COMPOUNDS FOR INHIBITION OF FUNGAL TOXIN PRODUCTION
Mycotoxins are toxins produced by fungi that contaminate grains and nuts. These toxins cause immunosuppressive, carcinogenic, cytotoxic and teratogenic effects in humans and animals who consume the contaminated grains and nuts. Aflatoxin, the most well-known mycotoxin, is produced by several species of the fungus Economic losses due to mycotoxins in the United States are estimated to be between $0.5 and $1.5 billion annually. Fungicides are only partially effective against mycotoxigenic fungi because such fungi are naturally tolerant to many fungicides, and because when stressed by fungicide applications, fungi can respond by producing more of the mycotoxin. Durable host plant resistance is not available, despite many years of intensive breeding. An alternative to these solutions would be a compound or a mixture of compounds that block mycotoxin biosynthesis, especially when mycotoxin levels can be high, even in asymptomatic nuts and grains. The invention relates to compounds that inhibit the biosynthesis of mycotoxins and are useful at sites where mold is present or where it may develop. The compounds are also useful in situations involving the growth and storage of agricultural products, where elimination of mycotoxins is desirable. These compounds may function by shutting off fungal genes involved in synthesis of mycotoxins. One aspect of the invention is a compound of formula IA or IB: Another aspect of the invention is a compound of formula II: or salts of the compounds of the formulae IA, IB or II; wherein:
It should be understood that when Y is a carbon atom (C) and Z is a heteroatom, that this combination represents an oxo group (C═O). Examples of compounds encompassed by the formula IA, IB or II include the following: Compound 7 (e.g., 1-piperidin-1-yl)octadeca-9,12,15-trien-1-one), and salts thereof. Another aspect of the invention is a composition comprising a compound of formula IA, a compound of formula IB, a compound of formula II, or a combination thereof. For example, the composition can include any one of compounds 1-7, or any combination of compounds 1-7. Another aspect of the invention is a method for inhibiting mycotoxin production by a fungus that includes applying a compound of formula IA, a compound of formula IB, a compound of formula II, or a combination thereof, to the fungus or to a surface (or object) that could have a fungus. For example, any of compounds 1-7 (or combinations thereof) can be applied to a surface or an object to inhibit mycotoxin production by a fungus that may be present on or in the surface or the object. The invention relates to compounds, compositions, and methods that inhibit the expression of mycotoxin (e.g., aflatoxin) biosynthetic genes in fungi such as Compounds that can inhibit mycotoxin biosynthesis include those with formulae IA, IB, and/or II, and salts thereof: wherein:
It should be understood that when Y is a carbon atom (C) and Z is a heteroatom, that this combination represents an oxo group (C═O). Aryl groups are cyclic aromatic hydrocarbons that do not contain heteroatoms. Thus aryl groups include, but are not limited to, phenyl, azulenyl, heptalenyl, biphenyl, indacenyl, fluorenyl, phenanthrenyl, triphenylenyl, pyrenyl, naphthacenyl, chrysenyl, biphenylenyl, anthracenyl, and naphthyl groups. In some embodiments, aryl groups contain about 6 to about 14 carbons in the ring portions of the groups. Aryl groups can be unsubstituted or substituted, as defined above. Representative substituted aryl groups can be mono-substituted or substituted more than once, such as, but not limited to, 2-, 3-, 4-, 5-, or 6-substituted phenyl or 2-8 substituted naphthyl groups, which can be substituted with carbon or non-carbon groups such as those listed above. Heterocyclic groups include aromatic and non-aromatic ring compounds containing three or more ring atoms, of which, one or more is a heteroatom such as, but not limited to, N, O, and S. The heteroatom can, for example, be a nitrogen atom. In some embodiments, heterocycle groups include 3 to about 20 ring atoms, whereas other such groups have 3 to about 15 ring atoms. A heterocycle group designated as a C2-heterocyclyl can be a 5-ring with two carbon atoms and three heteroatoms, a 6-ring with two carbon atoms and four heteroatoms and so forth. Likewise a C4-heterocyclyl can be a 5-ring with one heteroatom, a 6-ring with two heteroatoms, and so forth. The number of carbon atoms plus the number of heteroatoms sums up to equal the total number of ring atoms. A heterocycle ring can also include one or more double bonds. A heteroaryl ring is an embodiment