrum, with rotational fine structure, from 4,000-3,500 cm−1and a bending mode at 2,000 and the Calcium Floride is observed at less than 1,500 cm−1. This gives the method two useful analytical regions of the spectrum at 2,000-1,500 cm−1and 3,000-2,500 cm−1. For dimethyl benzyl carbonyl butyrate (“DMBCB”), the CO stretch can be seen clearly with an absorbance peak at 1,746 cm−1and a CH stretch with an absorbance peak at 2,890 cm−1. In this instance the 1,746 cm−1peak is the cleanest peak to work with. Some characteristic wavenumbers for common bonds in PRMs are set out in Table 4.

[0000]

Wavenumbers for Common Bonds in PRMs
BondsAbsorption Region/cm−1
C—C, C—O, C—N1,300-800
C═C, C═O, C═N, N═O1,900-1,500
C≡C, C≡N2,300-2,000
C—H, N—H, O—H3,800-2,700

[0201]

Other example of PRMs include, such as, Citrowanil® B will have a cyanide stretch at 3,099 cm−1, 3,076 cm−1, 3,041 cm−1, 2,993 cm−1, and 2,944 cm−1(See FIG. 2).

[0202]

Step 3—Identification of the Absence of Characteristic Peak for Unperfumed Ionic Liquid

[0203]

The fingerprint of the neat ionic liquid is obtained by running an IR scan of its vapour phase at 25° C. or 40° C. At this temperature no peaks are detected. If a peak (other than originating with water or carbon dioxide) is detected the ionic liquid has been contaminated and a new clean sample must be used.

[0204]

Step 4—Characterization of the Gas Phase of Mixtures of Ionic Liquids and PRMs

    • a) The vial containing the test sample is introduced into the IR gas cell. 0.5 g of the test sample is placed on circular tray (diameter 13 mm). It is placed inside the IR gas cell so that it does not interfere with the IR beam pathway.
    • b) The IR gas cell is closed and is set up under vacuum (VP: 675 Torr/90 kPa).
    • c) The system is heated up to a temperature between 25-80° C., preferably 25° C., 30° C., 40° C., 45° C., 55° C., 65° C., and 75° C., and held at that temperature.
    • d) After 40 mins a spectrum is recorded. A second spectrum is recorded after a further 10 mins. If there is no increase in the intensity of the IR peak (change is less than the standard deviation of the method) then it is deemed that equilibrium has been reached. If this condition is not met the spectrum is recorded every 10 mins until this condition is met. The final spectrum at steady-state is recorded for that sample.

[0209]

Step 5—Calculation of Relative Gas Phase Concentration

[0210]

The peak area (Ai) and height (hi) are taken as the difference between the peak background baseline recorded with the evacuated cell (as in Step 1 of this procedure) and the peak recorded with the equilibrated sample of interest in the cell. It is the difference in the absorbance for the evacuated cell and the sample of interest.

[0211]

The peak area (Ai) and height (hi) are recorded for the characteristic signal for:

    • a) the pure PRM. This is proportional to the pure PRM gas-phase concentration, ci0and the vapour pressure for the pure PRM, Pi0;and
    • b) each particular PRM-ionic liquid mixture. This is proportional to the gas-phase concentration and hence the vapour pressure of the PRM in the gas phase.

[0214]

It is generally preferable to use the peak height rather than peak area but this may vary depending on the PRM and its characteristic spectrum. The relative gas phase concentration for any PRM-ionic liquid mixture is calculated as a ratio of its peak height to that of the pure PRM peak height. Therefore the activity co-efficient (γ) at a given PRM mole concentration can be calculated as follows:

[0000]


γiX=rciX/(Xirci0)

[0000]


γiX=hiX/(Xi*hi0)

Test Method 3: Closed Headspace Gas Chromatography

[0215]

