SCROLL COMPRESSOR
The present invention relates to scroll compressors mainly included in refrigeration apparatuses, air-conditioning apparatuses, and water heaters. A scroll compressor includes a fixed scroll including an end plate and a spiral element on the end plate, an orbiting scroll including an end plate and a spiral element on the end plate, and a crankshaft driving the orbiting scroll, and the spiral elements of the fixed and orbiting scrolls engage with each other to define a compression chamber. In this type of scroll compressor, while performing an orbiting motion, the orbiting scroll experiences not only an axial force but also a radial force under the action of compression in the compression chamber. These forces cause the orbiting scroll to tilt, or produce an overturning moment. When the overturning moment causes the orbiting scroll to overturn or tilt, the orbiting scroll orbits while wobbling, or exhibits unstable behavior. Combined with the tilt of the orbiting scroll, such behavior may cause gas refrigerant to leak or cause the tip of the spiral element of each of the orbiting and fixed scrolls to contact and damage the end plate of the opposite scroll, resulting in a reduction in reliability, for example. A technique known in the art includes producing an anti-overturning moment for reducing an overturning moment to inhibit the tilt of an orbiting scroll (refer to Patent Literature 1, for example). As described in Patent Literature 1, an adjustment mechanism to produce the anti-overturning moment for reducing the overturning moment is provided in an orbiting angle area in which the overturning moment acting on the orbiting scroll has an amplitude at or above a predetermined value during the orbiting motion of the orbiting scroll. Specifically, the adjustment mechanism has an annular oil groove, which is provided in a spiral-element protruding surface of an end plate of the orbiting scroll and faces a fixed scroll, and an oil guide path or hole, which is provided in the orbiting scroll, for guiding oil to the oil groove. In the orbiting angle area, in which the overturning moment has an amplitude at or above the predetermined value, of part of the orbiting scroll, high-pressure refrigerating machine oil is supplied to the oil groove, and the pressure of the refrigerating machine oil supplied to the oil groove is used to produce the anti-overturning moment. Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2003-328963 In a scroll compressor disclosed in Patent Literature 1, the adjustment mechanism for reducing the overturning moment is provided in the orbiting scroll. As described above, the adjustment mechanism has the groove and the hole. Such a configuration inevitably causes a reduction in rigidity of the orbiting scroll. The orbiting scroll needs to be designed in consideration of a reduction in rigidity caused by providing the adjustment mechanism. An orbiting scroll and a fixed scroll are essential parts of a compression mechanism. It is required to prevent the tilt of the orbiting scroll without changing the structures of these essential parts. The present invention has been made to overcome the above-described problems, and aims to provide a scroll compressor in which excessive tilt of an orbiting scroll is prevented with a simple configuration. A scroll compressor according to an embodiment of the present invention includes a fixed scroll including an end plate and a spiral element on the end plate and an orbiting scroll including an end plate and a spiral element on the end plate of the orbiting scroll. The spiral element of the orbiting scroll engages with the spiral element of the fixed scroll to define a compression chamber. The scroll compressor further includes a crankshaft configured to drive the orbiting scroll, a frame that supports the orbiting scroll across the orbiting scroll from the fixed scroll, and an Oldham ring disposed between the end plate of the orbiting scroll and the frame. The Oldham ring is configured to prevent the orbiting scroll from rotating to allow the orbiting scroll to orbit against the fixed scroll. The Oldham ring includes a ring portion that is annular, and a surface of the ring portion facing the end plate of the orbiting scroll includes a support to contact the orbiting scroll when the orbiting scroll tilts during an orbiting motion of the orbiting scroll. The scroll compressor satisfies a relation of δ1>δ2, where δ1 denotes the axial length of each of a gap between the tip of the spiral element of the orbiting scroll and the end plate of the fixed scroll and a gap between the tip of the spiral element of the fixed scroll and the end plate of the orbiting scroll, and δ2 denotes the axial length of a gap between the end plate of the orbiting scroll and the support of the Oldham ring. According to an embodiment of the present invention, such a simple configuration that satisfies the relation of δ1>δ2 inhibits excessive tilt of the orbiting scroll. Embodiments of the present invention will be described below. The present invention is not limited to Embodiments described below. Furthermore, note that components designated by the same reference signs in the figures are the same components or equivalents. The reference signs are used for the description throughout the specification. Furthermore, note that the forms of components described in the specification are intended to be illustrative only and are not limited to the descriptions. Embodiment 1 will be described with reference to This scroll compressor has the function of sucking fluid, such as refrigerant, compressing