of a heterocycle group. The phrase “heterocycle group” includes fused ring species including those comprising fused aromatic and non-aromatic groups. For example, a dioxolanyl ring and a benzdioxolanyl ring system (methylenedioxyphenyl ring system) are both heterocycle groups within the meaning herein. The phrase also includes polycyclic ring systems containing a heteroatom such as, but not limited to, quinuclidyl. Heterocyclic groups can be unsubstituted, or can be substituted as discussed above. Heterocyclic groups include, but are not limited to, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, pyrrolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, pyridinyl, thiophenyl, benzothiophenyl, benzofuranyl, dihydrobenzofuranyl, indolyl, dihydroindolyl, azaindolyl, indazolyl, benzimidazolyl, azabenzimidazolyl, benzoxazolyl, benzothiazolyl, benzothiadiazolyl, imidazopyridinyl, isoxazolopyridinyl, thianaphthalenyl, purinyl, xanthinyl, adeninyl, guaninyl, quinolinyl, isoquinolinyl, tetrahydroquinolinyl, quinoxalinyl, and quinazolinyl groups. Representative substituted heterocycle groups can be mono-substituted or substituted more than once, such as, but not limited to, piperidinyl or quinolinyl groups, which are 2-, 3-, 4-, 5-, or 6-substituted, or disubstituted with groups such as those listed above. In some embodiments, the heterocyclic ring is a non-aromatic ring with one or two heteroatoms. For example, the heterocyclic ring can be a non-aromatic ring with one heteroatom. The heteroatom can, for example, be oxygen or nitrogen. The B ring can, in some instances, be linked directly to the Y group. In some instances, the B ring can be linked to the Y group via the heteroatom. Alternatively, the heteroatom is a ring atom that is not directly linked to the Y group. In some embodiments, the heterocyclic ring is a non-aromatic ring with one nitrogen heteroatom. In some embodiments, m is 2 or 3. In some instances, p is an integer of 10-17, or 12-17, or 14-16, or 16. The compounds of formula II can have 1, 2, 3, or more double bonds, each separately having a cis or a trans configuration. Alkyl groups include straight chain and branched alkyl groups and cycloalkyl groups having from 1 to about 20 carbon atoms, and typically from 1 to 12 carbons or, in some embodiments, from 1 to 8 carbon atoms. Examples of straight chain alkyl groups include those with from 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl groups. Examples of branched alkyl groups include, but are not limited to, isopropyl, iso-butyl, sec-butyl, t-butyl, neopentyl, isopentyl, and 2,2-dimethylpropyl groups. Lower alkyl groups have about 1 to about 3 carbon atoms. The term “alkylene” means a chain of methylene (CHx) residues, where x is 1 or 2, and where each end of the chain is linked to another moiety. The term “alkoxy” refers to an oxygen atom connected to an alkyl group, including a cycloalkyl group, as are defined above. Examples of linear alkoxy groups include but are not limited to methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, and the like. Examples of branched alkoxy include but are not limited to isopropoxy, sec-butoxy, tert-butoxy, isopentyloxy, isohexyloxy, and the like. Examples of cyclic alkoxy include but are not limited to cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, and the like. An alkoxy group can include one to about 12-20 carbon atoms bonded to the oxygen atom, and can further include double or triple bonds, and can also include heteroatoms. For example, an allyloxy group is an alkoxy group within the meaning herein. A methoxyethoxy group is also an alkoxy group within the meaning herein. A lower alkoxy group has about 1 to about 3 carbon atoms. An “amino” group is a substituent of the form —NH2, —NHR, —NR2, —NR3+, and protonated forms of each, wherein each R is independently selected from a hydrogen or a lower alkyl group. “Halogen” as the term is used herein includes fluoro, chloro, bromo, and iodo. All chiral, diastereomeric, racemic forms of a structure are intended to be embraced by the claims, unless the specific stereochemistry or isomeric form is specifically indicated. Compounds used in the present invention include enriched or resolved optical isomers at any or all asymmetric atoms as are apparent from the depictions. Both racemic and diastereomeric mixtures, as well as the individual optical isomers can be isolated or synthesized so as to be substantially free of their enantiomeric or diastereomeric partners, and these are all within the scope of the invention. The term “salt” generally refers to forms of a compound derived from contacting the compound with an organic or