At the beginning of the measurements, all ionic liquids are purified by vacuum evaporation to remove the last traces of volatile compounds. The PRMs are dried over molecular sieves. All mixtures are prepared gravimetrically. Headspace gas chromatography measurements are carried out with a static apparatus with a headspace sampler from Agilent Technologies. The term “headspace” refers to the vapour space above the liquid sample placed in a vial. The 20 cm3sealed vials move from the sample tray into an oven, in which the vials are heated to a temperature of 305 K (i.e., 32° C.). After reaching equilibrium between the liquid and the vapour phase, the vapour phase of the respective vial is analyzed by gas chromatography (Agilent Technologies) with a flame ionization detector. Since ionic liquids have no measurable vapour pressure, they do not contribute to the gas phase, and hence to the total pressure.

Test Method 4: Olfactory Tests

[0216]

In order to show the effect of the ionic liquids on the perception of fragrance profile in a fragrance composition of the present invention, test compositions are made, as described in the Example section, and given to panelists to sample.

[0217]

At the testing facility, 50 μL samples of the fragrance compositions or the controls are applied to glass slides and placed on a hot plate at 32° C. to represent skin temperature for varying durations. The trained/expert panelists are asked to evaluate the perceived fragrance profile (intensity and/or character) from each pair of samples, i.e., that of the test composition of the present invention vs. the corresponding control, at time 0 and later time points (e.g., 1, 3, 6, 8 and up to 24 hrs post application) as the fragrance profile evolves. Their assessments are recorded. Panelists are selected from individuals who are either trained to evaluate fragrances according to the scales below or who have considerable experience of fragrance evaluation in the industry (i.e., experts).

[0218]

(a) Fragrance Intensity:

[0219]

The panelists are asked to give a score on a scale of 0 to 10 for perceived fragrance intensity according to the odor intensity scale set out in Table 5 herein below.

[0000]

Odour Intensity Scale
ScoreFragrance Intensity
0Not detectable
2Weak
4Moderate
6Strong
8Very Strong
10Overpowering

[0220]

(b) Fragrance Character:

[0221]

The panelists provide an expert description of the character of the sample.

EXAMPLES

[0222]

The following examples are provided to further illustrate the present invention and are not to be construed as limitations of the present invention, as many variations of the present invention are possible without departing from its spirit or scope.

[0223]

The structures of the ionic liquids of the present invention can be characterized by various techniques well-known to the skilled person, including for example:1H NMR (nuclear magnetic resonance) spectroscopy,13C NMR spectroscopy, halogen analysis and CHN elemental analysis.

[0224]

Nuclear magnetic resonance (“NMR”) spectroscopy is a spectrometric technique well-known to the skilled person and used herein to characterize the ionic liquids prepared herein.

[0225]

Mass Spectrometry (“MS”) is a spectrometric technique used herein to quantify the mass to charge ratio of particles or molecules. Two different methods of MS are used: electron spray MS (“ES-MS”) and electron ionization MS (“EI-MS”). ES-MS is used for non-volatile materials such as the ionic liquids. EI-MS is used for volatile materials such as the precursor materials.

Example 1

Synthesis of Ionic Liquids

[0226]

The general method for synthesizing ionic liquids of the present invention consists of: (i) synthesis of a halide precursor; (ii) synthesis of the tertiary amine (iii) quaternisation of an amine using a haloalkane in order to obtain an ionic liquid with a halide anion; and (iv) metathesis (i.e., anion exchange) reaction in order to create the target ionic liquid. This is illustrated in Reaction Scheme 1.