the fluid into a high-temperature, high-pressure state, and discharging the fluid. The scroll compressor includes a shell 8, constituting an outer casing and serving as a sealed container, a compression mechanism 35, and a drive mechanism 36. The shell 8 accommodates these mechanisms and other components. As illustrated in In the oil sump 12, an oil pump 21, which is a positive displacement pump, fixed to a lower end of a crankshaft 4 is immersed in refrigerating machine oil. The oil pump 21 performs the function, as the crankshaft 4 rotates, of supplying the refrigerating machine oil held in the oil sump 12 to sliding parts (a recessed bearing 2 The shell 8 further includes a suction pipe 5 through which the fluid is sucked and a discharge pipe 13 through which the fluid is discharged. The shell 8 includes a frame 3 secured to the inside of the shell 8. The frame 3 is secured to an inner circumferential surface of the shell 8. The bearing 3 The compression mechanism 35 has the function of compressing the fluid sucked through the suction pipe 5 and forcing the fluid to flow into a high-pressure space 14 located in the upper part of the shell 8. The high-pressure fluid that has flowed into the high-pressure space 14 is discharged out of the scroll compressor through the discharge pipe 13. The drive mechanism 36 performs the function of driving an orbiting scroll 2, which is included in the compression mechanism 35, to cause the compression mechanism 35 to compress the fluid. Specifically, the drive mechanism 36 drives the orbiting scroll 2 via the crankshaft 4, thus causing the compression mechanism 35 to compress the fluid. The compression mechanism 35 includes a fixed scroll 1 and the orbiting scroll 2. With reference to The fixed scroll 1 and the orbiting scroll 2 need to be spaced apart from each other by a small axial gap so that thermal-expansion-induced contact between the fixed scroll 1 and the orbiting scroll 2 and seizing up of the fixed scroll 1 and the orbiting scroll 2 are prevented during operation. Specifically, a gap 18 (refer to The fixed scroll 1 is fixed in the shell 8 by the frame 3. The fixed scroll 1 has a centrally disposed discharge port 1 An Oldham ring 16 prevents the orbiting scroll 2 from rotating to allow the orbiting scroll 2 to eccentrically orbit against the fixed scroll 1. The second end plate 2 The drive mechanism 36 includes at least a stator 7 secured to and held in the shell 8, a rotor 6 disposed adjacent to an inner circumferential surface of the stator 7, in such a manner that the rotor 6 can rotate, and fixed to the crankshaft 4, and the crankshaft 4, serving as a rotary shaft, vertically accommodated in the shell 8. The stator 7 has the function of driving the rotor 6 to rotate when the stator 7 is energized. An outer circumferential surface of the stator 7 is secured to the shell 8 by, for example, shrink fitting, and is supported by the shell 8. The rotor 6 is driven to rotate when the stator 7 is energized, and has the function of rotating the crankshaft 4. The rotor 6 is fixed to an outer circumferential surface of the crankshaft 4. The rotor 6 has a permanent magnet in the rotor 6 and is held at a small distance from the stator 7. The crankshaft 4 is rotated in association with the rotation of the rotor 6, thus driving and causing the orbiting scroll 2 to orbit. Upper part of the crankshaft 4 is supported by the bearing 3 In the shell 8, the Oldham ring 16 for inhibiting a rotating motion of the orbiting scroll 2 during the eccentric orbiting motion is disposed outward of the thrust bearing 3 The Oldham ring 16 includes an annular ring portion 16 The Oldham ring 16 with such a configuration is disposed between the orbiting scroll 2 and the frame 3 in such a manner that the Oldham keys 16 Hatched portions in The bushing 15 has a centrally disposed slide hole 15 An operation of a compressor 100 will be briefly described below. When power is supplied to a power terminal, which is not illustrated and provided in the shell 8, torque is generated in the stator 7 and the rotor 6, so that the crankshaft 4 rotates. The rotation of the crankshaft 4 is transmitted to the orbiting scroll 2 via the bushing 15. The orbiting scroll 2 performs the eccentric orbiting motion while being inhibited from rotating by the Oldham ring 16. Gas refrigerant sucked into the shell 8 through the suction pipe 5 is trapped into the compression chambers 9. The compression chambers 9 trapping the gas decrease in volume as the compression chambers 9 move toward the center of the orbiting scroll 2 from the outer periphery of the orbiting scroll 2 in association with the eccentric orbiting motion of the orbiting scroll 2, thus compressing the refrigerant. The compressed gas refrigerant is discharged against the valve 11 from the discharge port 1 During the eccentric orbiting motion of the orbiting scroll 2, the orbiting scroll 2 experiences a centrifugal force, so that the orbiting scroll 2 is moved radially together with the bushing 15. Consequently, the first spiral element 1 The orbiting scroll 2 experiences the centrifugal force directed radially and further experiences a radial reaction force, acting at a different angle from the centrifugal force, generated by compression of the gas refrigerant. Consequently, the orbiting scroll 2 experiences a radial resultant force F1 of these forces. Furthermore, the orbiting scroll 2 experiences an axial pressure difference between the compression chambers 9 and a surrounding space caused by compression of the gas refrigerant. Consequently, the orbiting scroll 2 experiences