inorganic acid, such as hydrochloric acid, hydrobromic acid, tartaric acid, methylsulfonic acid, acetic acid, maleic acid, and oxalic acid, to form the hydrochloride, hydrobromide, tartarate, methylsulfonate, acetate, maleate, and oxalate salt of the compound. The term “salt” also generally refers to forms of a compound derived from contacting the compound with a base to form, for example, the sodium, potassium, calcium, magnesium, ammonium, and tetraalkylammonium salt of the compound. Some specific examples of compounds that can inhibit the biosynthesis of mycotoxins, which compounds are encompassed by the formula IA, IB or II, include the following: and combinations thereof. The crossed double bonds in compound 7 indicate that the double bond can have a trans or cis configuration. Several compounds were designed that can eliminate mycotoxin biosynthesis. Such compounds are effective in controlling biosynthesis of deoxynivalenol. In some instances, the compounds do not have fungicidal activity. Hence, beneficial fungi may be unaffected by the compounds, compositions, and methods described herein. Moreover, fungi may not become resistant to the compounds, compositions, and methods described herein; and these compounds may face lower regulatory barriers. To identify structures of active compounds, compounds were tested for inhibitory activity on aflatoxin biosynthesis in a culture of The compounds, compositions, and methods described herein can inhibit biosynthesis of a variety of mycotoxins. Mycotoxins are toxic fungal metabolites, often found in agricultural products that are characterized by their ability to cause health problems for humans and vertebrates. Mycotoxins include compounds such as aflatoxins, ochratoxins, patulin, fumonisins, zearalenones, and trichothecenes. They are produced for example by different Aflatoxins are toxins produced by Ochratoxins are mycotoxins produced by some Fumonisins are toxins produced by Examples of trichothecene mycotoxins include T-2 toxin, HT-2 toxin, isotrichodermol, diacetoxyscirpenol (DAS), 3-deacetylcalonectrin, 3, 15-dideacetylcalonectrin, scirpentriol, neosolaniol; 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, nivalenol, 4-acetylnivalenol (fusarenone-X), 4, 15-diacetylnivalenol, 4,7,15-acetylnivalenol, and deoxynivalenol (“DON”) and their various acetylated derivatives. The most common trichothecene in Another mycotoxin mainly produced by In contrast the species The compounds of formulae IA, IB, and/or II can be used to inhibit biosynthesis of such mycotoxins. Plants, seeds, and plant products can be treated with the compounds and/or compositions described herein. For example, the compounds and/or compositions described herein can be applied to agricultural plants, seeds, and plant products as well as any crops for inhibiting mycotoxin production. In addition, plants grown in nature or for decorative purposes can be treated with the compounds and/or compositions described herein. The plants, seeds, and plant products so treated can be for human or animal consumption. Plants, or seeds from such plants, for example, can be grain-producing, nut-producing, vegetable-producing, fruit-producing, starch-producing, fiber-producing, fodder-producing, or a combination thereof. The plant products can include grains, nuts, vegetables, fruits, starch, fibers, flour, fodder, leaves, stock, seeds, oil, or a combination thereof. For example, the plant products can be almonds, barley, betel nuts, brazil nuts, cashews, chestnuts, cocoanut, coffee, corn, flour, hazelnuts, macadamia nuts, oats, pecans, peanuts, pine nuts, pistachios, rice, rye, sesame seeds, soybean, spices, walnuts, wheat, or combinations thereof. Plants can also include vegetables, such as tomatoes, peppers, cabbage, broccoli, asparagus, squash, lettuce, spinach, cauliflower, melon, watermelon, cucumbers, carrots, onions, cucurbits and potatoes, tobacco, pome and stone fruits and berries, such as walnuts, kiwi, banana, avocado, olives, passion fruit, almonds, pineapples, apples, pears, raspberry, cherry, plums, peaches, and cherries, table and wine grapes, citrus fruit, such as oranges, lemons, grapefruits and limes, corn, cotton, soybean, oil seed rape, wheat, barley, rye, triticale, oats, maize, sorghum, sunflower, peanuts, rice, sugar beet, fodder beet, coffee, beans, peas, yucca, sugar cane, clover, turf and ornamentals such as roses. Additional types of plants, seeds, and plant products can be or can be from flax, cotton, cereals (wheat, barley, rye, oats, millet, triticale, maize (including field corn, popcorn and sweet corn), rice, sorghum and related crops); beet (sugar beet and