Reaction Scheme 1

General Synthesis of Targeted Ionic Liquids

[0000]

  • (i) Precursor synthesis step: R—OH+SOCl2→R—X
  • (ii) Synthesis of the tertiary amine: R2—NH+R—X→NR3
  • (iii) Quaternisation step: R—X+NR3→[Cation]X
  • (iv(a)) Metathesis Step:X+M[Anion]→[Cation][Anion]+MX
    • where X=F, Cl, Br or I;
    • where M=Na or K

[0233]

Alternatively, the methathesis step can be performed by adding a Brønsted acid of higher acidity than that of the corresponding hydrogen halide. In such case, the methathesis reaction would be preferably defined as a neutralization reaction. For example:

  • (iv(b)) Neutralization Step:X+H[Anion]→[Cation][Anion]+HX
    • where X=F, Cl, Br or I

[0236]

Ionic liquids are formed by combining salts of a cation and an anion (e.g., sodium or potassium salts of the anion and a chloride salt of the cation). Different ionic liquids can be synthesized such that the interactions between the ionic liquids and the solutes (i.e., PRMs) are optimized, preferably to provide for a negative deviation from Raoult's Law. Ionic liquids lend themselves to preparation via combinatorial or high throughput chemistry. The steps shown in the Reaction Scheme 1 are described below in more details.

[0000]

Step (ii): Synthesis of the Tertiary Amines

[0237]

Synthesis of 1-butyl-3-methylimidazolium chloride: A mixture of 1-methylimidazole (70.0 g, 0.853 mol), ethanenitrile (50 mL) and 1-chlorobutane (102 g, 1.10 mol) are heated under reflux with vigorous stirring for 48 hrs. 1-chlorobutane (99.5%) is sourced from a commercial supplier (Sigma-Aldrich). Volatile substances are removed in a first step under reduced pressure (ca. 50° C., 20 mbar), and finally, in vacuo (ca. 80° C., 0.01 mbar) during 16 hrs, yielding 1-butyl-3-methylimidazolium chloride ([C4mim]Cl, 131.8 g, 88.6%) as a pale yellow viscous liquid which crystallizes upon cooling to room temperature.

[0238]

2-(2-methoxyethoxy)-N-[2-(2-methoxyethoxy)ethyl]-N,N-dimethylethan-1-aminium chloride: A solution of the 2-(2-methoxyethoxy)-N,N-dimethylethan-1-amine (10.00 g, 0.0679 mol), 1-chloro-2-(2-methoxyethoxy)ethane (9.41 g, 0.0679 mol) was added in air to a screw-capped glass tube. The mixture was then stirred (700 rpm) at 50° C. for a week. The orange residue was then washed with ethyl ethanoate (20 cm3×3), cyclohexane (20 cm3×2), and roughly dried using a rotovaporator at 40° C. to leave a hygroscopic orange solid, which was finally dried in vacuo at 40° C. for 3 d (18.50 g, 95% of yield).

[0000]

Exemplary Ionic Liquids with Halide Anion from Quaternisation Reaction
ExamleChemical NameChemical Structure
Ionic Liquid 11-butyl-3-methylimidazolium chloride
Ionic Liquid 21-butyl-3-methylimidazolium bromide
Ionic Liquid 32-(2-methoxyethoxy)-N-[2-(2- methoxyethoxy)ethyl]-N,N- dimethylethan-1-aminium chloride
Ionic Liquid 41-ethanaminium, N,N,N-tris[2- (2-methoxyethoxy)ethyl]- bromide

Reaction Scheme 3

Step (iv): Metathesis Synthesis Reaction of L-Prolinate, Acesulfame and Docusate Ionic Liquids

[0239]

The synthesis of ionic liquids having anions derived from a-amino-acids can be performed via a series of three consecutive neutralization steps, as shown in the following Reaction Scheme 3, whereby the first step is essentially identical to that described in the Methathesis Step (iiib) above.

    • [Cation]Cl+H2SO4→[Cation][HSO4]+HCl
    • [Cation][HSO4]+Sr[OH]2→[Cation][OH]+H2O+Sr[SO4]
    • [Cation][OH]+R1CH(NHR2)COOH→[Cation][R1CH(NHR2)COO]+H2O

[0243]

where R1CH(NHR2)COOH is an α-amino-acid and R1and R2are organic moieties (L-proline represents a particular case where R1and R2are part of the same bivalent moiety thus forming a cycle). In the first sub-step, the equilibrium is shifted to the right due to the higher acidic strength of sulfuric acid, whereas the hydrogen chloride by-product is removed by evacuation under reduced pressure. In the second sub-step, the equilibrium is shifted to the right in aqueous solution due to the low solubility product constant of strontium hydroxide, which is readily removed by filtration.