an axial downward force (hereinafter, referred to as a “thrust load”) F2 caused by the pressure difference, so that the orbiting scroll 2 is pressed against the thrust bearing 3 The thrust load F2, which acts on the orbiting scroll 2, deforms the second end plate 2 As described above, the orbiting scroll 2 in operation experiences not only the axial force (thrust load F2) but also the radial force (resultant force F1) under the action of compression. These forces produce an overturning moment M. As the radial resultant force F1 acting on the orbiting scroll 2 becomes larger than the thrust load F2, the overturning moment M increases. When the overturning moment M occurs, the orbiting scroll 2 tilts about a fulcrum O, serving as an edge of the thrust bearing 3 During operation of the compressor 100, the temperature in the compression chambers 9 rises, and the gaps 18 decrease due to thermal expansion of, for example, the first spiral element 1 For example, just after activation, the temperature in the compression chambers 9 is low, and the first spiral element 1 As a feature of Embodiment 1, as illustrated in These dimensions may be adjusted by selective fitting of parts during, for example, assembly, or adjusting the thickness of the Oldham ring 16. The dimensions to be adjusted are not dimensions under conditions where the parts thermally expand due to an increase in temperature during the operation, but dimensions at room temperature. The dimension of each gap 18 at room temperature is set to approximately several tens of micrometers in consideration of temperature-increase-induced expansion or pressure-induced deformation of the compression mechanism 35 during the operation. In Embodiment 1, the configuration that satisfies the relation of δ1>δ2 prevents excessive tilt of the orbiting scroll 2. Specifically, even when the overturning moment M is large and the orbiting scroll 2 is about to tilt excessively, the rear surface 2 The portion that supports the orbiting scroll 2 when the orbiting scroll 2 tilts is any of the supports 16 To improve the slidability of the orbiting scroll 2, the Oldham ring 16 may include a surface treatment layer obtained by surface treatment, such as nitriding, manganese phosphating, and diamond-like carbon (DLC). Other methods for improving the slidability include attaching a separate part to the rear surface 2 As for the configuration of the compressor 100, the overturning moment M acting on the orbiting scroll 2 may increase in the following two cases, for example. In one of the cases, the centrifugal force acting on the orbiting scroll 2 is much larger than the thrust load F2 that presses the orbiting scroll 2 axially downward. Such a case, in which an excessive centrifugal force is generated, corresponds to either of a configuration in which the compressor 100 is operated up to a high rotation frequency and a configuration in which the orbiting scroll 2 is heavy. These configurations are intended to ensure refrigeration capacity, heating capacity, or water heating capacity. In the other case, the first spiral element 1 Preventing global warming currently requires switchover om traditional HFC refrigerants to refrigerants having low global warming potential (GWP). Examples of the low GWP refrigerants include HFO refrigerants, such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf). Such a refrigerant has a low refrigeration capacity per unit volume. To use a single component HFO refrigerant or a refrigerant mixture containing the HFO refrigerant to achieve the same refrigeration capacity, heating capacity, or water heating capacity as those achieved by using a traditional HFC refrigerant, the following operation is needed. Specifically, the compressor 100 needs to be operated at a high rotation frequency to increase a discharge flow rate per unit time. Or alternatively, the compression mechanism 35 needs to be increased in size to increase a discharge flow rate per rotation. An increase in size of the compression mechanism 35 leads to an increase in weight of the orbiting scroll 2. In other words, the use of a single component HFO refrigerant or a refrigerant mixture containing the single component HFO refrigerant inevitably requires a configuration that tends to cause an excessive centrifugal force, resulting in an increase in overturning moment M. Furthermore, the use of a refrigerant mixture containing the HFO refrigerant causes an operating pressure to be lower than that in the use of the HFC refrigerant, resulting in a reduction in thrust load F2. Consequently, the centrifugal force acting on the orbiting scroll 2 is larger than the thrust load F2, also resulting in an increase in overturning moment M. In either case, the use of a single component HFO refrigerant or a refrigerant mixture containing the single component HFO refrigerant causes the overturning moment M to be larger than that in the use of the HFC refrigerant because of the above-described reasons. Consequently, the configuration according to Embodiment 1, or the configuration in which, when the orbiting scroll 2 tilts, the orbiting scroll 2 can be supported by any of the supports 16 Although a single component refrigerant of HFO-1234yf and a refrigerant mixture containing the single component refrigerant have been described as examples of the refrigerant, the refrigerant usable is not limited to these examples. For example, a single component refrigerant or a refrigerant mixture containing the single component refrigerant may be used. The single component refrigerant has a molecular formula expressed as C3HmFnand one