fodder beet); sugar beet, sugar cane, leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, sunflowers), The compositions described herein can inhibit mycotoxin biosynthesis by a variety of fungi. For example, the fungi can be of one or more of the classes Ascomycetes, Basidiomycetes, Deuteromycetes, and Oomycetes, such as Plants, seeds, and plant products can be treated with the compounds and/or compositions described herein. A method can be employed that includes administering any of the compounds or compositions described herein to one or more plants, one or more plant seeds, or one or more plant products. The compounds described herein can also be applied to structures (e.g., houses, barns, sheds, warehouses, basements, attics, cupboards, storage bins, storage containers, etc.) where mold or fungi is present or may grow. For example, the compounds described herein can be applied to moist areas and/or areas suspected of developing fungal growth. Examples of areas where the compounds and/or compositions can be applied include laundry rooms, bathrooms, bedrooms, closets, basements, attics, kitchens, cabinets, animal pens, storage areas, silos, grain bins, siding, decks, and the like. Application of compounds or compositions can be carried out directly, or by action on their environment, habitat or storage area. Application (or treatment) methods include, for example, watering (drenching), drip irrigation, spraying, atomizing, broadcasting, dusting, foaming, spreading-on, brushing on, and combinations thereof. Plants, seeds, plant products, surfaces, and/or structure can be treated by powdering, spraying, mixing, encrusting, or a combination thereof. The compositions can be applied in dry or liquid form. The compounds and compositions described herein can be employed for reducing mycotoxin contamination or in the protection of materials, surfaces, products, and combinations thereof. The compounds or compositions according to the invention can be used to curatively or preventively reduce the mycotoxin synthesis by fungi. For example, a method can be employed for curatively or preventively reducing mycotoxin contamination by use of a composition comprising a compound according to formula I and/or a compound of formula II application to a plant seed, a plant, a plant product, or to the fruit of the plant or to the soil in which the plant is growing or in which it is desired to grow. Suitably, the active ingredient may be applied to plant propagation material to be protected by impregnating the plant propagation material, in particular, seeds, either with a liquid formulation of the fungicide or coating it with a solid formulation. In special cases, other types of application are also possible, for example, the specific treatment of seeds, plant cuttings or twigs serving propagation. The compounds and/or compositions are useful in reducing mycotoxin contamination when they are applied to a plant, plant see, plant product, and/or plant propagation material in an effective amount before and/or after harvest and/or during storage. An effective amount is an amount sufficient to reduce mycotoxin production by at least about 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9%. For example, the compounds described herein can each be applied at a concentration of about 0.1 ppm to 500 ppm, or about 1 ppm to 400 ppm, or about 2 ppm to 300 ppm, or about 5 ppm to 250 ppm, or about 10 ppm to 150 ppm, or about 12 ppm to 100 ppm, or about 15 to 50 ppm, or about 20 ppm to 35 ppm, or about 25 ppm. In some instances, the compounds and/or compositions are provided as concentrated formulation that are diluted ten-fold, 100-fold, or 1000-fold to provide a concentration that is applied to structures, walls, floors, ceilings, containers, plants, seeds, and/or plant products. The period of time within which protection is effective generally extends from 1 to 90 days, from 1 to 80 days, from 1 to 70 days, from 1 to 60 days, from 1 to 45 days, from 1 to 30 days, from 1 to 14 days, or from 1 to 7 days, after application of the compounds and/or compositions described herein. At certain application rates, the active compound combinations can, for example, have a strengthening effect in plants. For example, the compounds and/or compositions can also mobilize the defense system of the plant against attack by unwanted phytopathogenic fungi and/or microorganisms and/or viruses. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention against biosynthesis of mycotoxins. Compositions are described herein that include at least one compound of formula IA, formula IB, and/or formula II. The compositions can also comprise additional components such as a carrier, solvent, surfactant, an additional active ingredient, or a combination thereof. The compositions can be dry compositions or liquid compositions. In some instances, the compounds are dissolved in a solvent to form a liquid composition with a known concentration of at least one compound of formula IA, a known concentration of at least one compound of formula IB, and/or a known concentration of at least one compound of formula II. The solvent can be an alcohol. For example, the solvent can be ethanol, methanol, isopropyl alcohol, or a combination thereof. The compositions can contain an emulsifier, a dispersing agent, thickening agent, a surfactant, a wetting agent of ionic or non-ionic type or a mixture of such agents. For example, the compositions can contain polyacrylic acid salts, lignosulphonic acid salts, phenolsulphonic or naphthalenesulphonic acid salts, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (in particular alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (in particular alkyl taurates), phosphoric esters of polyoxyethylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the present compounds containing sulfate, sulfonate and phosphate functions. The presence of at least one surfactant can be included when the active compound and/or the inert support are water-insoluble and when the vector agent for the application is water. For example, surfactant content can be about 5% to 40% by weight of the composition. Coloring agents such as inorganic pigments can be present in the composition, for example iron oxide, titanium oxide, ferrocyanblue, and organic pigments such as alizarin, azo and metallophthalocyanine dyes, and trace elements such as iron, manganese, boron, copper, cobalt, molybdenum and zinc salts can be used. The compounds can be present in paints along with any available coloring material(s) and other components typically employed in paints. Optionally, other additional components may also be included, e.g. protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilizers, sequestering agents. The compositions can also include other ingredients. For example, bactericide compounds can be employed. Such compounds are useful in crop protection for example for controlling Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae. In addition, the compounds described herein can be used together in a composition or they can be used concomitantly with one or more of the other agrichemicals such as various pesticides, acaricides, nematicides, other types of fungicides, and plant growth regulators. Other types of fungicides can optionally be included in the compositions described herein. Examples include copper fungicide such as basic copper chloride and basic copper sulfate, sulfur fungicide such as thiuram, zineb, maneb, mancozeb, ziram, propineb, and polycarbamate, polyhaloalkylthio fungicide such as captan, folpet, dichlorfluanid, organochlorine fungicide such as chlorothalonil, fthalide, organophosphorous fungicide such as O,O-bis(1-methylethyl) S-phenylmethyl phosphorothioate (IBP), edifenphos (EDDP), tolclophos-methyl, pyrazophos, fosetyl, dicarboxylmide fungicide such as iprodione, procymidone, vinclozolin, fluoromide, carboxyamide fungicide such as oxycarboxin, mepronil, flutolanil, tecloftalam, trichlamide, pencycuron, acylalanine fungicide such as metalaxyl, oxadixyl, furalaxyl, methoxyacrylate fungicides such as kresoxim-methyl (stroby), azoxystrobin, metominostrobin, trifloxystrobin, pyraclostrobin, anilinopyrimidine fungicide such as andupurine, mepanipyrim, pyrimethanil, cyprodinil, antibiotic agents such as polyoxin, blasticidin S, kasugamycin, validamycine, dihydrostreptomycin sulfate, propamocarb hydrochloride, quintozene, hydroxyisoxazole, methasulfocarb, anilazine, isoprothiolane, probenazole, chinomethionat, dithianon, dinocap, diclomezine, ferimzone, fluazinam, pyroquilon, tricyclazole, oxolinic acid, iminoctadine acetate, iminoctadine albesilate, cymoxanil, pyrrolnitrin, diethofencarb, binapacryl, lecithin, sodium bicarbonate, fenaminosulf, dodine, dimethomorph, phenazine oxide, carpropamid, flusulfamide, fludioxonil, famoxadone, or combinations thereof. The other type of fungicide can be mixed together and used various amounts with one of the compounds of formula IA, IIB, or II. The compound of formula IA, IB, or II can be used in a weight ratio relative to the other type of fungicide such as from 1:0.001 to 1:1000 as a weight ratio. In some instance, a compound of formula IA, IB, or II relative to the other type of fungicide can vary from 1:0.01 to 1:100 as a weight ratio. The pesticides can include organophosphorous