[0244]

In the following paragraphs, a particular synthetic route resulting in a prolinate ionic liquid is described.

[0245]

(a) Synthesis of 1-butyl-3-methylimidazolium hydrogensulfate: This preparation was adapted from the procedure by Fraga-Dubreuil et al. (Catal. Commun. 2002, 3, 185). To a solution of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl, 87.8 g, 0.503 mol) in dichloromethane (50 mL), concentrated sulfuric acid (96%, 51.4 g, 0.503 mol) is added dropwise while keeping the mixture refrigerated in an ice/water bath. The resulting solution is heated under reflux with stirring for 48 hrs. Then, volatiles (mostly containing dichloromethane) are distilled off under reduced pressure (ca. 30° C., 50 mbar), and the hydrogen chloride by-product is similarly removed in vacuo (ca. 90° C., 0.01 mbar) for 16 hrs, yielding 1-butyl-3-methylimidazolium hydrogensulfate ([C4mim][HSO4], 118.1 g, 99.4%) as a pale yellow viscous liquid.

[0246]

(b) Preparation of aqueous 1-butyl-3-methylimidazolium hydroxide: Strontium hydroxide octahydrate (110.14 g, 414.4 mmol) is dissolved in boiling water (approximately 1 L). To the resulting cloudy solution, a solution of 1-butyl-3-methylimidazolium hydrogensulfate ([C4mim][HSO4], 93.30 g, 394.9 mmol) in boiling water (100 mL) is added. A white solid immediately forms and precipitates. The mixture is stirred while cooling down to room temperature and then kept at approximately 5° C. overnight (17 hrs). Then, the white solid is removed by filtration. The resulting clear colourless solution is titrated with standard aqueous HCl solution (0.1 N) to determine theconcentration (0.27 mol kg−1) in the resulting [C4mim][OH] solution.

[0247]

(c) Synthesis of 1-butyl-3-methylimidazolium prolinate: To the previously obtained solution (1.321 kg, 357.9 mmol), a solution of L-proline (41.54 g, 360 8 mmol) in water (100 mL) is added. The resulting solution is concentrated under reduced pressure in a rotary evaporator (50-60° C.) until most of the water is removed, and then placed under high vacuum (70° C.) overnight. The resulting yellowish cloudy viscous liquid is mixed with an acetonitrile/methanol mixture (10:1 by volume, 240 mL), and allowed to settle in the freezer (ca. −20° C.) overnight. The resulting white solid precipitate is removed by filtration. The resulting solution is concentrated in a rotary evaporator (70° C.) until a yellow viscous liquid is obtained, and then dried under high vacuum (70° C.) for 2-3 days. The final ionic liquid ([C4mim][L-prolinate]) is obtained as a yellowish viscous liquid (86.80 g, 95.7%), with a water content of 156 ppm, and shown in Table 7.

[0000]

Exemplary Ionic Liquids with Anion from Metathesis Reaction
ExampleChemical NameChemical Structure
Ionic Liquid 51-butyl-3- methylimidazolium prolinate
Ionic Liquid 62-(2-methoxyethoxy)-N-[2- (2-methoxyethoxy)ethyl]- N,N-dimethylethan-1- aminium 6-methyl-3,4- dihydro-1,2,3-oxathiazin-4- one 2,2-dioxide
Ionic Liquid 72-(2-methoxyethoxy)-N-[2- (2-methoxyethoxy)ethyl]- N,N- dimethylethanaminium 1,4- bis(2-ethylhexoxy)-1,4- dioxobutane-2-sulfonate
Ionic Liquid 81-ethanaminium, N,N,N- tris[2-(2-methoxyethoxy) ethyl]-6-methyl-3,4- dihydro-1,2,3-oxathiazin-4- one 2,2-dioxide   Molecular Weight: 528.66
Ionic Liquid 91-ethanaminium, N,N,N- tris[2-(2-methoxyethoxy) ethyl]-1,4-bis(2- ethylhexoxy)-1,4- dioxobutane-2-sulfonate   Molecular Weight: 774.06

[0000]

[0248]

The following Reaction Scheme 4 shows a specific synthetic route from the chloride salt of an imidazolium cation to the final prolinate salt.