double bond in a molecular structure of the single component refrigerant, where m and n are each an integer of 1 to 5 and the relation of m+n=6 is satisfied. According to Embodiment 1, as described above, the configuration that satisfies the relation of δ1>δ2 inhibits the orbiting scroll 2 from tilting excessively. This configuration can prevent damage to the first spiral element 1 In preventing the orbiting scroll 2 from tilting excessively, any change in structure of the orbiting scroll 2 and the fixed scroll 1 is not needed. It is only required that the axial lengths of the gaps δ1 and δ2 are adjusted. The prevention can be achieved with such a simple configuration. Furthermore, the axial lengths of the gaps can be adjusted only by adjusting the thickness of the Oldham ring 16 without changing the existing design and dimensions of the compression mechanism 35. The present invention can be easily applied to existing compressors. Embodiment 2 differs from Embodiment 1 in the configuration of the supports 16 The Oldham ring 16 in Embodiment 2 includes a plurality of supports 160 In the configuration according to Embodiment 1 described above, when the overturning moment M causes the orbiting scroll 2 to tilt, the orbiting scroll 2 contacts any of the supports 16 In Embodiment 2, rather than the whole of each of the four arc-shaped portions, part of the arc-shaped portion constitutes the support 160 As the parts of the arc-shaped portions are used to support the orbiting scroll 2, Embodiment 2 offers the following advantages in addition to the same advantages as those in Embodiment 1: the area of parts required to have high accuracy of thickness is reduced, leading to a lower manufacturing cost than that in Embodiment 1. In addition to the above-described configuration of the Oldham ring 16 illustrated in Although the four supports 160 In consideration of supporting the rear surface 2 Although the supports 160 As regards the arrangement of the supports 160 The scroll compressor according to the present invention is not limited to that having the Oldham ring 16. Further, the scroll compressor according to the present invention is not limited to that having other structural details in The scroll compressor according to each of Embodiments 1 and 2 includes the driven crank mechanism in which, as described above, as the crankshaft 4 rotates, the bushing 15 radially moves along the flat parts 15 The present invention can be applied not only to the scroll compressor including the driven crank mechanism but also to a scroll compressor including a fixed crank mechanism as illustrated in In this modification, the fixed crank mechanism is used instead of the driven crank mechanism, as illustrated in As the bushing 15, which is radially movable, is eliminated in this modification, the second spiral element 2 Consequently, the present invention, in which the angle of tilt of the orbiting scroll 2 is reduced, exerts effects particularly on a configuration including such a fixed crank mechanism. 1 fixed scroll 1 A scroll compressor includes an orbiting scroll including an end plate and a spiral element on the end plate, a fixed scroll including an end plate and a spiral element on the end plate, and an Oldham ring including a support. The scroll compressor satisfies a relation of δ1>δ2, where δ1 denotes each of the axial length of a gap between the tip of the spiral element of the orbiting scroll and the end plate of the fixed scroll and a gap between the tip of the spiral element of the fixed scroll and the end plate of the orbiting scroll, and δ2 denotes the axial length of a gap between the end plate of the orbiting scroll and the support of the Oldham ring. 1. A scroll compressor, comprising:
a fixed scroll including an end plate and a spiral element on the end plate; an orbiting scroll including an end plate and a spiral element on the end plate of the orbiting scroll, the spiral element of the orbiting scroll engaging with the spiral element of the fixed scroll to define a compression chamber; a crankshaft configured to drive the orbiting scroll; a frame supporting the orbiting scroll across the orbiting scroll from the fixed scroll; and an Oldham ring disposed between the end plate of the orbiting scroll and the frame, the Oldham ring being configured to prevent the orbiting scroll from rotating to allow the orbiting scroll to orbit against the fixed scroll, the Oldham ring including a ring portion that is annular, a surface of the ring portion facing the end plate of the orbiting scroll including a support to contact the orbiting scroll when the orbiting scroll tilts during an orbiting motion of the orbiting scroll, the scroll compressor satisfying a relation of δ1>δ2, where δ1 denotes an axial length of each of a gap between a tip of the spiral element of the orbiting scroll and the end plate of the fixed scroll and a gap between a tip of the spiral element of the fixed scroll and the end plate of the orbiting scroll, and δ2 denotes an axial length of a gap between the end plate of the orbiting scroll and the support of the Oldham ring. 2. The scroll compressor of 3. The scroll compressor of 4. The scroll compressor of 5. The scroll compressor of 6. The scroll compressor of 7. The scroll compressor of 8. The scroll compressor of TECHNICAL FIELD
BACKGROUND ART
CITATION LIST
Patent Literature
SUMMARY OF INVENTION
Technical Problem
Solution to Problem
Advantageous Effects of Invention
BRIEF DESCRIPTION OF DRAWINGS
DESCRIPTION OF EMBODIMENTS
Embodiment 1
Embodiment 2
Modification 1
Modification 2
Modification 3
REFERENCE SIGNS LIST