pesticides, carbamate pesticides such as fenthion, fenitrothion, diazinon, chlorpyrifos, ESP, vamidothion, phenthoate, dimethoate, formothion, malathon, trichlorfon, thiometon, phosmet, dichlorvos, acephate, EPBP, methylparathion, oxydemeton-methyl, ethion, salithion, cyanophos, isoxathion, pyridaphenthion, phosalone, methidathion, sulprofos, chlorfevinphos, tetrachlorvinphos, dimethylvinphos, propaphos, isofenphos, ethylthiometon, profenofos, pyraclofos, monocrotophos, azinphosmethyl, aldicarb, methomyl, thiodicarb, carbofuran, carbosulfan, benfuracarb, furathiocarb, propoxur, BPMC, MTMC, MIPC, carbaryl, pirimicarb, ethiofencarb, and fenoxycarb, pyrethroid pesticides such as permethrin, cypermethrin, deltamethrin, fenvalerate, fenpropathrin, pyrethrin, allethrin, tetramethrin, resmethrin, dimethrin, propathrin, phenothrin, prothrin, fluvalinate, cyfluthrin, cyhalothrin, flucythrinate, ethofenprox, cycloprothrin, tralomethrin, silafluofen, brofenprox, and acrinathrin, and benzoylurea and other types of pesticides such as diflubenzuron, chlorfluazuron, hexaflumuron, triflumuron, tetrabenzuron, flufenoxuron, flucycloxuron, buprofezin, pyriproxyfen, methoprene, benzoepin, diafenthiuron, acetamiprid, imidacloprid, nitenpyram, fipronil, cartap, thiocyclam, bensultap, nicotin sulfate, rotenone, mataldehyde, machine oil, and microbial pesticides e.g. BT and insect pathogenic virus. The acricides that can be employed include, for example, chlorbenzilate, phenisobromolate, dicofol, amitraz, BPPS, benzomate, hexythiazox, fenbutatin oxide, polynactin, chinomethionat, CPCBS, tetradifon, avermectin, milbemectin, clofentezin, cyhexatin, pyridaben, fenpyroximate, tebufenpyrad, pylidimifen, fenothiocarb, and dienochlor. As for the aforementioned nematicides, fenamiphos, fosthiazate and the like can be specifically exemplified; as for plant-growth regulators, gibberellins (e.g., gibberellin A3, gibberellin A4, and gibberellin A7), auxin, 1-naphthaleneacetic acid, and so on can be specifically exemplified. More generally, the active compounds can be combined with any solid or liquid additive, which complies with the usual formulation techniques. In general, the composition according to the invention may contain from 0.05 to 99% by weight of active compounds, preferably from 10 to 70% by weight. The compounds or compositions can be provided in a form that is ready-to-use or in a form that can be prepared for use. The compounds or compositions can be applied by a suitable device, such by use of a spraying or dusting device. The compounds or compositions can be applied by use of brush or roller. The compounds or compositions can be provided in concentrated commercial compositions that should be diluted before application to the crop. For example, the compounds can provided in dry (e.g., lyophilized) form, or in concentrated form, and then dissolved or diluted as desired. The compositions can be in formulated into an aerosol dispenser, as a capsule suspension, as a cold fogging concentrate, as a dustable powder, as an emulsifiable concentrate, as an emulsion oil in water, as an emulsion water in oil, as an encapsulated granule, as a fine granule, as a flowable concentrate for seed treatment, as a gas (under pressure), as a gas generating product, as granules, as a hot fogging concentrate, as macrogranules, as microgranules, as an oil dispersible powder, as an oil miscible flowable concentrate, as an oil miscible liquid, as a paste, as a plant rodlet, as a powder for dry seed treatment, as seeds coated with the composition, as a soluble concentrate, as a soluble powder, as a solution for seed (or other) treatment, as a suspension concentrate (flowable concentrate), as an ultra-low volume (ULV) liquid, as an ultra-low volume (ULV) suspension, as water dispersible granules or tablets, as a water dispersible powder for slurry treatment, as water soluble granules or tablets, as a water soluble powder for seed treatment, as a wettable powder, or as a combination thereof (e.g., two types of formulations packaged together). The term “contacting,” as used herein, refers to applying the compounds, mixtures and compositions of the invention to an agricultural product, to plants, to plant seeds, to a site of infestation by fungi, to a potential site of infestation by the fungi, which may require protection from infestation, or the environment around the habitat or potential habitat of the fungi. The application may be by methods described in the art such as by spraying, dipping, etc. As used herein the term “plant” includes reference to whole plants, plant organs (e.g. leaves, stems, twigs, roots, trunks, limbs, shoots, seeds, fruits