[0249]

The characterization data for the exemplary ionic liquids are provided in Table 8. The1H NMR spectrum of 1-butyl-3-methylimidazolium prolinate (CDCl3, 500 MHz) is provided in FIG. 4. The13C NMR spectrum of 1-butyl-3-methylimidazolium prolinate (CDCl3, 125 MHz) is provided in FIG. 5.

[0000]

ES-MS and Elemental Analysis Data
Elem.
IonicAnal.
Liquid(%)CHNSC/N ratio
IonicCalcd61.639.1516.593.71
Liquid 5Measd.57.64*8.22*15.32*3.76
IonicCalcd47.878.036.577.527.29
Liquid 6Measd.46.777.966.887.985.86
IonicCalcd57.209.752.084.7727.5
Liquid 7Measd.57.619.882.415.1623.9
IonicCalcd49.988.395.306.079.43
Liquid 8Measd.50.118.895.666.468.85
IonicCalcd57.419.771.814.1431.7
Liquid 9Measd.56.969.531.553.8936.7
*The deviation observed is due to the absorption of moisture by the sample during handling prior to elemental analysis. Meausured C/N ratio is very close to the calculated ratio.

Example 2

Vapour Pressure Measurement

[0250]

The vapour pressure for the PRM in combination with the ionic liquids is measured using the isoteniscope method as described herein above, and the activity coefficient is determined The results are provided in Tables 9-10.

Example 2a

[0251]

IL: Ionic Liquid 5

[0252]

PRM: Majantol®a

[0000]

Activity Coefficient Measurement for
Single Ionic Liquid Composition
Vapour PressueIdeal VapourActivity
measured usingPressure at 100°coefficient =
PRM moleIsoteniscopeC. according toVapour Pressure/
fraction inmethod at 100° C.Raoult's LawIdeal Vapour
Ionic Liquid(mbar)b(mbar)Pressure
0.20.82.80.3
0.40.95.60.2
0.62.18.40.3
0.83.711.20.3
aMajantol ®: 2,2-dimethyl-3-(3-methylphenyl)propan-1-ol (Vapour Pressure = 0.00224 Torr (0.00030 kPa) at 25° C.) (available from Symrise, Germany).
bAverage of 2 experiments.

[0253]

The significant reduction in vapour pressure of Majantol® results in an activity coefficient less than 1 at 0.2, 0.4, 0.6 and 0.8 mole fractions of the PRM. This is likely due to the strong hydrogen-bonding between the prolinate anion and the OH group of Majantol®.

Example 2b

[0254]

IL: Ionic Liquid 5

[0255]

PRM: Phenethyl alcohol (“PEA”)a

[0000]

Activity Coefficient Measurement for
Single Ionic Liquid Composition
Vapour PressueIdeal VapourActivity
measured usingPressure at 100°coefficient =
PRM moleIsoteniscopeC. according toVapour Pressure/
fraction inmethod at 100° C.Raoult's LawIdeal Vapour
Ionic Liquid(mbar)(mbar)Pressure
0.20.93.20.3
0.41.86.40.3
0.64.09.50.4
0.810.012.70.8
aPhenethyl alcohol (Vapour Pressure = 0.0741 Torr (0.00986 kPa) at 25° C.) (available from Firmenich SA, Geneva, Switzerland).

[0256]

The significant reduction in vapour pressure of PEA results in an activity coefficient less than 1 at 0.2, 0.4, 0.6 and 0.8 mole fractions of the PRM. This is likely due to attractive interactions between the PRM and the ionic liquid anion.

Example 3

Relative Gas-Phase Infrared Spectroscopy Measurement

[0257]

The Relative Gas-Phase Concentration for the PRM in combination with the ionic liquids is measured using the Infra-Red Spectroscopy method as described herein above, and the activity coefficient is determined

Example 3a

[0258]

The Gas-Phase relative concentration of DMBCB in Ionic Liquids 8 and 9 at 1746 cm−1at 25° C. (8 metres) are shown in FIGS. 6a) and 6b), respectively.

Example 3b

[0259]

The activity coefficients for DMBCB in Ionic Liquids 8 and 9 (1:1 weight mixture) are provided in Table 11.

[0000]

Activity Coefficient Measurement for
a Mixed Ionic Liquid Composition
PRMaPeak Height at
molar1746 cm−1at 25° C.Activity coefficient at 25° C. =
Fraction inusing Gas-phasePeak Height/(molar fraction *
Ionic LiquidIR method (AU)Peak Height for pure PRMc)
0.4200.010b0.0101/(0.42*0.0335) = 0.724
0.660.01030.0103/(0.66*0.0335) = 0.469
0.8100.01270.0127/(0.81*0.0335) = 0.468
0.9200.01340.0134/(0.92*0.0335) = 0.435
aDimethyl benzyl carbinyl butyrate (VP = 0.00168 Torr (0.000223 kPa) at 25° C.) (International Flavours and Fragrances, New Jersey, USA).
bAverage of three measurements.
cPeak Height for pure PRM = 0.0335 A.U. (average of three measurements).

[0260]

The activity co-efficient of DMBCB at 0.420 0.66, 0.81 and 0.92 mole fractions of DMBCB is less than 1.

Example 4

Fragrance Compositions

[0261]

The following are non-limiting examples of fragrance compositions containing ionic liquids of the present invention. They are prepared by admixture of the components described in Table 12, in the proportions indicated.

[0000]

Fragrance Compositions
Fragrance Compositions (wt %a)
IngredientsIIIIIIIVVVI
PEAb90.010.00.033.557.08.0
DMBCBc0.00.033.50.02.50.5
Majantold5.01.033.533.55.01.0
Ionic liquide58933.033.033.090
awt % relative to the total weight of the composition.
bPhenethyl alcohol (Vapour Pressure = 0.0741 Torr (0.00986 kPa) at 25° C.) (available from Firmenich SA, Generva, Switzerland).
cDimethyl benzyl carbinyl butyrate (Vapour Pressure = 0.00168 Torr (0.00022 kPa) at 25° C.) (International Flavours and Fragrances (IFF), New Jersey, USA).
dMajantol ®: 2,2-dimethyl-3-(3-methylphenyl)propan-1-ol (Vapour Pressure = 0.00224 Torr (0.00030 kPa) at 25° C.) (available from Symrise, Germany).
eIonic Liquids 5, 8, 9 or combinations thereof.

[0262]

It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical.

[0263]

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”

[0264]

Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

[0265]

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.



The present invention relates to a fragrance composition comprising ionic liquids for delayed evaporation of the perfume raw materials. The invention also relates to methods of use of the fragrance compositions for perfuming suitable substrates, particularly skin and hair.



1. A fragrance composition comprising:

(a) from 0.001% to 99.9% by weight of the total fragrance composition of a perfume raw material, wherein the perfume raw material displays a negative deviation from Raoult's Law; and

(b) from 0.01% to 99% by weight of the total fragrance composition of at least one ionic liquid comprising:

(i) an anion; and

(ii) a cation;

wherein the ionic liquid is a liquid at temperatures lower than 100° C.

2. The fragrance composition according to claim 1, wherein the negative deviation from Raoult's Law is determined by the D2879:2010 Standard Test Method (“ASTM D2879 Isoteniscope Method”) or by the Gas-Phase Infrared Spectroscopy Method as described herein.

3. The fragrance composition according claim 1, wherein the perfume raw material displays the negative deviation from Raoult's Law having an activity coefficient less than 1 at a mole fraction between 0.05 and 0.8 of the perfume raw material.

4. The fragrance composition according to claim 1, wherein the cation and the anion are essentially free of the following chemical elements: antimony, barium, beryllium, bromine, cobalt, chromium, fluorine, iodine, lead, nickel, selenium, and thallium.

5. The fragrance composition according claim 1, wherein the perfume raw material comprises at least one highly volatile perfume raw material having a vapour pressure greater than 0.001 Torr (>0.00013 kPa) at 25° C.; and the highly volatile perfume raw material is present in an amount from 0.001 wt % to 99.9 wt %, wherein the wt % is relative to the total weight of the perfume raw materials.

6. The fragrance composition according to claim 5, wherein the perfume raw material comprises at least 2, 3, 4, 5, 6 or more highly volatile perfume raw materials.

7. The fragrance composition according to claim 5, wherein the highly volatile perfume raw material is selected from the group consisting of Table 1 Highly Volatile Perfume Raw Materials and combinations thereof.

8. The fragrance composition according to claim 7, wherein the highly volatile perfume raw material is selected from the group consisting of: 2,2-dimethyl-3-(3-methylphenyl)propan-1-ol, and 2-phenyl-ethanol.

9. The fragrance composition according to claim 5, wherein the perfume raw material further comprises at least one, two, three, four or more low volatility perfume raw materials having a vapour pressure less than 0.001 Torr (<0.00013 kPa) at 25° C., and the low volatility perfume raw material is present in an amount from 0.1 wt % to 50 wt %, wherein the wt % is relative to the total weight of the perfume raw material.

10. The fragrance composition according to claim 1, wherein the anion is independently selected from a compound of formulae (I), (II), (III), (IV), (V), (VI), (VII) or (VIII):

wherein:

R1and R3are independently selected from hydrogen, cyano, hydroxyl, C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl;

R2is —R4—C(O)O, —R4—C(R5)CO, —R4—C(R5)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

R4is C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

R5is hydrogen, hydroxyl, —NH or —N(R5a)2; and

each R5ais independently hydrogen or C1-C20alkyl;

wherein:

X, Y and Z are independently selected from —CH2—, —NH—, —S—, or —O—;

R6is hydrogen, cyano, hydroxyl, C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl;

R6ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

R6bis hydrogen, hydroxyl, —NH or —N(R6c)2;

each R6cis independently hydrogen or C1-C20alkyl, and

R7is —C(O)O, —R6a—C(R6b)CO, —R6a—C(R6b)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

wherein:

R7is —C(R10)N(R11)2, —C(O)O, or —S—R11;

R8is hydrogen or C1-C20alkyl;

R9is —C(O)O or —C(O)N(R11)2;

R10is hydroxyl; and

each R11is independently hydrogen or C1-C20alkyl;

wherein:

R12is —C(R15)3;

R13is hydrogen or —N(R16)2;

R14is —R14a—C(O)O;

R14ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

each R15is independently selected from hydrogen, C1-C20alkyl or hydroxyl; and

each R16is independently selected from hydrogen or C1-C20alkyl;

wherein:

R17is hydrogen, cyano, hydroxyl, —C(O), C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl; and

R18is —R18a—C(O)O; —R18a—C(R18b)CO, —R18a—C(R18b)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

R18ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

R18bis hydrogen, hydroxyl, —NH or —N(R18c)2; and

each R18cis independently hydrogen or C1-C20alkyl; and

wherein:

R19is hydrogen, cyano, hydroxyl, —C(O), C1-C20alkyl, C1-C20alkoxy or C1-C20alkoxyC1-C20alkyl; and

R20is —R20a—C(O)O, —R20a—C(R20b)CO, —R20a—C(R20b)C(O)O, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkxoy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, optionally substituted C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl;

R20ais C1-C6alkylene, C2-C6alkeneylene, C2-C6alkynylene or a direct bond;

R20bis hydrogen, hydroxyl, —NH or —N(R20c)2; and

each R20cis independently hydrogen or C1-C20alkyl;

wherein:

R19is hydrogen, cyano, alkyl, alkoxy, and alkoxyalkyl;

wherein:

R20and R21are independently selected from the group consisting of alkyl or alkenyl, provided that the alkyl is not substituted with nitro, azido or halide; and

R22is alkylene, heteroarylene, arylene, or cycloalkylene; and

(i) combinations thereof.

11. The fragrance composition according to claim 10, wherein the anion is independently selected from the group consisting of: 3,5-dihydroxybenzoic acid; 5-hydroxytetrahydrofuran-3-carboxylate; 5-formylcyclohex-3-ene-1-carboxylate; 4-hydroxy-1,3-thiazolidine-2-carboxylate; 3′,5′-dihydroxybiphenyl-3-carboxylate; hydroxy(phenyl)acetate; 5-amino-5-hydroxypentanoate; 4-(3,4-dihydroxyphenyl)butanoate; 5-amino-3-methyl-5-oxopentanoate; 5-hydroxydecahydroisoquinoline-7-carboxylate; 2-amino-3-phenylpropanoate; 2-amino-3-(3-hydroxyphenyl)propanoate; 2-amino-4-hydroxy-4-methylpentanoate; 2-amino-4-hydroxy-4-methylhexanoate; 2-amino-4-(methylsulfanyl)butanoate; L-prolinate; 6 methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide; 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate; and combinations thereof.

12. The fragrance composition according to claim 1, wherein the cation is independently selected from the group consisting of:

and combinations thereof;

wherein:

X is CH2or O;

each R1a, R3a, and R4aare independently selected from hydrogen, C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C1-C20alkoxy, C1-C20alkoxyC1-C20alkyl, C3-C7cycloalkyl, C3-C7cycloalkylC1-C4alkyl, C2-C20heterocyclyl, C6-C10aryl, C6-C10arylC1-C10alkyl, C1-C10heteroaryl, halo, haloC1-C20alkyl, hydroxyl, hydroxylC1-C20alkyl or —N(R6a)2;

each R2ais independently selected from hydrogen, C1-C20alkyl, C1-C20alkenyl, or C1-C20alkynyl;

each R5ais independently selected from hydrogen, C1-C20alkyl, C1-C20alkenyl, C1-C20alkynyl, —R7a—OR8a, or —R7a—OR7a—OR8a;

each R6ais independently selected from hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclyalkyl, heteroaryl, or heteroarylalkyl;

each R7ais independently selected from a direct bond, or alkylene chain, or alkenylene chain, or alkynylene chain; and

each R8ais independently selected from a hydrogen, alkyl, alkenyl or alkynyl.

13. The fragrance composition according to claim 12, wherein the cation is independently selected from the group consisting of: 1-butyl-3-methylimidazolium; (N-ethyl-2-(2-methoxyethoxy)-N,N-dimethylethanaminium); 2-(2-ethoxyethoxy)-N-ethyl-N,N-dimethylethanaminium; N-benzyl-N,N-dimethyloctan-1-aminium; N-benzyl-N,N-dimethylnonan-1-aminium; 2-(2-methoxyethoxy)-N-[2-(2-methoxyethoxy)ethyl]-N,N-dimethylethan-1-aminium; 1-ethanaminium, N,N,N-tris[2-(2-methoxyethoxy)ethyl]; and combinations thereof.

14. The fragrance composition according to claim 1, further comprising:

(a) from about 10 wt % to about 80 wt % by weight of the total fragrance composition of a volatile solvent; and

(b) from about 0.1 wt % to about 50 wt % by weight of the total fragrance composition of a low volatility co-solvent or a mixture of low volatility co-solvents.

15. A product comprising a fragrance composition according to claim 1, wherein the product is selected from the group consisting of a perfume, a deodorant, an eau de toilette, an eau de parfum, a cologne, an after shave, a body splash and a body spray.