etc.), or plant cells. As used herein the term “plant propagation material” includes all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers, which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring. In a particular embodiment, the term propagation material denotes seeds. This Example describes some of the materials and methods employed in the development of the invention. All tests were performed in 24-well plates. Each culture well was filled with 1 mL of low salts medium (LSM) and 10 uL of Initial tests were performed to ascertain which solvent was best suited for both dissolving the compounds and that did not prevent growth of Methanol at 50, 70, and 100% concentration (diluted with ddH2O); Ethanol at 50, 70, and 100% concentration (diluted with ddH2O); Acetone at 50, 70, and 100% concentration (diluted with ddH2O); and Isopropyl alcohol at 50, 70, and 100% concentration (diluted with ddH2O). All solvents above were placed into wells containing 1 mL of Low Salts Medium and with 10, 25, or 50 uL of each solvent. Each solvent type was tested in triplicate. Ethanol (50 to 70%) was found to perform best for both dissolving the compounds and for allowing growth of To identify compounds that inhibited mycotoxin biosynthesis, individual and pairwise combinations of compounds were placed in each of the wells and cultures were left in the dark for six additional days. The assays for each compound type were performed in triplicate. Compounds were individually tested at concentrations of parts per thousand (ppt), parts per million (ppm), and parts per billion (ppb) with further refinement of concentrations taking place throughout testing procedures. To test for the presence of aflatoxin buildup in each well, the mycelial mat was moved to the side of the well with a pipette tip and the liquid medium was stirred to homogenize the sample. Ten microliters (μL) of the incubation medium were withdrawn and spotted onto thin layer chromatography (TLC) plates. The TLC plates were allowed to dry for one hour before development in 95:5 chloroform:acetone within TLC tanks that had equilibrated for one hour. Plates were developed for 15 to 18 minutes, dried, and viewed under ultraviolet light at 254 nm wavelength. Aflatoxin B1 and B2 glowed blue under ultraviolet light and photographs were taken. All tests were performed with a control that did not contain any of the solvents. One additional control test was performed by adding 10, 25, and 50 uL of sterile water. None of the controls altered aflatoxin production. Compounds that were successful at limiting or preventing the production of aflatoxin were also tested for their efficacy at preventing the production of deoxynivalenol (DON) in Note that DON was also not detected when compounds 1 and 2 were tested in combination (but some DON was detected when compounds 1 and 2 were tested alone). Two compounds of the eight compounds demonstrated substantial activity in reducing aflatoxin accumulation in liquid cultures of (E)-1-(3-(4-hydroxy-3-methyoxyphenyl)acryloyl)piperidin-2-one
indicate that the double bond can have a trans or cis configuration. As illustrated in the drawing, the ferulic acid derivative (3) reduced aflatoxin levels up to 80% when used at the lowest effective concentration of 25 ppm as detected by thin layer chromatography (TLC) analysis. The second compound (7) reduced aflatoxin accumulation in culture, but the effect was inconsistent from one trial to the next. The drawing also shows that when compounds 3 and 7 were used in combination, aflatoxin accumulation was not detectable by TLC. The most effective reduction of aflatoxin occurred when the two compounds were employed together at 50 ppm each. The results indicated that the estimated reduction in aflatoxin accumulation is about 90%-100%. All patents and publications referenced or mentioned herein are indicative of the levels of skill of those skilled in the art to which the invention pertains, and each such referenced patent or publication is hereby specifically incorporated by reference to the same extent as if it had been incorporated by reference in its entirety individually or set forth herein in its entirety. Applicants reserve the right to physically incorporate into this specification any and all materials and information from any such cited patents or publications. The following statements of the invention are intended to describe and summarize various embodiments of the invention according to the foregoing description in the specification. indicate that the double bond can have a trans or cis configuration.
indicate that the double bond can have a trans or cis configuration.
The specific methods and compositions described herein are representative of preferred embodiments and are exemplary and not intended as limitations on the scope of the invention. Other objects, aspects, and embodiments will occur to those skilled in the art upon consideration of this specification, and are encompassed within the spirit of the invention as defined by the scope of the claims. It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, or limitation or limitations, which is not specifically disclosed herein as essential. The methods and processes illustratively described herein suitably may be practiced in differing orders of steps, and the methods and processes are not necessarily restricted to the orders of steps indicated herein or in the claims. As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a compound,” “a nucleic acid” or “a promoter” includes a plurality of such compounds, nucleic acids or promoters (for example, a solution of compounds or nucleic acids, or a series of promoters), and so forth. Under no circumstances may the patent be interpreted to be limited to the specific examples or embodiments or methods specifically disclosed herein. Under no circumstances may the patent be interpreted to be limited by any statement made by any Examiner or any other official or employee of the Patent and Trademark Office unless such statement is specifically and without qualification or reservation expressly adopted in a responsive writing by Applicants. The terms and expressions that have been employed are used as terms of description and not of limitation, and there is no intent in the use of such terms and expressions to exclude any equivalent of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention as claimed. Thus, it will be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims and statements of the invention. The invention relates to compounds, compositions, and methods that can inhibit the biosynthesis of mycotoxins. 1. A method for inhibiting mycotoxin production by a fungus, comprising applying a composition comprising a compound of formula IA, a compound of formula IB, a compound of formula II, or a combination or salt thereof to an object or a surface suspected of having a fungus: wherein:
ring A is an aryl ring that can have 1-3 substituents, each substituent in place of 1 hydrogen atom, where the substituents are each separately selected from the group consisting of oxo (═O); hydroxy; halogen; lower alkyl; lower alkoxy; amino; thiol; sulfonyl; sulfoxide; and carboxylic acid; ring B is an aryl or heterocyclic ring that can optionally have 1 or 2 substituents, where the substituents are each separately selected from: oxo (═O); hydroxy; halogen; lower alkyl; lower alkoxy; amino; thiol; sulfonyl; sulfoxide; and carboxylic acid; Y is a methylene (CH), or a carbon atom (C); Z is a heteroatom, hydroxy, or amino; n is an integer equal to 1, 2, or 3; m is an integer equal to 1, 2, 3, or 4; and p is an integer equal to any of 1-18. 2. The method of 3. The method of 4. The method of 5. The method of 6. The method of 7. The method of 8. The method of 9. The method of 10. The method of 11. The method of or a combination thereof; where the crossed double bonds indicate that the double bond can have a trans or cis configuration. 12. The method of or a combination thereof, where the crossed double bonds indicate that the double bond can have a trans or cis configuration. 13. A compound of the formula IA, IB or II: or a salt thereof, wherein:
ring A is an aryl ring that can have 1-3 substituents, each substituent in place of 1 hydrogen atom, where the substituents are each separately selected from the group consisting of oxo (═O); hydroxy; halogen; lower alkyl; lower alkoxy; amino; thiol; sulfonyl; sulfoxide; and carboxylic acid; ring B is an aryl or heterocyclic ring that can optionally have 1 or 2 substituents, where the substituents are each separately selected from: oxo (═O); hydroxy; halogen; lower alkyl; lower alkoxy; amino; thiol; sulfonyl; sulfoxide; and carboxylic acid; Y is a methylene (CH), or a carbon atom (C); Z is a heteroatom, hydroxy, or amino; n is an integer equal to 1, 2, or 3; m is an integer equal to 1, 2, 3, or 4; and p is an integer equal to any of 1-18. 14. The compound of 15. The compound of 16. The compound of 17. The compound of 18. The compound of 19. The compound of 20. The compound of where the crossed double bonds indicate that the double bond can have a trans or cis configuration.BACKGROUND
SUMMARY
DESCRIPTION OF THE DRAWING
DETAILED DESCRIPTION
Inhibitors of Mycotoxin Biosynthesis
Mycotoxin Inhibitor Identification
Mycotoxins
Plants, Seeds, and Plant Products
Fungi
Treatment
Compositions
Definitions
Example 1: Materials and Methods
Solvent Identification
Inhibitory Compound Identification
Example 2: Identification of Compounds that Inhibit Mycotoxin Biosynthesis
The second compound was a piperidine amide of linolenic acid (PALA; compound 7), shown below, where the crossed double bonds
REFERENCES
Statements:
